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SEQUENCES OF MEROMORPHIC FUNCTIONS CORRESPONDING TO A
FORMAL LAURENT SERIES*

WILLIAM B. JONES," AND W. J. THRONt

Abstract. A general theory is developed for sequences of functions {R,(z)} meromorphic at the origin
which correspond to a formal Laurent series (fLs) L in the sense that the Laurent expansion of R,, (z) agrees
with L up to the un power of z, where u, tends to infinity with n. Included are necessary and sufficient
conditions for the existence of an fLs to which a given sequence corresponds. Also methods are described
for obtaining sequences of meromorphic functions which correspond to a given fLs. As consequences of the
property of correspondence it is shown that (under suitable restrictions) uniform convergence of a sequence
is equivalent to uniform boundedness and that, when a sequence converges uniformly, its limit is a function
whose Laurent expansion is L. Applications are considered for Pad6 approximants, continued fractions of
various types and certain special functions.

1. Introduction. Following Henrici [5] we call

(1.1) L =c,,,z" +c,+lZ’+l +c,,+ez"+2+ c,,, O

where the Ck, k >- rn, are complex numbers, a formal Laurent series (fLs). L 0 is also
considered an fLs. The set of all fLs forms a field with respect to addition and
multiplication defined in the manner suggested by (1.1) (see, for example, [5, 1.8]).
If f(z) is a function meromorphic at the origin (i.e., in an open disk containing the
origin), then its Laurent expansion (convergent in a deleted neighborhood of the
origin) will be denoted by L(f). A sequence {Rn(z)} of functions meromorphic at the
origin will be said to correspond to an fLs L (at z 0) if

(1.2) lim

where A is the function defined as follows" A" R LI [oo]; if L 0 then A (L)= oe; if
L 0 then A (L)= rn where m is defined by (1.1).

Correspondence of sequences of meromorphic functions plays a key role in the
theory of Pad6 approximants as well as in the problem of expanding functions, or fLs,
in various types of continued fractions. In the past, various consequences of cor-
respondence, as well as sufficient conditions for a sequence to correspond to an fLs,
have been obtained case by case. We present here a general theory which, not only
contains many known results as special cases, but from which new applications are
derived. The formulation presented here clarifies the relationships involved in the
method as well as the techniques for its application. In Theorem 1 ( 2) we prove that
a necessary and sufficient condition for a sequence {R,(z)} to correspond to some fLs
is that

lim

In Theorems 2 and 3 ( 2) it is shown that the approximants of a continued fraction
formed from a system of three term recursion relations will correspond to a formal
solution of the system under suitable restrictions. Moreover, these restrictions are
shown to be invariant under equivalence transformations of the continued fraction.
For sequences of functions {R(z)} meromorphic at the origin and holomorphic in a
deleted neighborhood of the origin, it is established in Theorem 4 that if {R,(z)}
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corresponds to an fLs L, then: 1) uniform convergence of {Rn(z)} is equivalent to
uniform boundedness, and 2) if {Rn(z)} converges uniformly to a function f(z) then
L L(f). In many instances the second part of this result may be even more important
than the first, for frequently the convergence can be deduced from other known
criteria, while it may be otherwise difficult to determine what the limit is. Theorem 5
( 3) is an application of Theorem 4 explicitly for sequences of Pad6 approximants. It
is an improvement of a result [8] previously given by the present authors. Applications
of each result are discussed following the proofs of the theorems. Before proceeding
to 2, we summarize briefly a few facts and definitions that are used.

Every function f(z) meromorphic at the origin has a unique fLs expansion L(f).
The one-to-one mapping L thus provides an embedding of the field of all functions
meromorphic at the origin in the field . If {Rn (z)} corresponds to an fLs L, then the
order of correspondence of Rn (z) is defined to be

un A (L L(Rn )).

It can be seen that if {Rn(z)} corresponds to L, then L and L(Rn) agree term-by-term
up to and including the term involving z --1.

We further extend the definition of correspondence as follows: A sequence of
functions {R,(z)} meromorphic at z o (i.e., in an open neighborhood of z c) will
be said to correspond to an fLs

+2(1.3) L=cmWm+Cm+lWm+l+Cm+2W +’’’, Cm #0, W l/Z,

at z , if

lim ,(L-L(Rn()) .
Similarly correspondence at z a (a C) can be defined by considering z w + a.

The following properties are easily deduced: For L1 and La in

(1.4) A (L1L2) A (L1)+ A (L2),

(1.5) A(L1/L2)=A(L1)-A(L) ifL2 # 0,

(1.6) (L1 + L2)=> min [A (L1), A (L2)],

(1.7) A(LI+L2)=min[,(L1),,(L2)] if (L1) (L2).

We note two observations due to Baker [1] in the case of Pad6 approximants" If
{R,,(z)} corresponds to L and if A, B, C, D are functions meromorphic at the origin
such that L(C)+ L(D)L O, AD BC 0 and (L(C)+ L(D)L(Rn)) <- k for all n
and some fixed k, then

A + BR, L(A)+ L(B)L(1.8)
C+DRn

corresponds to
L(C)+L(D)L"

Similarly

(az) (az)(1.9) Rn
z +d corresponds to L CZ+d if ad O.

By an (infinite) continued fraction is meant an ordered pair (({a,,}, {bn}), {f}),
where al, a2," and bo, bl, b2," are complex numbers (an : 0) and where {In} is
defined as follows"

(1.10a) fn S,(0), n 0, 1, 2,...,
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where

(1.10b)

(1.10c)
and

(1.10d)

So(w)= So(W)= bo + w,

Sn(W)--Sn--I(Sn(W)), n =1,2,3,...,

ans,(w)=, n=1,2,3,...
b,, + w

For convenience we use the equivalent symbols

(1.11) bo+ K (a,/B,), bo+K(a,/bn)

and
al a2 a3(1.12) b0 + ff-+ b-+ b-+

to denote the continued fraction (({a,}, {b,}), {f}). The numbers a, and b,, are called
the elements of the continued fraction and fn is called the nth approximant. A
continued fraction bo+K(a,,/b,) is said to converge if its sequence of approximants
{f, converges (to a finite limit). When convergent, the value of the continued fraction is
defined to be lira fn and is sometimes denoted by (1.11)or (1.12). The nth numeratorAn
and denominator B, are defined by the second order linear difference equations

(1.13a) A_I--1, Ao=bo, B-l--0, Bo=l,

(1.13b) A, b,,A,,-1 + a,,A,,-2, n 1, 2, 3,

(1.13c) B, b,B,,-1 + anB,-2, n 1, 2, 3,.

The following are well known [12], [18]"

An -’b An-lW a an-1 an
=bo+ n=0,1 2,...(1.14) $(w)

Bn+Bn-lW bl+ +bn_l+b+w

(1.15) f S,,(0)
B,

n =0, 1,2, .,

(1.16) AnBn-l-BnAn-a (-1)"-1 fi ak : 0, n 1, 2, 3,.
k=l

Equation (1.16) is sometimes called the determinant formula.
A continued fraction is said to correspond to an fLs L if its sequence of approxi-

mants corresponds to L.
An fLs (1.1) is called a formal power series (fps) if m >-0. An open connected

subset of the complex plane C is called a domain. We denote the closure of a bounded
subset K of C by K.

2. Correspondence. To motivate further the definition of correspondence we
observe that, for L ’, the function/ defined by

0, L=O
(2.1) /3(L)= 2_x(L) L :0

is a valuation on w (for definition and properties of valuations on fields see, for
example, [19]). We summarize a few properties of the valuation/3 that are employed
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in the proof of Theorem 1. Valuations are not used in the remainder of this paper. In
terms of the valuation/3 one can define a metric O on by

(2.2) o(L1, L2)=B(L1-L2), forL1, L2w.
In terms of the metric O (which has been used previously in a similar context by
Franzen [3]), the statement that a sequence {R,(z)} corresponds to L is equivalent to
saying that {L(R,)} converges to L (with respect to the metric p). It is also the case that

is the completion of L(d//) with respect to p and hence is p-complete. For
Rn(z), {L(R,)} is a Cauchy sequence (with respect to 0) if for a given e > 0 there
exists an n, such that

(2.3) p(L(Rn+k),L(R))<e, for.n =>n, and k =>0.

Certain sequences {L(R,)} are Cauchy sequences (with respect to p) and, since 5f is
0-complete, every Cauchy sequence converges (with respect to O) to some element
L 6 +---.

THZORZM 1. (A) Given a sequence {R,,(z)} of functions rneromorphic at the
origin, there exists an fLs L such that {R, (z)} corresponds to L if and only if

(2.4) lim h (L(Rn+I)-L(R,))= .
(B) If (2.4) holds, then the L to which {R,(z)} corresponds is determined uniquely. (C) If
the sequence {h(L(R,,+x)-L(R,,))} tends monotonically to , then the order of cor-
respondence of Rn (z is given by

,. A (L(R.+ )- L(R. )).

Proo[. In view of the preceding discussion, to prove (A) it suffices to show that
{L(R,)} is a Cauchy sequence (with respect to the metric O) if and only if (2.4) holds.
Further we note that condition (2.3) is equivalent to

(2.5) A(L(R,+k)-L(Rn))> Log2(l, for n=>n, and k ->_0.

By (1.6)we see that

(2.6) , L _-> min , (Li).
l<j_k

Thus

(2.7) =A 2 )-L, (L(R,,+,) L(R,,)) (L(R,,+i (R,,+._))

-> min , (L(R,,+i)- L(R,,+i_I)).
ik

It follows from (2.5) and (2.7) that {L(R,)} is a Cauchy sequence (with respect to p) if
and only if given N > 0, there exists an nN such that

A(L(R,,+I)-L(R,,))>N, for n >=nN.

Hence (2.4) holds if and only if {L(R,)} is a Cauchy sequence with respect to O. This
proves (A). Part (B) follows immediately from properties of a complete metric space
and (C) is a direct consequence of the definitions. This completes the proof.
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Example 1 (T-fractions [15]). If A,,(z) and B,(z) denote the nth numerator and
denominator of a T-fraction

(2.8) 1 + doz + K d,, C,
n=l l+d,,z]

then if follows from the difference equations (1.13) that B,,(0)= 1, and from the
determinant formula (1.16), that

(2.9)
An+l(Z) An(z)
B,,+I(Z) B.(z)

Therefore

(_ 1)"z -+’

B,(z)B,+l(Z)’
n>=O.

( (AB:++I) L(A--))h L =n+l, n>=0

and hence by Theorem 1 there exists an fLs L to which (2.8)corresponds. Since the
order of correspondence of An/B,, is vn n + 1, it follows that L(A,/B) agrees with L
through the term involving z". Thus L is an fps of the form

(2.10) L 1 + ClZ t_ C2Z
2 ..[.. C3z3 q...

If it is further assumed that

(2.11) d, : 0, for n >- 1,

then it follows from the difference equations (1.13) that B,,(z) is a polynomial of
exactly degree n with leading coefficient dadz.., d,,. Letting z 1/w and R,* (w)=
A,, (1/w )/B,, (1/w ), we obtain from (2.9) that

A (L(R*,+,)-L(R* )) n, n 0.

Thus by Theorem 1 there exists another fLs L* (in w) to which {R * (w)} corresponds,
the order to correspondence of R* (w) being n [7], [12], [17]. Since L(R*) agrees with
L* up to and including the term involving w "-1, it follows that L* has the form

L* d0 2=--+ + w + +...
W

(2.12)
c1"

doz +c +--+-+
Z Z

It can be seen that the degrees of A,(z) and B,(z) do not exceed n + 1 and n,
respectively. Thus it follows from the results shown above that, when (2. I l) holds, the
nth approximant A,(z)/B,,(z) is the (n + i, n) entry in the two-point Pad6 table of the
L and L* (see, for example, [14] for a brief discussion of two-point Pad6 tables). The
relation between these tables and T-fractions is discussed more fully in [9].

Example 2 (P-fractions [l l]). A continued fraction of the form

(2.13a) bo(z)"[- nKl= b"
where each b. (z) is a polynomial in 1/z,

o
(2.13b) b,(z)= 2 a(-zk, No->0;

k -N,
N,_->I and a_.0, n->_l,
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is called a P-fraction. As in Example 1 it can be shown that, if R,, (z) denotes the nth
approximant of (2.13) then

(2.14) h(L(R,+I)-L(R,))= 2 Nk +N,+I, n >=0.
k=l

Hence by Theorem 1 there exists an fLs L to which (2.13)corresponds and L has the
form

(2.15) L= 2 a(-)z .
k =-No

We shall return to T-fractions and P-fractions in later applications. Before pro-
ceeding, however, we mention that similar statements can be made for continued
fractions of the form

(2.16) 1 + 17= \(a"z"")l,’ a, o, a,, e C, a, [1, 2, 3,... ],

called C-fractions 10].
TI-IEOIEM 2. Let {a, (z)} and {b, (z)} be sequences offunctions meromorphic at the

origin, with

(2.17) a,(z)O, n>=l,

and let Lo be an ]:Ls. Let {L,} be a sequence offLs defined recursively as follows"
L(an+l)

L,+I n ->0,
L,, -L(b,,)’

(2.18a)

provided

(2.18b)

(otherwise see (B)). Then:

L, # L(b,), n >=0,

(A) If R, (z denotes the n-th approximant of the continued fraction

(2.19) bo(z)+ ng__l b,(z)]’
then {R,, (z )} corresponds to Lo provided that

(2.20a) h(L(b,))+1(L(b,_))<1(L(a,)), n >= 1,

and

(2.20b) ,(L,)+A(L(b,_I))<h(L(a,,)), n >=1.

If (2.20) holds, then the order of corresondence of R,(z) is

(2.2 la) uo I (L(al))- , (L a),

(2.21b) n-1

v,= 2 a(L(a))-2 Y’. a(L(b))-h(L,),
kl k=l

(B) If in defining {L,} by (2.18a) we obtain

(2.22) LL(b) for O<-k<-m-1, and L,,=L(b,),

then

(2.33) Lo L bo(z)- bl(z)+" + b,,,(z

n >=l.



SEQUENCES OF MEROMORPHIC FUNCTIONS 7

Remark. Before proving Theorem 2, we point out that conditions (2.20) are
invariant under equivalence transformations of the continued fraction (2.19) in the
following sense: Let {rn(z)} be an arbitrary sequence of nonvanishing functions
meromorphic at the origin and define

(2.24a) a,* (z)= r,,(z)r,,_l(z)a,(z), n >- 1 (ro(z)=- 1)

(2.24b) b* (z)= r,,(z)b,(z), n >=0

(2.24c) L* L(r,)L,, n >0

Then in view of (2.17)we have a* (z) 0. Moreover,

(2.25) L*, L(b* ), n >- O,

if and only if (2.18b) holds;

(2.26) , L(a*+l)
Ln+l: - (b.

provided (2.25)holds; and

(2.27a)

and

A(L(b*))+A(L(b*n-1))<A(t(a*)),

n=>0,

n>=l,

(2 27b) h (L* )+ (L(b* )), n >- 1,n-1 )) <, (L(a*

hold if and only if (2.20a) and (2.20b) hold, respectively. In consequence, the
continued fraction

(2.28) b o
$ (Z) -- n=gl \ b * (z

is equivalent to (2.19), and hence (2.28) corresponds to L0* provided the conditions
(2.27) and (2.25) hold. Thus it is unnecessary to search for an equivalence trans-
formation of a continued fraction for the purpose of making Theorem 2 applicable.

Proof of Theorem 2. (A) Suppose that (2.18) holds and let A,,(z) and B,,(z)
denote the nth numerator and denominator of (2.19). From (2.18a)we have

L(an+l)
(2.29) L, L(b,,)+

L,,+
n > 1

Here division by L,+I is possible since Ln+l # 0 follows from (2.17) and (2.18a). Thus

L(al) L(a,,_l) L(a,,)
Lo L(bo)+L(bx)+ + L(b,,_)+ L,,

n >- 1,

and hence by (1.14)

(2.30) Lo
L(a. )L(A._2) + L.L(A._I)
L(a. )L(B.-2) + L.L(B._I)’

n_>2.

Then applying (2.30),
L(A,,-1)/L(B,,_I), we obtain

the determinant formula (1.16)

Lo-L(R,,_I)
(- 1)"-’ 1-I, 1L(a,)

L(B,,_I)(L(a,,)L(B,,_2)+ L,,L(B,,_I))’

and

n_>2

L(R,,-1)
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and hence from (1.4) and (1.5)

A(Lo-L(R,_))= A(L(a))-A(L(B,_I))
k=l

(2.31) -, (L(a,,)L(B,,_z)+ L,,L(B,,_)), n >-2.

A simple induction argument based on (1.7), (1.13), and (2.20) can be used to
establish the following formulas"

(2.32a) A (L(B0)) 0,

(2.32b) h (L(B,,))= h (L(bt,)), n >- l.
k=l

Then by use of (1.7), (2.20), and (2.32) we can prove that

(2.33) A(L(an)L(Bn_2)+LnL(Bn_I))=A(Ln)+ A(L(b)), n ->2.
k=l

Now substituting (2.32) and (2.33) into (2.31) gives

n-1

(2.34) A(Lo-L(R,_))= Y h(L(a,))-2 E h(L(b,))-h(L,,), n>-2.
k=l k=l

Rearranging the terms in (2.34), one obtains

A (Lo- L(R,-1))= (A (L(a1)-/ (L(bx)))

(2.35) + (A(L(a))-A(L(bk))-,(L(bk_l)))
k=2

+(A(L(a,))-A(L(b_))-,(L)), n >-_2.

It follows from (2.20) that each term in the sum in (2.35) and the last term are positive
integers and hence

lira (Lo L(R,)) ,
so that {R.(z)} corresponds to Lo. Equation (2.21b) follows from (2.34); (2.21a) is an
immediate consequence of the definitions. This proves (A).

(B) It follows from (2.18a) and (22) that

L(a) L(a,-l) L(a,)
Lo L(bo)-

L(bl)+ + L(bm-1)+ Lm
from which (2.23) follows since, by (2.22), L,, L(b). This completes the proof.

The following examples illustrate a method by which Theorem 2 can be applied
to show that, for a given fLs L, there exists a continued fraction which corresponds to
L.

Example 3 (T-fractions, continued). Let

Lo 1 + CaZ "1- C2Z2 "[- C3Z3 "3r’"

be a given fps and let

a,,(z)=z, for n_-> 1,

b,, (z 1 + d,,z, for n _-> 0.
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We now show (by means of Theorem 2) that the d. can be chosen so that the resulting
T-fraction (2.8)corresponds to Lo. In accordance with (2.18)we set

z 1

L0-(1 + doz)- (Cl-do)+C2Z "-C3Z2"]-"

By choosing do Cl- 1, we obtain L1 in the form

L1 1 + cl)z + c(21z 2 +.

The remaining dn can be defined successively in a similar manner, and the resulting Ln
are defined by (2.18a). Therefore, since

,(z)=l, ,(l+d,z)=0, ,(L,)=0, forn=>l,

it follows from Theorem 2 that (2.8) corresponds to Lo.
Example 4. In a manner completely analogous to that used in Example 3, it can

be shown that, for a given fLs

1"L* z +c +++. ,
Z Z

there exists a continued fraction of the form

(,en Zeo + z + .K= + z
e,, C,

corresponding to L* at z
Example 5 (P-fractions, continued). Let

Lo Y a(-z k, No>=O
k -No

be a given fLs. We define bo(z) by

6o(z)=
o

k -No

and, assuming that Lo bo(z), we define

Lo-bo(z)"

Let a(--O)NxzN1 denote the first nonzero term in Lo-bo(z), so that N1 _> 1 and a(-O)N150.
Thus L1 can be expressed in the form

L= Y azk,
k --N1

Next we define

a (--1)N 1/a (__)ux O.

o
ba(z)= az k.

k --N1

Continuing in this manner, we obtain (via (2.18a)) a sequence of fLs {Ln}, provided
L, b, (z) for all n >= O. In that case, since

, (1) 0, , (b. (z)) -N., h (L.) -N., n >- 1
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where Nn -> 1 for n >- 1, it follows from Theorem 2 that the resulting P-fraction (2.13)
corresponds to L0. In the case that there exists an m satisfying (2.22), then (2.23)
holds. Similar statements can be made for C-fractions (2.16).

The following result (a simple consequence of Theorem 2) is particularly useful
for sequences of nonzero fLs satisfying certain systems of three-term recurrence
relations.

THEOREM 3. Let {an (z )} and {b,, (z )} be sequences offunctions meromorphic at the
origin with

(2.36) an (z) 0, for n >-_ 1.

Let {Pn} be a sequence of nonzero fLs satisfying the three-term recurrence relations

(2.37) Pn L(bn)Pn+I + L(an+x)Pn+2, n >= O.

Then the continued fraction

(an(z)(2.38) bo(z + ,K= \bn(z)]

corresponds to the fLs L Po/PI provided the following conditions are satisfied"
(2.39a) A(L(bn))+A(L(b,,_I))<A(L(a,,)), n >- 1,

(2.39b) A(Pn/P,,+)+A(L(bn-I))<A(L(a,,)), n >= 1.

Proof. Letting Ln P,,/Pn+x, for n ->_ 0, we obtain from (2.37) that

(2.40) Ln L(bn)
L(an+x)
=, n>_O.

tn+l
But (2.36)implies that L(a,+a) 0 for n =>0 and hence (from (2.40)) Ln L(bn), n >-0.
Thus {Ln} satisfies all of the conditions of Theorem 2(A) and our assertion follows.

Example 6. (Hypergeometric functions and the continued fraction of Gauss). The
hypergeometric function F(a, b, c; z) is defined by the power series

ab z a(a + l)b(b + l) z 2

(2.41) F(a, b, c; z)= 1+----+ --+...
c 1! c(c + 1) 2!

where a, b, c are complex constants, c [0,-1,-2,-3,... ]. If a or b is in the set
[0, -1, --2,-3,. ], then F(a, b, c; z) is a polynomial. Otherwise the power series in
(2.41) has radius of convergence equal to one. We define

Pzn =F(a+n,b+n,c+2n;z), n>=O,

P2n+l =F(a+n,b+n+l,c+2n+l;z), n>=O,

(a+n)(c-b+n)a2n(z) z, n->_l,
(c + 2n 1)(c + 2n

(a+n)(c-b+n)
az,,+a(z) z, n_>--0.

(c + 2n)(c + 2n + 1)
Then it can be shown [2] that

Pn=Pn+l+an+l(Z)Pn+2, for n =>0.

If a, b, c are chosen so that an(z) 0 for n -> 1, then

A(a,,(z))=l, A(1)=0, ,(Pn/Pn+)=O, n>=l,
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and hence by Theorem 3, the continued fraction

1 + a _)

corresponds to Po/P1 F(a, b, c; z )/F(a, b + 1, c + 1; z). By means of (1.8) (with
A D 1, C B 0) it follows that the continued fraction of Gauss

corresponds to P1/Po.
Numerous continued fraction expansions of functions have been obtained from

Example 6. In a similar manner many more can be obtained for the confluent
hypergeometric functions [18]. It is not our purpose here to elaborate on the appli-
cations of Theorem 3 but merely to illustrate the method. However, we will treat one
further application, the Legendre functions of the second kind. Although Gautschi [4]
has proved convergence of the continued fraction by an application of Pincherle’s
theorem, the following proof of correspondence is new.

Example 7. Legendre functions of the second kind

O.a%n(z)= gnz-m-a-n-lF(1/2n +1/2a +1/2m + 1, 1/2n +1/2a +1/2m +1/2; n +a +; z-=),

(2.42b) K, eni’2-’-a-1 rr 1/2
F(a + n + m + 1)
F(a+n+3/2)

are used, for example, to solve Laplace’s equation by spherical harmonics [2]. Here m
and n are nonnegative integers and a an arbitrary complex number. F denotes the
hypergeometric function (2.41). We shall consider m and a as fixed, let z 1/w and
then define P, (w) by

Pn(w)=Oma+,,(z).
Then the P.(w) satisfy the system of three-term recurrence relations [2]

2n+2a+3 1 n+a-m+2
(2.43) P.(w)= "--P,,+x(w)- Pn+Z(W), n >=0.

n+a+m+l w n+a+m+l

Letting b,,(w) denote the coefficient of P.+a and a,,+(w) the coefficient of P.+2 in
(2.43), we obtain

a(an)=0, a(b,,)=-l, A(P,,/P,,+,)=-I, n_O.

Therefore it follows from Theorem 3 that

bo(w + ,K=
corresponds to Po/P1 at w 0; or, more generally,

(2.44) b,,(w)+ =IK \b-+,(w
corresponds (at w 0) to P,,/P,,/I, n 0, 1, 2,. . Thus the continued fraction (2.52)
with w replaced by 1/z corresponds (at z=) to O’/,(z)/O+,,+l(Z). The con-
vergence of (2.44) will be dealt with in the following section.

1 +K,,=I (a,,(z)/1)

(2.42a)

where



12 WILLIAM B. JONES AND W. J. THRON

3. Uniform convergence. A sequence {Rn(z)} of functions meromorphic in a
domain D is said to converge uniformly on a compact subset K of D if and only if:

(i) there exists N(K) such that Rn(z) is holomorphic in some domain containing
K for all n ->_ N(K), and

(ii) given > 0 there exists N, > N(K) such that

(3.1) sup IRn+k(z)-R,(z)l<e for n >_-N,, k >_-0.
zK

The sequence {R(z) is said to be uniformly bounded on a compact subset K of D if
and only if there exist M(K) and B(K) such that

(3.2) sup (z )I <-_ B (K for n >-M(K)
zg

In Theorem 4 we shall show that (subject to certain restrictions) a sequence
{Rn (z)}, which corresponds to an fLs L, will be uniformly convergent if and only if it is
uniformly bounded. First, however, it should be pointed out that a sequence {R,(z)}
may converge uniformly to a holomorphic function f(z) in a neighborhood of the
origin without necessarily corresponding to L(f), the Taylor series expansion of f(z) at
z 0. For example, consider

2 3
Z Z

L(eZ) l +z +u+__+.
2! 3!

and

R,(z)= l+ z n= l 2,3
k=l

It is easily seen that {R, (z)} converges uniformly to e on Izl--< p < 1, but {Rn (z)} does
not correspond to L(eZ).

THZORFM 4. Let {R, (z )} be a sequence offunctions meromorphic at the origin and
corresponding to an fLs
(3.3) L c,,z + c,+lz

"*+1 +. , c, 0.

Further suppose that there exists a deleted neighborhood of the origin D*=
[z, 0< Izl < such that each R,(z) is holomorphic in D*. Let D be a domain contain-
ing D*; if m < 0 we require that 0 6_ D. Then"

(A) {R,(z)} converges uniformly on every compact subset of D if and only if
{R, (z)} is uniformly bounded on every compact subset of D.

(B) If {R,(z)} converges uniformly on every compact subset of D, then f(z)=
lim,_. R,(z is holomorphic in D and L L(f).

Proof. (A) That uniform convergence implies uniform boundedness follows from
a standard argument which need not be repeated here. Now suppose that {R,(z)} is
uniformly bounded on all compact subsets of D. Let K be an arbitrary compact subset
of D. Let Ko be an open, connected, bounded subset of D such that K c Ko c Ko c D
and such that Ko contains an annulus r/< [z] < 5rt < 8. Since Ko is assumed to be
bounded, Ko is a compact subset of D. There then exists an no and an M, both
depending on Ko, such that

(3.4) sup In. (z)[ <M for n _-> no.
/O

Since R(z) is meromorphic at the origin and holomorphic in D*, it can be represen-
ted by its convergent Laurent series

(3 5) L(R.) E /("z
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where

1 f..R,,(()d(, k=m,,m,,+l(3.6) Y(") =-f (k+l
and where c is the circle ]([ 4r/traversed once in the counterclockwise direction. It
follows from (3.4) and (3.6) that

(3.7) ly . l < M
=(4r)k, k->m,,, n_->no.

We note in passing that the assumption that each R,,(z) is holomorphic in D* was
made to insure that L(R,,) would be the Laurent expansion of R,,(z) in the annulus
n < Izl < 5n, From (3.5) we see that

(3.8) A (L(R,,)) ran, n >- 0.

Further,

(L(R+,)-L(R,))= (L(R,,+,)-L +L-L(I))
(3.9)

>=min[A(L(R+,,)-L),A(L-L(R,,))], n >=0, m >=0.

Therefore, since A (L L(R,,)) + c as n - o, given any N, we can find an n > no such
that

(3.10) A (L(R,.,,+,., )- L(R,., )) >- N, for n_->nl, m_->0.

It follows from (3.5), (3.7), and (3.10) that, for n _->nx and m ->0,

sup ]R,,,+,,(z)-R,(z)I<= sup ](y+")-y"))z ’1
(3.11)

2M ) 4M
-<- =vE (4--’(2r/ 2r.

Thus we see that {R,,(z)} is a uniform Cauchy sequence on r/< Izl < 2r/. An appli-
cation of the Stieltjes-Vitali theorem (see, for example, [6, p. 251] or [16, p. 142])
completes the proof that {R,, (z)} converges uniformly on K0 and hence on K.

(B) Suppose now that {R,,(z)} is uniformly convergent on all compact subsets of
D. Define

(3.12) Ln cmzm +cm+lZ re+l+’’ "+c+,z ’’+" n>0

Then

A(L. L(R.)) A((L. -L)+(L-L(R.)))

>_-rain [m +n + 1, A(L-L(R,,))].

Hence

(3.13) lim A (L,, -L(R,,)) ee

and, for every k -> m, there exists Ik such that

(3.14) c y(t), for => l.

Now let K* be an arbitrary compact subset of D*. Then there exist e and r/such that

0<<]zl<r<8, forzK*.
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The set K1 [Z: =< ]g[--< r/] is a compact subset of D*. Let M1 belong to Ks; that is,

(3.15) sup [R,(z)I<-MI for n >=M(K).
zK1

(We note that the existence of bound M follows from part (A) already proved.) Now
the coefficients 3,(") in (3.5) can be written as

1 f R,,()d, k=m,,m,,+l(3.16) /(") / ,k+l
where C is the circle Izl- o, < o < , traversed one time in the counterclockwise
direction, and such that

(3.17) tz max < 1
K* -It follows from (3.14), (3.15) and (3.16) that

(3.18)
Ick[ [’’(k/)[, for l_-> lk,

__1_ 1-
2rr p

Thus we have, for all z e K*,

It(z)[ 2 Iczl
k=m

(3.19) -< 2 lTz[, l=>l,

+n

M12
k

If m < 0, then by (3.17) and (3.19),

(3.20a) IL,, (Z)[ -< M1 /z + for z K*,

and if m 0, then the

(3.20b) ILn (z)l < MI for z s K*=l-/x
Thus we have shown that the sequence {L,,(z)} is uniformly bounded on every

compact subset of D*. Since the L,, (z) are rational functions, holomorphic in D*, and
since h (L L,,) m + n + 1 --> oe as n --> oo, by part (A) of the theorem, it follows that
{L,,(z)} converges uniformly on all compact subsets of D* to a function f(z) which is
holomorphic in D*. Clearly L L(f). Now

[Z.(z)-i.(z)l_-< y I(c-r"))z[, ..=;(L-L(g.)),
k

II(3.21) -< 2 2M
z

--k=,,
by (3.18),

2M1/x "--<, for z s K* by (3.17).
1-/x
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Since 0 </x < 1 and -, c as n c (by (3.13)), it follows from (3.21) that {L, (z)-
Rn (z)} converges uniformly to 0 on K*. But

If(z)-n.(z)l <- If(z)-L.(z)l + lL.(z)-R.(z)l,
and hence we can conclude that {Rn(z)} converges uniformly to f(z) on all compact
subsets of D*. The extension to D can be obtained by analytic continuation. This
completes the proof.

The following is an immediate corollary of Theorem 4.
COROLLARY 4.1. Let {R,(z)} and {Qn(z)} be two sequences of functions

meromorphic at the origin which correspond to the same fLs L. If both sequences
converge uniformly on every compact subset of a domain D containing a deleted
neighborhood of the origin, say D*, and if h (L)< 0 implies 0D and if all R,(z) and
O,(z) are holomorphic in D*, then both sequences converge to the same function f(z)
which is holomorphic in D and for which L(f)= L.

For h (L) m >_- 0, the statement of Theorem 4 becomes sufficiently simpler that it
is worth stating separately.

TEOgEM 4’. Let {R,(z)} be a sequence of functions meromorphic at the origin
which corresponds to a formal power series

P Co + C1Z -[- C2Z2 --"
Let D be a domain containing a neighborhood of the origin. Then:

(A) {Rn(z)} converges uniformly on every compact subset of D if and only if
{Rn (z)} is uniformly bounded on every compact subset ofD.

(B) If {Rn(z)} converges uniformly on every compact subset of D, then f(z)=
limn-,o Rn(z) is holomorphic in D and P is the Taylor series expansion of f(z) about
z=0.

Part (A) of Theorem 4’ was proved for regular and associated continued fractions
by Pringsheim [13]. For C-fractions (2.16), (A), (B) and Corollary 4.1 were
established by Leighton and Scott [10]; for T-fractions (2.8)the same three results can
be found in [15]. The corresponding results for P-fractions (2.13) have not been
previously known. As a further application of Theorem 4, we consider again the
Legendre functions of the second kind (2.42).

Example 8. In Example 7 it was shown that the continued fraction (2.44)
corresponds to P,/Pn+I at w 0. If we set

a * rnrn-xan, n >= 1,

b*n rnb, 1, n =>0

where the an and bn are defined as in Example 7, and where

n+a+m+l
w, n >= l (ro lrn= 2n+2a+3

then the continued fraction

(3.22) (a+n(w))bn* (w)+ kK1 i
is equivalent to (2.44). But

2

lim a*(w)= w

4
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and hence it follows from Worpitzky’s theorem [18, p. 42] that for sufficiently large
n, (3.22)converges uniformly on compact subsets of Iw[< 1. Thus it follows from
Theorem 4’ that (3.22) converges to P,,/P,,+I, at least for [w] < 1 and sufficiently large

(m) (Z)/lam+n+l (Z) inn. By replacing w by l/z, we see that (3.22) converges to
[zl > 1, n sufficiently large.

For Pad6 approximants the present authors [8] gave a result which, using
Theorem 4’ and a tighter estimate of (P-L(R)), we can now improve somewhat.
Let P be a formal power series and let R,. (z) denote the (m, n) Pad6 approximant to
P, so that R,,(z) A,,(z)/B,(z), where A.,, and B., are polynomials of degrees
at most m and n, respectively, and

h(PB,-A,,,,)>-rn +n + 1.

It then follows that

h(P-L(A,,/B.,))>_m + n + l-rain [rn, n] 1 +max [m, n].

In the transition from PB,,-A,,,,,, to P-L(A,,/B,,,,) the value of may decrease
by a value r which is such that z’ is the highest power of z contained as a factor in
B.,. Hence r _-< n. If z’ is a factor of B., then it must also be a factor of A,,, so that

Our theorem now becomes
THEOaEM 5. Let {rn.} and {n} be sequences of nonnegative integers such that

lira max [m., n.

Let R.(z) denote the (rn, n) Padd approximant of the formal power series

P co + clz + caz + ".

Let D be a domain containing a neighborhood of the origin. Then:
(A) {R.(z)} converges uniformly on every compact subset of D if and only if

{R.(z )} is uniformly bounded on every compact subset of D.
(B) If {R.(z)} converges uniformly on every compact subset of D then f(z)=

lim_ R.(z) is holornorphic in D and P is the Taylor series expansion of f(z) about
z=0.

The following example throws some light on what can happen if some of our
conditions (in Theorems 4, 4’, and 5) are not met.

Example 9. Let

1
R(z)= n_->l.

1 -(nz)

Then

L(R,, ) 1 + (nz )" + (nz )" +...,

so that {Rn(z)} corresponds to L 1. Each Rn(z) has n poles on the circle ]z[ l/n,
but {Rn(z)} is uniformly bounded on every compact subset of 0 < [z]. Finally, R,(z)}
converges to 0 for 0 < Izl.
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NECESSARY AND SUFFICIENT CONDITION FOR
MAINTAINING OSCILLATIONS AND NONOSCILLATIONS

IN GENERAL FUNCTIONAL EQUATIONS AND
THEIR ASYMPTOTIC PROPERTIES*

BHAGAT SINGH

Abstract. A necessary and sufficient condition is found for the nonoscillation of

(r(t)y’(t))("-l)+F(h(y(g(t))),t)=O, n>-2.

Case study for the asymptotic oscillatory behavior of solutions of the equations

(r(t)y’(t))’ + a(t)h(y(g(t)))= f(t)

and

(r(t)y’(t))’ + p(t)y(t)+ a(t)h(y(g(t)))= f(t)

is made for the two cases when j’ 1/r(t) dt c and

1/r(t) c, r(t)> 0.dt

1. Introduction. In [12], this author found conditions on a(t), r(t) and f(t) to
ensure that all nonoscillatory solutions of the equation

(1) (r(t)y’(t))’ + a(t)y(t-z(t))= f(t)

approach finite limits asymptotically. A similar set of conditions was found in [13] by
this author to force all oscillatory solutions of a slightly more general equation

(2) (r(t)y’(t))’ + a(t)y(t-z(t))= f(t)

to approach zero.
So far, for the most part, the main thrust of results in oscillation theory for

equations of type (1) and (2) is in the direction of 1/r(t)dt=. Indeed many
interesting applications of these equations such as variable mass problems result when

1/r(t)dt . For this case the results are numerous and the interested reader is
referred to the works of T. Burton and R. Grimmer [1], Hammett [5], Kusano and
Onose [6], this author [12], [14]-[17], Staikos and Sficas [18] and Tuefel [20]. The list
is by no means complete. The literature is very scanty on results when l/r(t)dt <. In our works on [12] and [13] we obtained some asymptotic results for the latter
and observed that more need to be said about the case o 1/r(t) dt . The latter half
of this paper is devoted to the study of the equation

(3) (r(t)y’(t))’ +p(t)y’(t)+ a(t)h(y(g(t)))= f(t)

for which we obtain conditions so that all solutions of (3) are nonoscillatory; and
another set of conditions that allows all oscillatory solutions of (3) to approach zero as

c, one set requiring o 1/r(t) dt o.
With regard to the solutions of these equations we would like to study only those

solutions which can be continuously extended on some positive half real line, say for
> to where to > 0. In 2, our first theorem, therefore is to show that any nontrivial

* Received by the editors February 18, 1977.
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solution of

(4) (r(t)y’(t))("-l)+F(h(y(g(t))), t)=0, n ->_2

can be continued indefinitely to the right of t0. The generality of equation (4) and (in
it) of function F allows easy extensions to cover equations (1), (2) and (3). In the
process this theorem generalizes a similar theorem of Graef and Spikes [3], [4]. In 3
we prove a necessary and sufficiency type theorem which essentially gives a strong
criterion for the nonoscillation of equation (4) subject to one of the conditions as

1/r(t)dt < c. Throughout this whole work ample examples demonstrate the ap-
plicability of results. Incidently, we call any equation (under study here)oscillatory
when all of its infinitely continuable solutions are oscillatory. Otherwise it is called
nonoscillatory. Again a function O(t) C[to, o) is said to be oscillatory if O(t) has
arbitrarily large zeros; otherwise O(t) is called nonoscillatory.

As a result of our Theorem 1 in 2, the term "solution" will be used in this work
only to refer to continuously extendable solutions of equations under study.

In 4, we find conditions, one being l/r(t)dt < c, that force all solutions of
equation

(r(t)y’(t))’ + a(t)h(y(g(t)))= f(t)

to be nonoscillatory.
We would like to remark in passing that the methods discovered to deal with

ordinary differential equations usually do not carry over to similar equations contain-
ing a delay term. See Travis [19] this author [12].

For readers interested in practical applications of similar equations we suggest
Norkin [10] who gives specific equations that arise naturally in perturbed combustion
phenomena inside rocket engines.

The entire study in this work is subject to the following assumptions"
(i) a(t), r(t), p(t), [(t), h(t) and g(t) are continuous on R, the real line;
(ii) r(t)>0, g(t)>0, g(t)<-t, O<g’(t)<=S for some S, g(t)o as t-;
(iii) lim,_, sup (t- g(t))= ;
(iv) h is odd, sign h(t)= sign t, O<h(t)/t<-mo for some m0 on R;
(v) F: RR-R continuous, odd and increasing in the first argument;

sign F(z, t)= sign z for all > 0.

2. Continuability.
THEOREM 1. In addition to previous conditions suppose further that

(6) 0 < F(z, t)/z < m’o on R.

Let y(t) be a solution of equation (4) such that y(g(t))e C(")(-oo, To), To>0. Then y(t)
can be continuously extended to all of R.

Proof. Suppose to the contrary that y(g(t)) cannot be continued past To, i.e.,

(7) lim sup ly(g(t))l
’/"

Now let P0 < g(ao)where a0 g(To)-b, b >0. Integrating equation (4)over [a0, t],
< To we have

(8) y’(t) K1 + K2t +"" + Kn- 2)F(h(y(g(s))), s) ds

where Ki, i- 1,..., n- 1 are appropriately chosen constants.
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(9)

Integrating (8) between Po and g(t) we get

y (g(t)) Ko + K1 dx + K2 dx +. + K,_
x

;53 ;53 r(x 

fg(t) 1 Ia (S--X)n-2
(,,

x) dx ds

where Ko Y (g(Po)).
(9) yields in view of (6)

[y (g(t))l <- Ko + Clt q- c2t
2 +" q- Cn-lt

n-1

n-1 F(h,x) h(y(g(s)))
[y(g(s))lds+

(n-l)! " y(g(s))

(10)

where by continuity
g(t) xi-1

Ki ..-Z.. dx <-cit i=1 2,... n-1 fort[Po, To]
Po rtx)

Dividing (10) by n-1 and using (6) and the condition on h we have

[y(g(t))] f" (t- S)n-1 1 n-1 lY(g(s))]
-t <-M + -- (n 1)I

momo s n-1 ds
S

(11)
-<M+g s,-1 [y(g(s))l

n- ds
S

where L=mom’o/(n-1)! and M>(Ko/(tn-1)+Cl/(t"-2)+ +c-1)for t[Po, To].
It should be noted that y(g(po)) is defined. By Gronwall’s inequality, there exists
a positive Lo such that for [Po, To]

[y(g(t))l<=Zo

contradicting (7). The proof is now complete.
Remark. From here on we shall use the term "solution" only for continuously

extendable solutions of equations on some positive half real line.

3. Necessary and sufficient condition.
THEOREM 2. Suppose 1/r(t) dt c. Let

I; 1 I(S--X)
n-3

(A) O(t, T)=
(n 3)!

dx ds.

Then a necessary and sufficient condition for equation (4) to have a nonoscillatory
solution asymptotic to dO(t, T), d # 0 is

(B) F(cO(g(t), r),t) dt < for some c > O.

Proof. (Necessity). Let y(t) be a nonoscillatory solution of (4)with the property
that

(12) lim (y(t)/O(t, T))= d # 0.

Without any loss of generality we can assume that there exists to>0 such that y(g(t)),
y(t) and d are positive for t>-_to. Let T>g(to). From equation (4) on repeated
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integration we have

f 1 I(s-T)r(s) f 1 Iy(t)-y(r)+K1 -ds+K2 ds+K3 (s-x)dxds

I; 1 f(s-x)(13) +’’" + Kn-1 ) (n 3)!
dx ds

f 1 f(s-x)
"-2

r- (n 2)!
F(h(y(g(x))), x) dx ds,

where Ki (r(T)y’(T))i-1, 1, 2,.. , n 1.
Define

T(y(g(t)))=-- ) (n --2)!
F(h(y(g(x))), x) dx ds,

I; 1 I(s-x)(c/ (g(t)))=-
(n 2)!

F(CI (g(x)), x) dx ds.

Dividing (13) by O(t, T) and taking limit we have

,(y(g(t)))
(14) d =K,_l-lim, O(t, T)

Now let O(g(t), T) O(g(p)) then

lim
$r(y(g(t)))

<_ lim
$T(CO(g(t)))

, O(t,T) , O(t,T)

where C dmo due to the condition on h and increasing (in first argument) nature of
F(z, t). Now by l’H6pital’s rule

Or(CO(g(t))
F(CO(g(t)), t) dr.(15) lim O(t, T)

The conclusion about necessity now follows from (15).
(Sufficiency). Without any loss of generality let T above be large enough so that

for > T’> T we have

(16) qT,(CO(g(t))/O < F(CO(g(t)), t) dt < d/2.

Since

T(y(g(t)))
lim
,-,oo O(t, T) I7. F(h(y(g(t))), t) dt

and is finite, let T2 > T be so large that for -> T2

(17)
9w(y(g(t)))

O(t, T)
< IT F(h(y(g(t))), t)dt.

In fact, for T2 > T

lim d/T(y(g(t)))=Q(t, T) IT F(h(y(g(t))), t) dt < IT F(h(y(g(t))), t) dt,

which justifies (17).
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Consider the class S of all continuous functions f(t) in [T2, ) such that
If(t)l/Q(t, T)is bounded. We define the norm I1" as

IIf(t)[I sup {(O(t, T))-lf(t)l, -_> T2} <

It is easily verified that S with the norm [1" is a Banach space. Let W c S with the
property that

(18) d/2<=x/Q(t)<-d

for x e S. We observe that W is a closed, bounded and convex subset of S. Now we
define an operator b on S as

(19) &(y(t)) dQ(t, T)- Or2(y(g(t))).

We shall then seek a fixed point of the operator via Schauder fixed point theorem.
We, first, notice that (W)___ W. In fact, if y(t) W then

(20) (y(t))= dQ(t, T)-dQ(t, T)(Or2(y(g(t)))/dQ(t, T)).

Now y(g(t))<=dQ(g(t), T). Therefore from (20)we have

(21) &(y(t))>-_dQ(t, T)-dQ(t, T)
OT(CQ(g(t))

dQ(t, T)

This gives (y(t))/Q(t, T)>-d/2 by (16). Also &(y)/Q(t, T)<-d. Hence &(W)_ W.
Next we shall show that b is continuous. Let y,,(t)--> y(t) in norm as n --> , i.e.,

(22) lim IlYn(t)- y(t)l] 0.

Now

O(t, T)
(y(t))
Q(t, T)I [I 1 I (s-x)"-

-<- r (n -2)!
IF(h(y,(g(x))), x)

-F(h(y(g(x))), x)l dx ds]/Q(t, T)

<= I7- IF(h(y,(g(xll), xl-F(h(y(g(xll), x)l dx

by (17). Thus

(23)

where

1[ (Y,)- (Y)II <- [7- G, ) dt

G,(t) IF(h(y,(g(t))), t)-F(h(y(g(t))), t)l <- 2F(CO(g(t), t)).

By the Lebesgue dominated convergence theorem, the right hand side of (23)
approaches zero and the continuity of & is established.

Next we shall show that &(W) is compact. To this end it suffices to show that the
family D {(y)/Q(t, T): y W} is uniformly bounded and equicontinuous. Uniform
boundedness is obvious. To show equicontinuity we follow Levitan [8] according to
whom it will be achieved if we could subdivide [T2, ee) into finite number of subin-
tervals on each of which all functions of family D have oscillations approaching zero.
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Let then t2 > tl > T2. Now

6(y(t2)) r2(Y (g(t2)))_ 9r2(y (g(tl)))]Q(t2, T) Q(tl, T)

-0 as tl (and hence t2)-oO uniformly.

Hence for a given e > 0, there exists a number T3 > T2 such that for all pairs t2 > tl >
T3

6(y(t2)) 6(y(tl))
<

Now consider the closed interval [T2, T3]. It is easy to see that the family D has
uniformly bounded derivative and hence is equicontinuous in [T2, T3]. Thus we have
succeeded in subdividing [T2, c) into finitely many subintervals on each of which
oscillations of members of D die out. Hence &(W) is compact.

Applying Schauder’s fixed point theorem, b has a fixed point in W. Suppose
b(yo(t)) yo(t), then it follows from (19) that

(25)

y0(t) dQ(t, T)- 9T2(y(g(t)));

(I 1 I (s-x)"-
y(t)= d

(n-3)!
dx ds)

1 I (s-x)"-2
2r (n-21!

F(h(y(g(x))), x) dx ds.

Simple differentiation shows that y0(t) is a solution of equation (4) which is nonos-
cillatory and asymptotic to Q(t, T). In fact, since yo(t)> 0, it follows from equation (4)
that y0(t) is monotonic.

The proof of Theorem 2 is now complete.
THEOREM 3. A necessary condition for equation (4) to be oscillatory is

(26) F(COo(g(t), t)) dt 00 for some C > O,

where we define
1 I (s-x)"-3Q(/)= r- (n 3)!

dx ds.

Proof. This follows from Theorem 2.

4. Further remarks on nonoseillation. In this section we take up equation (5),
namely

(5) (r(t)y’(t))’ + a(t)h(y(g(t)))= f(t).

Theorem 2, in the case of equation (4), guarantees the existence of a nonoscillatory
solution. Here we shall prove a theorem by which all solutions of equation (5) become
nonoscillatory. We shall need the following lemma which is Theorem 2 of this author
[13, p. 401.
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LEMMA 1. Suppose

(27) I If(t)l dt <,
(28) I la(t)[ dt <

and

(29) -) dt <

Then all oscillatory solutions of equation (5) approach zero asymptotically.
Proof. The presence of h and g in equation (5) here requires trivial modifications in

the proof in [13].
THEOREM 4. In addition to conditions ofLemma 1 suppose

(30) litrn if [f(t)-la (t)l] dt > 0;

then all solutions of equation (5) are nonoscillatory.
Proof. Suppose to the contrary that y(t) is an oscillatory solution of equation (5).

By Lemma 1, y(t)-+ 0 as -oo. Let P be large enough so that for >-P, [h(y(g(t)))l< 1.
Since y(t) is oscillatory (ry’) is also oscillatory. Let P0> P be a zero of (r(t)y’(t)). From
equation (5), on integration, we have

or

(31) (r(t)y’(t))+ Ie la(x)l Ih(y(g(x)))l dx >= f(x) dx.

Since Ih(y(g(t)))l < 1, (31) yields

l (f(x)-la(x)l)dx >0.(32) (r(t)y’(t)) >-
ap

But (32) implies that y(t) is nonoscillatory. The proof is now complete by contradiction.
Example 1. Consider the equation

(33) (e’y’(t))’ + e-2’y(t)= 2e-’ + e -4’.
It is easily verified that all conditions of Theorem 4 are satisfied. Hence all solutions of
(33) are nonoscillatory, y(t)= e -2’ is one nonoscillatory solution of (33).

Example 2. Consider the equation

(34) (e’y’(t))’+e-’sinty(/-t)=2e -‘ t>O

Since here again the coefficients meet the conditions of Theorem 4, all solutions of
(34) are nonoscillatory.

Our next theorem gives sufficient conditions for all solutions of equation (5) to
approach nonzero limits on the extended real line.

THEOREM 5. Suppose for a(t)>0, all conditions of Theorem 4 hold. Further
suppose that there exists a continuously differentiable function h (t) such that

(35) a (t)- 0 as - oe,
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(36) (r(t)a’(t))’= f(t).

Let y(t) be a solution of (5). Then lim [y(t)l-/3 =< .
Proof. By Theorem 4 y(t) is nonoscillatory. All that we need to show is that

lim,_, ly(t)l exists on the extended real line.
From equation (5)

(37) (r(t)(y (t)- A (/))’)’ + a (t)h (y (g(t))) O.

Without any loss of generality suppose P3 is large enough so that for => P3 both y (t)
and y(g(t))are positive and condition (36)holds. From (37), (r(t)(y(t)-A(t))’)’<O
and hence (y(t)-A (t)) is monotonic. Thus

lim (y (t) a (t)) exists on extended R.

Now

lim inf y(t)= lim inf [(y(t)-A(t))+A(t)]

lim (y(t)-A (t)).
t--cX3

Similarly

lim sup y (t) lim (y (t)- A (t)),
t-- t---

and the proof is complete.
Example 3. Consider the equation

(38) (e’y’(t))’ + e-’y (t)= 2e-’ + e -3’.
It has y(t)= e -2t as a solution. For function (t) we take

(t)= e-’ +2e -n’.
Thus all conditions of Theorem 5 are satisfied. All solutions of (38) approach limits on
extended real line.

5. Asymptotic nonoscillation.
LEMMA 2. Suppose r(t)> 0, f(t)> 0, a(t)> 0;

(39) (- dt <;

(40) t’| a(tff(t)
dt <"

(41) (f(t)r’(t)r(t)
[(t) )-f’(t)+

p(t
r /

]:or >=A, for some A > t0>0. Let y(t) be an oscillatory solution of equation (3); then
y(t) is bounded above on R /.

Proof. Let y/(t) max (y(t), 0). Let T >A > to to be large enough so that

a(t)f(t)(42) m dt<l
r(t)



26 BHAGAT SINGH

and

(43) dt < 1.

Let t2>t> T be two consecutive zeros of y(t) such that y(t)>0 in (h, t2). Let
Mo=maxy(t), to[tl, t2] be such that Mo=y(to). Now Mo=,y’(t)dt also

Together these give

(44) 2Mo -< ly’(t)l dt.

Now equation (3)can be written as

xr r r

we shall now closely follow the proof of Theorem 1 of this author [13, p. 38-40]. The
proof requires some changes due to the presence of the term HEy’ where

(46)

From (44) we obtain

(47) 2Mo -<_ It =
H2=(fr’/r-f’+fp/r).

[f(t)]-/2[f(t)ly’(t)[]l/2[y’(t)l 1/2 dt

which yields as in [13, p. 39, conclusion 15]

(48) 4Mo2 <[1 f

t 1 dt}[-1 y(t)(f(t)y’(t))’ dt].
From (45)and (48)we get

t 1 dt]
(49)

i,’2 t2 a(t)f(t)y(t)h(y(g(t)))
dt<- y(t)H2(t)y’(t) dt +

r(t)

t y(t)f2(t)
r(t------- at.

The rightmost term in (49) is nonnegative; further integration of the first term on
the right of (49)yields

[t 1 t1-14M{ d --Hence

[t 1 ]-1 ta(t)f(t)y(t)h(y(g(t))(50) 4M dt <=
r(t)

Since H _-> 0 by condition (41). Setting

(51) Ha(t) (a (t)f(t))/r(t),

we obtain from (50)

2
H (t)y2(t) dt + a(t)f(t)y(t)h(y(g(t)))

dt.
r(t)

dt,

(52) 4M2 - dt <- H3(t)h(y(g(t)))y(t) dt.
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Let q>p be large enough consecutive zeros of y(t) such that p-g(q)> T. Let
t(p, q). Suppose Mq =max ]y(t)] for (p, q). If y(t) is not bounded above then
lim supt-oo y(t)= oo. Let r0> q be the smallest number such that

(53) ly(r0)l Mq + 1.

Let T1 be the greatest zero of y(t) less than r0 and T2 be the smallest zero of y(t)
greater than r0. Then

(54) q <= T1 < r0 < T2
and T1, T2 are consecutive zeros of y(t). Let Mz=max [y(t)[, [T, T] and Mz
y(t), t [T, T2]. In a manner of this author [13, p. 40] it now follows that

(55) M2 max [y(/)[, [Tx, T2].

In inequality (52) we replace tl and t2 by T1 and T2 respectively, it is clear that for
[T1, T], g(t) [T, q]. Hence

(56) [y(g(t))lMz, t[Tx, T2].

Let now y(t)>0 in (T, T2). From (52)and (56)and the fact that O<h(x)/xm, we
have

4M dt
y(t)y(g(t))lH(t)h(y(g(t)))

dr,
y(g(t))

which gives

(57)
1 dt][m ITS H3(t)dt]4 =< [ ITS f--

Now (57) gives a contradiction in view of (42) and (43). This shows that y(t)<0 in
(T1, T2). Thus y/(t) doesn’t exceed a finite bound. The proof is now complete.

TI-IZOREM 6. Suppose conditions of Lemma 2 hold. Further suppose that p(t) > O,
p,(t)<_O oo a(t) dt < oo, and oo fit) dt oo. Then all solutions of (3) are nonoscillatory.

Proof. Suppose to the contrary that y(t) is an oscillatory solution of equation (3).
By Lemma 2, y/(t) is bounded. Now y’(t) must be oscillatory. Let T >A > to be large
enough as before. Let yo> T be a zero of y’(t). From equation (3)

Iy’ )hr(t)y’(t)+ fyo p(x)y’(x) dx + a(x (y(g(x)))y(g(x))
This gives

y (g (x)) dx fy f(x) dx.

r(t)y’(t)+p(t)y(t)-p(yo)y(yo)- [y p’(x)y(x) dx

(58/

y(g(x))
y(g(xl) dx of(X) dx.

From (58)

(59) r(t)y’(t)+p(t)y+(t)-p(yo)y(yo) I, p’(x)y(x) dx + m a(x)y+(g(x)) dx

>- I, f(x) dx
0

since p’(t)<-O. Now lim,_,of(x)dx=oo. Due to the bounded nature of y+(t)and
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other conditions of this theorem we get from (59)

(60) r(t)y’(t) oe as oo

since r(t)>0, y’(t)>0 eventually, a contradiction. The proof of Theorem 6 is now
complete.

Example 4. Consider the equation

(61) y"(t)+ (2 + e-t)y’(t)+ e-35ty(t)= e 2t.
All conditions of Theorem 6 are satisfied. Hence all solutions of (61) are nonos-
cillatory.

Example 5. Consider the retarded equation

(62) y"(t)+(2+e-’)y’(t)+e-3’+=(y(t-rr)) 3e’ + e-2t + 1.

Here r(t)-- 1, ’(t) e -2’ + 3e + 1, p(t)= 2 + e-’, a(t)= e -3’+. It is easily verified that
conditions of Theorem 6 are satisfied. This equation has all solutions nonoscillatory.
In fact y(t)= e is one such solution.

Remark 1. The boundedness or unboundedness of r(t) has not played any role in
this theorem. We take up this matter in the next section.

TIaFOIEM 7. Suppose conditions o] Theorem 6 hold. Further suppose that r(t) is
bounded. Then all solutions o[ (3) are unbounded and nonoscillatory (positive).

Prool. We follow the proof of Theorem 6 to prove the nonoscillatory nature of
solutions. Integrating equation 3 for -> T where T is large we have

r(t)y’(t)- r(T)y’(T) + p(t)y (t)- p(T)y (T)

p (x)y(x) dx + a(x)
h(y(g(x)))
y(g(x))

y(g(x)) dx f(x) dx.

Suppose now y(t) is bounded; then (63) yields

(64) r(t)y’(t)

This in view of boundedness of r(t) gives the desired contradiction. The proof of
Theorem 7 is now complete.

Remark 2. Coming back to Examples 4 and 5 we see that all solutions of
equations (61) and (62) are nonoscillatory and unbounded.

Remark 3. It also follows from (63) that the specific nonoscillatory nature of
these solutions is positive.

Remark 4. Boundedness of r(t) in Theorem 7 cannot be weakened as indicated
by our next example.

Example 6. Consider the equation

(65) (e3’y’(t))’ + (1 + e-’)y’(t) + e-’-’y(t 7r) 2e 2’ + e-’.
This equation has y(t)=-e-’ as a negative nonoscillatory solution. For condition (41)
of Lemma 2 we have

(]r’ --Pr)’-f’+ (6e 2’ + 3e-’-4e 2t + e-’ + (2e 2’ + 2e’ + e-’ + e-Z’)/e3’)
(2e 2t + 6e -t + 2e -2t + e -4t _+_ e-St)

>0 eventually.

All other conditions of Theorem 7 can be easily verified. Here unbounded r(t) is
causing the problem.
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THEOREM 8. Suppose conditions of Theorem 6 hold. Further suppose that r(t)
satisfies

(66) lim inf
f(s) ds

Then all solutions of equation (3) are unbounded and positive.

Proof. Let y(t) be a solution of equation (3). By Theorem 6 y(t) is nonoscillatory.
Suppose y(t) is bounded. Let T be large enough so that [y(t)l-<_ N for ->_ T. Integrating
equation (3) for _-> T we get equation (63). Dividing (63) by r(t) we have

(67) Y’(t)-r(T)y’(T)r(t) 4
p(t)N +p(T)Nr(t) N p’(x) +--7--,,rtt)mN I a(x) dx >=[f(x)

and a contradiction easily follows from (67) in view of condition (66). Hence y(t) is
unbounded. Suppose now that y(t)<0 for t>_-T. (63)reveals in view of p(t)>0 and
p’(t) < 0 that

(68) r(t)y’(t)- r(r)y’(r)-p(r)y(r)_-> f(x) dx.

Dividing (68) by r(t) and taking the limit as t-> we find that lim inf,_oo y’(t)>0, a
contradiction to negative y(t). The proof of Theorem 8 is now complete.

Remark 5. Condition (66) cannot be weakened if all other conditions of
Theorem 8 are satisfied. Example 6 testifies to this. In fact in Example 6

’f(x)dx
lim inf O,

,--,o r(t)

violating (66).

6. Asymptotic oscillation. In this section we prove a theorem that gives condi-
tions so that all oscillatory solutions of equation (3) approach zero. In fact Theorem 2
of this author [13, p. 40] states that all oscillatory solutions of equation (1) eventually
vanish if oo 1/r(t) dt <, la(t)l dt < oo and If(t)l dt <oo. However consider the
following example.

Example 7. The equation

(exp (2t) y’(t))’ + exp((t/2) 37r))y (t
(69)

2 exp (-t) sin t-4 exp (-t) cos t-exp ((-5/2)t) sin

has y e -3t sin as an oscillatory solution approaching zero. In fact it will be shown
via Theorem 9 that all oscillatory solutions of (69) approach zero as oo. But this
equation is not covered by our Theorem 2 in [13]. This motivation leads us to the
following theorem.

THEOREM 9. Suppose a (t) > O, r(t) > 0 and

(70) - dt < o,

(71) H >0 where H2 (ar’/r- a’ + ap/r),

(72) I a2(t)
r(t)

dt <,
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(73)
r

r(t)

Then all oscillatory solutions of equation (3) approach zero asymptotically.
Proof. Let T _-> to be sufficiently large so that for _>- T, H > 0 and we can write

1 1(74) - dt <-,

(75)
(a(t)lf(t)[)

;-f dt < l,

a2(t)(76) | dt < 1
r(t)

Let t2 > tl > T be two consecutive zeros of y(t) and without any loss of generality,
suppose y(t)>0 in (tx, t2); we rewrite equation (3) as

(77)
a2(t)

(a (t)y’(t))’ + H2(t)y’ (t) +r-h (y (g(t))) (a (t)f(t))/r.

Let K0=maxy(t), tE[tl, t2]. Following proof of Theorem 1 in [13, p. 39] from
conclusions (9) through (14) we arrive at

4Kg <-[I1- l dt][-Ii (a(t)y’(t))’y(t)dt].
Using (77) we get

[I 1 J[I ’: I’2a2(t)4K <= - dt H2(t)y(t)y’(t) dt +
r(t)

h(y(g(t)))y(t) dt

(a(t)f(t)y(t)) ]-1 r(t)
dt.

Since Hi(t)>0 and y(tl) y(t2)= 0, I[ H.yy’ dt=-I; Hiy 2 dt; adding this to the
right hand side and dividing by K0 we get

[I t 1 t1-1 I’ a2(t) I’ a(t)lf(t)l
dt.(78) 4Ko -d <-- (t) h(y(g(t))) dt + r(t

From here on the proof of Theorem 2 (and Theorem 1) of [13, p. 39-41] i.e. from
conclusion (16)through conclusion (29)and down on pages 39-41 applies verbatim.
The proof is now complete.

Remark 6. Coming back to Example 7 we notice

r(t)= e 2t, a(t)= e ’/)-3", f(t)= 2e-’ sin t-4e-’ cos t-e(-5/2)’ sin t,

p=0, H2=(ar’/r-a’+ap/r)=2e’/2-3"-1/2e’/2-3"=exp(t/2-37r).

ioo1 fo a(t) I a]flH > O, - dt < o, "r(t) dt < and dt <.
Thus all conditions of Theorem 9 are satisfied. Hence all oscillatory solutions of
equation (69)vanish asymptotically.
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A NONLINEAR SINGULAR PERTURBATION PROBLEM
FOR SECOND ORDER SYSTEMS*

WALTER G. KELLEY?

Abstract. The existence and asymptotic behavior as e 0 of solutions of nonlinear boundary value
problems for second order systems are studied using differential inequality techniques. Conditions are given
under which two point problems for ex" f(t, x, x’, e) have unique solutions which converge uniformly as
e 0 outside boundary layers at each endpoint of width x/ to a solution of the reduced equation
O=f(t,x,x’,O).

1. Introduction. Recently, Chang [2] has studied the quasilinear boundary value
problem

(1) ex"+ C(t, x, e)x’= h(t, x, e),

(2) x(O,e)=A(s), x(1, e)=B(e),

where x, h, A and B are vector-valued and C is a matrix function. Under the
assumptions that the reduced problem

C(t, x, 0)x’= h(t, x, 0),

x(1)= B(0)

has a C2 solution u(t) and every eigenvalue of C(t, u(t), 0) has real part greater than
or equal to 8t >0 for 0_-< t_-< 1, plus additional assumptions, he proves that for e
sufficiently small, the problem (1), (2) has a solution x(t, ) on [0, 1] such that

x(t, )= u(t)+e(s)+e(e-/),
x’(t, e) u’(t)+ e(e )+ (2(e-"/),

where the Landau order symbol holds uniformly in as e - 0.
A natural question is: What can be concluded if C 0 or if C is "small" in a

neighborhood of u(t)? In the case of a scalar equation, Howes [4] has shown that if
C -0, if the reduced equation

(3) 0 h(t, x, O)

has a C2 solution u on [0, 1], if Oh/Ox >=m >0 in a neighborhood of u and if certain
other conditions are satisfied, then (1), (2) has a unique solution x(t, e) for e
sufficiently small, and

Ix(t, e)-u(t)l<-lA(e)-u(O)[ e -’/’/’ +[B(e)-u(1)l e-4/(-’)+ce
for 0 <-t _-< 1, where c is a positive constant independent of e.

In this note we show that Howes’ result can be extended to vector equations
under suitable hypotheses. More generally, we also demonstrate that similar
conclusions can be reached for the vector boundary value problem consisting of (2)
and

(4) ex"=f(t,x,x’,e),

provided that O[/Ox’ is "small" in a sense to be made precise below.

* Received by the editors November 24, 1976, and in final revised form May 5, 1977.

" Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019.
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2. Some preliminary results. In this section we collect for the convenience of the
reader the result to be used in the proofs of our main theorems. Let us consider the
two point boundary value problem

(5) x"=g(t,x,x’),

(6) x(0)= a, x(1)= fl,

where g" [0, 1] R a R d
--> R d is continuous and a,/3 R d.

For 1,..., N, let ri(t, x) be of class C2 on [0, 1]R d, wi(t, x) the gradient
vector of r, v(t, x) the gradient vector of c3r/c3t, where these gradients are taken with
respect to x, and Pi(t, x) the Hessian of r with respect to x. Let the first and second
derivatives of ri with respect to (5) be denoted by

cgri
(7) ri --3r Wi x,

ot

c92ri(8) r.’ -+ 2Vi X + x’Pi x + wi g,

for 1,..., N, where the dot indicates the usual scalar product in R d. Define
D={(t,x, y)" 0-< < 1, ri(t,x)<O for i= 1,..., N, y eRd}.

We give two types of Nagumo conditions for g.
NI" There exists a sequence {bi}a_-i of positive, nondecreasing continuous

functions on (0, c) such that

and

[gi(t,x, y)l<_-bi([yi[) for(t,x, y)D, i=1,...,d.

N2" There is a positive, nondecreasing, continuous function b on (0, )_such that

and

2

4,(s)
-->c as s -->

[If(t,x,y)ll-<_d,([lyll) for(t,x, y)D.

The following theorem is a special case of Theorem 4 in [5].
THEOREM 1. Assume {(t, x)" 0 <= <- 1, r(t, x) <- 0} is a bounded set and
(a) the functions ri described above satisfy for i= 1,..., d

(9) ri > 0 when ri 0 and ri 0;

(b) there is a function of class C2 on [0, 1] which satisfies (6) and whose trajectory
is contained in D;

(c) initial value problems for (5) have unique solutions;
(d) g satisfies either N1 or N2 on D.

Then the boundary value problem (5), (6) has a solution x(t) with ri(t,x(t))<O for
O<=t <- 1 and 1,. ,N.

We note that the proof of this theorem requires only that each ri be of class C2 in
a neighborhood of the set {(t, x):0 -< t=< 1, r(t, x)= 0}. Also, assumption (a)can be
relaxed and assumption (c) can be omitted if additional conditions are placed on the
functions ri. See Theorem 5 of [5].
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If e. R e --> R e is a linear operator, then its adjoint will be denoted ,e., and f => 0
means that x g(x)->_ 0 for all x R d. The next theorem is proved in [3].

THEOREM 2. Suppose that g has continuous partial derivatives with respect to x and
x’, and

(10) 4 cg- cgg ( Og’ *
Ox Ox’\Ox’ ]

>= O,

where the partials are computed at an arbitrary point (t, x, x’) in [0, 1] x R a x R. Then
(5), (6) has at most one solution.

The proof of this theorem shows that if a priori bounds, say Ilxll--< R, IIx’ll--< are
known for solutions of (5), (6), then the hypotheses of the theorem need hold only for
these restricted values of x and x’.

3. Singular perturbation problems. We begin by considering the system (1)with
C O, namely,

(11) ex"=h(t,x,e),

on the interval [0, 1] with boundary conditions (2) and the reduced equation (3). The
following theorem is a generalization of Theorem 3.1 in [4].

TrIEOrZM 3. Assume:
(a) equation (3) has a C(2)[0, 1] solution u;
(b) h is continuous in (t, x, e) and is of class C1) with respect to x in

-/m/tE {(t, x, e): 0 -< -<_ 1, IIx u (/)ll-<-IIA()- u (0)11 e
-,/m/e(1-t) < 1}+llB(s)-u(1)iie +ce, O<e-e

for some positive constants m, c and e 1;

(c) for all (t,x, e)6E, (Oh/Ox)(t, x, e)-mI>-O, where Iis the identity;
(d) there isa T>O so that [[h(t,u(t),e)ll<yefor O-<_t_-< 1, O<e -<e.

Then for each e, O<e -<-el, there is a unique solution x(t, e) of (11), (2) which satisfies
-’/’/’ (1)ll elix(t,e)-u(t)ll<llm(e)-u(O)lle +llB(e)-u +ce,

]’or 0_-<t_-< 1.
Proof. For the first part of the proof, we assume u(t)= 0 for 0 <- <= 1. Fix e so

that 0 < e -< e 1. Define

-/m/et e -/m/e(1-t)r(t, x) Ilxll-[IA (e)ll e -liB ()11
m

for 0-< -< 1 and x R a. Note that r is of class C2 except when x 0 (see the remark
following Theorem 1).

We will apply Theorem 1. All the hypotheses are easily seen to be satisfied,
except (a). In formula (8), we have w(x)= x/llxll (x 0) and v(t, x)= 0 for all and all
x. Furthermore, P(x)>=O for all x # 0 since the function Ilxll is convex. Thus (9) will be
satisfied if we show

02r x 1--h(t, x, e)>0

whenever r 0.
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Assume r(t, x)= 0 and compute

02r x 1 m
+ h (t, x, e) -IIa (e)ll

m -,/m/,e --I1 ()11- e
Ot2 e e e

x 1x h(t,O,e)+ .-[h(t,x, el-h(t,O,e)].

By applying a version of the mean value theorem to the last expression (see [1]), we
have

_f_x. 1 Oh
(t, z, e )(x)=>---mllxll.X l[h(t’x’e)-h(t’ O’e)]=llxll a-- e

by hypothesis (c), where z is on the line segment from 0 to x. Thus

-’,J’-(1--t) X hX l
h(t,x, e)>- -IIa(e)llme-’/-7-1’-IIB(e)llme + -(t, O, e)

+ IlA (e)[[ e + lib (e)ll e +--
m

=--x .-h(t,O,e)+y>O
Itxll

by hypothesis (d). From Theorem 1, we conclude that the boundary value problem
(11), (2) has a solution x(t, e) with

Ilx(t, e)[I < Ilm(e)ll e -’/-7t + IIB(e)ll e-’/’/(-t)+-
m

for 0_-<t_-< 1.
If the reduced solution u(t) is not zero, then we can make the change of variable

y x- u(t), and the transformed boundary value problem satisfies the hypotheses of
the theorem with reduced solution zero, so that the first part of the proof is applicable.
The uniqueness follows immediately from Theorem 2. Q.E.D.

In [4], Howes also considers the fourth order problem

ex (4 F(t, x, x", e ),

x(O,e)=A(e), x(1, s)=BI(e),

x"(0, e) A2(e ), x"(1, e)= B2(e).

His results for this scalar problem can be extended to systems by following the basic
outline of his argument but applying Theorem 1 instead of the corresponding theorem
for scalar equations. Since our proof of Theorem 3 illustrates the type of modifications
which must be made in analyzing the vector problem, we omit the details.

We now consider equation (4), where

f" [0, 11 x R ’ R a [0, oo) R d.
THEOREM 4. Assume:
(a) the reduced problem, 0 f(t, x, x’, 0), has a C(2)[0, 1] solution u;
(b) f is continuous in (t, x, x’, e) and is of class C) with respect to x and x’ in

F {(t, x, x’, e)" 0 -< -< 1, IIx u (/)112 _< [[A (e)- u (0)112 e -42m/et

-x/2m/e(1-t) 2+][B(e)-u(1)llz e +ce O<e --<el},
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for some positive constants m, c and e 1;

(c) there is a 6 > 0 so that

-x -4 \-x x t’ x’ x " e m + a)I >- O

for all (t, x, x’, e F;
(d) F satisfies N1 or N2 in F;
(e) there is a y >0 so that Ill(t, u(t), u’(t), e)ll< ye for o < <- , o<- e <= El.

Then ]:or each e, 0<e <-el, there exists a unique solution x(t,e) of (4), (2) which
satisfies

[Ix(t, e)- u(t)[I2 < IlA(e)- u (0)l]z e --/2m/(1--t) 2liB()- u (1)ll2 e + ce

for O<-t<-_ 1.
Proof. As in the proof of Theorem 3, we assume that u(t)= 0 for 0 <-t-< 1, and

this assumption gives no loss of generality. Fix e so that 0 < e -< e and define

r(t, x) [[xll2 -[[A (e)112 e -/2m/e(1-t)-./2.,/, lib (e)ll2 e e

for 0<=t <-1 and xeR a. Among the hypotheses of Theorem 1, only (a) is not
immediate.

For this choice of r, we have w (x)= 2x, v (x)= 0 and P(x)= 21 for all x e R. Thus
in F we obtain

r"
02r--+ 2x’’ x’+2x "f-(t,x,x’,e).

8

Let f’ denote the differential of f with respect to (x, x’) for fixed values of (t, e). By
applying the mean value theorem used in the proof of Theorem 3, we have

x f(t,x,x’, e)=x f(t, O, O, e)+x [f(t,x,x’, e)-f(t, O, O, e)]

x. f(t, O, O, e )+ x. f’ (t, z, z’, e )(x, x’)

x" f(t, O, O, e)+x .--x(t, z, z’, e)(x)

+ x. of (t, z, z’, )(x’),OX’

for some point (z, z’) on the line segment between (0, 0) and (x, x’). Thus the expres-
sion

x’. x’+x "-f (t,x,x’, e)

can be written in the form

f l(Of’* 12 x (Of l(Of’(Of)*)x’-(t, 0, 0, e)+ x’+ (x) +-. (x),
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where all partials are evaluated at (t, z, z’, e). From hypotheses (c) and (e), it follows
that whenever r(t, x)= 0, we have

r’’> f--r-llxll Ill(t, 0, 0, )11 + 2
rn + 611x112=Ot2

e e

2mllB(e)l[2 e-4=’/--211xll II(t, 0, 0, )11--/2rn/ et

26 2m[+--Ilx/I= / Ila(e)112 e
2

--/2m/e(1--t) "]/liB (e)1. e +- e--- Ilxll(llxll-II(t, 0, 0, )11)+- >0,

since llxll > (/)-- e II/(t, 0, 0, )11 if r(t; x)=0.
Theorem 1 applies, and the problem (4), (2) has a solution x(t, e) which satisfies

r(t, x(t, e))< 0 for 0_-< _-< 1. Since (OffOx’)(OffOx’)* >-0, hypothesis (c)implies that (10)
is satisfied for g f, and the solution x(t, e) is unique. Q.E.D.

In the case of the quasilinear equation (1), where f(t, x, x’, e)=
-C(t, x, e)x’ + h(t, x, e), hypothesis (c) of Theorem 4 essentially requires OffOx to be
positive definite and C(t, x, e)= (7(xe) for x in a neighborhood of u. However, this
condition may hold even if (4) is not quasilinear. For example, in the scalar problem

8y" y q- ey (y ,)2,

we have

y(0) 1/2, y(1) 1/2,

0y 4e
1 +e(y’)2(1--y)> 1

for y sufficiently close to the reduced solution u(t)= O, 0 <= <= 1.
Finally, we should add that differential inequality methods of the type used above

do not appear to be effective for singularly perturbed systems in which the derivative
x’ plays a substantial role in the differential equation.
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EXTENSIONS OF SHEFFER POLYNOMIAL SETS*

WM. R. ALLAWAY

Abstract. A Sheffer A type zero polynomial set {P,,(x)},,=0 is one in which its generating function is of

the form A(t) exHCt)= =o P,(x)tn/n!. For any Sheffer A type zero polynomial set {Pn(x)}=0, a method is

given for constructing a formal Newton series expansion b(z,s) such that a-(x+a,s)
=o P(x)[s<)/(ak[)], where s)= s(s- 1)... (s- k + 1) and O(z, s) is an extension of P(x) in the sense
that O(x, n)= P,(x) for n 0, 1, 2, e extensions of the Bernoulli and Euler polynomial sets are given
in terms of the Hurwitz zeta functions. These extensions are shown to be formal solutions of some finite
difference equations with nonconstant coefficients. ese finite difference equations are then used to
linearize the product P(X)Pm(X + a) for the Hermite and Euler polynomial set. For the Hermite case the
inverse formulas of these linearizations are obtained.

1. Inoduction. L. Poli [13] in 1954 showed that for the Hermite polynomial set
{H(x)}0

(1.1) yH,(X):k t"-kDy,

where y is the generating function of the Hermite polynomial set defined by
k

y := exp (xt- t/2)= X H(x).k=0

Haradze [7], 1964, obtained a similar result for the ultraspherical polynomial set. For
this case the differential operator is not linear. Allaway [1] has done the Laguerre,
Meixner, and Poisson-Charlier polynomial case. Ismail [8] has generalized Poli’s
result to the class of Appell polynomial sets. These types of results are interesting
because they are useful in finding the solutions in close form of some differential
equations with nonconstant coefficients. (See Allaway [1].)

In this paper, we are interested in finding the finite difference analogue of Poli’s
formula for some well-known polynomial sets.

It is obvious that Poli’s formula for {x},o is

(1.2) eXtx’ D’ e xt,

where the generating function of {x"},=0 is

X ktk
e xt

k=O k!

The finite difference analogue for the polynomial set {x"}n0 is

(1.3) (1 + x)’x" aT(1 + x)",

where the Newton series generating function of {x --o is

X ns (n)

(1 / xf Y
,,---0

* Received by the editors September 15, 1977 and in revised form November 3, 1977. Presented to the
American Mathematical Society January 23, 1976 at the Winter Annual Meeting A.M.S., San Antonio,
Texas.
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Throughout this paper, we will always use the notation

s("= s(s 1)(s 2)... (s n + 1).

In order to generalize what is done in going from (1.2) to (1.3), that is to find finite
difference analogues to (1.1), we study

1) polynomial sets {P,(x)}n0 such that

(x + 1, s)= 2 P,(x)sO’l
k=0 k!

where O(x, n)= P,(x) n 0, 1, 2,... and
2) a transformation T such that T(eXt) (1 + x)s.
2. Extensions and Alpeil polynomial sets. Let {P, (x )} n_- o be a polynomial set.

That is, P,(x) is a real polynomial of degree exactly equal to n. An extension of
{P,(x)},=0 is a function q(z, s)of the two complex variables z and s such that
O(z, n)=p,(z) for n=0, 1,2,..., and z belonging to the complex numbers.
Mathematical physics abounds with examples of polynomial sets and their extensions.

{x },=0, the Hermite functions are an extension ofFor example z is an extension of
the Hermite polynomial set (see [10, p. 285]), and s((1-s, z) is an extension of the
Bernoulli polynomial set {B, (x)}=0, (see [6, vol. 1, p. 27]), where r(s, z) is the
Hurwitz zeta function defined for Re (s)> 1, by

(2.1) ’(s, z)= 2 (z+n)-s, z 0,-1,-2,....
n=O

Let (z, s, v) be defined by

(z,s, v) 2 (v+n)-sz’.
n=0

See [6, vol. 1, p. 27] for some of its properties. It is easy to show that 2(-1, -s, z) is
an extension of the Euler polynomial set. Indeed, by using the complex contour
integral representation of ’(s, z) and (-1, s, z) (see [6, vol. 1, pp. 25, 28]) it follows
that for s 1, 2, 3,. and Re (z)> 0

(-1, s, z)= 2-’[((s, z/2)-r(s, (z + 1)/2)].

By using this fact and the fact that s(1-s, z) is an extension of the Bernoulli
polynomial set, we obtain

2(-1,-m, z)= 2m+[’(-m, z/2)- sr(-m, (z + 1)/2)]

2m+[B.,+(z/2)-Bm+((z + 1)/2)]
-(m+ 1)

=Era(Z).
From our definition of extension it is obvious that a given polynomial set has an
infinite number of extensions.

Sheffer [16] in 1939 studied polynomial sets {P,,(x)}=0 that have a generating
function of the form

(2.2) A(t)exp(xH(t))= X P,(x).,n=O
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with

A(t)= 2 a,t", H(t)= 2 h,t", a0hl:0.
n=0 n=l

Such polynomial sets are now known as Sheffer A type zero polynomial sets. Many of
the classical polynomial sets are Sheffer A type zero polynomial sets. For example,
{xn}=l, the Bernoulli polynomial set, the Euler polynomial set, the Hermite poly-
nomial set, the Laguerre Polynomial set, the Poisson-Charlier polynomial set and the
Meixner polynomial set are all Sheffer A type zero polynomial sets.

Let {Qn (x)}=o have a generating function of the form

t,
(2.3) exp (xH(t))= O,(x)-,
where H(t)= )--’,naZ= h,t", hi O. Define

s k

(2.4) b(x, y,s)= Pk(x)Qs-k(y)
k=0 k!

where Qs(x)is any extension of {Q,(x)}=o.
We first wish to show that {P,(x)},=o is a Sheffer A type zero polynomial set if

and only if there exists a polynomial set {Q,(x)},o having a generating function of the
form (2.3), such that for all complex numbers c, b(x-c, c, s) as given by (2.4) is an
extension of {P,(x)},__0.

First, let us show that every Sheffer A type zero polynomial set {P,(x)},=0 has an
extension of the form as given by (2.4). Indeed, if {P,(x)},__0 is a Sheffer A type zero
polynomial set, then it follows from the generating function (2.2) that for all complex
numbers c and z,

P"(z) k=o Q,-k(C)Pk(Z--C)

(Z- C, C, n),

for n 0, 1, 2," . Thus (x c, c, s) is an extension of {P,(x)},0.
Conversely, let th(x- c, c, s) be an extension of {P, (x)}=o. Thus

P,,(x)= qb(x-c, c, n)

Therefore,

(2.5)
n=0 =0 k=0

tk
2 P,(x-c). Qk(C)-..
n=0 k =0

By hypothesis,
k

exp (cH(t))= Y Qk(c)--...
k=0



EXTENSIONS OF SHEFFER POLYNOMIAL SETS 41

Therefore, if we let F(x, t) be the generating, function of {P,,(x)}=0 we obtain from
(2.5)

(2.6) F(x, t)= F(x- c, t)exp (cH(t)).

Let loge F(x, l)= u(x, t). Thus (2.6) becomes

u(x, t)- u(x- c, t)= cH(t),

which has a solution

u(x, t)= xH(t)+ g(x, t),

where g(x, t)= g(x- c, t) for all complex numbers c. Therefore,

(2.7) F(x, t)= G(x, t)exp (xH(t)),

where G(x, t)= G(x-c, t) for all complex numbers c. From (2.7) and the fact that
F(x, t) is the generating function of {Pn(x)}--0 we have that

G(x, t)= ] P,-k(X)Qk(--X)
=0 k=O

Thus, for all complex numbers c,

k=0

is periodic with period c and therefore

,Zo= P,,_,(x)Q,(-x) a,,.

Thus,

G(x, t)= ., a,,--
--0 n!

A(t).

Therefore, {P, (x)},,=0 is a Sheffer A type zero polynomial set.
In what follows we will restrict our attention to the special case

H(t)= t.

Sheffer A type zero polynomial sets for which H(t)= are known as Appell poly-
nomial sets (see [2]). From the above we know that an Appell polynomial set
{P,(x)},o is characterized by the fact that it has an extension ,(z, s) of the form

(2.8) q(x +a, s)= Z Pk(X)as-ks(k)
k=0 k!

3. Some transformations. In the preceeding section, we have shown how to find
(see (2.8)) an extension of any Appell polynomial set. The other thing we need in
order to find finite difference analogues of Poli’s formula is to study the trans-
formation T such that

T(eXt)=(l+x)s.
By writing the power series expansion of e xt in terms of t" and the Newton series
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expansion of (1 + x) in terms of s (n) we see that

(3.1) T(t") s (").

Instead of using the transformation as defined by (3.1), we use a mild generaliza-
tion

S
(n)

(3.2) Ta(t") "----,a

where a is a complex number not equal to zero. It turns out, that when we use this
definition for our transform, we can generalize some previously known results. For
example, one of the finite difference analogues of Poli’s formulas contain as a special
case

min(m,n)

H,,(x)H,(x)= E
k=O

which was first proved in 1918 by Nielson 11].
We take the domain space of Ta to be the set of all formal power series Y-k=0 aktk,

where ak’s are complex numbers. We will denote this space by F1. The range space of
Ta which we will denote by F2, is the set of all formal Newton series 2k=0 bkS( where
bk is a complex number. Let addition and multiplication on F1 be defined by

a + fl Y. (ak + bk)tk,
k=0

n=0 k=0

where a 2k=0 aktk and/3 ]k=0 bktk" See Niven [12] for a discussion of the algebra
of this integral domain. As usual, we will define equality on F2 by. akS(k)= bkS (k) iff ak bk for0,1,2,....

k =0 k =0

It is easy to show that in F2

akS(k)-" 2 bkS(k) iff Y akr(k)= bktl (k)

k =0 k =0 k =0 k =0

for n =0, 1, 2, 3, .
From now on, we will denote equality in F2 by -+-. Let us define addition in F2 in a

manner similar to what we did in F1. That is,

Y ags(k)+ Y bs(k + Y. (ak + bk)s(k.
k =0 k =0 k =0

When we try to define a multiplication on Fz, such that Ta as defined by (3.2) is an
isomorphism between F1 and F2, we encounter the annoying fact that s(ks(" s ("+k).
For this reason, we introduce a set of operators

ak---) la and a are complex numbers and a 0
k=0

where E-1 is the backward shift operator acting on s and defined on F2. We note that
(sE-I/a)k= stk)E-/a and is a set of operators that map F2 into Fz by means of
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the following formula,

(sE-1)n bkS(ga,, anbk
n=o a k=O n=O k=0

Y. a,bk
n=0 k=O

(sE-1)ns(k)
a

S
(n+k)

an-kbkS(n)
n=o k=O a

Again, by using Niven’s [12] approach, (? can be made into an integral domain by
defining addition by

koak ,a + bk s
k=0

and multiplication by composition, that is

2 (a, + b,).
sE-1

.=o \ a

( )sE-1 k S
2 a,, 2 bk S Z a.-kbk
n=0 a k=0 n=0 k=0

It is easy to see that Fa and (7 are isomorphic under the isomorphism defined by

ff(k=o aktk) :ko= ak( s- )"
Of course, we are interested in the elements of F2 for it is these elements that will

be used in finding finite difference analogues to Poli’s formula.
The natural mapping between and F2 denoted by - is defined by

s sE-a Y a 1

aks(k)
k=0 a

Ta can be written as

(3.3) Ta -o .
It is easy to show that Ta as defined by (3.3) is an isomorphism between F1 and

The integral representation of Ta is

1 Io tt-s-lJ(at)Ta(f(t))=F(_s)
e- dt

(3.4)

where _D; is the Liouville fractional derivative at 0 (see [15]), Re (s)< 0 and f(t) is a
polynomial. Transformations related to the inverse of Ta have been studied by many
authors (see [41 [5] and [9]).

4. Finite difference analogues to Poli’s formula. We have developed everything
that is required to find the finite difference analogue to Poli’s formula

(4.1) yH,,(x): (nk)tn-kdkY-
k=O dtk
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where {Hn(x)}=o is the Hermite polynomial set defined by

(4.2) Y := eXt-tz/2 Z nn(X)t"/ n !.
n=0

Let Ta be the transform as defined by (3.3) and y(t)= Y,__o b,t" belongs to F1 (see
3). If dky/dtk is defined on F1 by

dky_ b,+,(n + k)! t"
dtk -n=o n!

then

(4.3) Ta[--] @ a k Ta(y),

where A is the forward difference operator defined on F2 by

A b,s(k + y’. b,+l(n+l)s".
0 n=0

We also note that if f(x, t) is the generating function for an Appell polynomial set
{P, (x)}=o, then

Pk(X)S(k
To((x, t)) + o akk

a E P’xaS-s(.
g=0 k

If {P.(x)} is an Appell polynomial set then by (2.8) this becomes

(4.4) Ta(f(x, t)) + a-Sd/(a + x, s),

where O(x, s) is any extension of {P,(x)}=o.
By using (4.3) and (4.4), we take the T transform of both sides of (4.1), and we

obtain

where Y(x, s) is any extension of the Hermite polynomial set. By using the well-
known fact that

it is easy to show that for any function f(s)

(4.6) Aa-f(s) a--(G a)[(s).

By using (4.6) and the fact that E-1 and As commute we have, from (4.5), that

(4.7) (a + x, s)H,(x) + o s(k)(E- a)"-kY(a + x, s k).
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Ismail [8] generalized Poli’s results (equation (4.1)) to Appell polynomial sets. He
showed that if the Appell polynomial set {P, (x)}=0 has the generating function

(4.8) Y := A(t)ex’= 2 P,(x)-,n=0

where A(t) is analytic at the origin, A(0) 0 and (4.8) is true for in a neighborhood
of the origin and for all x, then

(4.9) yP,,(x)= n!
k=O

where {b,(t)},=o is given by

A(t)A(u)
(4.10) E b,(t)u"=

,=o a(t+u)

By taking the Ta transform of (4.9) we obtain

(4.11) a-SO(a+x,s)P,(x) +n! E b"-k(a-lsE-l)akAka-SO(a+x,s),
k=O k!

where if(x, s) is any extension of {P,(x)}=o.
In the case of the Euler polynomial set {E,(x)},=o, equation (4.9) has the form

E(O)D"- Ek (O)D"-ky,
k=O k Y e-l k=l

where

2eXt Ek(X)tk

y :=-7---= E
e +1 k=o k!

By taking the Ta transform of both sides of (4.8) we obtain

a-%’(x+a,s)E,(x)--+ (nk)Ek(O)a"-kA"-ka-SS’(x+a,s)
k=0

(4.13)
Z Ek(1)s(k)E-k n

Ei(O)a -i"-ia-’(x +a, s),
o ak i=1

where g (x, s) is any extension of the Euler polynomial set, E- is the unit backward
shift operator acting on s and E- 1. By using (4.6) this becomes

(g(x+a,s)E,(x)@ (nk)Ek(O)(E-a)"-kg(x+a,s)
k=O

(4.14)
E Ek(1)s(k) )"-’g’(X + k).
k=O k. i=a

Ei(O)(E- a a, s

By using the same method a formula similar to (4.9) can be obtained for the
Bernoulli polynomial sets, but it is much more complicated and is thus omitted.

5. Anyfic considerations. We recall from 3 that the symbol "+" was used for
equality in F2. In this section, we wish to consider when "+" can be replaced by "=".
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From the definition of "-+-" we know that when s is restricted to a nonnegative
integer, then F(s) G(s) if and only if F(s)= G(s). Equation (4.7) becomes

min(m,n)

(5.1) g,,,(x + a)H,,(x)= .
k=0

where E is the forward unit shift operator acting on the rn of H,,_k(x + a), and
{Hn(x)}=o is the Hermite polynomial set as defined by (4.2). It is interesting to note
that by letting a 0 we get the well-known result due to Nielson [11], namely

min(m,n)

H,,,(x)H,,(x)= E
k=O

In a similar manner (4.11) becomes

(5.2) P,,,(a + x)P,,(x) nta
bn-,(a-lsE-)aama Pm(a + x)

=o k!

and (4.14) becomes

(5.3)
E,,,(x+a)E,,(x)= (2)E,(O)(E-a)"-’E,,,(x+a)

k=0

-,Eo k
E(1) E(O)(E-a)’*-’E.,_(x+a).

i!

Equations (5.1), (5.2) and (5.3) are analogous to linearization of the product of two
polynomials that have been studied by many authors (see [3, Lecture 5]).

We know that the Hermite function Ho(x), defined by

no(x)=eX2/4Do(x),

where Do(x) is the parabolic cylinder function defined in [6, vol. 2, p. 116], is also an
extension of the Hermite polynomial {H,(x)}0. By using this fact and (4.7), we
obtain

InN

k=0

It is well known that Ho(x) is an entire function in both the variable x and the
parameter v [10, p. 285]. We will show by mathematical induction on n that ".’-" in
(5.4) can be replaced by "=" to obtain

(5.5) go(x + a)H,,(x)= --o v(’)E-’(E- a)"-’go(x + a),

for v and x arbitrary complex numbers and n 0, 1, 2, . By direct substitution, it is
easy to see that (5.5) is true for n 0, 1. Now make the induction hypothesis that (5.5)
is true for n 0, 1, 2,..., m, and by using the three term recursion relation for
Ho(x + a) and H+(x) we obtain

H(x + a)H+,(x)= Ho+l(X + a)H(x)+ vHo_(x + a)Hm(x)

-aHo(x + a)H,,,(x)- mHo(x + a)H,,_,(x).
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By using the induction hypothesis, we obtain

nv(x 4- a)nm+l(X)-- (E-a)m+lnv(x 4- a)4- (vE-1)m+lnv(x 4- a)

+k21= (V + 1)(k)E-k+(E-- a)m-k

m! a)m-k}Ho(x + a)-(m-k)!(k-1)! v- E- +I(E

k ( m )(v--1)(-lE-+(E-a)’-+aH_(x+a)+v
k-1

-a (v-l( alm-go(x + al
k=l

+
k-1

v (E-a) -H(x+a)

+ + m (_
k=l k-1

v (E-a) -kHo(x+a)

(m+l)(vN-)(N-a)+-H(x +a).
k=o k

It follows directly from (5.5) that for each zero x, i= 1, 2,..., n, of H(x),
Ho(x + a) is a solution of the finite difference equation

k20= v(k)E-k(E--a)n-ky(v) =0"

6, Inverse formulas. In this section we shall apply the T-transform technique as
previously developed to obtain inverse type formulas for (4.7), (5.1) and (5.5). That is,
we will show that

(6.1)

(6.2)

and

(E-a)"Y(x+a,s)+ ’. (-1)k(nk)s("Y(x+a,s-k)H,,_k(X)
k=0

(E-a)"H,,,(x +a)= =o (-1)’()()k’Hm-k(x+a)H.-k(X)

where {H.(x)}_-0 is the Hermite polynomial set, Ho(x) is the Hermite function and
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(x, s) is any extension of the Hermite polynomial set. To do this we note that if

then

y--e
k

xt-tz/2 nk (x)-.k=0

d"Y=H,(x-y)y

k=0

Now take the Ta transform of both sides of this equation to obtain

aA"a-(a+x,s)@ (--1)k(nk)H,_k(x)(SE-1)ka-(a+x,s).
k=0 \ a

By using (4.6) on this equation we obtain (6.1). Equations (6.2) and (6.3) follow from
(6.1) by using the same technique as was previously used to obtain (5.1) and (5.5) from
(4.7).

If we let a 0 in (6.2) we obtain a result that was proved by G. N. Watson 17]. L.
Carlitz, in a private communication, has obtained (6.2) and (6.3). He proved the
former by a generating function technique, similar to what Watson used, and the latter
by an induction argument similar to what we used to obtain (5.5).

Acknowledgment. I wish to express my thanks to Richard Askey, L. Carlitz, and
Mourad Ismail for their helpful comments.
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SOME PROPERTIES OF SOLUTIONS OF
(r(t)(x)x’)’ + a(t)f(x) = O*

W. E. MAHFOUD? AND S. M. RANKINg"

Abstract. The equation

(1) (r(t)b(x )x’)’ + a (t)f(x b(t)

is considered, where a, f, and b are continuous, and p are continuously differentiable, r(t)> O, and 4,(x)
and x[(x) are positive for x O. It is shown by a transformation of variables that (1) can be reduced to

(2) x" + a(t)f(x)= b(t)

and hence results concerning (2) can be extended without difficulty to (1). Illustrative results on uniqueness,
continuation, and oscillation of solutions of (r(t)(x)x’)’+ a(t)f(x)= 0 are obtained and the case (0)= 0 is
discussed.

Introduction. Consider the equation

(1) (r(t)(x)x’)’ + a(t)f(x)= b(t)

where r: [0, oo)- (0, oo); a, b: [0, oo). (-oo, oo), and O, f: (-oo, oo). (-co, oe). We
assume a, f, and b are continuous, r and are continuously differentiable, and
xf(x) > 0 for x 0.

By a solution of (1) at to->0 is meant a function x: [to, tl) (-oe, oo), to < tl, which
satisfies (1) for all [to, h). We assume the existence of solutions of (1) at to for every
to->0. A solution x(t) of (1) at to is said to be continuable if x(t) exists for all ->to. A
continuable solution x(t) of (1) is said to be oscillatory if x(t) has zeros for arbitrarily
large and nonoscillatory if there exists t* ->_ 0 such that x (t) 0 for all >- t*. Equation
(1) is said to be oscillatory if every continuable solution of (1) is oscillatory.

Equation (1) has been discussed in [4], [5], and [7] and some results have been
extended from the equation

(2) x" + a(tff(x)= b(t)

to equation (1). In this paper, we show, that under appropriate conditions on r and ,
equation (1) can be reduced to (2) and hence results such as that of [4], [5], and [7] can
easily be extended from (2) to (1).

Main results. Let R (-oo, oe) and define h" R R by

(3) h(x)= O(u)du.

If 4’ is assumed to satisfy O(x)> 0 for x # 0, then, clearly, h is increasing, continuously
ditterentiable, and xh (x) > 0 for x 0. Furthermore, the function g" h (R) R defined
by

(4) g=foh -1

is continuous and satisfies xg(x)>O for x O.

* Received by the editors November 24, 1976, and in final revised form May 31, 1977.

" Department of Mathematics, Murray State University, Murray, Kentucky 42071.
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THEOREM 1. Suppose O(x)>0 for x O. If x (t) is a solution of (1) on some
interval I, then z h 4(t) is a solution of the equation

(r(t)z’)’ + a(t)g(z)= b(t)

where h and g are as defined in (3) and (4).
Conversely, if z =h(t) is a nontrivial solution of (5) on some interval I, then

x h -1o h(t) is a nontrivial solution of (1) on some interval J c I. If, in addition
(0) 0 or z (t) - 0 for all I, then J I.

Proof. It is easy to verify, by use of (3) and (4), that z and x defined above are
respectively solutions of (5) and (1) and that z’= O(x)x’ and J c I. In fact, this equality
together with (3) shows that if (0)= 0 and z vanishes at some tl s/, then x’ may not
exist at t; in this case, J is a proper subset of I. The last statement of the theorem
follows also at once.

COROLLARY 1. Every oscillatory solution of (1) generates an oscillatory solution of
(5).

COROLLARY 2. There is a one-to-one correspondence between the nonoscillatory
solutions of (1) and (5).

COROLLARY 3. Suppose b(t)--O and (0)=0. If the solution z(t) of (5), with
z(t0) z’(t0)= 0, for all to>=O, is unique, then (1) has no nontrivial oscillatory solutions.
If, in addition, (5) is oscillawry, then (1) has no nontrivial continuable solutions.

Proof. Suppose x(t) is a nontrivial solution of (1); then, by Theorem 1 and (3),
z(t)= h(x(t)) is a nontrivial solution of (5) such that

(6) z’(t) @(x(t))x’(t).

By (3), x(t) van’shes if and only if z(t) vanishes. Since (0)= 0, it follows from (6) that
if z(tx)=0 for some t >=0 then z’(q)=0 and hence by the uniqueness assumption
z(t)--O and so is x(t), a contradiction.

Example 1. Consider the equation

(7) (x2x’)’ + 1/2x 3 0

and let x(t) be a solution of (7); then z(t)= [x(t)]3/3 is a solution of the linear equation

z"+z =0.

Thus z(t)= A sin (t + B) for some constants A and B and hence x(t)= C sin1/3 (t + B).
As x’(t) does not exist for t=kTr-B, k=l,2,..., then (7) has no nontrivial
continuable solution.

Example 2. Consider the equation

(8) (x2"x’)’ + [k/tZ]x 2"+x 0

where n is a positive integer and k is a constant. Here, h(x)= x"+l/(2n + 1) and the
associated equation is

(9) z"+[k(Zn + 1)/t2]z =0.
As (9) is oscillatory for k > 1/(8n +4) and nonoscillatory for k <_- 1/(8n +4), then, by
Corollary 3, equation (8) can have continuable solutions only when k =< 1/(8n + 4) and
hence by Corollary 2, no nontrivial solution of (8) is oscillatory.

We now consider the unforced equation

(lO) (r(t)(x)x’)+ a(t)f(x)= 0

subject to the additional condition 4,(x)>0 for x :0. The transformation h in (3)
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reduces (10) to

(11) (r(t)z’)’ + a(t)g(z )= 0

where g is defined in (4). If we now let

(12)

equation (11) is reduced to

(13)

s v(t)= [1/r(u)] du

O +R (s)A(s)g(w)= O

where R (s)= r(t(s)), A(s)= a(t(s)), w(s)= z(t(s)), and d/ds.
TIaEOREM 2. Suppose (x)>0 for x sO, a(t)<0 on [tl, t2], tx -----0, and x(t) is a

solution of (10) on [tl, t2] such that x(tx) x’(t) 0. Then x(t)= x’(t)= 0 for It1, t2]
is and only if

| (x)[F(x)]-x/2 dx co(i)
Jo

and

(ii)
-1Io- 6(x)[F(x)]-/ dx -oo

where F(x)= o (u)f(u) du.
Proof. We may assume without loss of generality that r(t) 1 since the trans-

formation u in (12) is one-to-one. Let z(t)= h(x(t)); then, by Theorem 1, z(t) is a
solution of (11)such that Z(tl)= z’(tl)= 0. Let G(v)= g(u)du; then

G(t)= fo f(h-l(u))du= Io ]’(u)O(u) du F(h-(v))

and hence, for every e >0, we have 2 [0(/.))]-1/2 do __e [F(h_(v))l_l/2 dr. Let
w h-(v); then

+/-1 -h-(+/-l)

i i [F(W)]-I/2o(W)dW"[G(v)]-/2 dv

(3), e0 if and only if h-(e)O Hence (i) and (ii) hold if and only if
[G(v)]-t/2 dv . Thus, by [3, Thm. ], z(t) z’(t)O on [h, t2] and hence, by

(3), x(t) x’(t)O on [h, t=] if and only if (i) and (ii) hold. The proof is now complete.
The next result is another illustration of Theorem 1 by which we extend a

noncontinuation result of Burton and Grimmer [2] to (10) under the additional
assumption

(4) 6(x)&=e.

TOM 3. Suppose 0(x)>0 [or x 0, (14) holds and a(t)<0 on [tl, t], t 0.
Then (10) has a solution x(t) at t such that limr Ix(t)l m or some r e (h, t] i[and
only i[

[ 6(x)[1 +F(x)]-/ & <()
0
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Or

(ii) Jo 0(x)[l+F(x)]-/2 dx

where F(x)= 4(u)f(u) du.
Proof. Let r 1 and define G as in the proof of Theorem 2. Then it follows that

f0 fh-:(o) 1/21//1 + G(u)]-’/2 du [1 + V(w)]- (w) dw.
aO

By (3) and (14) v --> +co if and only if h-(v)--> +/-oe. Thus, by [2, Thm. 2], equation (11)
has a solution z(t) at tl such that lim,_)r-Iz(t)l oo, for some T e (h, t2], if and only if
(i) or (ii) holds. It is not hard to see from the proof of [2, Thin. 2] that z(t) can be
chosen so that z(h) O. In fact that has been shown in [6]. In this case, by Theorem 1,
z(t) generates a solution x(t) of (10) at t and, by (3), lim,_,r-Ix(t)l ee if and only if
lim,_,r-Iz(t)] oo. The proof is now complete.

Remark. Part (i) of Theorem 3 has been proved in [4] without condition (14) by
using Burton and Grimmer’s argument. Since the main interest in studying (10) is
indeed equations of the form (x"x’)’+ a(t)f(x)= 0, a a nonnegative integer, we feel
that condition (14) is not a significant restriction. We also point out that the author in
[4] assumed that xO(x) > 0 for x 0 and claimed that part (ii) of the theorem holds by
an argument similar to that of part (i). Apparently, he overlooked the fact that the
assumption xO(x)> 0 for x 0 implies that F(x)< 0 when x < 0 and hence the integral
condition in (ii) may not make sense. Even though [1 +lF(x)l]-/ is defined, the
integral - O(x)[1 + IF(x)l]-/ dx is positive and hence (ii) is satisfied automatically.
Thus, the difficulty may not be overcome unless we assume O(x)>0 for x 0. This
observation applies also to [4, Thm. 3].

The following theorems extend some results in [8] and [9] to equation (10) and
consequently improve the result in [7]. We also point out that the requirement that ]"
be differentiable implies that the function g defined by (4) is also differentiable
whenever O(x) O.

THEOREM 4. Suppose d/(x)> 0 for x 0 and the following conditions are satisfied

(i) [ [1/r(u)]du=oo and [’(x)>-_O,

and

(iii) a(t) [1/r(u)] du dt=

Then every continuable solution of (1) is oscillatory.
Proof. Let x(t) be a solution of (10) on [to, co), to_>0, and let X(s)= x(t(s)), where

and s are related by (12). Then, by (i) and Theorem 1, z(s)= h(X(s)) is a solution of
(13) on [So, oe), where So u(t0) and h is defined by (3). By (ii), z(s) is bounded on
[So, oo) and by [8, Thm. 2.2] bounded solutions of (13) oscillate if
Since, by the transformations s ,(t), this integral condition is precisely the integral
condition in (iii), then, by [8, Thm. 2.2] z(s) oscillates and so does x(t). The proof is
now complete.
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Remark. It is possible by Corollary 3 that the only continuable solution of (10) is
the trivial solution.

THEOREM 5. Suppose O(x)>0 for x #0 and the following conditions are
satisfied

(i) [1/r(u)] du =oo and f’(x)>-_O,

I/ [$(xl/f(x)] dx <(ii)

and

(iii) a(t) [1/r(u)] du dt o.

Then every continuable solution of (10) is oscillatory.
Proof. Let x(t) be a solution of (10) on [to, ), to=>0. Then, as in the proof of

Theorem 4, z(s) is a solution of (13) on [So, ). We assume
otherwise, the result follows from Theorem 4. Let v $(w)dw; then for z > 0

[ [6(u)/f(u)] du [1/fo h-(v)] dv [1/g(v)] dr.
ah(1) ah(1)

As r if and only if h(r), then (ii) is satisfied if and only if [1/g(v)] dv <
Hence by [8, Thm. 2.1], z(s) oscillates and hence x(t). The proof is now complete.

Remark. Condition (iii) in Theorem 5 can be replaced by the slightly more
general condition

(iv) a (t) / r(u)] du dt , 0 ,
if we use [9, Corollary 1] and Theorem 1. See also [9, pp. 305].

Although results of (2) seem to extend to (1), the effect of the singularity (0)= 0
on the behavior of solutions of (1) is quite clear from Examples 1 and 2. The next
Theorem describes the oscillatory solutions of (10) when (0)= 0.

THEOREM 6. Suppose x(t) is a solution of (10) on [h, t2] such that x(h) x(t2) 0.

If 6(0)= 0 and a(t) does not change sign on [h, t2], then x(t)= 0 on [tl, t2].
Proof. Suppose there exists t* (t,t2) such that x(t*)#0; then there exists

T1, T2 [tl, t2] such that x(T1) x(T2) 0 and x(t) # 0 on (T1, T). Integrate (10) from
T1 to T2 to obtain

[r(t)O(x(t))x’(t)]’ dt + a(tff(x(t)) dt O.

As x(Ta)=x(T2)=O and 0(0)=0, then the first integral is zero and hence
It) a (t)[ (x (t)) dt 0. As the integrand is of one sign and a continuous function of
t, then a(t)[(x(t))=O for all te[T, T2] and hence x(t)O on [T, T21, a contra-
diction.

CoaoAaY. Suppose 0(0)=0 and a(t) does not change sign. Then Ne only
oscillatory solugons o[ (10) are Ne solutions which are eventually idengcally zero.

Acknowledgment. The authors would like to thank the referees for their valuable
suggestions.
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GROWTH AND OSCILLATION PROPERTIES OF SECOND ORDER
LINEAR DIFFERENCE EQUATIONS*

WILLIAM T. PATULA?

Abstract. This paper establishes the existence of recessive and dominant solutions for nonoscillatory
and certain types of oscillatory second order homogeneous linear difference equations. Growth properties
concerning these solutions are established. This information is then used to obtain two limit point results.
Several sufficient conditions for oscillation are also presented.

1. Introduction and preliminary remarks. We will be considering linear homo-
geneous second order difference equations of the form

(1) CnXn+l -[" Cn-lXn-1 bnxn, Cn > O.

Usually, but not always, we will also assume b,, >= 0. This is not nearly as restrictive as
it may first appear to be. By means of the substitution xn (-1)’y,,, the equation
Cnyn+x +Cn-lYn-1 d,y,, d, <=0, is equivalent to (1) with b,, =-d,, =>0.

Motivated by recent results in Hinton and Lewis [6], we will investigate growth
properties of certain solutions of (1). The particular form of the equation (1) appears
in [6] and also Atkinson [1, p. 15]. Note that by means of the substitution p,=
b.- c,,- cn-1, equation (1) is equivalent to the self-adjoint form

(2) --A(Cn-lAXn-1)+pnxn =0,

where the forward difference operator A is defined by Ax,, Xn+ -Xn.
The analogue of (2) in the continuous case is the differential equation

(3) (-r(t)x’(t))’+q(t)x(t)=O, r(t)> 0, t>=a.

Many of the properties usually associated with (3) also hold for the difference equa-
tion (1). For example, specifying two consecutive values Xk, Xk/l of a solution x {xn},
n -> 0, uniquely determines all other values x,. Equation (1) has two linearly indepen-
dent solutions, say u {u,} and v {v,,}, such that c,(unv,+l-u,,+lV) 1, for all n. A
solution x of (1)will be called bounded if Ix, l<-M, for all n. A nontrivial solution will
be called oscillatory if for any N, there exists a k _-> N such that XkXk+l 0. Oscillation
can also be defined in terms of nodes. See [2, pp. 131 and 224]. The recurrence
relation (1) will be called oscillatory if all solutions are oscillatory. However, if one
solution of (1) oscillates, all solutions oscillate [2, p. 221]. For other interesting
properties we refer the reader to the books [1] and [2].

We would first like to state a result of Hartman and Wintner [4] in a slightly
different setting. For convenience, we include the proof.

LEMMA 1 (Hartman and Wintner [4]). If (1) is such that any nontrivial solution x
can have at most one value Xk O, then any two values x,, x,,,, n m, uniquely deter-
mine the solution x.

Proof. Let u and v be the solutions defined by u0 0, ul- 1 and v0- 1, /31 --0.
Then u and v are linearly independent. Consider the system of equations

X Ol U -Jr" Ol 2D

Xn O Un + Ol 2 Dn.
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If this system does not have a unique solution in terms of 1 and a2, then there exist
values of ax and a2, not both zero, such that 0= OlUm /a2Vm OXUn /a2l)n. However,
this implies that the solution (alU + a2v) assumes the value 0 twice, a contradiction.

The next result is basically a lemma of Olver and Sookne [8], which we state in a
slightly expanded form.

LEMMA 2 [8]. Suppose Ibn[->Cn_l /cn. If v is a solution such that IVN/ll_-->
for some integer N, then [Vn+xl_-->[Vn[, for all n >-N. If there exists a sequence {e,} of
nonnegative numbers such that

(4) ]b,[_->(1 /En)Cn /Cn-X and e, =
then Iv, f--> , as n -> .

Proof. Use induction and assume it is true for some n _>- N + 1, that is, Iv,,]--> Iv,-1[.
Then

[IAn+ll- ]bnVn-Cn-xlAn-x]/Cn
()

>-[(Ib.l-c._x)/c.]lv.l>-Iv.I, for all n ->N.

If in addition we have (4), then (5) becomes

Iv+ll_-> (1/ )lv[.

However, assuming n _->N, the above inequality implies that Vn+x _-> VN I-Ij (1 + ei), N =<
] <_--n, which means ]v,]--> , as n --> . This completes the proof.

Remark 1. We always assume c, >0. If we also have b, >_-c, +c-1, then the
solution v defined by v0 1, Vx 1 must have V,+x _-> v, -> 1. That is, the absolute value
signs in the preceding proof can be dropped. Clearly v is nonoscillatory, so that the
condition b, c, cn-1 --> 0 is sufficient for nonoscillation. This is not surprising in view
of equation (2) and the analogous result for the continuous case (3). This result can
also be found in [6] and [2, p. 224]. Also, Lemma 2 implies the hypothesis of Lemma 1
is satisfied if ]bn [=> c, + c,_1.

Remark 2. Lemma 2 is sharp for the case of constant coefficients. Assume b, b
and c, 1, for all n. Assuming c, 1 is allowed because of linearity. Using the
techniques as in [2, p. 125] for solving difference equations with constant coefficients,
we see that all solutions of (1) are bounded if and only if Ibl< 2.

Our next result is elementary but useful.
LEMMA 3. If there exists a subsequence b <= O, where n --> oo as k --> oo, then (1) is

oscillatory.
Proof. Suppose not. Then we may assume the existence of a solution x such that

x, > 0, for all n sufficiently large. However, the left side of (1) will always be positive
while the right side will be -<0 for all values of n, a contradiction.

2. Properties of nonoscillatory solutions. In Olver and Sookne [8], the following
definition is made.

DErINITION. If there exist two linearly independent solutions u and v of (1) such
that u,/vn--> O, as n--> c, then u is called recessive or sub-dominant and v is called
dominant.

If (1) is nonoscillatory, then the terms recessive and dominant are the analogues
of the terms principal and nonprincipal for the corresponding differential equation (3).
See Hartman [3, p. 355]. Note that in [3] the leading coefficient is positive while here
it is negative. We remark that principal or recessive solutions are unique up to a
constant factor. Following the arguments in [3, p. 355] for the continuous case, we
have the following theorem.
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THEOREM 1. If (1) is nonoscillatory, there exists a recessive solution u and a
dominant solution v such that

2 (CnUnUn+l)
O0 and

Proof. Let u and v be two linearly independent solutions of (1). Then c,(v,u,+x-
V,+lU,,) =d, for some constant d and for all n. Choose k large enough so that
u,, # O, v,, O, for all n _-> k. Then

A(Un/Vn) [(fAnUn+l- UnfAn+l)/OnOn+x] [Cn/Cn]
(6)

d/(cnVnVn+l).

Since d/(c,v,V,+l) is of one sign for n _-> k, we conclude that u,/v, is monotone. Let
L lim (u,/v,,), as n --> c, where L could be infinite. If L +/-, then v is recessive and u
is dominant. If L 0, then u is recessive and v is dominant. If L is a real nonzero
constant, define the solution x- u- Lv. Note that x and v are linearly independent.
Then (x,,/ v,, )--> O, as n -->. Thus, renaming if necessary, we can always find a recessive
solution u and a dominant solution v.

From (6), we have

U. Uk n-1 d

fan fak k Cjfajfaj+

Since un/v,-->O, as n-->, we conclude that Yl/(civivi+l)<c. Starting with
A(vn/u,,), a similar argument proves o 1/(ciuiui+)= . This completes the proof.

Based on what happens in the continuous case (3), it is not surprising that
Theorem 1 has several corollaries.

COROLLARY 1. Suppose (1) is nonoscillatory. If v is a solution of (1) such that
l/(cnfanfan+l)<OC, then v is dominant and u defined by u, v, i=, 1/(Cifaifai+l ) is

recessive. Similarly, if u is a solution such that Y 1/(c,u,u,+l)= , then u is recessive,
n--1and v defined by v, u, i=k 1/(CiUiUi+l) is a dominant solution where k is large enough

so that ui O, f >= k.
Proof. Suppose we have a solution v such that 1/(c,v,v,+l)< c. Then define u

as stated in the hypothesis. Note that u is a solution. Then u,/v, Y 1/(civivi+)-->O,
as n -> , so that u is recessive and fa is dominant. A similar argument proves the other
case.

COROLLARY 2. If ,o 1/c,, and if all solutions of (1) are bounded, then (1)
must oscillate.

Proof. Suppose (1) is nonoscillatory. Then Theorem 1 implies the existence of a
dominant solution fa such that Y 1/(c,v,v,+)<. By hypothesis, fanv,+ <=M, for all
n. Thus we have

1 1 1_1
> _->Y Y a contradiction.

CnVnfan+l cnm m

If 1/cn is summable, then the conclusion of Corollary 2 may no longer be true.
See the example preceding Theorem 3.

If p, _-> 0 in (2), that is, if b,- c,- c,_ _-> 0 in (1), then we can be more precise
about the behavior of the recessive and dominant solutions.

THEOREM 2. If bn-cn--Cn-1 O, then them exist a recessive solution u and a
dominant solution v such that u,, > 0, U.+l<= u. and v. > 0, v.+l >- v.. Suppose there
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exists a nonnegative sequence {en} such that

(7) b.-(l +e.)c.-c._l >=O and

Then v. -+ oo. If there exists a nonnegative sequence {y,} such that

(8) b.-c.-(1 4;-]In)n- 0 and E 3’. =oo,

then u. + O.
Proof. Let v be the solution of (1)defined by v0 1, Vl 2. Remark 1 then implies

v./x- v., for all n. Next, by an actually stronger result of Hartman and Wintner [4],
we have the existence of a solution u such that un > 0 and un+l u. (Note that there is
a misprint on the first page of [4]. It should be Ayk < 0, not > 0.) Therefore, we can say
u./v. is positive and monotone decreasing to some limit L. If L 0, then u is recessive
and v is dominant. Suppose L>0. Then u.-Lvn >=0, for all n. Also, (Un+x-LtAn+I)-
(u.-Lv.)=(u+I-u)-L(v+x-vn)<=O. If for some integer k, Uk--LVk =0, then
u. -Lvn 0, for all n -> k, a contradiction to u and v being linearly independent. Thus
(u. Lv. > 0 and A(u. Lv. <-_ O, for all n. Clearly (u. Lv )/ v.
Renaming if necessary, we have the existence of a dominant solution v and a recessive
solution u.

If condition (7) is satisfied, Lemma 2 implies vn oo, as n
Suppose condition (8) is satisfied. As previously mentioned, the arguments

in [4] establish the existence of a solution u such that u./l <- u.. Thus we may
write un-1--’(bnun-CnUn+l)/Cn-1 [(bn-cn)/Cn-1]Un _>-(1 +/n)Un, and hence u./uo<=
1/f-I(1 + "/i), 1 =< n. Assumption (8) then implies u. 0, as n - oe. Clearly u must be
recessive, because u./v. tends to zero where v is the dominant solution defined
earlier. This completes the proof.

Some examples illustrating Theorem 2 follow. Let b,, 2 and c. 1, for all n.
Then u,, 1 and v,, n are the recessive and dominant solutions. Clearly u,,- 0.

A second example, from [6], has b. n(2n 2- 1)/(n + 1), c,, n 2, for n => 1. Then
b,,-c-c._x=-l/(n+l)<O.

It is easy to verify that u,,= 1/n is a solution, and Corollary 1 implies it is
recessive. Also, from Corollary 1, v defined by

n--1 1 1"1()(9) v.=u. E 1+
CIUIUi+ n

is dominant. However, v,, =< 2, for all n, so that v.- oo, as n -+ co.
The previous example is actually indicative of a more general result.
THEOREM 3. Assume b- c.- c-1 <- O, for all n. If (1) is nonoscillatory and if

F7 1/c. < oo, then all solutions of (1) are bounded.
Proof. Let x be any solution of (1). We may assume x. > 0, for all n >= k, for some

integer k. Note that (b.-c.-l)/c. <-1. Rewriting (1)yields

or

Xn+l "--[(b. -c._x)/c.]x. 2r’[Cn-1/Cn][X X.-1]

Xn-b(Cn-1/n)(Xn--Xn-1),

(10) Xn+l--Xn (Cn-1/Cn)(Xn--Xn-1),

Repeated application of (10)yields

for any n >= k.

Xn+l--Xn (Cn-1/Cn)(Cn-2/Cn-1) (Ck/k+l)(Xk+l--Xk),
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or

(11) Xn+I Xn"’M/Cn,

where M is a constant independent of n. Repeated application of (11) yields

x’+ <= M/c,, + M/c,,-1 +" + M/ck + Xk

n-k 1<-x +M Y.
1=0 Ck +i

Our hypotheses yield that x,+l is bounded independently of n or that the solution x is
bounded. This proves the theorem.

Note that the first of the two examples preceding Theorem 3 shows that the
conclusion of Theorem 3 may no longer be true if 1/c, c.

Based on Theorem 1, we can conclude that the nonoscillation of (1) implies the
existence of two linearly independent solutions u and v of (1) such that

(12) y.. 1
<oo.

Cn (UnUn + -J" Vnl.)n +

It should be pointed out that the converse of this is not true. That is, one can easily
construct examples where the sum in (12) is finite but (1) is oscillatory. For instance, if
c, 1 and b, -2, then (-1)" and n(-1)" are solutions which satisfy (12). This differs
from the continuous case (3), where the convergence of the integral analogue of the
sum in (12) is equivalent to nonoscillation. See [3, p. 354].

For completeness, we conclude this section by reformulating a comparison
theorem found in [7] for equations of the form (1).

Consider (1) and the following equation:

(13) rnWn+l + rn-l Wn-1 d,w,, r, > O.

THEOREM 4. Suppose

(r,,-1/r.)>-(c.-i/c’)

and

(d,,/r’)-(r._/r.)>-(b,Jc’)-(c’_/c.) > 1.

Suppose also that w Xl 0, WoXoO and w-wo>=X-Xo>=O. Then Wn+l--Wn.
x,+-x" and w,+ >=x’+, for n >= 1.

Proof. Divide (1) by c, and (13) by r,. The result then follows from [7, Thm. 1].

3. Limit point results. Consider the following equation"

(14) CnXn+l "1- Cn-lXn-1 b,,x,, + a real or complex.

Equation (14) is called limit circle, L.C., if all solutions are square summable. Other-
wise it is called limit point, L.P. See [1, p. 127] for an explanation and development of
the related theory.

It is proven in [1] that if (14) is L.C. for one value of ,, then it is L.C. for any value
of , including , 0.

THEOREM 5. If 1//= and if (1) is nonoscillatory, then (14) is L.P.
Proof. Suppose not, so that (14) and hence (1) are L.C. Since (1) is nonoscillatory,
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let u and v be two linearly independent solutions as found in Theorem 1. Then

’ 1 t, (Unbln+l_Jt_VnVn+l)1/2
2 (Cn)l]’’--" 2 (Cn(UnUn+l at VnVn+l))l/2

(15)
<-- (UnUn+ at- VnVn+

1 ]1/2Cn(UnUn+l + VnV+I)

The first term on the right in (15) is bounded because u and v are square summable.
The second term is bounded by Theorem 1. Thus 1/,/-- is summable, a contradiction.

THFORF.M 6. If Ib.I >- c. + c.-1, then (14) is L.P.
Proof. Lemma 2 implies the solution of (1) defined by v0 0, Vl 1 is not square

summable. Hence (1) and thus (14) are not L.C.
It is interesting to compare Theorem 6 with Theorem 11 of [6].

4. Some comments on oscillation. If b,, <_-O, Lemma 3 implies that (1) is oscil-
latory. In addition, if b. <= -c. c.-1 < O, the substitution y,. (- 1)"x. transforms (1)
to

(16) Cnyn+l + Cn-lYn-1 (-bn)y.,

where -b. _-> c,, + c.-1 > 0. We can now apply many of the results of 2 to (16) and
obtain information about solutions of (1). In particular, Theorems 1 and 2 yield
existence and growth properties of recessive and dominant solutions, where now the
only difference is that eventually solutions must oscillate and actually alternate in sign.
A comparison principle based on Theorem 4 could also be formulated between
certain types of oscillatory equations. This all follows from the hypothesis b.-<
-c.-c._l<O and the substitution yn (--1)"Xn. We leave such formulations to the
interested reader.

We conclude with several sufficient conditions for oscillation, where there is no
restriction on the sign of b..

THEOREM 7. If b. <-min (c., c.-1), for all n sufficiently large, then (1) is oscillatory.
Proof. Let x be any solution of (1). Suppose (1) is nonoscillatory. Then for n

large enough, we may assume x,, > 0. Also, we may assume b. > 0, by Lemma 3. Since
C.-lX,,-l>0, equation (1)yields that c.x.+l<b.x., or c./b.<x./x.+l. However,
c./b. _-> 1, so that we have

(17) x. >X.+l, for all n sufficiently large.

In a similar fashion, (1) implies C._lX._<b.x., or c.-1/b.<x./x.-1. Since
Cn-1/bn -> 1, we have

(18) x, >X,_l, for all n sufficiently large.

However, (17) and (18) are contradictory, and so (1) must oscillate.
COaOLLAR 3. If bn <-c, and if c, is eventually nonincreasing, then (1) is oscil-

latory.
COROLLARY 4. If bn <-c-1 and if c, is eventually nondecreasing, then (1) is

oscillatory.
Note that Corollary 4 also follows from Theorem 3 of [6].
THEOREM 8. If b, <- Cn-1 and if oo 1/c, < o, then (1) is oscillatory.
Proof. Assume not. Then (1) is nonoscillatory. Repeating the appropriate

argument in Theorem 7, we again arrive at (18), for any solution. By Theorem 1, if (1)
is nonoscillatory, there exists a recessive solution u such that Y. 1/(CnUnUn+x)=O0.
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However, (18) implies that Un+l -- Un, for all n sufficiently large, so that Un+l - Uk, for
n _-> k, for some integer k. Thus

1 1
E--<Z 2 --- Z --<oo,
k CnUnUn+l k CnUk Uk k Cn

a contradiction. This completes the proof.
Many of the ideas in this paper extend to the nonhomogeneous case. These will

appear in a sequel.
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REPRODUCING-KERNEL HILBERT SPACES OF DISTRIBUTIONS AND
GENERALIZED STOCHASTIC PROCESSES*

REUVEN MEIDAN*

Abstract. In this work we consider reproducing-kernel Hilbert spaces (RKHSs) of distributions and
pursue their connection with generalized stochastic processes (GSPs). It is shown that every Hilbert space of
distributions is an RKHS and that there exists a one-to-one correspondence between the class of positive
definite kernel operators (PDKOs) and RKHSs, where the PDKO induces the reproducing kernel of the
RKHS. The RKHS is then shown to represent the GSP in the sense of an isometrical isomorphism between
two Hilbert spaces. As applications of the theory we consider generalized integral equations, the problem of
linear least-squares estimation and series expansions of the GSP.

1. Introduction. Let xt be a second-order ordinary stochastic process (OSP),
i.e., a mapping from the subset T of the reals into L2(f), the space of second-order
random variables on the probability space D,. With this process we can associate the
correlation ftinction defined by

(1) R(s, t)=E[x,],

where E denotes the statistical average with respect to f. R (s, t) enjoys the property
of positive definiteness which qualifies it as a reproducing kernel of a reproducing-
kernel Hilbert space (RKHS). This association of a unique RKHS of functions on T
with a given OSP has been treated quite extensively in the literature. Some of the
notable workers are Lo6ve (cf. L6vy [5, Appendix I]), Parzen [6] and Kailath [4].

Consider now the converse problem, i.e., let H be a given Hilbert space of
functions on T. We are looking for a process whose RKHS is H. Naturally a necessary,
but also sufficient, condition for the existence of such a process is that H should be an
RKHS. However, it is well known that not every Hilbert space of functions enjoys the
reproducing property, a commonly-quoted counter-example being L2(T), the space of
square-integrable functions on T. We therefore propose the following approach.

1) We shall deal with Hilbert spaces of distributions rather than ordinary
functions. Should H be a given Hilbert space of functions on T it can usually be
interpreted in terms of distributions. The advantage of this approach is that every
Hilbert space of distributions is actually an RKHS.

2) We consider generalized rather than ordinary stochastic processes (GSPs
instead of OSPs).

A GSP is a linear and continuous operator from a space of test functions into a
space of random variables, and by considering GSPs two advantages are gained. First,
the family of processes amenable to the analysis is increased. Second, since the GSP is
a linear operator, linear operator theory is applicable. It will be shown that the Hilbert
space of distributions H associated with a GSP is isometrically isomorphic to the closure
in L2(I)) of the range space of the GSP. Hence H serves as an interfacing space between
the space of test functions (the domain of the GSP) and the space of random variables
(the range of the GSP).

By adopting the above approach the following correspondence between stochas-
tic processes and Hilbert spaces is obtained. Given a GSP, a unique Hilbert space of
distributions can be constructed such that the former’s correlation operator serves as

* Received by the editors October 4, 1976, and in final revised form August 30, 1977.
5" National Research Institute for Mathematical Sciences of the CSIR, Pretoria, South Africa, and
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the latter’s reproducing operator. Conversely, a given Hilbert space of distributions
uniquely defines its reproducing operator, which in turn can serve as the correlation
operator of a GSP which is thus determined modulo a unitary operator.

We pursue two applications of the theory"
1) Coordinate-free series expansion of the GSP ( 4). These are given in terms of

complete orthonorrnal systems (CONSs) in H. They are coordinate-free in the sense
that there is a freedom of choice in selecting the CONSs.

2) Generalized integral equations are investigated in 5.
It should be noted that Hilbert spaces of (vector-valued) distributions have also

been discussed by Schwartz [7] who applied them to the theory of elementary particles
in quantum mechanics.

2. Preliminaries. The following is a review of the concepts relevant to this work.
Let T denote an open set in R" and D(T) the space of infinitely differentiable test
functions whose supports are compact and contained in T. D(T) is equipped with
Schwartz’s testing function topology. Let D’(T) denote the space of distributions in T,
i.e., D’(T) is the dual of D(T). It is equipped with the weak topology generated by
D(T). We say that H is a subspace o]: distributions if it is a subspace of D’(T) and if, in
addition, its intrinsic topology is stronger than the relative topology induced by the
(weak) topology of D’(T). Let R be a linear and continuous operator from D(T) into
D’(T). We refer to R as a kernel operator in view of Schwartz’s kernel theorem,
according to which these operators enjoy representations in terms of kernels which
are distributions on T T.

A sesquilinear form on D(T) D(T)

(2) S((, 0)= (Rq, )T, q, 0 D(T),

can be associated with R. (’, )7- denotes the scalar product of D(T) and its dual
D’(T). By sesquilinearity we mean that $ is linear with respect to the first variable and
anti-linear with respect to the other. We say that R is positive definite if

(3) s(,)>-0

for every q e D(T). We propose the term ’positive’, rather than ’nonnegative’ in order
to simplify the terminology and because this use of the term has been proposed in
notable treatises (e.g. Gel’land and Vilenkin [2, p. 26]). In this work we deal with
positive definite kernel operators (PDKOs), i.e., linear and continuous operators from
D(T) into D’(T) which, in addition, are positive definite.

Let R denote the transpose operator of R. It too is linear and continuous from
D(T) into D’(T). It can easily be verified that the positive definiteness of R implies
that it is self-transposed in the sense that

Let (f, M, P) denote a fixed probability space, where f), is a set, M a r-algebra of
subsets of f and P a probability measure on M. By L2(f) we denote the space of
second-order random variables on D,, i.e., L2(D,) consists of scalar-valued functions on

which are square-integrable. LZ() is a Hilbert space when equipped with the scalar
product

(4) (f’ g)" I f,dP(o2)= E[f,].
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A generalized stochastic process (GSP) is a linear and continuous operator from a
space of testing functions on T into a space of random variables. We shall adopt It6’s
approach [3], which is somewhat more restrictive than the definition proposed by
Gel’land [1], [2]. According to It6’s definition, a (second-order) GSP is a linear and
continuous operator from D(T) into L2(f). In this work it is necessary for the range of
the operator to be a Hilbert space, in order that it should be possible to construct the
correlation operator associated with the GSP.

Let xt be a (second-order) ordinary stochastic process (OSP), i.e. xt is a
mapping from T into L2(D,). If the OSP is locally Bochner-integrable, it induces a GSP
by

(5) uq IT.xo(t)dt, D(T).

This verifies that the GSP is indeed a generalization of the OSP concept. Let u be a
GSP in the sense of the above definition and let u’ denote its transpose, u is thus a
linear and continuous operator from the dual of L2() into D’(T). In view of Riesz’s
representation theorem, the dual of L2(I)) can be identified with L2() itself. Hence u
can be viewed as operating from L2(), and the composite operator uu can be
constructed. We use the following notation

(6) R u’u
and refer to R as the correlation operator associated with the GSP u. If u is a GSP
induced by an OSP, the operator R is an integral operator,

(7) Rq IT.R (s, t)q(s) ds, s, T.

The kernel R (s, t) is now an ordinary function,

(8) R(s,t)=(x,,xs)n

and within the framework of the OSP is called the correlation function of the process.
Hence the correlation operator is the generalization of the concept of the correlation
function.

Clearly R is a linear and continuous operator from D(T) into D’(T). Moreover,
it is positive definite. This follows from the fact that for every q D(T),

(uq,, u)._-> 0.

Hence R is a PDKO. In regards to the above chain equality one should note that

<u Z (t, f L(f), D(T)

which follows from the anti-isomorphism between L2() and its dual.
Now to the converse argument. Given a PDKO R from D(T) into D’(T), a (not

necessarily unique) GSP u can be found such that R is its correlation operator. In
other words R can always be factored as in (6). This follows from a theorem by
Gel’fand and Vilenkin [2]. However it will follow also from Theorem 3 of this paper.

Next we review the subject of reproducing-kernel Hilbert spaces. Let X be an
abstract set and let H be a Hilbert space of functions on X. H is called a reproducing-
kernel Hilbert space (RKHS) if it enjoys the following reproducing property. There
exists a complex-valued function K(x, y) on X X, called the reproducing kernel,
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such that
(i) for any fixed y X, K(., y) is in H;
(ii) K (x, y) induces the reproducing property by

(f(.), K (., y))n f(y)

for each f(. )e H, and y e X. (., )n denotes the scalar product in H. As is well known,
there exists a one-to-one correspondence between the family of RKHSs on X and the
family of positive definite complex-valued functions on X X, the correspondence
being the (unique) connection between an RKHS and its reproducing kernel.

We shall need the following fact about RKHSs. Every xX induces the
reproducing functional F,:f- f(x), f e H. Fx is a linear functional on H. H is an
RKHS if and only if all the reproducing functionals {Fx-x e X} are continuous on H.

We shall also need the family of Sobolev spaces of type 2. Let K be a compact set
of R and suppose we define the following family of scalar products on D(K),

Z f(Diq)(Did/)dt(, ),

where is an n-vector (ix," , in) of nonnegative integers where

k=l

and m a nonnegative integer. If we complete D(K) with respect to the norm
generated by the ruth scaler product we obtain the Sobolev space WIn(K) of order m.

3. RKHSs of distributions. When dealing with RKHSs of distributions the
underlying space X is identified with D(T), in contrast to the case of RKHSs of
ordinary functions where X is identified with T. We start this section by constructing
an RKHS of distributions around a given PDKO R. R is shown to be the reproducing
operator in the sense that the sesquilinear form generated by it (eq. (2)) serves as the
reproducing kernel of the space. Next we show that every Hilbert subspace of
distributions is in fact an RKHS and determine its reproducing operator.

THEOREM 1. Let R be a PDKO from D(T) into D’(T). A unique Hilbert subspace
of distributions H can be constructed such that R is its reproducing operator.

Proof. We first establish the construction of H. Consider the range space Ra (R)
of R. Clearly it is a subspace of D’(T). Let f and g be in Ra (R). Then there exist
elements and 4’ (not necessarily unique) such that f Re and g R. We associate
with the pair (f, g) a scalar product

(9) (f, g)n (f, R-Xg)T (Rq, )T a_ S((0, 4’).

Naturally R -x denotes the inverse of R. However, since R is not necessarily one-to-
one, R -1 does not exist as a (unique-valued)operator but should rather be interpreted
as a binary relation. Nevertheless we claim that the form (9) is unique, since Ra (R), as
a subspace of D’(T), is orthogonal to N (R), the null space in D(T) of the operator R.

Let f Ra (R); then there exists a ( D(T) such that f Ro. Hence for every
D(T),

(10) (f, O)T (R,, )T.

In view of the self-transposeness of R, we have that

(11) (R, q)T=(Rd/, )T.
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But the right-hand side of (11) is equal to zero for 6 N(R). Combination of the last
two equations verifies that Ra (R) is orthogonal to N (R). It follows that R -1 is unique
on Ra (R) modulo null elements of R, which establishes the fact that the form (9) is
indeed unique. We can consider the quotient space D(T) over N (R). As an operator
from Ra (R) into this quotient space, R -1 is unique.

We still have to verify that the form (., )H qualifies as a scalar product. Indeed,
its sesquilinearity has been mentioned above. Its Hermitian symmetry follows from
the self-transposeness of R (eq. (11)) and is positive definiteness is a result of the
positive definiteness of R. It also follows from the above argument that (f, f)H is equal
to zero if and only if f 0. Indeed, (f, f)n (Rq, q0)T where 0 is unique in the
quotient space D(T)/N(R) such that f Re. But, as was established above, Ra (R) is
ortrogonal to N (R). Hence (Re, g)T is equal to zero iff q 0 from which follows

Consequently the form (9) satisfies the requirements of a scalar product rendering
Ra (R) a pre-Hilbert space. We complete it in the norm induced by the scalar product
and obtain the Hilbert space H. We claim that H is a space of distributions i.e., that it
is a subspace of D’(T), and that, in addition, its topology is stronger than the relative
topology induced by D’(T).

Let 6D(T) and fRa (R). There exists a g D’(T) such that g= R6 and

(12) (f,O}r=(f,g)H.

Consider a strongly-bounded set B in Ra (R). This set is also weakly bounded. Hence
the right-hand side of the last equation (12) is bounded over f e B. Consequently the
left-hand side of (12) is bounded over B for every g, eD(T). It follows that B is
weakly bounded in D’(T). Let I denote the natural injection of Ra (R) into D’(T).
We have just established that I is bounded. But boundedness in this case implies
continuity. It follows that I can be uniquely and continuously extended from Ra (R)
onto its completion H, as a continuous operator into D’(T). Consequently H qualifies
as a Hilbert space of distributions.

We next verify that H is the RKHS associated with the operator R. Indeed,
consider the sequilinear form S(q, 4’) generated by R (eq. (3)).It is a complex-valued
function on D(T)x D(T). $ satisfies the properties of the reproducing kernel of H,
i.e.,

(13) S(., #)=R

is an element of H for every p D(T) and

(14) (g(’), S(’, )) g(p)

for every g e H.
We now approach the problem from the opposite direction.
THEOREM 2. Let H be a Hilbert subspace of distributions on T. Then H enioys the

reproducing property and its reproducing operator is II’, where I is the natural injection of
H into D’(T) and I’ its transpose.

Proof. As mentioned in 2, a necessary and sufficient condition for a Hilbert
space to enjoy the reproducing property is that every reproducing functional should
be continuous. In this case the underlying space is D(T); hence the reproducing
functional associated with q D(T) is F,o:ff(q), where f traverses H. Now for
every q e D(T), F, is a continuous functional on D’(T). Since H is a subspace of
D’(T) with a stronger topology, F,o is also continuous on H. Hence H is an RKHS.
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Next, since I is, by hypothesis, continuous from H into D’(T), its transpose I is
continuous from D(T) into H. The positive definiteness of H is obvious; hence it is a
PDKO. Now consider Itq. It is in H and for every g H,

(g, 1’). {lg, q) g(c

which express the reproducing property. This completes the proof.
We conclude this section by noting that H is separable. This follows from the fact

that D(T) is separable. The separability will be helpful for the series expansions of 5.

4. The association of RKHSs of distributions and GSPs. Let u be a GSP and L
denote the closure in L2(II)of its range space. L is often called the linear space of the
process in the sense that it represents the random variables attainable by linear
operations, including limits, on the measurements of the process. We associate with
the GSP u the RKHS of distributions H generated by the correlation operator
g =utu.

THEOREM 3. Let u be a GSP, R its correlation operator and H the RKHS of
distributions generated by R. Then H is isometrically isomorphic to L, the closure in
L2(1) of the range of u. Conversely, let H be an RKHS of distributions, then a GSP u
can be found, such that

(15) R utu Ii t.
In other words the diagram of Fig. 1 is commutative.

The theorem establishes the following polar decompositions of u and u

(16). u JUI’,

(17) u’ IU’J
where U is a unitary operator, i.e. UU= U’U =identity operator in H, J is the
injection of L into L(f) and jt the projection obtained by transposing J.

u

u

FIG. 1. The spaces and operators involved in the discussion of Theorem 3.

Proof of the theorem. We show first that U is a unitary operator from L onto H.
This will be established by verifying that U maps isometrically a dense subspace in L
onto a dense subspace in H. Indeed, consider Ra (u), the range of u. It is dense in L.
Let f and g be two elements of Ra (u) then there exist q, in D(T) such that f uq,
g uO. Now by the following chain equality

(Utf, Utg)H (Rq, )r (Uruq, )r (uq, uO)a (f, g)n,

we conclude that U’ is an isometric operator and that it maps Ta (u)in L onto Ra (R)
in H. Since Ra (R) is dense in H, the direct part of the proof is complete.
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Conversely, given H, I’ is found by transposing the injection I of H into D’(T),
following the discussion of Theorem 2. Take a complete orthonormal system in H and
a sequence of zero mean, unit variance independent random variables {gn}. Define the
operator U on {fn} as

Then U determines the requested unitary operator and the requested GSP is the
composition u UI’.

We now consider the null space of u in D(T). In view of the commutativity of the
diagram in Fig. 1 it is easily verified that N (u)= N(I’)= N (R). We established earlier
that Ra (R) in D’(T) is contained in the orthogonal of N (R). Clearly this holds also
for H. In fact we can state the following.

THEOREM 4. Let H denote the closure ofH in the weak topology ofD’(T). Then
H is the orthogonal of N (R), i.e.,

(18) Ra (R)c n c nw= N (R)-.

Proof. This is a consequence of Proposition 35.4 of TrOves [8].

5. Application to generalized integral equations. Let us consider the following
generalized integral equation: suppose u is a given GSP from D(T) into L2(fl) and f a
given distribution in D’(T). We wish to find an x L2(lq) such that for every p D(T)

(19) (x, u)a =/().

Clearly if a solution exists, it is not necessarily unique. In order to render it unique we
consider the solution of minimum norm which is the solution in Lu. The proof of the
following theorem is trivial.

THEOREM 5. The generalized integral equation admits a unique solution x Lu if
and only iff H.

The generalized integral equation (19) is encountered in the theory of linear
mean-squares estimation. We are given a GSP u from D(T) into L(12). We take a
subset A of the testing function in D(T) which spans D(T). Let B be the image of A
in L(fl). B consists of the data obtained by observation of the process. L is spanned
by B and constitutes the random variables in L(fl) which are accessible by linear
operations on the data.

Next assume that a random variable x is given in L(lq). We wish to provide an
estimate for x such that

(i) is a linear estimate, i.e., it is in L, and
(ii) the mean square error [Ix- [la is minimal.

We call the linear least-squares estimator of x. The problem is, of course, solved by
the projection theorem, i.e. the estimator is the projection of x into L.

For our problem it is sufficient to determine x by its scalar product over the range
of u. Hence we assume that f(q)= (x, uq)a is given. It follows that the minimum norm
solution of equation (19) as discussed in Theorem 4 is our estimator .f.

The following observation is instructive. Suppose is an element of L. The set of
all x L2(12) whose estimator is , is mapped by u into a single element in H.

6. Series expansions of the GSP. In the previous section we were concerned with
the bottom row of Fig. 1. In this section we deal with the upper row expressed in the
decomposition (16) of u. We utilize it in order to obtain coordinate-free series
expansions of u. These are expressed in terms of complete orthonormal systems
(CONSs) in H, which are countable in view of the separability of H.
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THEOREM 6. Let {fn} be any choice of a CONS in H. U admits the representation

(20)
n=l

where {g, Uf, } is a CONS in L, the tensor product notation fng, stands ]’or the operator

(21) ([.g.)(f) (f, [. ),,g., [ e H,

and tke limit of the partial sums of (20) exists in the weak operator topology, i.e. for every
fell,

f,g,, f(22) Uf

converges to U in the norm topology ofL(l).
Pro@ Let f be in H. By Parseval’s theorem it can be decomposed by

(3

the convergence of the series (23) holding in the norm topology of H. We now operate
with U on both sides of (23):

(4) u- 2 (f, L I, 2 (I’, f l,,UF.
n=l n=l

The interchange of the order between the summation and operation with U is
justifiable in view of the continuity of U. Since U is unitary, the system {U} is
orthonormal and spans L; hence it is complete in L.

We now comment on the operator I of the decomposition (16). Since I is
one-to-one, the image of D(T) under I is dense in H. Hence I is a one-to-one
operator from the quotient space D(T) over N(R) into H. Another property of Iis its
nuclearity, which follows from the nuclearity of D(T).

Next we consider the composite operator UI. By the series expansion we have

for any choice of a CONS {} in H. By the definition of the transpose,

Hence we have the following theorem.
THEOREM 7. Let u be a GSP from D(T) into L2(I)). Then it can be expanded as

(27) uq= E (]v.,C).g.,
n-’l

where {f} is any choice of a CONS in H(R ) considered as distributions in D’(T) and
{g.} is an orthonormal system (ON$) in L(I) given by g. Uf..

In view of the above, the following expansion of R is clear.
THEORE 8. Let R be a positive definite kernel operator from D(T) into D’(T).

Then R can be expanded as

(28), R E ff
n=l
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where {fn} is as in the previous theorem and the notation fnf. stands ]’or the operator

(29) (f,,f,,)(q (1, q:,).f, qD(T).

As mentioned earlier, the merit of the expansions lies in the freedom of choice in
regard to the basis {f,} of the expansion. On the other hand, the convergence of the
expansion holds only in the mean-square sense of L2(fl). Pointwise convergence can
be established based on a different approach. However, this is accomplished at the
cost of restricting the basis system eligible for the expansion. Based on the discussion
in Gel’land and Vilenkin, we consider the family Wm Of the Sobolev space of order rn
and type 2. For every compact set K we can find an order m such that I is
continuously extendible as nuclear operator from WIn(K) into H. Hence I’ can be
given a eigen-expansion (Gel’land and Vilenkin [2, p. 75]). Which converges point-
wise for almost every w e 1). We state this result in the following theorem.

TI-IF.ORFM 9. LetK be a compact subset of Tand W,,(K) the Sobolev space oforder
rn and type 2 over K. There exist an m, a CONS (h,} in W,, (K), a CONS {g,,} in L, and
a sequence of nonnegative numbers {A,,} with Y’.,I ’ <oo, such that for every
o e D(K),

(30) Uqg= E An(hn, qg)mgn(to).
n=l

The convergence in L2(f) holds both pointwise almost surely and in the mean-square
sense. D(K) denotes the subspace of D(T) consisting of functions whose supports are
contained in K, and (., )., denotes the scalar product in W., (K).
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BOUNDED SOLUTIONS OF FINITE DIMENSIONAL APPROXIMATIONS
TO THE BOUSSINESQ EQUATIONS*

JAMES H. CURRY?

Abstract. A class of finite systems of nonlinear ordinary differential equations are derived which yield
finite dimensional approximation to the solutions of the Boussinesq equations. Such finite solutions, to these
evolution equations, can be associated with trajectories in a phase space defined by the amplitudes of the
components occurring in the differential equations. Once we make a passage ,to a phase space description of
a system., a natural question which arises concerns the long time behavior of trajectories. In this paper we
give sufficient conditions for a large class of approximate solutions to the Boussinesq equations to remain
bounded for all time.

Introduction. In a fundamental paper [3] E. N. Lorenz establishes that a certain
quadratic dynamical system has only bounded solutions. As a consequence of this
result and the observation that the divergence of the vector field is nonpositive, he was
able to prove the existence of a limiting surface for the system which he studied. Then
using numerical techniques, Lorenz gave strong evidence for nontrivial dynamics for a
physically interesting system arising from atmospheric convection. Recently Gucken-
heimer in [4] and Williams [12] have been able to prove that there are uncountably
many topologically distinct attractors of the type discovered by Lorenz.

In this paper we establish that Lorenz’s results on the existence of a limit surface
is not an artifact of the small system of equation which he studies. Specifically we
prove that a general class of quadratic dynamical systems arising from the equations of
atmospheric convection do have only bounded solutions. It is an easy consequence of
our results that the system studied by Lorenz has only bounded solutions. It is also the
case that the divergence of all the vector fields which have bounded solution is
nonpositive and therefore all trajectories must tend to an attracting set. Whether it is
possible to extend the results of Guckenheimer and Williams to these higher dimen-
sional limit surfaces is unknown.

Recent numerical experiments by the author, which shall be reported on.else-
where, indicate that the limiting surface first discovered by Lorenz most likely has
higher dimensional analogues; however, one major difference is how the system
transitions to turbulence.

In 1 we introduce the equations from which Lorenz derived his three
component system. Also in this section we provide a brief discussion of the evolution
equations, geometry, and boundary conditions which we shall assume throughout the
remainder of this paper. In 2 we prove our main result, which establishes sufficient
conditions for a large class of truncations (called complete) to the equations of motion
to have only bounded solutions. Then in Appendix A we establish the definitions of
the relevant physical parameters and indicate how the governing equations may be
transformed into a suitable dimensionless form.

1. Preliminaries. The equations which govern convective motion in a fluid layer
heated from below are the Navier-Stokes and heat conduction equations. We
consider these equations in the Boussinesq approximation. In Appendix A it is shown

* Received by the editors April 19, 1977, and in revised form August 2, 1977.
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sponsored by the National Science Foundation.

71



72 JAMES H. CURRY

how to rewrite the two dimensional Boussinesq equations into the following dimen-
sionless form"

a(,a,______) + ra, +r(a),
o(x, z) ox’

(1.1)
(O),

0(, O) t-R0P+AO
o(x, z) ax

where 4,(x, z, t) and O(x, z, t) denote the stream function and departure of tempera-
ture from a linear profile while o- and R denote the Prandtl and Rayleigh numbers
respectively (for the definition of the Prandtl and Rayleigh numbers, we refer the
reader to Appendix A). In the remainder of this paper we shall consider the con-
vection equations in the form (1.1).

We shall assume that all fluid motion is confined to the region riO=
{(x, z):0-<x <-2rr/a, 0-<z-<rr}, and impose periodic boundary conditions (period
2rr/a) in the horizontal direction and free boundary conditions on the surfaces z 0,
z rr. Specifically these latter conditions are

O(x, o)= O(x, r)= 0, 0(x, 0)= g,(x, r)= 0, ag,(x, 0)= aq,(x, )= 0.

Although the free boundary conditions are perhaps not the most interesting from the
physical point of view, we have chosen them in preference to rigid boundary condi-
tions because they greatly simplify computations.

Also in the interest of simplicity, we have restricted our attention to a particular
class of solutionswthose for which 4’ and OO/Ox vanish identically for x =0 and
x 2rr/a, i.e., for which the horizontal components of the velocity and temperature
gradient vanish. It can be shown that if these conditions hold initially, they hold at
later times as well.

A general representation for g, and 0 which is consistent with the requirements of
the previous paragraphs is

(x, z, t)= Y E -,, sin (amx)sin (nz),
m=l n=l

(1.2)
O(x, z, t)= E Y 0.. cos (amx)sin (nz)

m=O n=l

where q,,,, and 0,,, are functions of time alone.
If we now substitute (1.2) into (1.1) we get a system of infinitely many coupled

nonlinear ordinary differential equations for the components of 4,(x,z,t) and
O(x,z,t).

Let N LI {0} be the set of nonnegative integers. Suppose that - is a nonempty
subset of x. By a truncation of the convection equations, we shall mean a system
of ordinary differential equations obtained by substituting g, and O from (1) into (1.1)
and setting all .,., O,,, terms equal to zero unless (m, n) 3". Specifically we shall
consider those solutions 4,(x, z, t), O(x, z, t) to (1.1) such that

g,(x,z,t)=
(m,n) ;
mO

sin (amx sin (nz ),

O(x, z, t)= Y’. 0,,, cos (amx) sin (nz)
(m,n)
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where 3- is a finite subset of x.
We may write our system of ordinary differential equations symbolically as

(1.3) 2 F(X)

where J is a vector whose entries are the time derivatives of the components of and

O,F(X)=() where d=(mn)for me0 and (m,n)63-, and where is defined

analogously. /

The set of all those points X |"1 will be the phase space for our system, and we
!0

shall denote by T’(X) the solution curve to (1.3) which passes through X at time zero.

2. Main result. Prior to establishing our main result we state three lemmas whose
proofs are elementary and a proposition which will be an essential step in the proof of
our main result.

LEMMA 1. Let , g be twice continuously differentiable functions on {(x, z): 0 _-< x _-<
27r/a, 0 <= z <= re} which are periodic in x with period 27r/a and which vanish when z 0
and z 7r. Then

[
’/ Io off, g)

dx dz =0.
o o(x, z)

CoaOLLAa. Iff, g are defined as in Lemma 1, then

i2.tr/a i’rr O(f, g) odx dz f O(x, z--
LEMMA 2. If

f(x, z) E a,,,,, cos (amx sin (nz ),
(m,n)"

then

g(x, z) E b,,,,, sin (amx) sin (nz),
(m,n) 57"

2

1) dX lo dzf= zr E a 2

2a (rn,n)W

3)

2"n’/

2zr/a

dx dz g Ag=-
2

O

2 2 2where p,,, a m + n

2

dx dz f dx dz g-x - E am,b,,,,,m.
(m,n) 57"aO

By 0(0, O)r/O(x, z) we mean the function obtained by expanding the Jacobian of 0
and 0 in a Fourier series and dropping those terms with (m, n) 3-.

LEMMA 3. Let 3-, g/, and 0 be defined as above; then

f2"rr/a io’rr O(, o)T
dx dz 0=0,

o (x, z)
dx dz b

O(O, AO)r
o(x, z)
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PROPOSITION. Let Q be a continuously differentiable function defined on the state
space of our system and suppose that there exists a constant Q1 such that

t=O
<0

whenever O(x) >- Ol. Then for every x in our phase space, supteo Q(T’x)<
Proof. If Xo is any point in our phase space, then either Q(xo)>= Q1 or Q(xo)< Q1.

Suppose that Q(xo) >- Q1; then by hypothesis

d-O(T’xo) < O;

therefore in a neighborhood about 00(Ttxo) is a decreasing function for all in
this neighborhood. Further, O(Txo) must continue to decrease until O(Ttx0)< O1.

If on the other hand, O(x0)< O1, then O(Txo)< 01 for all t. Since if for some
to, O(Ttxo) 01, then by hypothesis

d
d--O(TSyo) < 0 where yo Ttxo.

s=0

If we now argue as above, we conclude that if Q(xo)< O1 then Q(Ttxo)<- Q1 for all t,
so the proof of the Proposition is now complete.

Now let ff be as previously defined and N sup {n (m, n) ff for some m 0}.
We will say that T defines a complete truncation if (0, 2n)e " for n 1, 2, 3,..., N.
We may now state our main result.

TIJEOREM. Every solution of the equations of motion ]’or a complete truncation is
bounded for >- 0.

Proof. In order to establish the theorem it is sufficient to show that an equivalent
system of equations has all solutions bounded for _-> 0.

Let us examine the complete truncation to the convection equations associated
with -. For (m, n) " we define S,.,,, T.., by the following rules: for m different from
zero,

for m equal to zero and n odd,

Ton OOn,

while for the remaining case

To2 t- Co2n O02n.

Given the above definitions of S,,,,,, T.,,, we define

T(x, z, t)= Y’. T,,,, cos (amx)sin (nz)
(m,n)Sg

S(x, z, t)= I;
(m,n) g
mO

sin (amx sin (nz

From the above definitions it is apparent that

O(x, z, t)= T(x, z, t)-c(z ), O(x, z, t)= S(x, z, t)
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where
N

c(z) . Co, sin (2nz),
n=l

N is the number in the definition of a complete truncation and Co2,, =-2R/n. If we
now rewrite the convection equations in terms of S and T we have

(AS),
O(S, S)T OT
o(x,z)

+ s

O(c(z), S)r
(T),

O(S, T)....r+ + R + A(T c (z))
0(x, z) 0(x, z)

Let

dx dz T2-R---SAS.
From Lemmas 1 and 3 it follows that

dt
dx dz T

Oz Ox
---+ + A(T- c(z

Ox I.Ox

Let us make a closer examination of the first term in the expression for dQ/dt, i.e.,
-T(OS/Ox)Oc/Oz. If we recall the definitions of T, S and c, while at the same time
making use of elementary trigonometric identities to change products of sines into
sums or differences of cosine terms, we find that

a Y , Y (Co,," nyr,,6v)" (cos ((-6)z)
OX OZ (or, O)e’r (%6)eWn

Hence

-cos ((/3 + 6)z))cos (2n)" cos (aax)cos (ayx).

2r/ OS Oc N

dx T 2rrR . , 2 (mT..oS..
aO X Z (m,B)e(m,6)n

(cos ((B- 6)z)-cos (( + )z)) cos (2n).

Prior to performing the integrations in the z-variable we make several obser-
vations’ for fixed/3, 8,

dz Y. cos(-6)z-cos(+8)z cos(2n)=0

unless,/3, 8 have the same parity. Further if (m,/3) and (m, 8) are elements of - for
m 0, and/3, 8 are distinct but have the same parity, then =lna, n2 {1, 2, , N} such
that 2nl =/3 + 8 and 2n2 [/3-81. If we now exploit the above observations, it is
apparent that

[
2"tr/ OS Oc

dx dz T Y mT,,,,,S.,,,.



76 JAMES H. CURRY

With the aid of Lemma 2 and the above remarks we have that

d--7 dx dz {T AT-RS AS T Ac(z)}

2 2
"rr (Rp2 2 2

2a (m,n) nodd

2 N"t7"
E poE,TZo2,

a n=l

2 N
q- 2 Po2nTo2nCo2n

a N=I

If we now call the last term above B2 and the remaining terms -B1, then

dQ
=-BI+B2,
dt

where B1 is a strictly positive definite quadratic form in the S,.., T,.. and B2 is linear in
T.,.. Therefore there exist finite values P1, P2 such that P1Ba >-- Q and IB21 p2vr’ so

1dQ
-BI + B2 < Q + P2x/-d-’-7 - 2 2and the right-hand side of the last inequality will be less than zero provided O > PP2.

The boundedness of solutions now follows from the previous proposition.

Appendix A. In this Appendix we transform the Boussinesq equations into a
dimensionless form; the relevant equations are"

(A.1)
r(G _o(g ______)) +_ --+

(2, 2) H Ox

where and are functions of , z" and [ which denote the stream function and
departure of the temperature from linearity respectively. The constants: g, a, v, K, r,
and H denote respectively the acceleration due to gravity, the coefficient of thermal
expansion, kinematic viscosity, thermal conductivity, the temperature difference
between the plates and depth of the fluid layer. We shall use A to denote the Laplacian
in the variables x and z.

We now introduce the dimensionless variables x, z, and t, where

(A.2) x "-’./Cl, Z =--,
Cl C2

c and c2 are constants having the dimensions of length and time, and shall be
determined later.

If we now substitute (A.2) into (A.1) we have

(A.3)
z

------7-- +(x, c
+gacc2Ox’Cl

C1 (X, Z) H C1 X C1
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It will be convenient for us to rescale and and call the rescaled functions
and 0 where

I/kl and 0 /k2.
Here k and k: are constants which shall be determined shortly.

If we now rewrite (A.3) using the definition of O and 0 given above, we have

(A.4)
(a), -k

1
c2A2 ClC2 k2 cOOO(O, AO)+__ O+ga

3(X, Z) Cl el Ox

where we have used A to denote the Laplacian in the dimensionless variables.
There are many possible relations which can be imposed on the constants in

(A,4); if we assume that c2 =ck and kl K and suppose that k2 v/(gcc2)where
we let Cl H/’rr, then the dimensionless convection equations beome

(A.5)

v 00
(A),=

o(x, z) , ox’

0(O, 0) "rga H3 00(0),= a0.
(x,z) wr r ox

The ratio of viscosity to conductivity (U/K) is called the Prandtl number, which shall be
denoted by o-. The coefficient for the O0/Ox term which appears in the equality for (O)t
is called the Rayleigh number and shall be denoted by R.
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A NOTE ON A PAPER BY L. CARLITZ*
J. CIGLER"

Abstract. We give a simple derivation of the generating functions [sn(nx + y)/n!]z for Sheffer sets
{s.(x)}.

In a recent paper 1] L. Carlitz has obtained some interesting generating functions.
The purpose of this note is to show that some of his formulas can be best understood
within Rota’s theory of Sheffer sets [2]. In order to avoid repetitions of well-known
facts we follow the notation and terminology of Rota’s paper [2].

Let

al a2D2 +...

be a delta operator and let G(D) be the inverse formal power series which satisfies
G(g(D))= g(G(D))= D. Then the set of polynomials of binomial type correspond-
ing to Q, which we denote by {q, (x)} has the generating function

Y’. D" e). dx T
n=0 a0

It is obvious that q.(y)= (eY(D)x")=o.
Let now

S S2 D2 +..., So 0,

be an invertible operator and consider the polynomials sn (x) defined by the generating
function

1 x(o) s. (x)
s(D---) e =.=o2 ni D".

This set of polynomials {s,, (x)} is called the Sheffer set relative to Q and the invertible
operator s(D).

THEOrEM. Let {s,,(x)} be the Sheffer set relative to Q g(D) and the invertible
operator s(D). Then

s,, (nx + y) (De-())" 1 e(o)

=o n s (D) 1 xDG’(D)

Proof. For each complex number a the operator R D e -ao() is a delta opera-
tor. Let {/7. (x)} be the corresponding set of polynomials of binomial type. By [2, Thm.
4], we have

p.(x) R’ e"+l)")x =(1-aDG’(D))e"") x".
Let now

cn 1 e()
.37o._ . R"

s (D) 1 aDG’(D)

* Received by the editors August 5, 1977.

" Mathematisches Institut, Universitit Wien, Vienna, Austria.
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be the expansion of the right-hand side with respect to the delta operator R. Then we
have

[ 1 e bG()
Cn

s (D) 1 aDG’(D)
p" (x)

by the first expansion theorem [2, Thm. 2]. This gives

[ 1 e bG(D)
c,

s(D) 1 aDG’(D)
(1 aDG’(D)) e"G()x"

0

(D)
e

o
s(na +b),

which proves the theorem.
By suitable choices of G(D) and s(D) most of the concrete examples of Carlitz’s

paper appear as special cases of our theorem.
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IDEAL INVERSION FORMULAE FOR THE FOURIER TRANSFORM*

F. J. WILSON

Abstract. In this paper a method is given for generating new ideal inversion formulae for the Fourier
transform starting from known Laplace inversion formulae. Two new ideal inversion formulae for the
Fourier transform are developed.

1. Introduction. In [1] Cooper considers integral transforms of the form

(1.1) fx(u)= | k(u, v, A)F(v) dv

for a function F in L"’(- co, co), where lip + lip’= 1 and 1 -<_ p -< 2, and shows that for
certain kernels, k(u, v, A), the boundedness of the set of functions {fx} in L"(-co, co)
is necessary and sufficient for F to be the Fourier transform of a function of
L"(-co, co). Cooper calls the integral transform (1.1) an ideal inversion formula for
the Fourier transform if it satisfies the two conditions:

(i) the boundedness of the set of functions f (u) in L"(-co, co) is necessary and
sufficient for F to be the Fourier transform of an f in L"(-co, co),

(ii) if F is the Fourier transform of an f in L"(-co, co) then f f strongly in
L"(-co, co) for l_<-p-<2 and fx(t)f(t) as , co at every point in the
Lebesgue set of f.

We will call a kernel, k(u, v, ), which gives rise to an ideal inversion formula an
ideal inversion kernel for the Fourier transform.

One particular ideal inversion formula considered by Cooper in [1] is

(1.2) fx (u)=
(A iuv)

;+ F(v) dr.

He also shows that if we consider F(v) as an analytic function and A as a positive
integer, then (1.2)reduces to

2/ (-1) (u)+ (-u)(1.3) , F(; ’ - f(u

over the positive reals as -,co. Cooper notes that (1.3) is clearly related to the
Post-Widder inversion formula for the Laplace transform [4, p. 288]

,1.4)
(-1)x ()

x+

over the positive reals as , co, in which we are trying to find the inverse Laplace
transform of the function ].

In this paper we show that starting with known Laplace inversion formulae we
can generate, in certain cases, new ideal inversion formulae for the Fourier transform.
To illustrate the method if, for example, we started with the Laplace inversion formula
(1.4), working nonrigorously, we could by substitution obtain a possible inversion
formula for the Fourier transform, (1.3), and then using Cauchy’s integral formula
obtain (1.2), which is an integral transform of the required type. We would then have

* Received by the editors March 29, 1977.

" Department of Mathematics, University of Wales Institute of Science and Technology, Cardiff CF1
3NU, Wales, U.K.
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to check that the kernel so obtained was an ideal inversion kernel for the Fourier
transform.

In this paper we consider two inversion formulae for the Laplace transform. The
first inversion formula, (4.1), gives rise directly to an ideal inversion kernel. The
second inversion formula, (5.1), does not directly give rise to an ideal inversion kernel
but by adjusting the kernel it is possible to form an ideal inversion kernel.

2. Notation. Throughout the paper p will be restricted to 1 -< p -< 2 and p’ will be
given by 1/p + 1/p’= 1.

The Fourier transform of f will be denoted by f where

/(y) f(x) e --ixy dX

and the Laplace transform of f will be denoted by f where

f(w)= f(t) e -w’ dt.

For the Fourier transforms of the kernel k (u, v, A) we will write

1 I -JutKl(t, v, A )= k (u, v, A e du

and

1 foo --ivtK2(u, t, A )= k (u, v, A ) e dr.

If Ka (t, v, A satisfies

flim f(t) K,(t, v, A)g(v) f(t)g(t) dt

for all f in Ch, where Ch is the set of characteristic functions of finite intervals, and g
in L’(-, ) then we write that K(t, v, A) is an approximation kernel on {Ch, L’}.

If

_
K2(u, t, A )g(t) g(u)dt

as A strongly in Lv for all g in L, we write that K2(u, t, A is a strong approxima-
tion kernel on {., LV}.

3. Conditions [or an ideal inversion kernel. In [1] Cooper considers several
different conditions for k(u, v, A) to be an ideal inversion kernel for the Fourier
transform depending on the form of the kernel and whether Kl(t, v, A ) exists only as a
generalized function. We will be using two of these conditions.

Firstly, k (u, v, A ) satisfies condition A if
A1. k(u, v, A) belongs to L"(-, ) as a function of v for almost all u and all

A > A0 and k(u, v, A) belongs to L(-, ) as a function of u for almost all v
and all A > Ao, where 1 < r 2.

A2. Ilk(u, v, A)llv and IlKl(U, v, A)llv as functions of v are O(eu) as lul eor
some m < and all A > A0.

A3. Kl(t, v, A) is an approximation kernel on {Ch, L"’} where Ch is the set of
characteristic functions of finite intervals.
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A4. K2(u, t, A) is a strong approximation kernel on {., L’}.
Secondly, k(u, v, A ) satisfies condition B if k(u, v, A )= ei’"l(v, A ) and
B1. k(u, v, A) belongs to L"(-o, o) as a function of v for almost all u and all

A>Ao.
B2. l(v, A) 1 as A boundedly on every finite interval.
B3. K(u, t, A) is a strong approximation kernel on {., Lo}.

4. Extended Post-Widder ideal inversion kernel. Starting from the extended
Post-Widder inversion formula for the Laplace transform [4, p. 295]

(- 1)*(X + CA)+1 {*xlim+m AIux+l. ](x) +OXU(4.1) /(u)= ]

where 0, o(A) as A->o, we obtain, nonrigorously, an inversion formula for the
Fourier transform by substituting

1 f(iw)

giving

(4.2) f(u)= lim
2x/(-1)(A +O)"/.(A 7uO), i*A’ ,+1

Assuming that ) is analytic and satisfies certain boundedness conditions we use
Cauchy’s integral formula for f*)(z) to turn the possible inversion formula for the
Fourier transform, (4.2), into the required form

1 I (A + 0,)*+1
f(u a-olim- (a + 0, iuv)a+

(v) dr.

We call the kernel

1 (a "+" 0, )* +
k (u, v, a )=

(a + O, iuv)*+l
where A, o(A) as a -> oo, the extended Post-Widder kernel and, as one would expect,
it is closely related to the kernel used by Cooper [1, p. 292].

We now show that the extended Post-Widder kernel is an ideal inversion kernel
for the Fourier transform by proving that it satisfies condition A.

First we need the Fourier transforms of k (u, v, a), one of which is given by

K(t, v, a )= (a + 0,)*+ I; e-iUt
2rr (a + 0, iuv)* +

du.

Letting z t(a + O, iuv )/ v we obtain

KI(t,/,A)
(A+0*)*+I (;) f -, -1.

2rrilvl
e_,(,+o,,)/o * (t/){,+o,,+iOe z dz

a(t/v)(, +Ox-ic)

(/ -[- 0A )* +1 e-,( +o)/o[tl

0, -<0,

and by symmetry Ka (t, v, A )= K2(o, t, h ).
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Clearly for large enough A condition A1 is satisfied. Next

Ilk (u,., A)II.
(A / -iuv)X+l

dv <= 2(27r)-O/2(A + 0a) 7r 4
fora>l+-,

u 2 p

which is O(e ""2) as lul o for some m < 1/2 for large enough A, and

I[K(t,., A )lip IK, (t, v, A )1 dv
p(A + Oa)t-a

{r(A + 1)}p (+I)F(pA +P-1),

which is O(e ’’2) as [tl m for some m < 1/2 for large enough A, and therefore condition
A2 is satisfied. We now show that Kl(t, v, A) and K2(u, t, A) are both strong approxi-
mation kernels on {., Lp} as they satisfy the conditions of Lemma 2 in [1, p. 292].
Firstly,

I_ IKl(t, v, A)l dt lK(u, t, A )l dt 1

and

]Kl(t, v, A )l dv IK2(u, t, A )1 du 1 +-,
which are bounded in u, v, and A, for large enough A. Secondly, for 0-< a < u < b

where

g2(u,t,X)dt=
r(A+l)

(Z+I)

A/(A+0 fb/uI1 e-X(x +Oh )x x dx and 12 e-X(x +Oh )x x dx.
aa/u aA/(X+Ox)

For large A we simplify [1 and I2 by using Laplace’s asymptotic method for integrals
[4, Thm. 2a, p. 277], giving

e-Xh xh

and similarly for 12. Therefore for 0 N a < u < b
b

f K2(u,t,A)dt 1

as A . Similar results can be proved for a < u < b 0 and hence for a < u < b. If
u < a then we have

f ?g2(u, t, A ) dt f ixz dt

F(A+I)
A-a U-l- e

using Laplace’s asymptotic method for integrals [2, p. 65], and hence the integral is
dominated by a multiple of u -x for large A and tends to zero as A . A similar result

b
holds for K(u, t, ) dt for b < u. Therefore K(u, t, A) dt is dominated by a
function of Lo(-, ) and tends to X,,)(u) almost everywhere as A. Hence by
[1, Lemma 2, p. 292], Kz(U, t, A) is a strong approximation kernel on {., Lo}. Since
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Kl(t, v, h)= K2(v, t, h) the same results hold for Kl(t, v, h). Therefore k (u, v, h)
satisfies conditions A3 and A4 and hence we have proved that the extended Post-
Widder kernel

1 (h + 0h) +

k (u, v, X )=
( + Oh -iuv)X+l

where Oh o() as c is an ideal inversion kernel for the Fourier transform.

5. Extended Phragmen ideal inversion kernel. Starting from the Phragmen
inversion formula for the Laplace transform [3, p. 133]

(5.1) f(t) dt lim 2
(- 1)"+1

-o n!
e"(n’

for u > O, we obtain, nonrigorously, an inversion formula for the Fourier transform by
substituting

1 (iw)

and, as before, we turn the possible inversion formula for the Fourier transform into
the required form by using Cauchy’s integral formula, assuming that f is analytic and
satisfies certain boundedness conditions, giving

f(t) dt lim
1 (-1)"+1 .x. f(v)
e dv.

x--,oo x/2rr n! (iv-nh)

Differentiating with respect to u and interchanging the integral and summation signs
we get

f(u) lim (v) dv
.-oo .=1 (n 1)!(iv nh

and we obtain the kernel

1 (-- 1)n+la e
’(u, v, a) .=1 ( -_i; _-72 )

We have labeled this kernel k’(u, v, a) because even though it is not an ideal
inversion kernel itself, it can be used to generate one. We can show that k’(u, v, a) is
not an ideal inversion kernel for the Fourier transform by examining its Fourier
transform with respect to v, K (u, t, h):

e ’(u,v,a)dv=
e t>-O,

0, t<0,

which cannot be a strong approximation kernel.
To obtain an ideal inversion kernel for the Fourier transform we define

K2(u, t, h )= h e x("-’) e for all

and we find the corresponding kernel, k(u, v, h), by taking the inverse Fourier trans-
form of K2(u, t, h ):

1 a(u-,) --eX(u-O iv, iv
k(u,v,a)= ae e e dt F 1-
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We now show that this kernel, which we will call the extended Phragmen kernel, is
an ideal inversion kernel for the Fourier transform by proving that it satisfies condi-
tion B.

First, for any finite interval (A, B)

IA IAI ’"F(1 i)]P )-P/2(BIk(u, v, X)I dv (27r)-/2 e dv <= (2- -A).

For large

Therefore for large positive B, lF(1-iv/A)ldv is bounded, and similarly for
_A[F(1 iv/A)l dv for large negative A. Therefore k(u, v, A) satisfies condition B1.
Next,

and lim F(1-i-)=I
where taking the limit inside the integral sign is justified by dominated convergence.
Therefore k (u, v, A) satisfies condition B2. Last, we show that K2(u, t, A) is a strong
approximation kernel on {., LP}. Firstly,

]K2(u, t, A )l dt IK.(u, t, h )l du 1.

Secondly, for any finite interval (a, b)
b

(u--b (u--a
K2(u, t, A dt e e ,t’(,,b)(U) as A - oe

--eX(u--b) --e,(u--a)and e -e is dominated by a function of L(-oo, oo). Hence by [1,
Lemma 2, p. 292] K2(u, t, A) is a strong approximation kernel on {., Lo}. Therefore
k(u, v, A) satisfies condition B3 and we have proved that the extended Phragmen
kernel

ei’"( iv)k(u, v,A)=--r 1-
is an ideal inversion kernel for the Fourier transform.
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OSCILLATION AND ASYMPTOTIC BEHAVIOR OF
FORCED NONLINEAR EQUATIONS*

A. G. KARTSATOS" AND J. TOROt

Abstract. The oscillation and the asymptotic behavior of the solutions of the equation

xt")+ H(t, x(q(t)))= Q(t)

are studied under assumptions of smallness or periodicity for Q(t). Recent results of Mahfoud concerning
the case Q(t)=-O are extended via a transformation introduced recently by the first author.

Introduction. In this paper we study equations of the form

(I) x") + H(t, x(q(t)))= Q(t), n even,

where H(t, u), Q(t) are defined and continuous on [0, +c)(-, +), [0, +c)
respectively, and uH(t, u)>0 for any (t, u) with u 0. The function q is also defined
and continuous on [0, +co) and satisfies lim,_,/ q(t)= +c. Our main purpose here is
to show that the results of Mahfoud in [7] concerning the homogeneous case (Q(t)=
0) can be extended to the case (I) by use of a method introduced by the first author in
[3], [4]. According to this method, Equation (I) is reduced to a "homogeneous-like"
equation which can be treated much more easily than (I). The forcings Q will be
assumed to be "small" or "periodic-like" and oscillatory. The reader is referred to the
survey article of the first author in [6], where an account is given of several criteria for
oscillation of forced and perturbed equations, as well as an almost complete bibli-
ography on the subject.

In 1 we establish some background information, 2 is devoted to the main
results of this paper, and in 3 we discuss some possible extensions of the present
results.

1. Preliminaries. In what follows, R (-, ), R+ [0, ), R_ (-, 0] and,
for every c > 0, R /=, [a, ), R-= (-, c]. By C[A, B] we shall denote the space
of all continuous functions from the set A into the set B. The following group of
hypotheses will be referred to as Condition (S)"

(i) H C[R/ R, R ], uH(t, u)> 0 for every (t, u) R/ R with u 0;
(ii) q C[R+, R and limt_, q(t)= +;
(iii) Q C[R+, R ];
By a solution of (I) (under (S)) we mean any function x(t), [&, +oo), tx >=0

which is n times continuously differentiable on [t, +) and satisfies (I) on the same
interval. The number tx depends on the particular solution under consideration. A
function f C[R,,/ R], for some a > 0, is "oscillatory" if it has an unbounded set of
zeros in R,./ We denote by R,, the set R,,+ CI R, for any a > 0, and we consider the
spaces"

C(R)= {]’ C[R, R]; uf(u)>O for any u 0};
CI(R,) ([ C(R); [ is continuously differentiable on
Co(R,,)={f C(R);/is of bounded variation on every [a, b]c R,}.

Lemmas 1, 2 below can be found in Mahfoud’s paper [7].
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LEMMA 1. Let a > 0 and f C(R). Then f Co (R,) if and only iff(x) g(x)h (x)
for all x R, where g" R,,->(0, +c) is increasing on (-c,-a] and decreasing on
[a, oo), and h" R, -> R is increasing in R.

DEFINIa’ION 1. The function h in Lemma 1 will be called an increasing component
of f while g will be called a positive component of f.

We also consider the following space"

Ct(R)= {f Co(R); f has a positive component bounded away from zero}.

The importance of the above spaces in the present considerations is made clear by
the following.

LEMMA 2. Let a >0. Then iff CI(R,), there exists >0 such that f(xl)>=f(x2)
whenever xl x2->ol and f(xx)<=f(x2) whenever Xl

For the forcing Q in (I) we will always assume one of the following conditions"
(iv) there exists P C[R+, R such that P(n)(t) Q(t), R+, P is oscillatory and

lim,_. V(t) 0.
(v) there exist P.C[R+,R], j= 1, 2, such that P. is oscillatory,

lim inf,_.oo Pl(t) 0, lim supt--,oo P2(t) 0, and P")(t)=- O(t), R+.
2. Main results. The following theorem extends to the case (I) Theorem 1 in

Mahfoud’s paper [7] and provides, even in Mahfoud’s case, a much simpler proof than
the one in [7].

THEOREM 1. Suppose that Condition (S) holds. Furthermore, suppose that for each
a >0 there exists a function PI,a C[R+, R+] and a function P2, C[R_, R_] such
that

H(t,u)>-Px,,,(t) forevery uR+

H(t, u)<-P2,(t) for every u R
and, for some integer with 0 <-_ <- n 1,

tPx,,(t) dt +o, tP2,,(t) dt -c.

Then if the forcing Q satisfies (v) with P"-i-1)(t) bounded for f= 1, 2, every
solution of (I) with bounded (n- i- 1)st derivative is oscillatory.

Proof. Let x(t), t[h, +), h >0 be a solution of (I) with bounded (n-i- 1)st
derivative, and assume that x(t) is nonoscillatory. Then x(t) is eventually positive or
negative. We assume that x(t) is positive for all large t, say for t->A, and we reach a
contradiction. The reader should have in mind that a very similar proof covers the case
of a negative x(t). Now let u(t)=-x(t)-Pl(t), ->h, where Pl(t)is the function in (v).
Then u(t) has its (n- i-1)st derivative bounded and satisfies

(1) u’)+H(t, u(q(t)))+Pl(q(t))=O, >-A.

We shall show that u(t) has to be negative for all large t, which, in view of the
oscillatory character of Px(t), will imply a contradiction to the positiveness of x(t). In
fact, since x(t)= u(t)+Pl(t)>O for t_>A, and q(t)+c as t +c, there exists tl
such that q(t)->h for every tl. Consequently, u(q(t))+Px(q(t))>O for every tx.
This in turn implies along with (1) that u(")(t) < 0 for every -> tx. Consequently, all the
derivatives u(k)(t)are monotonic (hence of constant sign)for all large and 0_-<k _-<
n 1. Now suppose u(t)> 0 for all large t. Then since n is even, we may take t above
to be such that u’(t)> 0 for -> tx. Now given positive e < U(tx) there exists t2 -> tx such
that Pl(t)->-e for all t>-t2. Let t3->t2 be such that q(t)->t2 for every t->t3. Then
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u(q(t))+Pl(q(t))>-u(t2)-e>=u(tl)-e>O for all t>-t3. Now consider the function
F(t)=- tiu(n-1)(t). Then
(2) F’(t) -till(t, u(q(t))+ P(q(t)))+ iti-lu(n-1)(t)
for every => t3. Let us remark now that for n -< k =< n,

(--1)ku(k)(t)< O, E It3,

In fact, if this is not true, then two consecutive derivatives of order between n and n
would be eventually positive or eventually negative for all large t, but this would
contradict the boundedness of u("-i-l(t). Now we integrate (2) from t3 to t3 to
obtain

tiu("-l)(t)-i si-lu(n-1)(s)ds

(n-1)(t3) S(3) t3u g(s, u(q(s))+ Px(q(s))) ds

(n-1)(t3) Sipl,u.(s) ds, /x U(tl) e<_to_.3..

Since the last member of (3) tends to -oe as - +oe, and since u
we must have

i--1 (n-l)s u (s)ds =+oo.

Now the proof continues exactly as in Kartsatos [2, Thm. 1] and leads to

("-x)(t) > 0, t>=t3

(4) (-1)"+a si-’u("-’)(s) ds +oo, 1 <- m <- i.

Actually, (4) is stronger than the corresponding estimate of Kartsatos in [2].
Letting m in (4) we find

lim (-i)i+l[u("-i-l(t) u(n-i-)(t3)]

a contradiction to the boundedness of the function u(n-i-1)(t). This completes the
proof.

COROLLARY 1. Let (S) hold and assume that H(t,u)--Po(t)f(u) with PoE
C[R+, g+\{O}], fE C(R) and lim influl._,,x, If(u)[ > O,

Io tip(t) dt + for with O <- <- -1.some n

Then if Q is as in Theorem 1, the conclusion of Theorem 1 holds.
The proof follows easily from the proof of Theorem 1. This corollary, for Q 0,

was given by Mahfoud in [7]. Of course we may assume instead of Po(t)> 0 on [0, +oo)
that Po(t)>=O and not identically equal to zero in any infinite subinterval of R/.

THEOREM 2. Let Condition (S) hold and assume that for every a > 0 there exist

functions el,a E c[g+ R + R+], P2,a E C[R+ R-, R_] such that

H(t, ul)>-Px.,(t, u2) fortER+, UlU2Ol,
(4a)

H(t,u)<=P2,(t, u2) rottER+,
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and, for every Ix > 0 and some with 0 <-i <= n 1,

f tiPl.,(t, Ixqn-i-l(t)) dt +o

I tP2.,(t, -ixq"--(t)) -.dt

Let Pj C[R+, R ], f 1, 2, satisfy lim inf,_, en-i-1) (t) 0,
lim sup,_,o P2"--a)(t) O, pn) =_ O and be bounded and oscillatory. Then every solution
x(t) of (I) with x"-i-)(t) bounded is either oscillatory, or such that lim,_, [x’-i-a)(t)
p,,-i-a) (t)] 0 .for j 1 or 2.

Proof. Let x(t) be a solution of (I) assumed to be positive on [A, +), A > 0, and
such that the function x"--)(t) is bounded on [A, +o). Then, as in the proof of
Theorem 1, if u(t), >=, denotes the function x(t)-P(t), there exists t ->A such that
all the derivatives uk)(t) are of constant sign for all t->tx, 0=<k-<n, and u(q(t))+
Px(q(t))>O for all t>=tx. Now since U(n-i-1)(t)is monotonic, lim,_,u"-i-1)(t)=L
exists with 0 _-< ILl < /.

The proof of this theorem follows immediately from Theorem 1 if i= n-1
because we can easily obtain the functions P,,(t), P2.,,(t) therein from the present
functions Pl.(t, u), P2,,(t, u). In fact, if L 0, the theorem is proved. If L > 0, then
H(t, u(q(t))+Pa(q(t)))>-P.,,(t, Ix) for some suitable constants a >0, Ix >0, by our
assumptions, where

I )= +.t-lpl,,(t

Since Pl.,(t, tx).does not depend on u, the proof of Theorem 1 applies. Similarly one
argues in the case L < 0 by using the function P2.(t, Ix). Thus, we shall assume that
i<n-1. Now let L<0. Then we easily obtain by successive integration that
limt_, u(t)=-, a contradiction to the positiveness of x(t). Thus, L >-0. Let L >0
and 0<e <L. Then there exists t2>=tx such that u’-i-1)(t)+P-i-1)(t)>=L-e for all
>t2. By successive integration we can find a constant m >0 such that u(t)+Pl(t) >-
mt"-i-a for all t>=(say)t3>-t2. Let t4>=t3 be such that q(t)>=t3 for every t>=t4. Then
u(q(t))+P(q(t))>= mq"--(t), >-t4. Consequently, if F(t)is the function of the proof
of Theorem 1, we obtain similarly, for a mt’--,

F(t)-F(t4) sill(s, u(q(s))+Pl(q(s)))ds+i si-lu(n-1)(s)ds
4

<=- Sipl,,(s, mq"-i-l(s)) ds + si-u"-)(s) ds.

Now the proof follows as in Theorem 1 and leads to a contradiction. Thus,
limt_, u"--)(t)= 0 and a similar argument covers the case x(t)< 0 for all large t.

COROLLARY 2. Let Condition (S) hold and let H(t,u)=-Po(tff(u) with Poe
C[R+,R+\{O}], f C(R) for some a >0. Let Q be as in Theorem 2. Then the
conclusion of Theorem 2 holds if

Io tip(t)f(+ixq"-i-a(t)) dt + for some i, O<_i<=n-1

and every Ix > O.

Whenever the lower limit of an integral is omitted, it is meant that the condition is valid for the
smallest _-> 0 such that the integrand is well defined for all -> .
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To prove the above corollary we simply take into consideration the bounds
obtained for f(u(q(t))+ Pl(q(t))) for Lemma 2. In fact, in (5) we would now have

sipo(s)f(u (q (s)) + Pl (q (s))) ds
4

<-- sipo(s)f(mq"-i-l(s)) ds -00 as +00.

Naturally, mq"-i-l(t)=>t for all large t. Thus, t4 can be properly chosen
sufficiently large so that the above inequality makes sense.

Mahfoud gave in [7] the above corollary for Q(t)=O. Actually a stronger
conclusion holds above but we shall not concern ourselves with it here.

THEOREM 3. Suppose that H, Q satisfy Condition (S). Suppose further that

(6) io t’Pl.,,(t, Ixq"--2(t)) dt +oo, I Pl.,(t, Ixq"-l(t))dt +00,

(7) I t’Pz.(t, Ixq"--2(t)) dt -oo, IP2.,, (t, -ixq"-l (t)) dt -00

for every {0, 1,..., n-2} and every tx >0, where the functions Pi. satisfy the
inequalities (4a) of Theorem 2. Then if (iv) holds and Pk)(t)O as too for every
k O, 1, 2,. , n 1, every solution of (I) is oscillatory.

Proof. Let x(t) be a solution of (I) with x(t)>0, =>A >0. Then the last integral
conditions in (6) and (7) imply that limt_,x"-l)(t)=0. In fact, this follows from
Theorem 2. To show this, let u(t)= x(t)-P(t), =>A. Then u(t) satisfies the inequality

(8) u ’)(t) -H(t, u(q(t))+ P(q(t)))< 0

for all (say)=> tl ->A. It follows that u’-l)(t)> 0 for all large t, otherwise limt_, u(t)=
-0o, which implies x(t)-P(t)<O for all large t, a contradiction to x(t)>0.
Consequently, u"-l)(t) is decreasing and positive for all large t, thus bounded. This
fact, along with limt_, P"-a)(t)= 0, implies that x"-l)(t) is bounded. Thus, Theorem
2 applies now for 0 to obtain limt_,o x"-l)(t) 0. Now let be any integer so that
0 <_- <- n 2 and lim,_, x"--l)(t) 0. We show that lim,_,oo X(n-i-2)(t) 0. Suppose
this is not true. Let u(t) be as above so that u(q(t))+P(q(t))>O for all =>(some) tl _->A

and (8) holds for all t->_ tl. Since u")(t)< 0, we may assume that all the intermediate
derivatives uk(t) are of constant sign for every t_-->tl. Here 0_<-k _-<n-1. In parti-
cular, u"-i-1)(t) is monotonic for t [tl, +oo) and lim,_,o U(n-i-1)(t)=
lim,_,o[x"--l)(t)-P"--)(t)]=O. Now let lim,_,oou"--2)(t)=L. If L<0 then
lim,_,oox(t)<0, for i= n-2, a contradiction, or lim,_,oo u(t)=lim_,oox(t)=-oo, for
< n 2, a contradiction again. Let L > 0. Since lim,_, u"--a)(t) 0, it follows from
Lemma 2 in Mahfoud [7] that ik=O(--1)+ktku"-+k(t)/k!>O for all t=>tl.
Consequently, from equation (4)of [7] we obtain

(9) sill(s, u(q(s))+ P(q(s))) ds <- Ci

for all =>tx, where C are constants. Now let L be finite, and let n-2. Then
u"--2)(t)- u(t) is bounded and this implies the boundedness of x(t). Since

t’ t"

| t"-2px, (t, tz) dt +o, | t"-:P2, (t, -) dt -oo,
d d
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it follows immediately as in the Corollary of Kartsatos [3] that x(t) is oscillatory, a
contradiction. Now let L +c and n- 2. Then H(t, u(q(t))+ P(q(t)))>=Pl,t(t, M)
for every >-t2>-tl where M>0 and t2 are chosen so that u(q(t))+P(q(t))>=M for
-> t2. Consequently, from (9) we obtain

t"-ZP1,M(t, M) dt < +c,

a contradiction to our assumptions. Now if < n- 2, there exists t2=> tl such that
u(q(t))+P(q(t))>-kq"-i-2(t) for every t->_t2, where k is a positive constant. Then (9)
implies again

(10) tipl.,(t, kq"-i-z(t)) dt < +c,

where a is an appropriate constant. From (10) we have again a contradiction, and this
proves our claim. Thus, by induction on i, we actually obtain lim,_. u(t)=0, an
impossibility, for if u(t)> 0 then u’(t)> 0 and if u(t)< 0, x(t)< P(t) which contradicts
the positiveness of x(t).

COROLLARY 3. Under Condition (S), suppose further that f C(R) for some
a>0, PoC[R+,R+\{O}], and P is as in Theorem 3. Then if H(t,u)=-Po(t)f(u) for
(t, u) R+ x R, and

Io tipo(t)f(+cq"-i-2(t)) dt +

]’or every c > 0 and every {0, 1,. , n 2}, every solution o[ (I) is oscillatory.
This corollary was shown for O =- 0 by Mahfoud in [7]. It should be noted, in view

of Lemma 2, that the above integral conditions actually imply

Io Vo(t)f(+txqn-l(t)) dt +o

for every/x > 0.
In the following theorem we assume that for every to >= 0, b C[[0, to], R], and

every n-1-tuple (Cl, c2,..., Cn-x)of real numbers, Equation (I) has at least one
solution x(t) valid for all t>=to and such that x(t)=ck(t), t<-_to, and x(i)(to)=Cg,
i=1,2,...,n-1.

THZOIEM 4. Let Condition (S) be satisfied with q(t)<= t, let Q, P be as in Theorem
3 and suppose that for every a > 0 there exist functions P,,I C[R+ R,,,+ R+], P,,.2
C[R+ x R-, R-] such that

H(t, Xl)<Pa, l(t, x2) fortR+,

H(t, Xl)>=Pa,2(t, x2) for R+,

Then if every solution x(t) of (I) is oscillatory we have

ioo P.l(t, /xq"-l(t)+ P(q(t))) dt +,

P,z(t, -/zq "-a(t) + P(q (t))) dt -]’or every/x > O.
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Proof. Let Ixq"-a(t)+P(q(t))>-a for t_->/3->a and

I; P.a(t, Ixq"-l(t)+P(q(t))dt < +

for some Ix > 0 and some fl > 0. Now let to -> 1 + fl and e with 0 < e < Ix/4 be such that
t-l>-(fl+e)/(ix-e) and IPk)(t)l<e/(n--1)! for every t>=to and every k=
0, 1, 2, , n 1. Furthermore, choose tl _-> to such that q(t)>-_ to for every _-> tl, and

ea.l(t, Ixqn-a(t)+ P(q(t))) dt < (ix 2e)/2.

The above are consequences of the fact that limt_, P(k)(t)= O, limt_, q(t)= +c
and the integral conditions in the assumptions. Now let x(t) be a solution of (I) such
that

x(t) (ix e )t"-a < tl

k-a )!, where alThen X(n-k)(t)=al /(k 1 k= 1,2,... n, t<tl,
(n-1)!(ix-e). Since X(n-a)(tl)=Ota>O, there exists t2>tx such that x"-a)(t)>0 for
e [tl, t2). This implies that xn-2)(t) is increasing on [tl, t2) and since xn-2)(ta) Olta >

0, we must have x"-2)(t)> 0 on [tx, t2). Similarly, one shows by induction that xn-k)(t)
is increasing and positive on [tl,/’2) for every k 2, 3,. , n. Now consider x(q(t)),
[tx, tz). If q(t) [t, tz), then x(q(t))> 0 by the previous argument. If q(t) [tl, t2), then
to<-q(t)< ta. Thus, x(q(t))= (Ix--e)qn-l(t)>O for t [tx, t2). It follows that x(q(t))>O
for every t[t,t2). Now consider the function u(t)=-x(t)-P(t), t>-to. Then
u"-a)(ta)=a-P"-a)(tl)>-ix-2e >O and U-k)(tl)=Celtkl-a/(k--1)!--P"-k)(tl)>--
IX- 2e > 0 for every k 2, 3,. , n. Consequently, the argument above about x(q(t))
can be repeated now for u(q(t)) to obtain the existence of some t3 with ta < t3 -< t2 with
u(q(t))>O in It1, t3). Assume that t3 must be <t2. Then u(q(t)) has a-zero t4 in the
interval [t3, tz). Then x(q(t4))=P(q(t4)). If q(t4)6[tl, t4] (we should have in mind
here that q(t)<-t), then O-x(q(t4))-P(q(t4))>-_X(tl)-P(q(t4))=Celta /(n-1
P(q(t4))>=ix-e-P(q(t4))>O, a contradiction. If q(t4)C:[tl, t4], then to<-q(t4)<ta and
O=x(q(t4))-P(q(t4))=(ix-e)qn-a(t4)-P(q(t4))>-_ix-e-P(q(t))>O, a contradic-
tion again. Consequently, u(q(t))> O, [tl, t2). Now since u")(t)
-H(t, u(q(t))+P(q(t)))<O, we have u"-l(t)<-u"-l)(tl) al-P"-)(tl)<-_al+e.
Now by integration (observing that U"-k)(tl)<--(ax +e)tk-l/((k 1)!))we obtain, for
l<-_k<-n, U"-k)(t)<--(aa+e)tk-1/((k--1)!)), which for k=n yields u(t) <-

(ax / e)t"-l/(n 1)! _-< Ixt "-1 for all 6 [ta, t2). Since u(q(t))= (ix -e)q"-l(t)-P(q(t))
Ixq"-a(t)-(eqn-l(t)+P(q(t)))<-ixq"-a(t) for q(t)[ta, t2), it follows that u(q(t)) <-

n--1
Ixq (t) for t[tx, t2). Now we also have u(q(t))/P(q(t))=x(q(t))>-x(ta) >-
(ix e)t-a _->/3 + e ->_/3 whenever q(t)6 [tx, t2) and u(q(t))/ P(q(t))= (ix e)q"-l(t)+
P(q(t))>= (ix e )t-a + P(q(t)) >-_/3 e + e -/3 for q(t)_ [ta, tz). It followsthat u(q(t))+
P(q(t))>-_CJ for every 6[tx, t2). Consequently, by integrating the equation in u once
from tl to t_-> tl we obtain

u"-l)(t) u 0’-l)(ta) H(s, u(q(s))+ P(q(s))) ds

>---- P,a(s, Ixq"-a(s)+ P(q(s))) ds,
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which implies

-P("-’ (s, Ixq"-X(s)+ P(q(s))) ds(n-1)(t) >-- O1 )(tl)-- Pa,

>= Ix 2e
P,,.l(s, Ixq"-’(s)+ P(q(s))) ds

(Ix -2el
2

for e [tl, t2). Consequently, as long as x(n-1)(t) remains positive for >= tl, x(n-1)(t)=
u("-l)(t)+P("-l)(t)>-[(Ix-2e)/2]-e=(Ix-4e)/2>O. This actually implies that
x(n-1)(t)>-(Ix-4e)/2 for all t>-tl. Thus x(t) is positive for all large t, and this
completes the proof.

COROLLARY 4. Let Condition (S) be satisfied with H(t, u)--Po(tff(u), where
Poe C[R+, R+\{0}], f Cp(R) for some a >0, and P, q in Theorem 4. Then if every
solution of (I) is oscillatory we must have

Io Po(t)h[+Ixq"-l(t)+ P(q(t))] dt

for every increasing component h off and every Ix > O.
To show the above assertion it suffices to take in Theorem 4 P,l(t, u)

Po(t)g(a)h (u) and P,z(t, u) Po(t)g(-a)h (u) where g is the corresponding positive
component of . The above corollary is a special case of Mahfoud’s Theorem 4 in [7] if
O(t)=--O.

COROLLARY 5. Let Condition (S) hold and H(t,u)=-Po(t)f(u) with Poe
C[R/, R+\{0}] andre Cx(R,,) forsome a >0. LetP(t), q(t) be as in Theorem 4. Then if
every solution of (I) is oscillatory we must have

Io Po(t)f(+Ixq"-l(t)+ P(q(t))) dt +/-

for any Ix > O.
In fact, this follows easily from Corollary 4 as in the proof of Corollary 4 of

Mahfoud [7]. In the following result H(t, u) is supposed to be linear in u. This allows
us to adapt the proof of Mahfoud [7, Thm. 5] to the present forced case.

THEOREM 5. Let Condition (S) be satisfied with H(t, u)=-Po(t)u, where Poe
C[R/, R/\{0}]. Let P(t) be as in Theorem 4. Then if every solution of (I) oscillates for
any choice of q(t) satisfying (ii) and q(t)<= t, e R+, we must have

I Po(t) dt +o.

Proof. Assume that every solution of (I)oscillates. Then

Io Po(t)[Ixq"-l(t)+ P(q(t))] dt +

by Theorem 4 for every Ix > 0 and for every q(t) as in the assumptions of the theorem.
If

Io Po(t) dt < +c,
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then it follows from Theorem 11 of Burton and Grimmer [1] that there exists a
function P1 C[R+, [1, oe)] which is increasing, onto, and such that

I Po(t)P dt <(t)

The proof now follows as in Theorem 5 of [7] and is based upon constructing a
suitable q(t) from the function P(t) for which

for some ta _-> 1, a contradiction, because limt_, P(q(t))= 0 implies also

Po(t)[q"-l(t)+ P(q(t))] dt <-_ 2 Po(t)q"-(t) dt <

for large enough t2_->
This theorem can be easily extended to the case H(t, u) =- Po(t)f(u) under the rest

of the assumptions of Corollary 4, if we further assume that for some increasing
component h (u) of f we have

lim [h(ul)/h(u2)]= 1.

Al--2-O

This assumption is needed, if we adopt the above method, in order to ensure that

implies

Po(t)h(q"-l(t)) dt <

Po(t)h(Ixq"-l(t)+P(t)) dt <

where q(t) is as in the proof of Theorem 5.

3. Discussion. All the results of this paper can be easily extended to odd values
of n as it is usual in nonlinear oscillation theory. It would also be interesting to see
versions of the results here covering perturbed cases of the form

(11) x(") + H(t, x(q(t)))= O(t, x(qi(t))).

For the first results in this direction and for q(t)=ql(t) =-- t, the reader is referred
to [5] where perturbations Q(t, u) are considered with [O(t, u)l_-< Oo(t)[u[ with O0
sufficiently small and r _-> 1. Naturally, extensions to equations with "middle terms" of
the form S(t)x("-k)(q(t)) are desirable. For an account of some results in this direction
and for k 1, 2, the reader is referred to [6].

Acknowledgment. The authors wish to express their thanks to the referee for his
helpful suggestions.
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ON SOME MAXIMUM PRINCIPLES INVOLVING
HARMONIC FUNCTIONS AND THEIR DERIVATIVES*

L. E. PAYNE? AND G. A. PHILIPPIN$

Abslraet. In this paper we establish sufficient conditions on f(h) to guarantee that given two harmonic
functions H and h, the quotient Igrad HI2/f(h) satisfies a maximum principle. The principle is then used to

derive isoperimetric bounds for derivatives of the Green’s function and for the force field in electrostatics.

1. Introduction. Maximum principles for harmonic functions and for solutions
of certain classes of second order elliptic equations have been known for more than
a century. The two fundamental maximum principles for such functions are usually
referred to in the literature as Hopf’s first and second principles [2], [3]. In this paper
we make use of these two Hopf principles to derive new maximum principles for
certain combinations of harmonic functions and their derivatives. For an account of
previous results on maximum principles see the book of Protter and Weinberger [6].

Throughout we shall be concerned with functions defined on a bounded region
D c R rq

(or its complement). The boundary OD will be assumed to be a C2+e surface
so that the governing equation will be satisfied on the boundary. This boundary
smoothness can frequently be relaxed, but we do not attempt in this paper to
determine the minimum smoothness requirements on 0D. The symbol A will be used
to denote the Laplace operator and a comma will be used to indicate differentiation,
i.e.,

def 02U
(1.1) u,ii =

Ox Ox

We also make use of the summation convention, in which a repeated index indicates
summation over that index from 1 to N, i.e.,

(1.2) IA,i/U,ij 2
i=1 /=1 \’Xi OXj]

2. A maximum principle. Let H and h be two harmonic functions in D. We
would like to be able to characterize those functions q(x)of the form

q(x) g(Igrad HI2, h),

for which the maximum principle holds. We shall, however, be somewhat less ambi-
tious and seek specific combinations g of the form Igrad HI2/f(h) with f to be chosen
in such a way that g satisfies a maximum principle. More precisely we establish the
following:

THEOREM. LetHand h be two harmonic functions in D c RN with H C (D) and
h C(/), and letf(h) be a positive C2 function over the range ofadmissible values ofh.

* Received by the editors February 28, 1977, and in final revised form June 22, 1977.
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author was supported by the National Science Foundation under Grant NSF MPS 72-04511.
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Assume further that on this range f satisfies

(2.1) fu-z/e(u- >l" <- O,

(2.2) flog f]"_-< 0,

Then the function
H,i

(2.3)
f(h)

assumes its maximum value on OD.
We note that (2.2) is satisfied in particular for exponential functions and positive

powers of h.
The proof of the theorem is based on the derivation of an elliptic differential

inequality for 4’. For N => 3, this derivation makes use of the following:
LEMMA. Let v C2(D) and w CI(D). Then at points in D where [grad vl and

Igrad w are positive the following inequality holds:

>
1 (V,ikV,iV,k)

2

v,iiv,ii N 1 -,t; / + t),ikt), kt) ,iiV,i

V,lV,l

1 (V,ikV,iW,k)2
(2.4)

2 D,ID,IW,iW,i

1 (V,ikV,iW,k)2(V,sW,s)2

2 (t),l),l)2(W,jW,j)2

),ikV,iW,kV,jrV,jV,rV,mW,m 2 A VV,ikV,il.),k

(V,lV,l )2W,sW,s N 1 U,IV,l

The proof of this lemma follows from the fact that/ijXij - O, where/i] is defined as

(2.5)

V,ikV,kV,i 1 V,k._sV,___k_V,s{(i l),il),i !t- N---- V,lU,l O,lV,l J

1 V,kll.),kW,l
-" W,iV,j W,jV,i }.
2 V,sV,sW,mW,m

Here 6ii is the Kronecker symbol. If v w, then (2.4) reduces to

(2.4’)
V,ijV,ij

N-1
(V,ikl),iV,k )2 V,ikl’),kV,qV,]

)V,ll.),l 1),IV,l

2 AVl,ikV,iV,k
N- 1 ,ll3,1

Proof of the theorem. By differentiating (2.3)we obtain

(2.6) 0,k 2[-1H,ikH, f-Zf’H,iH,ih,k,
and

(2.7) A0 2f-aH,ikH,,k 4f-2f’H,iH,ikh,k (.f-f’)’H,iH,ih,kh,k.
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Insertion of (2.4) (with v H and w h) into (2.7) gives

A6 >=f- 2 (H,,H,J-t,] : H,I-t,,H,,Hd
NL 1 \ H.,H., /

+ 2
H.H.

(H,,kH,ih,k )2 (H.,,H.h,i ):(H.sh,s )2
+ n,tn,lh,ihd

+
(n,tn,l)2(h,ih,i)2

(2.8)
HiH ih ,H,HiH ,H mh

We now insert the following identities:

(2.9)

-1, f(2.1 O)

(2.11)

f2

_
-2 2+f _.’f _(H.,H,i)2h,u.h,k,

into the right hand side of (2.8). This leads to

>_3-N f,:f_3(H ,) + (1/4f’:z- ff")f-3I-t,,H ,h h,,(2.12) A6 + W6.k 4(N 1)

where the term Wa6.k includes all terms involving first derivatives of 6. We note of
course that Wk may become unbounded at points at which Igrad HI 0. However, W
remains bounded in the limit at those points where ]grad hi= 0 (assuming [grad HI # 0
there). Since N => 3 and

(2.13) H,,H.,h.h., >-_ (t-I.,h,, )2,

it follows that the right hand side will remain positive provided

(2.14) ff,,____)f,:Z2(N_l < 0.

But this is equivalent to (2.1). Hence if N => 3 and if (2.1) is satisfied, it follows that

(2.15) A0 + WO, -> 0 in D,

and we conclude from Hopf’s first principle [2] that O takes its maximum value either
at a critical point of H, or on OD. But the maximum can occur at an interior critical
point of H itt ]grad HI =- 0 (H const). In this latter case, the theorem is trivially true.
This establishes the first part of the theorem.

In the case N 2 we replace the inequality (2.4) by the following identity:

2 2Av
(2.16) l),i/V,ii (Av )2 q_ V,iV,iiV,kV,k --V,iV,fl3,ii

V,lV,l V,lV,I
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The same kind of computation as before gives now the following equality for :
(2 17) A -fib’k’-------k= --1(log f)"H,,H,,h kh k,

H.H.; f
which establishes the second part of the theorem.

3. Applications.
a) Bounds for derivatives of the Green’s tunction. The first application involves

the Green’s function G(Q, P) for the Laplace equation in D. For fixed Q in D,
G(Q, P) vanishes for P OD, and in D has the representation

2--N

(3.1) G(Q,P)= -g(Q,P), N>-3.
(N- 2)o

Here r is the distance between P and Q, and wN 2zr/2/F(N/2) is the surface of the
unit sphere in N-dimensions. The regular part of the Green’s function, g(Q, P), is for
fixed Q a solution of the following boundary value problem:

Ag 0 in D,

(3.2) r2-r
g

(N-2)tov
on OD.

In R2 we have instead

1 1
G(O’ P)= lg--g(o’

where g(Q, P) satisfies for fixed Q

Ag=O
1 1(3.2’) g - log-

r

in D,

on OD.

For fixed Q in D we now apply the theorem with the following choices for H, h,
and f(h ):

h 2(N-1)/(N-2)

(3.3) H(P)= G(Q, P); h r-(t-2), f(h)=
N 3,

-2r N=2.
According to the theorem established in 2 the quantity

(3.4) =- r2r-2G.iG,i
takes its maximum value either on OD, or at the point Q. We now show that unless D
is an N-ball and Q is the center point, the maximum of cannot occur at Q.

Using (3.1)or (3.1’)we observe that & may be rewritten as

(3.5) (,0r2 -]- 2wvXrN-2xig, + r2(N-g,ig,

so that our theorem implies

(3.6) -<_ max max r2(N-1) to
OO \ On /

where OG/On denotes the outward normal derivative of G on OD. We now show that

[(3.7) wr =max r2(N-l)
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with equality iff g constant, i.e. iff D is an N-ball and O is its center. To establish
-2(3.7) it suffices to show that in a neighborhood of O there are points at which b > to N

Let K be a ball of radius e with center at O such that K c D. Clearly, the last term in
(3.5) is everywhere nonnegative. We need only show that for g constant the second
term on the right of (3.5) changes sign in K. For any value of p in [0, e] we have

(3.8) oKo rN-2xig’ids=pN-lOKOtlagds=pN-lIKAgdx=O"
Thus unless g=constant, the quantity rN-2xig,i must change sign in K. This
establishes (3.7), from which it follows that

(3.6’) 4 _-< max r2(N-1)(OO 2

The equality sign can hold in (3.7) only if g constant in K (and hence by analyticity,
in D), in which case D must be an N-ball and Q its center.

We now seek an upper bound for max0o r2(N-1)(OG/On)2. As indicated in [6], it is
known that if we choose a domain/) such that D c/) and let OD and 0/) share a
common point P, then

(3.9) lOGo aGo

If D is convex, then for any point P of OD we may choose/ as the half space which
contains D and shares the common boundary point P. This yields for any boundary
point P the estimate

lOGo 2nr(3.10) I---n --< N-l, N --> 2,
toNr

where nr is the projection of the unit outward normal vector at.P onto the straight line
joining P and O. Since h takes its maximum value on 0D, we conclude by means of
(3.10) that

2 1-N(3.11) ]grad Gl<-r N>-2,
toN

an inequality which holds for convex D at any point P Q in D. The equality in (3.9)
is never realized for any bounded domain D; so we cannot expect (3.11) to be sharp.
Nevertheless it appears to be sharper than similar bounds obtained by Bramble and
Payne in [1]. This result can easily be extended to nonconvex domains by choosing for
D the exterior of a sphere.

From (3.11) we can compute a bound for G(Q, R) at a point R in D. Consider
the ray from Q through R which intersects OD at P1. Let d denote the distance from
Q to P1, and r the distance from Q to R. Then by integrating (3.11) along the ray we
obtain for D convex

(3.12)

2

(N 2)ton
G(O,R) <-

1-- log d

[r-(N-2)-d-(N-2)], N_->3,

N--2.
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b) Bounds for electrostatic capacity and charge density. A classical problem of
electrostatics asks for the solution of the following exterior Dirichlet problem:

Au=0 in D*=R3-/, u=l on OD,

u O as r-->o.

Here u is the electrostatic potential of the conductor and r measures the distance
from some convenient origin inside D. The charge density on OD is given by Igrad
We introduce the function

UiUi(3.14) 0(x) z’, x D*,
u

which according to the theorem established in 2 takes its maximum value either on
OD, or at infinity. An easy computation shows that

(3.15) lim 0(x)= C-2,

where C is the capacity of the conductor. This follows from the well-known expansion
of u for large r. Thus

(3.16)

We show now that

(3.17)

O(x) <- max [moaDx O(x), C-21.

C-2 =< max O(x),
0D

with equality iff D is a sphere. To effect the proof of (3.17), consider the level surface
u t7 where r7 (0, 1). From the expansion of u in the neighborhood of infinity, we
know that for sufficiently small rT, the surface u r7 will be starshaped with respect to
the origin. Consider such a starshaped surface OD() and denote by D*(tT) the region
exterior to OD(ti). From the identity

0 XiU,iAU dx xiu n ds + U,iU,i dx
*(r) D(a) *(r)

(3.18)

1{ xiniu,ju,j ds,
2 O()

used previously by Payne and Weinberger in [4], we obtain

(3.19) - {OU’2oOUD() XiFtin) ds l
o<a) On-- ds 47rC.

(Note that in the boundary integrals, the normal vector points outward from D*(tT),
and thus xini is negative.) It follows then from (3.19) that

(3.20)
4"n’C oD(a)xini,1..3 ds -< 3 I7" max 0,
U oD(a)

where V is the volume of D(t/), the region interior to OD(i). Now the classical
Poincar6 inequality (see P61ya and Szeg6 [5])states that

(3.21) I7, __<

_
, 3,
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where
to C. Since 0D(tT) is a level surface of u it is easily seen that

(3.22)

From (3.20), (3.21), (3.22)we obtain

(3.23) C-2 _-< max
0D(t)

It is again easily seen that the equality sign can hold for all such starshaped level
surfaces iff D is a sphere. But (3.23) shows that there are points in D* where 6 => C-2,
from which (3.17) follows (making use of 3.16). We have thus established that

(3.24) O(x) <- moaox O(x),

with equality iff D is a sphere.
At a point Po on OD where assumes its maximum value it follows from Hopf’s

second principle that either D is a sphere or

(3.25) On- On On 2 4 >0.

From the differential equation (3.13)evaluated on OD"

OZu Ou
-2K
On2- On’(3.26)

and (3.24), we obtain

(3.27)
Ou(Po)

0< < K(P0)."
0n

Since 0(x) and Ou/On take their maximum values at the same point on 0D it
follows that either D is a sphere or

On
(3.28) max <K(Po)< max K Ko.

,gD On OD

Inequalities (3.17) and (3.28) now give the following bound for the capacity of D"

(3.29) C >- K-d 1,

where the equality sign holds iff D is a sphere.
Other isoperimetric inequalities result from integration of the inequality

(3.30) O(x)<-K
in various ways. For instance if we take the square root of both sides and integrate
over OD, we obtain

(3.31) 47rC <- KoS,

where S is the surface area of OD. On the other hand, if D is starshaped, multiplication
of (3.30) by -xini and integration over OD yields the inequality

(3.32) 4rC _-< 3 VK,
with equality holding in (3.31) and (3.32) iff D is a sphere. Similarly, an integration of

The symbol K(P) denotes the average curvature of OD at P.
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tgrad u[-_< Kou 2 along a straight line joining any point A D* to the nearest point on
leads to

(3.33) u(A)=> (1 +Kod)-1,

where d is the distance from A to OD.
Another inequality which follows directly from (3.30) is

(3.34) 4zrC <-K2o Io u4 dx

We may also use (3.28) to obtain some idea of the location of the point Po of

maximum charge density on 0D. In fact from (3.28)we find that at P0 the following
inequalities must be satisfied (assuming D is not a sphere):

47rC
S

Ou 1 Ou
(3 35) K(Po)>max--> o ds

oo On =- oOn

and in case D is starshaped with respect to the origin

1/2

xini(Ou/0n)2 d
.47rC\ 1/2

(3.36) K(Po)> o

o xini ds
\--/

Inequality (3.35) holds for nonstarshaped regions.
Similar inequalities can be derived for the expression

(3.37) 0a r4U,iU,i,

where u is the solution of (3.13), but the results in this case are of less-interest.
Likewise we could apply our theorem to

(3.38) )1
[G -[- ’)t] 2(N-1)/(N-2)’

N > 3

where G is the Green’s function introduced earlier, and y is an appropriate constant.
This would give a lower bound for max0o (OG/On). However, such a bound seems to
be of limited interest.

4. Extensions and conclusions. It is clear from the proof of the theorem
established in 2 that for N 2, if (log f)"-> 0 in D and if grad H does not vanish in D,
then the function 4 defined in (2.3)will take its minimum value on OD. In particular, if

f is an exponential function of h and if grad H # 0 in D, then 0 will assume both its
maximum and minimum value on OD. This would yield additional information on the
Green’s function and on lpgarithmic potential problems in two dimensions. One
would expect that for N >- 3, a suitable hypothesis on f(h) might insure that in cases in
which/-/,iH, does not vanish in D, will satisfy a minimum principle, but results in
this direction appear to be less useful.

We have considered in this paper a particular combination of harmonic functions
and their gradients. Many other combinations can easily be shown to satisfy a maxi-
mum principle. For instance, if Hi, 0, 1.. , m are harmonic functions and H0> 0



104 L. E. PAYNE AND G. A. PHILIPPIN

in D, then it follows rather easily from the generalized maximum principle in [6] that
the quantity H2 Y.i=IHiHi takes its maximum value on OD. A similar result holds of
course for solutions of more general second order elliptic equations.

Acknowledgment. The authors wish to thank the referee for his helpful com-
ments and suggestions.
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ON SOLUTIONS OF A TRANSCENDENTAL EQUATION
BASIC TO THE THEORY OF VIBRATING PLATES*

C. E. SIEWERT’ AND J. S. PHELPS, IIIf

Abstract. The theo:y of complex variables is used to develop exact closed-form solutions of the

transcendental equation a tan : + tanh : 0.

1. Introduction. As discussed by Leissa [1] and Marguerre [2], the study of the
vibration of elastic plates invariably leads to eigenfunction expansions. In many such
cases the required eigenvalues are established as the solutions of transcendental
equations. One such problem is that of the dually clamped oscillating plate. Here we
seek a solution to

(1) (4-k4)W(x, y)=0,

with W(a, y)= W(0, y)= 0, W(x, 0)=f(x), and W(x,/3)= g(x). The solution for
W(x, y) can be established by separation of variables, with the x component expres-
sed as

(2a) X(x)= sinh ()cos [y(-)] +sin ()cosh [y(-)],
with

(2b)

or

(3a)

with

tanh (y/2)+ tan (3,/2)= 0,

X(X)= sinh ()sin [3"(-)]-sin ()sinh [3"(-)],

(3b) tanh (3"/2)-tan (3,/2)= 0.

We wish here to investigate the transcendental equation

(4) a tan + tanh 0,

which clearly contains the foregoing as special cases.

2. General analysis: Igl -<- ’12. In order to find the real and imaginary solutions of

(5) a tan + tanh 0, a (-, c),

we first wish to introduce and study the sectionally analytic function

(6) F(z)= Log (z + 1)- Log (z 1)-ila-- [log (z + ilal)-log (z -ilal)].
a

Here we use the standard notation Log (’) to represent the principal branch of the log
function, i.e.,

(7) Log (’)= In Ir] + arg (st), arg (’) (-Tr, 7r).

* Received by the editors January 28, 1977, and in revised form July 18, 1977.
t Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina

27607.
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For the functions log (z +/- ilal) appearing in (6) we use branches of the log function
such that

(8) log (st) In [r{ + arg (’), arg (’) ---,
With these choices of the log functions it is clear that F(z) is analytic in the complex z
plane cut from -1 to 1 along the real axis and from -ila to ilal along the imaginary
axis. It is a simple matter to show that

(9) F(z)=(l+a)+3(1-a3)+O(-), as ]zlc.

We now wish to use the argument principle [3] to establish the number of zeros of
F(z) inside the co.ntours Ct and C2, shown in Fig. 1, as R and e 0. Since in general
F(z) vanishes as 1/z as Izl c, we find that the argument of F(z)decreases by 27r as
the contour C1 is traversed (in the positive sense). For the special case a =-1, F(z)
vanishes as 1/z 3 as Izl c, and thus for this case the argument of F(z) decreases by 67r
as C1 is traversed.

C

ilal
R

C2 2:

FIG. 1. The contours Ca and C2.

To compute the change in the argument of F(z) as the contour C2 is traversed, we
first require the limiting values F+/-(x) of F(z) as z approaches the cut [-1, 1] from
above (+) and below (-) and the limiting values F+(iy) as z approaches the cut
[-ilal, ilal] from the left (+) and the right (-). It is a relatively straightforward matter
to show that

(10) F+(x) R(x)q: iTr, x [-1, 1],
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where

(11) R(x)= 2tanh-1 (x)+la-’-Ja [sgn (x)’n’-2 Tan-1 (--) ].
We use here the convention that Tan-l(x) denotes the principal branch of the arctan
function. In a similar manner, we can compute the limiting values of F(z) as z
approaches the cut along the imaginary axis. We find

(12)

where

()

F:(iy) q:la--r+ iIo(y), y [-la I, lall,

If we use A2 to denote the change in the argument of F(z) as the contour C2 is
traversed, in limit as e 0, we can use (10) and (12) to deduce that z2 27r, for a >0,
and that A2--67r for a <0. (The special case a 0 clearly is not interesting.) We thus
conclude that for a > 0, F(z) has only a zero at infinity; on the other hand, for a < 0
we note that, in general, F(z) has two zeros in the finite plane plus one zero at infinity.
For the special case of a 1, F(z) clearly has only a triple zero at infinity.

In order to relate the zeros of F(z) to the desired solutions of (5), let us first
deduce the special forms of F(z) for z=x6(-c,-1)(1,) and for z=
iy, y (-c, -lal)t3 (lal, ). Evaluating F(z) on that part of the real axis that excludes
the cut, we find

(14) F(x)= 2 tanh-l () +[! [sgn (x)Tr-2 Tan-l (a) ],
On that part of the imaginary at.is that excludes the cut we find

(15)

F(/y) i[Y2J a.] tanh-1 (L)+ 2 Tan-1 (y)-sgn (y)Tr], Y 6(-,-lal) (lal, ).

If we now consider a (-, 1), we can deduce from (14) that F(z) has (in addition to
a zero at infinity) two real zeros + x0, x0 (1, c). It follows therefore that +/- ?0, where

(16) o=iTan-l(la]], a (-c, -1),
\ Xo/

are two of the desired solutions of (5) for this case. Considering now a (- 1, 0), we
conclude that F(z) has (in addition to a zero at infinity) two imaginary zeros
+/-iy0, yo ([a[, ). Thus we observe from (15)that +/-sCo, where

(17) o tanh-’ [i,-}, a (-1, 0),
\ Yo/

are two of the desired solutions for the considered values of the parameter a. To
summarize our conclusions thus far we note that for a >0, F(z) has only a zero at
infinity which corresponds to the trivial solution (o 0) of (5). For a (-, 1), F(z
has two additional real zeros +/-Xo which correspond to the imaginary solutions +/-sCo,
where o is given by (16). For a (-1, 0), F(z) has, in addition to a zero at infinity, two
imaginary zeros +iyo which correspond to the real solutions +-o, where :o is given
by (17).
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We note from (5)that

(18) o(a) isCo (), a (-oo, -1),

and thus we need here only o(a), a(-1, 0), in order to establish the real and
imaginary solutions of (5) such that [o[--< 77/2.

If we now consider only a < 0 and let +Zo denote the finite zeros of F(z), then we
note that the function

(19) T(z) a F(z)
2 2

Z --Zo

is analytic in the complex plane cut along L [-I, l]Ll [-ila I, ilal]. In addition, T(z)
is nonvanishing in the finite plane, and the limiting values of T(z) satisfy the Rie-
mann-Hilbert problem [4]

(20) T+(r) I_F-(’)_I T-(r), r e L.

It thus follows [4] that T(z) can differ from any canonical solution of the Riemann-
Hilbert problem by no more than a constant multiple. Thus we can write

F(z)
(21)

z- zg KX(z),

where X(z) is a canonical solution to the considered Riemann-Hilbert problem and K
is a constant to be established. The desired canonical solution X(z)can be constructed
from the work of Muskhelishvili [4]; some care is required, however, to be sure that
the "endpoint behavior" is correct. We find

1 [/o’ dx 2fold’ dy ](22) X(z)= exp xOo(x) X- z +--Tr Y6o(Y) y2+z2

where

(23a)

and

Oo,x)= tan_ [,(Tr)]x

Here Oo(x) and bo(y) are continuous, with 0o(0)=(ko(0)=-377/4 and 0o(1)=
4o(lal) 0.

We can now substitute (22)into (21) and let Izl-,oo to find to find K= 2(1 +a),
and thus we can solve (21) to obtain the general result

(24) z =z2-
F(z)

a<0.
2(l+a)X(z)’

Equation (24) represents a general solution for the zeros of F(z) and is valid for any
value of z. We can let Izl c in (24) to find the specific result

2 2f lal 2Io’ (1-a3)
(25) Zo Cko(y)y dy--- Oo(x)x dx-3(1 +--), a<0.

77./O 77
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It is clear that (25) can be used in

(26a) so tanh-1

or

a 6(-1, 0),

(26b) sCo =/Tan-’
/

t [al’
[Zo[]’

a (-oo, 1),

to give exact analytical results for the desired solutions (+sCo, 1ol -< (r/2))of (5). In the
next section we develop similar expressions for the solutions such that [so01 _-> (rr/2).

3. General analysis: ]1-> (=/2). Here we wish to generalize the analysis of the previous
section in order to find additional real and imaginary solutions of (5). If we
let

(27) Fk(Z) F(z)+ 2k’n’i, k 1, 2, 3.",

then we conclude that Fk (z) is analytic in the plane cut along L and has limiting values

F: (x) R(x)+ i(2k q= 1)Tr, x6[-1, 1],(28)

and

/I
(29) F: (iy)

a

Here R (x) is given by (11) and

(30) Ik(y)= Io(y)+ Zk’a".

If we use the argument principle again, we find that F (z) has exactly one zero in
the finite plane. Note that if we were to allow k to be negative we could write
F_(z)=-F(-z); thus the zeros corresponding to negative values of k are just the
negative of the zeros corresponding to positive values of k. If now we evaluate F(z)
on the imaginary axis, but not on the cut, we find that

(31) F(iy)= F(iy)+ 2ki, y (-, -lal) (la], ),

always has one simple zero, say Yk. It follows from (31) that + k, where

(32) sc= k--- rr+--a Tan- (l yk ), k=1,2,3...,

are the additional real solutions of (5) that we seek. As in the previous section, we can

generate the imaginary solutions +/- of (5)by

(33) k(a) ik a (--c, o).

We now observe that

F (z)
(34) KkXk (Z),

Z iyk

where K is a constant to be established and Xk(Z) is a canonical solution of the
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Riemann-Hilbert problem defined by

(35) X (7-)=
lF 0")J’’ (-r), 7" L.

We find that Xk(Z)can be written as

(36) Xk(z)=
1 [ 1 I01 dx

z -i--- exp / [z In Mk(X)+ 2iXOk(X)] X2 Z

where

(37) Mk(X)=

(38)

and

(39)

R(x)+ (2k 1)7re

R2(x)+(2k + 1)27r2’

Ok(X)=tan_l[ -2,rrR(x) ]R:(x)+.a.2(4k2_ l)

b(y) tan- [(l/--a)Tr]Ik(y) J"

if dy ]/-
-rr --Ial Y + tz

The angle defined by (38) is continuous for x (0, 1), with 0k(0)= tan-1 (- la l/ a )/ (2k 2).
As y varies from -lal to la], the angle 4k(Y)varies from -Try0, for a <0, and from
0zr, for a>0; we note that 4k(Y)has a discontinuity at y =0.

If we now substitute (36) into (34) and let Iz oo, we find that Kk 2k’rri. Thus
we can solve (34) to obtain the explicit result

Fk(z)
(40) Yk =--iz +2k’rrXk(Z)’ a 6(-oo, oo).

Equation (40) is valid for any z, and thus can be substituted into (32) to give the
remaining real solutions of (5). To obtain a specific form of (40), we can let Izl --> oo to
find

l+a 1 fo(41) Yk a 4- k----+2- In Mk(X) dx- dk(lalx ) dx.
"TI"

4. Conclusions. We have successfully found all of the real and imaginary solu-
tions of (5). The real solution corresponding to k 0 is given by (25) and (26a) for
a (- 1, 0), and the imaginary solutions are given by (25) and (26b) for a e (-oo, 1).
For a >0 there are no real or imaginary solutions corresponding to k =0. For
a (-oo, oo) and k 1, 2, 3 , the real solutions of (5) are given by (32) and (41); the
imaginary solutions are given by (33). Of course, if is a solution, so is -:.

To be sure that our final results are free of errors, we have evaluated (25), (26),
(32) and (41) numerically for various values of a and k; without difficulty solutions
correct to six significant figures were obtained.

Acknowledgment. The authors are grateful to Dr. M. N. 0ziik for suggesting this
problem.



SOLUTIONS OF A TRANSCENDENTAL EQUATION 1 1 1

REFERENCES

[1] A. W. LEISSA, Vibration of Plates, NASA SP-160 National Aeronautic and Space Administration,
Washington, DC, 1969.

[2] K. MARGUERRE, Elastic Plates, Blaisdell, Waltham, MA, 1969.
[3] L. V. AHLFORS, Complex Analysis, McGraw-Hill, New York, 1953.
[4] N. I. MUSKHELISHVILI, Singular Integral Equations, Noordhoff, Groningen, The Netherlands, 1953.



SIAM J. MATH. ANAL.
Voi. 10, No. 1, January 1979

1979 Society for Industrial and Applied Mathematics

0036-1410/79/1001-0014 $01.00/0

A VARIATIONAL FORMULA FOR THE GROWTH RATE OF A
POSITIVE OPERATOR SEMIGROUP*

THOMAS G. KURTZ’

Abstract. Let B be a Banach space, M a convex subset of B* such that ]lull =< for all u M,

K {f B: vf-> 0, for all v M}
and

Ko {f B: uf> 0 for all u M}.

Let T(t) be a strongly continuous semigroup on B with infinitesimal generator A. If T(t): K K then

uAu
XIY inf sup inf {A :lu D(A A Ko Au Au K} A 1.

uD(A)f-IKo vM PU

If, in addition, IIf[I supM v[ for all f Ko then

W2=AI=A2 inf lim-logllT(t)fll.
fKo

Other similarly defined quantities are also considered.

Introduction. In [1] Donsker and Varadhan gave a variational formula for the
principal eigenvalue of an operator A L + V where L generates a positive semi-
group on C(X), the space of continuous functions on a compact metric space,
satisfying T(t)l 1, and V is multiplication by a function V C(X). After a minor
transformation their variational formula can be seen to be an analog of the variational
(minimax) formulas for the spectral radius of a positive operator and the analogous
quantity for more general order preserving mappings. See for example [2], [3], [5], [6].

In this paper we consider this variational formula applied to more general
operators A, requiring only that A generate a strongly continuous semigroup of linear
operators T(t) on a Banach space B which satisfies the following positivity condition:

Let M be a convex subset of B* such that Ilutl_-< 1 for all u M and define

K {f B uf >-- 0 for all u M}
and

Ko {f B uf> 0 for all s M}.

Positivity condition.

(1) T(t): K -> K.

While it is not necessarily true that T(t): Ko-> Ko, it does follow that

(2) (, A)- e-"r(t) dr" go --, go.

In [1] Donsker and Varadhan defined limt_,oo (l/t) log IIr(t)ll to be the "principal
eigenvalue" of A. This limit always exists due to the subadditivity

(3) log I[T(t + s)[[ <_-log IlT(t)ll + log [IT(s)ll,

but, as Donsker and Varadhan point out, it need not be an eigenvalue of A in the
usual sense. It does provide a measure of the rate of growth of T(t); however, in our

* Received by the editors June 27, 1977.
5" Mathematics Department, University of WisconsinJMadison, Madison, Wisconsin 53706.
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more general setting it may not be the most appropriate measure. With this in mind
we define the following"

ioAo=sup/.A’sup fKo(4)
vM

(5) AI= inf {A uD(A)KoAu-AuK};

(6) A2 inf lim log

(7) 3 lim log
t

Our primary concern is the relationship of these quantities to the variational
formulas

uAu
(8) -= sup inf ,

uMuD(A)OKo Pig

and

vAu
XI/’2 ------ inf sup

uD(A)fqKo veM Plg

These relationships are given by the following theorem and its corollaries.
THEOREM I. Let T(t) be a strongly continuous semigroup satisfying the positivity

condition [(1) above ]. Then

(9) XlYl Ao xI/’2 A A2 A3.

COROLLARY II. If Ilfll=sup I’fl for every f6Ko then Ao--’kI)’2--Al=/.2. If
Ilfll supM (Ivfl/llU[[) for every fe Ko then XI/’2 A1-- A2.

COROLLARY III. IfM is weak* compact then x ho 2.
COROLLARY IV. If the conditions of Corollaries II and III hold then -ho-

’kI)’2 A A2-- A3.
Remark. Corollary IV includes the situation considered by Donsker and

Varadhan.
The condition of Corollary III can be weakened somewhat to give:

COROLLARY V. If there is a weak* compact subset N cMsuch that

uAu uAu
sup=sup
ueM PU uN PU

for all u D(A f3 Ko then XI AO XI?2.
Proof. The inequality h2 is immediate. If A > h2 then there is an f Ko such

thatu =o e-X’T(t)fdt6D(A) (3Koandhu-Au =fK. Henceh =>A1 andhz_->hl. TO
see that xlY2 observe that if u D(A) f-) Ko and (h A)u K then

(10) -uau- ( -a)u<_h_
pU pU

for all u M. Consequently XI’t2 , for any such h and hence XI/’2/ (the infimum of
all such h). On the other hand if h > xI)’2 there is a u 6 Ko such that

sup<h.
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Consequently

vAu
v(u Au uu uu >= O.

pU

Therefore Au Au K and h > h 1. It follows that 2 A 1.

To complete the proof we need the following lemma.
LEMMA 1. If U K f’) D(A then

vu >= e-a’vT(t)(h A)u dt.

Proof. Since

e-atT(t)(h -A)u dt h e-atT(t)u dt-A e-atT(t)u dt

=u-e T(z)u,

the inequality follows from the positivity conditions.
Let u D(A)fqKo and <o. Then

uAu v(h -A)u
sup h inf
vM PU

Either there exists v such that v(h A)u _<- 0 or (h A)u Ko. If (h A)u Ko then
Lemma 1 implies

sup e -At uT(t)(h A)u dt <= sup uu <= Ilu[[.
vM vM

But this contradicts the fact that h < ho. Consequently XI-t2 ’/0.
Finally suppose h > ho. Then there is an f Ko such that

(11) Io e-a’vT(t)f dt < oo

for every v M.
Observe that u,=e-a’T(t)fD(a)CIKo and (h-A)u,=f-e-a’T(z)f. By (11)

lim,_ e-a’uTO-)f 0 for every u M. Consequently

inf vAu* f(h v(h A)u.)PU.r n U.

( u e-’T(’r)f
=inf h +

PU,r

Consequently q/’l <-/ for every h > ho and hence x ho.
Proof of Corollary II. If/z > h o there is an f Ko such that

(12) sup e-"’vT(t)f dt < oe.
vM

Let h >/x and define

u, e-atT(t)f dt.
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Then for r <

I)u,1- u,2ll--- sup v e’-X’T(t)fdt <= e sup I0 e-"*uT(t)fdt"

Consequently lim_, u u exists and it follows that (h -A)u f. Finally,

e-"’TO’)u u- e-"*T(t)f dt.

Since f e K0 we have

sup e-"’T(r)u Ile-’T()ull sup vu Ilull,

Consequently Az -<- A and hence A 2 Ao. The second part of the corollary follows from
the fact that 2, A and A2 do not change if we replace M by

Proof of Corollary III. Since vAu/(vu) is a quasi-concave-convex function in the
terminology of Sion [7], Sion’s theorem implies 1 z.

Proof of Corollary IV. By the weak* compactness of M, if f go then infM uf>
0. Consequently, if f Ko then for every g B there is a C such that Cf- 1/2g Ko and
Cf+ 1/2 g Ko. It follows that

][e-XtT(t)g[[ <-][e-XtT(t)(C.f 1/2 g )[I + ]le-atT(t)(Cf+ 1/2 g )[[

(13)

sup v e-X’T(t)(Cf-1/2g)+sup u e-’T(t)(Cf+1/2g)
vM vM

_-< 4 sup u e-XtT(t)Cf
M

4Clle-"’T(t)fll.

If /.:>/2 there is an f eKo such that supt[le-tT(t)fll<oe. Consequently
supt [[e-XtT(t)g[[ < oo for all g e B. The uniform boundedness theorem implies

sup Ile-"’T(t)ll < c

and hence h -> h 3. It follows that h 2 --/.3.
Proof of Corollary V. Sion’s theorem implies

uAu uAU
’kI/’2 inf sup inf sup

uD(A)f’IKo vM PU uD(A)f’IKo uN PU

uAu
sup inf
vN uD(A)f"IKo PU

Examples. We now give examples showing that strict inequality is possible for
each of the inequalities in Theorem I.

Example A (13> A2). Let B t(R), the space of continuous functions vanishing
at infinity with the sup norm.
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Let M be the set of measures u with u(R)= 1 and u(U)> 0 for every open set U.
Then

Ko {f, r2()./ _-> 0, d 0}.

Let T(t)f(x)= e’SinXf(x). Then A3 1 and A2 -1.
Example B (A 2 > A 1). Let B (R) and M be the space of positive measures with

u(-eo, 0)= 1 and u[0, c)= 0. Then Ko- {f B:f(x)> 0 for x < 0}.
Let T(t)= f(x t). Then Af(x)= -f’(x). If A < 0 and f(x) D(A) with f(x)= e -Ax

for x < 0, Af(x)-Af(x)= 0 for x < 0 and hence A1 _-< A. Therefore 1 =-. However,
2-- 0.

Example C (A 2> Ao). Let B Lp (0, oo), p’ < p, 1/q + 1/p 1 and 1/q’+
1/p’=1. Let M={g:g_->0 a.e. Ilgllq--<l, Ilgllq,_<-1}. Then K={fLP:f>-0 a.e.}.
Define T(t)f(x) f(e"x) for some/x > 0. Then

IIT(t)fl}. (ff If(e"x)}’ dx)1/’

If -Ix/p >A >-tx/p’ and fL" flLO’Ko then

This follows from the inequality

Io g(X)r(t)f(x dx <--Ilgllq,, e-(/"’}’llfllp’.

Therefore A >=Ao and Ao<-lx/p. On the other hand, if u D(A)f-IKo and Au-Au
K we have by Lemma 1 that

-A’T(u>--e u a.e.

Consequently

]]ullp >- Ile-Atr(t)ullp e -At e-(/P)tllUl[p.

Therefore we must have A ->-Ix/p and hence A -Ix/p.
Example D (Ao> 1). Let B (), M be the collection positive measure with

u(N)= 1 and u([-a, ale)=0 for some a, and let r(t)d(x)=(x-t). Then Ao=0 and
1 --. To see that 1 1, note that if u(x)= e Ax on the support of u, then

uAu
pU

Relationship to other work. In [1], with A L + V, Donsker and Varadhan define

(14) qt sup [Ix V(X)lx(dx)+ inf f (L-)(x)lx(dx)]M D(A)f’IKo

where M is the space of positive measures with/x (X)= 1. This is the same as

XIt sup inf g(x )u (x 4- Lu (x )] ,_ /x (dx ).
lxM uD(A)71Ko utx)

(15)
sup inf

Au (x)
.. o()o & u (x)

(dx).
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Similarly their definition of ’I/2 is

(16) W2 inf sup ’|Au(x,)
uD(A)I3KoM3X U(X)

Taking

(17)

we have

(18)

g(dx).

1 1
u(dx -tt (dx - dl

u(x)u(dx)= au(x)(dx) u(x),(dx).

For fixed u, (17) defines a one-to-one mapping of M onto M and the sup over/x on
the left of (18) is the same as the sup over u on the right. It follows that the definition
of 2 in (16) is the same as the previous definition.

Unfortunately there doesn’t appear to be a simple way of showing that the two
definitions of I/’l are the same.

Finally, without a positivity assumption, Lumer and Phillips [4] have shown

lim -1 log IlT(t)ll sup {uAu u D(A), u B*, Ilull [[’ll ,u 1}.
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FREQUENCY DOMAIN STABILITY FOR A CLASS OF
EQUATIONS ARISING IN REACTOR DYNAMICS*

D. WEXLERf

Abstract. We establish Liapunov type stability properties for an evolution equation in a Hilbert space
by using the Popov frequency domain method. Some systems arising in reactor dynamics may be viewed as
specializations of the equation discussed in this paper.

1. Introduction. In recent years, an increasing interest has been taken in the
system of integro-differential equations

0-0 T(t, ,)= -0[ 0
p1()- T(t, ) +p2()T(t, )+q(o’(t))a(:),

(1.1)
o-(t)= b()r(t, )d, for all e 10, +oo[ and almost all : in ]]/, ]/_[,

dt

subject to boundary conditions

(1.2)

aT
61T(t, ]/1)+ a2 (t, ]/1)= 0,

aT
t8 T(t, ]/2)+ a4 (, ]/2)= 0

and to initial conditions

for all ]0, + [,

(1.3) o-(0)=O-o, T(t,. ) To in L2(]/1, ]/2) as t0,

where the real constants 8i satisfy

(1.4) 1811 + I =1 > 0, I1 + 1841 > o,
the nonlinear function p" RR is continuous with rq(r)> 0 for all r R, r : 0 and a, b
are elements of the space L2(]/1, ]/2)of real-valued square-integrable (classes of)
functions on ]]/1, ]/2[; when ]]/1, ]/2[=I, the boundary conditions are replaced by
appropriate L2 conditions. Also, conditions on 8i and on the real functions pl, p2 were
required in order to insure the associated to (1.1), (1.2)Sturm-Liouville operator A,

(1.5) Ax()=- pl()-X(:) +p2(:)X(s),

to be self-adjoint and negative in L2(]/1, ]/2).
Systems of this type arise as dynamic models of one-dimensional continuous

medium nuclear reactors and one is interested in the asymptotic behavior of the
solutions as +, mainly in Liapunov type stability; the reader is referred to [7], [9]
for the physical significance of the various parameters of the system.

This problem has been studied most notably by Levin and Nohel [9], [10], [11],
[12], Nohel [16], Miller [13], [14]. By eliminating the unknown function T they
obtained a scalar nonlinear Volterra integro-differential equation which was discussed
by means of energy functions and/or transform methods.

* Received by the editors January 13, 1977, and in revised form July 13, 1977.
f Department of Mathematics, Facult6s Universitaires N.D. de la Paix, Namur, Belgium.
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Bronikowski, Hall and Nohel [2] used a Galerkin procedure to approximate the
problem by a set of ordinary differential equations which is then discussed by
Liapunov function method. The stability conditions in [2], 11] are expressed in terms
of the Fourier coefficients of a and b with respect to the system of eigenfunctions of A.

The theory of C0-semigroups is applied by Suhadolc [20] and Infante and Walker
[7]. In [20], a linear variant of the above problem is considered with ]3’1, 3’2[ I and
A =d2/ds2; the theory of analytical semigroups is used to obtain existence and
regularity of the solutions and transform methods are applied to discuss stability, in
[7], the abstract evolution problem

du dr
(1.6) d-’ Au + q(r)a,

dt
(b, u)

is considered in L2(3’1, 3"2)!, where A is a negative self-adjoint operator in
L2(3"1, 3"2), (’,’) is the inner product in L2(3’1, 3"2) and a, b 6 L2(3"1, 3"). When A is
the Sturm-Liouville operator (1.5), system (1.6) is an L2-version of problem (1.1),
(1.2). For system (1.6), Infante and Walker [7] have established stability conditions by
means of the theory of nonlinear C0-semigroups combined with some estimates
obtained on the basis of a Liapunov function which is much similar to that used
previously in the theory of absolute stability of differential equations in finite-dimen-
sional spaces. Their approach applies also when the effect of delayed neutrons is
included and the heat conduction is nonlinear [21].

Here we choose to consider the abstract evolution problem (1.6) under more
general assumptions on A. It will be assumed that A is a linear operator in a real
Hilbert space H and that A generates a differentiable exponentially stable C0-
semigroup on H (A is not necessarily self-adjoint, nor negative); the case in which 0 is
a simple isolated eigenvalue of the complexification A of A and the case in which c is
linear will be discussed elsewhere. We establish stability conditions by applying Popov
type frequency domain methods to the associated Volterra integral equation; our
approach is an extension to the Hilbert setting of the approach used previously by
Corduneanu for differential equations in finite-dimensional spaces [cf. 3, chap. 3].
Note that Levin and Nohel made mention previously [11] of the possibility to study in
this way the Volterra integral equation associated with (1.1), (1.2), but only for some
rather special cases.

In 2, we give the precise description of our setting and in 3, we establish the
stability criteria; for shortness, we limit our discussion to asymptotic stability. We also
establish some exponential estimates for the solutions and discuss the sensitivity of our
stability conditions with respect to small perturbations in the parameters of the
system.

As usual, when applying frequency domain methods to differential equations, the
stability conditions we obtain are expressed in terms of positivity of a function
involving a, b and the resolvent of A and they do not depend on the nonlinear
function c belonging to a specified class. In general, to check the frequency domain
condition (condition (ii) of Theorem 1) requires the knowledge of the resolvent of A c,
which is far from being an easy matter. When A is defined by (1.5), it amounts to
solving a Sturm-Liouville problem for an ordinary second order differential operator;
in some special cases (say if pl and p2 are constants), this problem may be effectively
solved. On the other hand, for significant systems, some easy-to-check stability
conditions which do not make explicit use of the resolvent are available [7]. In 4, we
show that the asymptotic stability result established previously in [7] is closely related
to a specialization of Corollary 1.
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For some significant integro-differential systems, the solutions of the associated
abstract version are in fact classical ones and one may derive also stability results
under the norm of the uniform convergence. This is illustrated in 4 for the case of
problem (1.1), (1.2). Furthermore, for problem (1.1), (1.2), we related the frequency
domain stability conditions to the asymptotic stability conditions established pre-
viously in [2].

2. Setting of the abstract problem. In the sequel H is a real Hilbert space with
inner product (...) and the norm I" I, I is the identity operator on H and A is a linear
operator with domain D(A)c H and range R (A)c H. We consider the differential
system

du dcr
(2.1) d---7 au + o crla d--7 b, u

where a and b are given elements in H and q:R- [ is a given (nonlinear) locally
Lipschitz function. The above system will be viewed in the Hilbert space H E
with inner product

((X1, rl), (X2, r2)> (Xl, x2)/ rl r2 (xi, ri)e Yg, j= 1,2.

In 2 and 3, it is assumed that A generates a C0-semigroup S on H, which
satisfies the following conditions"

(2.2) S is differentiable (i.e. S(t)H c D(A) for all >0)

and there exist M _-> 1, a > 0 such that

(2.3) ]S(t)[e(H) <- Me-t for all t_->0,

where (H) denotes the Banach space of bounded linear operators from H to H; for
the theory of semigroups of linear operators, we refer the reader to [8, chap. IX] and
[22, chap. IX]. Condition (2.2) implies that for each x e H the function S(. )x: +H
is of class C on ]0, /oo[, hence by using the Banach-Steinhaus theorem and the
Taylor formula, we may see that the operator-valued function S: N*-* (H) is also of
class Coo on ]0, + oo[. Then, by using (2.3) and

dS dS +,d--- (t) S(t- O)- (0) for all t, 0 e _>- 0 > O,

it follows that there exists a continuous, decreasing function f: ]0, +oo[ [R+ with
f(t)- 0 as + oo, such that

(2.4) -7(t) e(nw[AS(t)l.(n<-_f(t), for all t>0.

It is useful to consider also the complexification H of H; the elements of H will
be written as x + iy, x H, y H and the inner product of H will be denoted by
(.,.)n. For any linear operator U in H, we denote by U the linear operator in H
defined by

UC(x +iy)= Ux +iUy with domain D(UC)=D(U)+iD(U).

In particular, I is the identity operator on H. By the Hille-Yosida theorem, saying
that A generates a Co-semigroup which satisfies (2.3) is equivalent to the following: A
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is densely defined, closed, the resolvent set P(Ac) of A contains the half plane
Reh > -a and for each n 1, 2, 3,. ,
(2.5) [(hlC-AC)-"le(t4c)<=M(Re A +a)-" for all C, Re > -a.

We see in particular that A -1 is a bounded linear operator.
An important case in which our assumptions on A hold is the case in which for

some a > 0, the operator AC + ai generates a bounded holomorphic semigroup. This
condition is in turn satisfied when for some a > 0 the operator -(A+aI) is m-
sectorial with vertex 0 [8, pp. 490-491] (note that significant differential operators are
m-sectorial [8, p. 280]). The latter condition holds in particular when A is self-adjoint
and there exists a > 0 such that A + aI is negative.

The function (u, o.) from the interval [0, 0] to is said to be a solution of (2.1) on
[0, 0] with initial data (u0, o0) o, if it satisfies the following conditions: (i) u is
continuous on [0, 0], of class C on ]0, 0], u(0)= u0 and

u(t)D(A),
du- (t)= Au(t)+ q(o.(t))a, for all [0, 0];

(ii) o. is of class C on [0, 0], o.(0)= o.o and

do"
(t)= (b, u(t)) for all [0, 0].

dt

The function (u, o") from R+ to Yg is said to be a solution of (2.1) on R+ with initial data
(Uo, o"o) Yg, if it is for all 0 > 0 a solution of (2.1) on [0, 0] with initial data (Uo, o"o).

Proposition 1 below reduces the initial data problem for (2.1) to the scalar
nonlinear Volterra integral equation (2.6).

PROPOSITION 1. For any (Uo, o"o)e Yg and any 0 >0 there exists at most one
solution of (2.1) on [0, 0] with initial data (u0, o"0). This solution is (u, o") if and only if
o" is a solution oi the integral equation

-A-luo)+ (o"(s))(b, S(t-s)A- -a(2.6) o"(t) o"o + (b, S(t)A-luo q a A ds

continuous on [0, 0] and for all [0, 0],

(2.7) u(t) S(t)Uo + Io q(o"(s))S(t- s)a ds.

Proof. Assume (u, o") is a solution of (2.1) on [0, 0] with initial data (Uo, O-o). Then,
for each z ]0, 0[, u is a solution on [-, 0] of the inhomogeneous problem

dw
Aw + q(o.(t))a, w(’r) u (’r),

dt

so that, according to [8, p. 486], we have

u(t)= S(t-z)u(z)+ p(o.(s))a ds for all z, ]0, 0], z_-< t.

By letting - 0, it follows that (2.7) holds on [0, 0]. Then by integrating on [0, t] the
second equation of (2.1), we see that

o"(t)=o"o+\b, S(S)uo ds + b, q(o"(s))S(’- s)a ds
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Since A-uo D(A), the function $(. )A-uo is a primitive of S(. )Uo, so that

(2.8) S(s)uo ds S(t)A-uo-A-uo.

By applying Fubini’s theorem and (2.8), we see that

dr ,(r(s))S(,-s)a ds q(tr(s))[S(t-s)A-la -A-a] ds,

whence tr satisfies (2.6)on [0, 0].
Conversely, assume that u and r satisfy (2.6) and (2.7) respectively on [0, 0].

Clearly, u(0)= Uo and tr(0) fro. Since A-uo and A-la belong to D(A), the functions
S(. )A-uo and $(. )A-a are of class C 1. Then we see easily that tr is also of class C
and satisfies on [0, 0] the second equation of (2.1). Since S is of class C
and $(t)uoD(A) for all t>0, to prove that u is of class C on ]0, 0] and satisfies the
first equation in (2.1) on ]0, 0], it suffices to verify that this holds true for the function v
defined on [0, 0] by

v(t)= q(tr(s))S(t- s)a ds.

Indeed, for any x H define the function v, on [0, 0] by

io iov(t) q(tr(s))S(t-s)x ds q(tr(t-s))S(s)x ds;

clearly, v,, v. By using the fact that tr is Lipschitz, we see easily that v
C([0, 0]) and

dvx I: d(o(2.9) d---- (t)= q(tro)S(t)x + (s)S(t- s)x ds

for all t[0, 0], x H. If x D(A), we may use [6, p. 153] to see that

io’v(t)eD(A) and q(o’(s))A$(t-s)xds=Av(t),

and then an integration by parts yields

(2.10) Io’ -td tr)
(s)S(t- s)x ds (cr(t))x (tro)S(t)x + Ave(t).

Since A is closed and D(A)is dense in H, it follows that for all te[0, O], v(t)eD(A)
and (2.10) with x a holds true. Then, (2.9) and (2.10) with x a imply

dv
(2.11) d--7(t)=Av(t)+qg(tr(t))a for all t[0, 0].

To prove uniqueness, note that if (u, o-) and (a, ) are two solutions of (2.1) on
[0, 0] with the same initial data (Uo, o’0), (2.6) implies

o-(t)-(t)= [o((s))-o((s))](b, S(t-s)A-a-A-a) ds.

Since o is locally Lipschitz and o-, are bounded, we may then apply the Gronwall-
Bellman lemma to see that cr , hence by (2.7), u a. The proof of Proposition 1 is
complete.
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Remark 1. By using (2.10) with x a and (2.11), we see that if (u, r)is a solution
of (2.1) on [0, 0] with initial data (Uo, ro) then the function o r is Lipschitz on [0, 0]
and

d( 1du
(t) AS(t)Uo + q(O’o)S(t)a + (s)S(t s)a ds

dt dt

for all e ]0, 0]. In addition to this, when Uo e D(A), the function u is of class C1 on
[0, 0] and

du
(0)= Auo + q (ro)a.

dt

We shall make use of the following "local semigroup property":
PROPOSITION 2. If (Ul, Crl) is a solution of (2.1) on [0, 01] with initial data

(Uo, ro) and if ((t, ) is a solution of (2.1) on [0, 0z] with initial data (ux(01), rx(O))
then the ]’unction (u, or) defined on [0, 01 + 02] by

u(t)=Ul(t) if t[0,01], u(t)=a(t-Ox) if t]O,Ol+Oz],

o-(/) crl(t) if [0, 0], o’(t) d’(t- 0) if ]01, 0x + 02]

is a solution of (2.1) on [0, 0x + Oz] with initial data (Uo, cro).
Proof. It suffices to observe that, since u(O1)tD(A) the function t7 is differenti-

able at 0 and

dUl (01)=
dt -’ (0)= Au(Ox)+ o(o’(Ox))a.

3. Stability. Assume o(0)= 0, so that system (2.1) admits the zero solution. The
zero solution of (2.1) is said to be stable in the large if: (i) for each (Uo, cro) there
exists a solution of (2.1) on / with initial data (u0, r0) (uniqueness is insured by
Proposition 1); and (ii) there exists a continuous strictly increasing function II:
/ with II(0)= 0 such that, for any solution (u, r) with initial data (Uo, O’o) and any
r>0,

I(Uo, O’o)le<-r implies I(u(t),r(t))leII(r) for all t>=0.

The zero solution is said to be uniformly asymptotically stable in the large if it is stable
in the large and if, for any bounded set N in o, the solution (u, r) of (2.1) with initial
data (Uo, ro) tends to 0 as + oo, uniformly with respect to (Uo, O-o) .

We now state our main result.
THEOREM 1. Assume the following conditions hold:
(i) rq(r)>0 for all rR, r#O (so thatq(O)=O);
(ii) (b, A-la}>O and there exists q >=0 such that

Re (1-isq)(b, (islC-AC)-lA-la)Hc-q(b,A-la)<=O for all s >=0.

Then, the zero solution of (2.1) is uniformly asymptotically stable in the large.
Proof. Our proof is in two steps, but let us first introduce some functions we use in

the sequel. Since g, is locally Lipschitz, there exists a continuous strictly increasing
function :// such that for each r _>-0,

Io(r)- (r2)l-< e(r)lrl- r21 for all r, r2 [- r, r].

Define vx: R+ + by

v,(r) 2r(1 + (M + 1)lb IlA-le()).
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Next, for any r > 0, denote by 0 the unique solution of
0

0 + Jo I(b, S(s)A-la -A-a)] ds (2e(l(r)))-1

and put z(r)=inf(0, 1),z(0)=limr_,oz(r), so that the function z R+ --> ]0,1] is
continuous and decreasing.

Step I. We prove that the zero solution of (2.1) is stable in the large and all the
solutions of (2.1) tend to zero as + oo.

Fix an arbitrary r > 0 and choose an arbitrary (Uo, ero)e with

(3.1) ](Uo, ero)le <= r.

Denote by qg the subspace of C([0, z(r)]) consisting of functions er which satisfy
er(0) ero and <-  l(r) on [0, Clearly, c8 is a complete metric space. By using
(2.3) and the choice of ’, Pl and T, we see easily that the operator 0-//defined by

ller(t) ero + (b, S(t)A-Xuo- A-luo) + J0 q(er(s))(b, S(t- s)A-Xa -A-Xa) ds

is a strict contraction in . It follows that the integral equation (2.6) possesses a unique
solution erl on [0, r(r)] and lerxl =< ,l(r) on [0, ’(r)]. Let ux be the function defined on
[0, z(r)] by (2.7), so that lUll <-ixl(r) on [0, z(r)], where Ixx: R+N+ is defined by

/2,1(0)-- m(o + ol-llalpl(O)t(pl(O))).
According to Proposition 1, (Ul, erl) is a solution of (2.1) on [0, r(r)] with initial data
(uo, ero). It is of importance to the remainder of the proof to note that the interval of
existence of this solution and the estimates

(3.2) lUll_-<ixx(r), [erll-<,l(r) on [0, z(r)]

do not depend on the initial data satisfying (3.1). Note also that Ixa and Pl are
continuous, strictly increasing and txa(0)= Ul(0)= 0.

Put ua(z(r))= to and era(r(r))= o. By applying the local semi-group property, we
see that, if (t, d’) is a solution of (2.1) on N+ with initial data (rio, do), the function
(u, er)defined on R+ by

u(t)-- Ul(t) if [0, r(r)], u(t)= a(t--(r)) if > z(r),
(3.3)

o-(t) o1(t) /f 6 [0, r(r)], er(t) c(t z(r)) /f > r(r),

is a solution of (2.1) on R+ with initial data (Uo, ero). According to Proposition 1, it
follows then that, in order to prove existence of a solution (u, er) of (2.1) on N+ with
initial data (Uo, ero), we have to prove existence of a continuous on N+ solution of the
integral equation

(3.4) d(t)=do+(b, S(t)A-o-A-lao) + q(d(s))(b, S(t-s)A-a-A-la)ds.

The main advantage in considering (3.4) instead of (2.6) consists in the fact that, since
o D(A), the function h defined on N+ by

h(t)=o+(b, S(t)A-Xao-A-aao)

belongs to C2([+) and by (2.3), the derivatives dh/dt, d2h/dt2 belong to La(N+),
while, if uoD(A), the second derivative of the similar to h term in (2.6) may have a
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nonintegrable singularity at 0; these properties of h will allow to apply to (3.4) the
results of [3, pp. 90-95].

Define the function ko on R+ by ko(t)=(b,S(t)A-la) and put p=(b,A-la),
k ko-O, so that (3.4) is written as

(t)= h(t)+ p(d’(s))k(t-s) ds.

Clearly, h, p, k and q verify conditions 1, 2 and 3 of [3, Thm. 3.1, p. 91]. Since the
resolvent of A is the Laplace transform of S [8, p. 482], we may write the Fourier
transform kTo of ko as

/o(S)= Io e’S’(b, S(t)A-la)t4c (b, (isIc-A)-lA-a)Hc,

so that, by (ii) all of the conditions in [3, Th. 3.1, p. 91] hold. It follows that (3.5)
admits a continuous on R+ solution and (t)-->0 as t--> +oe. Since (c(. )) tends
also to 0 and S satisfies (2.3), the function t defined on N+ by (2.7)with o" replaced by
and u0 by to tends to 0 as + oo. We see so that for any (uo, cro) , there exists a

(unique) solution (u, r) of (2.1) on N+ with initial data (Uo, O’o) and (u(t), cr(t))- 0 as

To prove stability in the large, we establish estimates on u and cr which are
expressed in terms of r and the parameters of the system (2.1), but do not depend on
the initial data satisfying (3.1). An integration by parts in (3.5) yields

dko(t)=h(t)+ (s)---(t-s)ds,

(3.8)

and 6 is defined on + by

(3.9)

with

where F is defined on N by
o

F(O)= fo q(s) ds

(0) go -1 + (K2p -2 + 2qo-0)1/2,

+q-d-"-
(+) L (+)

K IIh [1(.+, / q
c’(.+l

where

(t)= q((s)) ds,

so that, by using (2.3), we obtain

-1M(3.6) I(t)l<=[h(t)l+a lallbisupl*(s)[, for all t=>0.
sO

By using (2.3) and (3.2), we see that

(3.7) ]h(t)[ <= vz(r) for all => 0,

where the function vz: N+--,[+, v2(O)-vx(O)+(M+l)lbltxx(O)lA-al.(,), is continu-
ous, strictly increasing and vz(0)= 0. According to [3, (3.22), p. 93]

I(t)[ <_- O(F(h (0))) for all -> 0,
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clearly, F(0)=>0. Since o is continuous and satisfies (i), the function

R-I-
1 "-> [ 1(0) Pl(O) sup {l(s)l Isl--<

is continuous, strictly increasing and o(O)= O. Clearly, F(h(O))_ ol(r) and then, since
0 is increasing, we have

(3.10) [(t)[-<_ 0(COl(r)) for all t->_ 0.

Let us estimate K. By using (2.3), we see easily that

<--MlbllAaol.-’ L(N+)

By using the first equation of (2.1), Remark 1 and t0 Ul(’(r)), we see that

Aao= AS(z(r))uo+ o(ro)S(’(r))a -o(r(r(r)))a + (s)$(z(r)-s)a ds.
o dt

Use (3.2), dcrl/dt (b, u) and the Lipschitz property of 0 o’1 to see that

]d( ’)
dt (s) <-_[b[g(,(r))l(r) a.e. in [0, ’(r)].

Then, by (2.3), (2.4), (3.2), 0< -(r)=< 1 and the Lipschitz property of o it follows that

(3.i)
a

(r),

.N/where 3 is defined by

note that, by the properties of the functions involved in the expression of 3 and since,
by (ii), we have a 0, b 0, it follows that u3 is also continuous, strictly increasing and
u3(0) 0. By (2.3) and (3.2)

]d] NM[bll(r) and ]d][L(+) L(+)

so that, by taking into account (3.7) and (3.11), we have

(3.2) 4(r),

where : N+ N+ is defined by

4(0) z(O)+(q +-)Mlb[(O)+q3(O).
By collecting (3.9), (3.10)and (312), we see that i(t)l s(r)for all 0, where

.N+5 is defined by

(0) 4(0)- + [(o)o-+ 2qa-l(O)]/.

.R+Then, by (3.6) and (3.7), it follows that [(t)[ p6(r) for all 0 with p6

defined by

and so, by (3.2) and (3.3), we deduce

I(/)l P6(r) for all 0.
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Note that /"6 is also strictly increasing, continuous and P6(0)’-0. By using (2.3), (2.7)
and the Lipschitz property of o, we see then that

I,u(t)l-/x2(r) for all => 0,

with/x" +--> + defined by
-1/x2(0) M(O + a

So, for any (Uo, cro)6 satisfying (3.1), the solution (u, tr) of (2.1) on R+ with
initial data (Uo, tro) satisfies

[(u (t), r(t))le II(r),

where II (/x 22 + v62)x/2. Clearly, II is continuous, strictly increasing and Ii(0) 0. Since
r > 0 is arbitrary, we deduce that the zero solution of (2.1) is stable in the large.

Step II. To complete the proof of Theorem 1, we establish that for each bounded
set Y3 in and each e >0, there exists T>-0 such that any solution (u, tr) of (2.1) on
I+ with initial data (Uo, o’o) satisfies [(u(t), cr(t))le _-< e for all _-> T.

Suppose the above claim does not hold. There exist then a bounded set in ,
e > 0, an increasing sequence (0,) of positive numbers with 0, - + oo and a sequence
((u", rn)) of solutions on + with initial data (u, r) Y2 such that

(3.13) [(u "(0.), r" (O.))le > e for all n e N.

Since (u;, tr;) belongs to the bounded set N, the global stability insures that the
sequences of functions (u") and (trn) are uniformly bounded on [/ and then, by
&r/dt (b, u") it follows that the sequence (&r"/dt) is also uniformly bounded on
R/. Apply then the Ascoli-Arzela theorem to the sequence of real functions (o-") to
see that it admits a subsequence which converges uniformly on the compact sets in
to a continuous function & Clearly, we may assume that the initial sequence (o-")
possesses this property. Now the sequence ((u, tr;)) is bounded in , so that it admits
a subsequence which converges weakly to an element (ao, o)e . Clearly, we may
assume (u"o, tro) (ao, to) weakly in Y(, so that Uo .- Uo weakly in H and tro o in [.

According to Proposition 1, we have, for all ->_ 0 and all n N

r (t) tro+(b,S(t)A-luo A-a"- Uo)+ q(tr"(s))(b, S(t-s)A-Xa-A-la) ds.
o

We let n - oo. Since we have

(b,S(t)A-lu,,_o A-Uo>=((A x)*S*(t)b-(a X)*b,u)

(the symbol * stands here for the adjoint operator), u to weakly in H, tr o in R,
o-" - d" and q(tr"(. ))- o(t(. )) uniformly on [0, t], it follows that t is a solution of
the integral equation (2.6), continuous on I/, with tro replaced by d’0 and Uo by to.
Define t on t/ by (2.7) with Uo replaced by to and tr by d’, so that, by Proposition 1,
(t, d-) is the solution of (2.1) on [+ with initial data (to, d-). Now we have seen in Step I
that all of the solutions tend to 0 as t- + oo, hence there exists T’=> 0 such that

(3.14) I(a(t),(t))le<=2-1II-l(e) for all >- T’,

where H-x is the reciprocal of the continuous strictly increasing function Ii con-
structed in Step I.
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Since rn uniformly on compact sets in R+, it follows by (3.14) that, for any
>- T’, there exists N’t N such that

(3.15) Icr"(t)l<-2-1/zII-X(e) for all n _->N’t.

Since the sequence ((u;, o-;)) is bounded, there exists r > 0 such that ](ao, d’o)[ _-< r and
[(u, o-)1 _-< r, so that the global stability implies

I(a(t), (t))le-<-rI(r) and I(u"(t), r"(t))le-<-l-I(r) for all t>_-0 and all n(3.16)

Since

and

a(t)= S(t)(o + q((s))S(t- s)a ds

u"(t)=S(t)u + o(r"(s))S(t-s)ads,

we may use the Lipschitz property of o, (2.3) and (3.16) to see that

[u"(t)- a(t)l <- 2Mre-’ + a-la[Me(II(r)) sup Io’"(s)-d’(s)l,
s[0, t]

for all >= 0 and all n e N. Combine the above estimate, (3.14) and the fact that o-" -uniformly on compact sets in R+ to deduce that there exist T -> T’ and N N, N => Nr,,
such that

[u"(T)[<-_2-/2II-(e) for all n _->N.

Then, by taking into account (3.15), we see that

I(u"(T), cr"(T))[g-<l-I-a(e) for all n >-N,

whence global stability combined with the semigroup property implies

I(u "(t), o-n(t))]g_-< e for all n _-> N and all _-> T.

But the above estimate contradicts (3.13) for large n. The proof of Theorem 1 is
complete.

Remark 2. Theorem 1 allows us to see that the derivative of a solution (u, r) with
initial data (Uo, ro) tends to zero as +, uniformly with respect to (Uo, ro) in a
fixed bounded set . Indeed, since &r/dt =(b, u), one has do’(t)/dt-O as t-
+oo, uniformly with respect to (Uo, o’0) . Next, the Lipschitz property of q and
stability in the large imply

(t) _<-- e(n(r)) (t) a.e. in

where r=sup{lx[’x e N}. Use then the above estimate, Remark 1, (2.3), (2.4) and
do-(t)/dtO as t- +oo, uniformly with respect to (Uo, O’o)e, to deduce that
du(t)/dt-O as t +oo uniformly with respect to (Uo,ro)eg. Since d2cr/dt2=
(b, du/dt), it follows also that d2r(t)/dt2O as t +oo, uniformly with respect to
(Uo, ro)e .

Remark 3. One may express the frequency domain condition in terms of A and
A2 instead of A and, in this form, it is sometimes easier to check. Note first that, since
the resolvent set of A contains the imaginary axis, one has for all s _>-0 and x H

(sI+A2)- (H) and (isI-A)-Xx -A(s2I+A2)-x-is(s2I+A2)-Xx.
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Then we see by standard calculations that condition (ii) of Theorem 1 may be written:

(3.17)
(b,A-a)>O and there exists q=>0 such that

(b, (I +qA)(sI +A)-a)>=O for all s ->0.

Note that conditions (3.17) hold in the case in which for some c > 0 and k < 0 the
operator -(A + aI) is m-sectorial with vertex 0 and b ka 0; this case, with A a
differential operator, is significant in reactor dynamics. Indeed, in this case

(b, A-a k(AA-a, A-a > 0

(use the fact that (Ax, x)<=-lxl= for all x D(A)). Next, put (sI+A2)-a=a, so
that for all s => 0 and all q > 0 we have

(b, (I + qA)(sI +A2)-a)= qk{(s + q-2)((A + q-I)as,

+ ((A q-lI)(A + q-lI)a,, (A + q-lI)a)}.

It follows that (3.17) holds with any q =>a -1 (use the fact that A-q-XI is negative for
all q > 0 and A +q-I is negative for all q >-ce-1).

One may obtain stability results under weaker regularity assumptions on q,
provided that A satisfies some stronger conditions. Let us mention the following one.

Remark 4. Assume that q is continuous, A is selfadjoint and for some a > 0,
A +I is negative. Note that then -A is the subdifferential of a function which is
proper, convex and lower semicontinuous on H [1, p. 11-29]. Modify the solution
concept as follows. The function (u, r) from [0, 0] to X is said to be a solution of (2.1)
on [0, 0] with initial data (u0, o’0) if it satisfies the conditions: (i) u is continuous on
[0, 0], absolutely continuous on any compact interval in ]0, 0[, u(0)= u0 and

du
u(t) D(A), - (t)= Au(t)+ o(o’(t))a, a.e. in ]0, 0[;

(ii) o" is of class C on [0, 0], o-(0)= o’0 and

do"
d- (t)= (b, u(t)) on [0, 01.

It is clear that Proposition 2 still holds true and, by using [1, p. III-20], we may see
that Proposition 1 holds also true but without uniqueness. Assume further that
conditions (i) and (ii) of Theorem 1 are satisfied. We may deduce local existence of the
solutions by using, for instance, [15, p. 36]. Then proceed as in Step I of the proof of
Theorem 1 to obtain the integral equation (3.4)with aoeD(A). By applying again [3,
p. 91], we see that for each (Uo, r0)e
with initial data (u0, o0) and, in addition to this, any solution of (2.1) on N/ tends to
zero as t-> +

Remark 5. One may obtain results similar to those of Theorem 1 by invoking
instead of [3, Thm. 3.1] the frequency domain criteria for Volterra integral or
integro-differential equations established recently in [17], [19]. In this way it is
possible to drop the regularity condition (2.2) provided that one uses a weaker
solution concept and one requires some additional growth conditions on q.

Exponential estimates may be obtained by linearisation when q satisfies some
additional conditions.

COROLLARY 1. Assume the conditions of Theorem 1 hold and denote by 9-(. )Xo
the solution of (2.1) on R+ with initial data Xo (Uo, Cro); assume moreover that q is
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differentiabIe at 0 with (dq/dr)(O)> O. Then there exists w > 0 such that]or each bounded
set in Y( we may find C >- 1 with

(3.18) I’(t)Xolg <= C e-"lXolg for all >= 0 and Xo .
If, in addition to the above assumptions, the function

(3.19) (rl, r2)--
q9 (rl)- q (r2)

rl r2
admits a limit as (rl, r2) (0, 0),

then ]:or each bounded set in Y( we may find C’ >= 1 with

(3.20) I’(t)Xo--(t)Jo]<-C e-’lXo-Jol for all t>=O and Xo, JoS.
Proof. Consider first the special case in which o is linear, o(r)= mr, with rn >0

and denote then by oW(. )Xo the solution of (2.1) on R/
with initial data Xo. By using

Proposition 2 and the linearity of (2.1), we see that 6e is a linear Co-semigroup on Yg

and then Theorem 1 combined with [5, Lemma 1] implies the existence of C1 >= 1 and
w > 0 such that

(3.21) Iow(t)le(e) -<_ C1 e -’1’, for all =>0.

Consider now the case of a nonlinear q and put (dq/dr)(O)= m. Clearly, o(r)=
mr + ro*(r) for all r e I, with o* continuous on N and q*(0)= 0. Define the operator
M in Yg by sg(x,r)=(Ax +mra, (b,x)), with D(sg)=D(A)xN and define *: Yg-*

by *(x, r)= (rq*(r)a, 0). Then ’(. )Xo is the solution of the inhomogeneous problem

dX
MX +O*(-(t)Xo), X(0)= Xo.

dt

As seen above, M is the generator of a linear Co-semigroup 5e which satisfies (3.21)
for some C1 -> 1 and ol > 0. It follows then by [8, p. 486] that

(3.22)
(t)Xo=(t)Xo+ (t-s)*(-(s)Xo)ds, for allt0 and Xoo.

Fix e ]0, o)1[ and let be a bounded set in . By using the properties of o*, it
follows that there exists > 0 with

(3.23) for all X

By Theorem 1, there exists r >_-0 such that

(3.24) [-(t + ’)Xole --< 8, for all => 0 and Xo e 9.

By using (3.21), (3.22), (3.23), (3.24) and the semigroup property of , we see that for
all => 0 and Xo e

hence, by the Gronwall-Bellman lemma,

(3.25) I-(t + )Xol.-<- c e-’+)l-()Xol., for all

where o =wl-e >0 and Cz=Ce’’. On the other hand, by using (3.21), (3.22), the
fact that * is locally Lipschitz with *(0, 0)= (0, 0) and again the Gronwall-Bellman
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lemma, we see easily that

(3.26) I(t)Xole < c3lXole, for all [0, 7"1 and Xo .
Clearly, (3.25) and (3.26) imply (3.18) provided that C >- 1 is sufficiently large.

Assume now that (3.19) holds, so that there exists a function *’R2R with
O*(rl, r2) 0 as (rl, r2) 0, satisfying for all (ra, r2) R2,

(3.27) rlq*(rl)- r2q*(r2) q(ra)-q(re)-- m(rl-- re) (ra- re)*(rl, r2).

By (3.22), it follows that for all ->_ 0 and Xo, .0 , we have

-(t)Ro 5(t)(Xo-o)+ Io (t-s)[*(3-(s)Xo)-Cb*((s)Y72o)] ds.(3.28) 3(t)Xo

Choose 6’ > 0 such that

Cl[a[[*(ra, r2)l =< e, for all (rl, r2) 2 with sup ([rll, [r21)--< 8’

and choose z’_-> 0 such that

[3"(t+r’)X[g<-_6’ for allt_>-0 and X;

hence, by using (3.21), (3.27), (3.28) and the semigroup property of 3-, we see that

el’13-(t + r’)Xo- 3-(t + "
_-< cl-(z’)Xo 3-(z )Xo[g+ e e I-(s + )Xo

3-(s + z’)’olg ds, for all _-> 0 and X0, o .
Further on the proof of (3.20) follows as in the final part of the proof of (3.18).

Note that condition (3.19) holds when, for instance, o is of class C on some
neighborhood of 0; in particular, it holds in the physically interesting case q(r)=
e’-1.

A question which seems of importance when (2.1) serves as a mathematical
model of a physical system is the sensitivity of its stability property with respect to
small perturbations in parameters, in other words, the structural stability of (2.1).
Theorem 2 below furnishes a partial answer to this question by using the following
version of the frequency domain criterion for integral equations:

LEMMA 1 (Cf. [3, p. 134]). Consider the integral equation

(3.29) o’(t)= h(t)+ q(o’(s))k(t-s)ds

and assume that the following conditions hold:
(i) dh/dtLa(R+) and d2h/dt2La(+);
(ii) k ko-p, where p is a strictly positive constant,

ko La(R+) and dko/dt L’(+).
Assume in addition to this that there exist q >-_ 0 and 3’ > 0 such that

(iii) the continuous function 0 satisfies 0 < ro (r) < r23" for all
r , r : 0; and
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(iv) Re (1 isq)[lo(s)+ (is)-’p] <-_ 3"-i for all s > O.
Then there exists a solution of (3.29) continuous on R+. Moreover, any solution r o]’
(3.29) continuous on R+ tends to 0 as --> + oo and satisfies

Io’ q (or(s)) ds <-_ O(F(h (0))) for all >- O,

where F and b are defined by (3.8) and (3.9) respectively.
For each 3’ > 0 consider the set Gv of couples (a, b) e H xH satisfying

(3.30)
(b, A-la) > 0 and there exists q -> 0 such that

Re (1- isq)(b, (islC -AC)-lA-la)Hc -q(b, A-la) < 3"-1
and the class v of locally Lipschitz real functions q satisfying

O<ro(r)<3"r2 for allrR,r0.

for all s-> 0

THEOREM 2. Let 3" be a strictly positive number. Then G is open and for each
(a, b) G and each q the zero solution of (2.1) is uniformly asymptotically stable
in the large.

Proof. For any q define the function Wo: N xH xH It by

(3.31) gro(s, a, b)= Re (1-isq)(b, (islC-AC)-IA-la)Ic-q(b,A-a)

and put

Go
v {(a, b) H x H’(b, A-la) > 0 ando (s, a, b)< 3"--1 for all s > 0}.

Since

we have

(isI-AC)-lA-la (is)-l[A-la +(isI -A)-la] for all s >0,

Wo(s, a, b)= Re (q + is-1)(b, (isI -A)-Xa)vi
+oo

Re (q + is -1) Jo e’(b, S(t)a) dt(3.32)

for alls>0 and (a,b)eHxH,

hence, by applying the Riemann-Lebesgue lemma, it follows that for all (a, b)
H x H, qq (s, a, b) 0 as s + oe. Put o + eo, a, b) 0 and then, since o(", a, b) is
continuous on [0, +oo], it attains its lower upper bound mq(a, b)on [0, +oo]. Clearly

G {(a, b) H x H’(b, A-la) >0 and mo(a, b)< 3"--1}.
Apply (2.5) with n 1 to see that o(s, "," is continuous on H x H, uniformly with
respect to s e [0, +oo] (use (3.31) for s [0, 1] and (3.32) for s e [1, +oo]). It follows
that mq is continuous on H x H, hence Gq is open and then Gv I..J q_->o G is also
open.

To see that the zero solution of (2.1) is uniformly asymptotically stable in the
large, we may follow the same way as in the proof of Theorem 1; we have just to invoke
Lemma 1 instead of [3, Thm 3.1, p. 91].

Remark 6. Since o(’, a, b) is bounded from above on +, for each (a, b)
H xH with (b, A-a)>0, conditions (3.30) hold with q 0 provided that 3" >0 is
small enough. It follows then, by Theorem 2, that for each (a, b)HxH with
(b, A-a)>0 the zero solution of (2.1) is uniformly asymptotically stable in the large
provided that o e with sufficiently small 3" > 0.
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4. Further considerations. Proposition 3 below shows that the conditions on a, b
and A required in [7] to insure for all functions q belonging to a specified class
uniform asymptotic stability and exponential estimates may be viewed as a specializa-
tion of the conditions on a, b and A in Theorem 1. Note also that the class of functions
q considered in [7] is more restrictive than the one of Theorem 1 and closely related
to that of Corollary 1. Let us first state the following:

LEMMA 2. Let C be a linear operator in a complex Hilbert space X. If C generates a
bounded holomorphic semigroup, then for all s > 0 one has (I + s -a C2)-a (X) and

(4.1) (! + s-1C2)-lx x as s + for all x X.

Proof. By [8, pp. 488-489], saying that C generates a bounded holomorphic
semigroup is equivalent to the following: C is densely defined, there exists co > 0 such
that the resolvent set P(C) of C contains the sector larg A I< 2-ar + co and for each
e e ]0, to[ there exists K => 0 such that

(4.2) for allheC, largAl<2-aTr+co-e.

Then, since

(I + s -a CZ)x s-a( isa/ZI C)(isl/2I C)x

it follows that (I + s-1C2)-1 (X) for all s > 0.
Let us show that for all e ]0, co[ and x X,

(4.3)

for all s > 0 and x D(C2),

(I-A-1C)-lx-->x as I*lc, *C, largXl<-2-17r+co-e.

If x D(C), we have

I(I- c)- x xlx I( I Cxlx <- l- lfxlx,
hence (4.3) holds for all x D(C); then use the fact that D(C) is dense in X and the
fact that, by (4.2), the operators A (M- C)-1, e C, larg A -< 2-1r + co e, are uni-
formly bounded, to see that (4.3) holds for all x X.

For all x e X and s > 0 we have

(I + s-1CZ)-lx x isa/2( isa/2I C)-1 [(I + is-1/ZC)-lx x]

+(i-is-/2C)-ax-x,
hence (4.1) follows by applying (4.3) and the fact that, by (4.2), the operators

isa/2( isa/2I- C)-a, s > 0, are uniformly bounded.
PROPOSITION 3. Let A be a linear operator in H and let a, b be elements in H.

Assume the following conditions hold: a # 0; A generates a bounded holomorphic
semigroup there exists an operator B (H) which is selfadjoint and such that Ba

b, (x, Bx) >= ylxl2 for some 3’ > 0 and all x Hand (x, BAx) <- lxl= for some tx > 0
and all x D(A). Then there exists a > 0 such that Ac+ aI generates a bounded
holomorphic semigroup and conditions (ii) of Theorem 1 hold.

Proof. For each (x, y) H xH put (Bx, y)= (x, y)l. By using the properties of B,
we see that .,. )1 is an inner product on H and the norm [. ll associated to this inner
product is equivalent to the initial one I" I. Denote by H1 the space H endowed with
inner product (.,.)1, so that H1 is also a real Hilbert space and denote by H the
complexification of Ha.

By using the properties of B, we see easily that the operator A +/I with

.(u) is dissipative in H1. Since A generates a bounded holomorphic semi-
group, it follows that A is densely defined, there exists co > 0 such that the resolvent
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set P(Ac) of A contains the sector [arg A <2-azr +w and for each e e ]0, w[ there
exists K > 0 such that

(4.4) ](hi a)-a[se(Hc) <KIA[-a for all A C, ]arg A[ < 2-1 7r -k- .O

We see that for all A >/3, the range of hi -(A +/3Ic) is all of H. It follows then that
A +/3I is maximal dissipative in H, so that A +/3I generates a contraction
semigroup on H, so that A +/3I generates a contraction semigroup on H [18].
Since the norms I. [He and l. [n are equivalent, we see then that A +/3I generates a
bounded Co-semigroup on H*. Choose now a e ]0,/3[. By applying the Hille-Yosida
theorem to A +/3Ic, we see then that P(A +aI) contains the half-plane Re h >

(/3 a) and .there exists K > 0 such that

(4.5)
I[hI (A + alC)]-x[(n.) <- K(Re h +/3 __ff)-I

for allAeC, ReA>-(/3-a).

By the above properties of A, it follows that P(A +aI) contains the sector
]arg (h a)[ < 2-aTr + o) and, by (4.4), one has for each e e ]0, w[

(4.6)
I[AI -(A + aIC)l-X[e(z)<-K [A a[-a

for all h C, [arg (A ce)] < 2-1 7r -+- (.O

Since P(A +aI) contains the sector [arg (h a)[ < 2-1 zr + o) and the half-plane
Re h > (fl a), where /3 a > 0, we may find w’ ]0, w[ such that P(A + aI)
contains the sector ]arg hi< 2-1 zr +o9. We claim moreover that for each e ]0, w[
there exists K’ > 0 such that

(4.7) 1[I (A + aI)l-lle(Hc)=< K’IA -a for all e C, [arg [<- 2-1= + w’- e,

so that A +aI generates a bounded holomorphic semigroup. To establish the
existence of K’>0 such that (4.7) holds, denote by ho the intersection of the lines
arg h 2-1zr+o -e and ReA =-(fl-a) and denote by O the compact set in C
deliminated by the lines larg hi 2-aTr+ w’-e, Jim h Im ho and Re h 2a then use
(4.5) for A Q and (4.6) for h C satisfying

]argAl<2-1 7rq’- ]arg ( a)[ _-< arg o, A O.
To see that conditions (ii) of Theorem 1 hold, we apply Remark 3. Clearly,

b, A-Xa (Ba, A-la (A-Xa, BAA-Xa >= x [A-Xa 12
and then, since a 0, it follows (b, A-Xa)> 0. Next, by using the properties of B, we
see that

(b, (I + qA)(sI +A2)-Ia
qs((sI +A2)-aa, BA(sI +A2)-1a

-q(A(sI + A2)-la, BA2(sI + AZ)-aa)-(Ba, (sI + A2)-la),
hence

(b, (I + qA )(sI +A2)-aa >- ixqsl(sI +A2)-aa l2 + ixqlA (sI + A2)-la
(4.8)

-Inall(sI+A2)-la[ for all s =>0 and q =>0.

Then, since the functions s->(sI + A2)-la and s-->A(sI + A2)-la are continuous, there
exists q > 0 such that

(b,(I+qA)(sI+A2)-la)>=O foralls[0,1] and q>-ql.
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On the other hand, for all s > 0 and q -> 0 we have, by (4.8)

(b, (I +qA)(sI +A)-a)>-s-l{ql(I +s-A)-lal2-1Bal[(I +s-Aa)-al}
and then, by Lemma 2, we may find q2 ql such that

(b, (I + qEA)(sI +A2)-1) __> 0 for all s > 1,

hence conditions (3.17) hold with q q2.

To illustrate the application of the results in 3 to special systems, we consider
problem (1.1), (1.2), although integro-differential systems with more general elliptic
operator A may be discussed in a similar way. In the remainder of this section, we
assume that the parameters of (1.1), (1.2) satisfy the following conditions: pie

CI([yl, Y2]) and pl>0 on [y, Y2]; P2 C([yl, 72]) and p2_-<0 on [’}/1, y2]; the real
constants 8i,/" 1,..., r, satisfy (1.4) and 88_-<_0, 838_->0; either p2 0, or 181+
[t3[ 0; a and b belong to L2(71, TE); the function p:- is locally Lipschitz and

rp(r):> 0, for all rff,rO.
Put H L(yl, y2) and define A in H by (1.5) with domain D(A) consisting of

functions x CI([yl, 3’2]) such that dEx/d2 LE(y, 3’2) and

dx
lX (’1) + 2 (’Y1) O,

a{
13x (2) -1" t4 (2)-- 0.

a
According to [4, chap. V, 14 and chap. VI, 2], the above assumptions imply the
following’ A is selfadjoint; the spectrum of A consists of a strictly decreasing
sequence (hn)n-0 of simple, strictly negative eigenvalues; the sequence (hnn-2)no
possesses a finite nonzero limit; the system (en)n->o of associated eigenvectors with

len 1 is a Hilbert basis of H; the functions en, n N, are real, uniformly bounded and
belong to C2[(yl, y2]); A- hoI is negative.

Clearly, system (2.1) may then be viewed as an L:-version of problem (1.1), (1.2)
and since A generates a Co-semigroup S which satisfies (2.2) and (2.3), we may apply
to (2.1) the results in 3. Denote the Fourier coefficients of a and b with respect to en
by an and bn respectively. Then, by using Remark 3, we see that conditions (ii)of
Theorem 1 may be written:

(4.9)
A- a,,b,, > 0 and there exists q -> 0 such that

n---0

(1 + qAn)(s + A n) anbn >= 0

In [2] it was established that if

for all s-> 0.

and if a,,, bn and verify some additional conditions, then the zero solution of (1.1),
(1.2) is asymptotically stable in a specified sense. We note that the assumption (4.10)
already insures uniform asymptotic stability in our setting, for (4.10) implies (4.9) with

Theorems 1, 2 and Corollary 1 furnish stability results for the L:-version of
problem (1.1), (1.2) under the norm of L2(yl, y2). Most of the previously established
stability results for the problem (1.1), (1.2) are in terms of classical solutions and
stronger norms (cf. [2], [9], [11], [12]). That is why it seems interesting to show that in
fact, the solutions of the L2-version satisfy (1.1), (1.2) in some classical sense and

(4.10) for all n N, anbn <- O, and there exists m N with a,,,b,,, < O,
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stability results under a stronger norm hold. Given (To, cro) in L2(yl, y2)x R, we
say that the couple of functions (T, r),

T: ]0, +oo[ [3,1, 3,2] o-: [0, +ce[- ,
is a classical solution of (1.1), (1.2) with initial data (To, Cro) if the following conditions
hold: T CI(]0, +oo[[yx, 72]) and o’ C1([/); for each t]0, +oe[ one has
02T(t, )/0 L2(yl, 72); (T, r) satisfies (1.1), (1.2) and (1.3).

We limit ourselves to derive a "classical" version for Theorem 1. Note however
that such versions may be obtained also for Theorem 2 and Corollary 1 and clearly
they have physical significance.

THEOREM 3. Assume conditions (4.9) hold. Let (To, tro) be an arbitrary element in
and denote by (u, tr) the solution of (2.1) on + with initial data (To, tro). Then

(T, o-), where T(t, )= u(t), 6 ]0, +eo[, is the unique classical solution of problem
(1.1), (1.2) with initial data, (To, cro). Moreover, for any bounded set c , the
solution (T, tr) of (1.1), (1.2) with initial data (To, tro) satisfies

(4.11)
cr(t)O, &r(t)/dt-O, d2cr(t)/dt2O, sup IT(t, )[0,

[’Y1, ’2]

[’Yl, "2] " (’ ) -’) O, [’yl,SUpv21 -- t, s) - 0 and -’ t, j d ") 0

as + o, uniformly with respect to (To, cro) .
Proof. Clearly, (T, r)satisfies (1.3). Since for all t ]0, +oe[ we have u(t)D(A),

it follows that T(t,. ) CI([yI, y2]), 02T(t, )/O:2 L2(3,1, 3/2) and (1.2) holds. For each
(t, :, r/) ]0, +o0[ [71, 72]2 put

K(t, , r/)= E en()en(r/)exp (Ant).
n--O

By using the classical theory of the heat equation, we see that for all x L2(3,1, "/2) and
all (t, :) ]0, +eo[ x [3’1, 3’2],

(4.12) (S(t)x)()= K(t,,l)x(*l)d*l E xnen()exp(hnt),
n=O

where Xn is the Fourier coefficient of x with respect to en. Hence by using (2.7), we
may see that for all (t, :) ]0, +oo[ x [3"1, 3"2],

(4.13) T(t,:)= K(t,, n)To(n)dn+ o(r(t-s))ds K(s,, n)a(n)dn.

Then it is easy to see that T is continuous. Since cr is Lipschitz, it follows also that
OT/Ot exists on ]0, +co[ x [3"1, 3"2] and

(4.14)

hence we may see that OT/Ot is continuous on ]0, +oo[ x [3"1, 3"2]. The existence of the
derivatives OT/Ot (in the classical sense) and du/dt (in the L2-sense) implies for each
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]0, +[

du(t)/dt OT(t,. )/Ot a.e. in ]]/1, ]/2[.

Then, since (u, o’) is a solution of (2.1), we deduce that (T, o-) satisfies (1.1).
By integrating the first equality in (1.1) on [0, s] with respect to the second

argument, we see that OT/O is continuous on ]0, +c[ [/1, /2] whenever OT(., O)/O
is continuous on ]0, +[. Then divide the equality obtained in this way by px and
integrate once more to see that OT(., O)/Os is continuous.

Uniqueness of the solution with initial data (To, tr0) follows by the Lipschitz
property of o and the uniqueness for the classical solutions of the associated homo-
geneous heat equation.

The claims concerning the first five limits in (4.11) follow easily by applying
Theorem 1, Remark 2, (4.12), (4.13), (4.14) and the obvious estimate

(t) _-< e(sup [(s)l) --(t) a.e. in
dr

Then, by using the first equation in (1.1), we see that

O [ OT.t ] L2
(4.15) Pl(’)’(," o0 in (]/1, ]/2) as t- +,

uniformly with respect to (To, tr0) .
An integration by parts yields for all ]0, + c[,

OT OT
px(]/2)T(t, ]/2)’ (t, ]/:)--px(]/)T(t, ]/1)-- (t, ]/1)

r(t, ,) p() (t, ,) ,.
By (1.2), (1.4) and _-< 0, 340, it follows that the integrated term in the above
equality is negative. Then use the Cauchy-Schwartz inequality, (4.15), the fourth limit
in (4.11) and the properties of p to see that

OT
p(. )--5--; (t,.)o0 in L2(]/, ]/2) as

(4. a
uniformly with respect to (To, o’0) N.

Now, (4.15)implies that for some r > 0, the functions p(. )[OT(t, )/0:], _-> z, (To, o’0)
N, are uniformly equicontinuous and this, combined with (4.16) and the properties of
p, yields the claim concerning the sixth limit in (4.11). The claim concerning the
seventh limit in (4.11) follows then by (4.15).

REFERENCES

[1] H. BREZIS, Oprateurs Maximaux Monotones et Semi-groupes de Contractions dans les espaces de
Hilbert, Lecture Notes No. 5, North-Holland, Amsterdam/New York, 1973.

[2] T. A. BRONIKOWSKI, J. E. HALL AND J. m. NOHEL, Quantitative estimates for a nonlinear system of
integrodifferential equations arising in reactor dynamics, this Journal, 3 (1972), pp. 567-588.

[3] C. CORDUNEANU, Integral Equations and Stability of Feedback Systems, Academic Press, New
York/London, 1973.



138 D. WEXLER

[4] R. COURANT AND D. HILBERT, Methods o]’ Mathematical Physics, vol. 1, Interscience, New
York-London, 1953.

[5] R. DATKO, Uniform asymptotic stability of evolutionary processes in a Banach space, this Journal, 3
(1972), pp. 428-445.

[6] N. DUNFORD AND J. T. SCHWARTZ, Linear Operators, part I, Interscience, New York, 1966.
[7] E. F. INFANTE AND J. A. WALKER, On the stability properties o1 an equation arising in reactor

dynamics, J. Math. Anal. Appl., 55 (1976), pp. 112-124.
[8] T. KATO, Perturbation Theory ]:or Linear Operators, Springer-Verlag, New York, 1966.
[9] J. J. LEVIN AND J. A. NOHEL, On a system of integro-differential equations occurring in reactor

dynamics, J. Math. Mech., 9 (1960), pp. 347-368.
[10] A system ofnonlinear integro-differential equations, Michigan Math. J., 13 (1966), pp. 257-270.
[11] A nonlinear system of integro-differential equations, Mathematical Theory of Control,

Academic Press, New York, 1966, pp. 398-405.
[12] ., The integrodifferential equations of a class of nuclear reactors with delayed neutrons, Arch.

Rational Mech. Anal., 31 (1968), pp. 151-171.
[13] R. K. MILLER, On the linearization o]’ Volterra integral equations, J. Math. Anal. Appl., 23, (1968),

pp. 198-208.
[14] , An unstable nonlinear integrodifferential system, Proceedings, U.S.-Japan Seminar on

Differential and Functional Equations, Benjamin, New York, 1967, pp. 479-489.
[15] ., Nonlinear Volterra Integral Equations, Benjamin, New York, 1971.
[16] J. A. NOHEL, Some problems in nonlinear Volterra integral equations, Bull. Amer. Math. Soc., 68

(1962), pp. 323-329.
[17] J. A. NOHEL AND D. F. SHEA, Frequency domain methods for Volterra equations, Advances in Math.,

22 (1976), pp. 278-304.
[18] R. S. PHILLIPS, Dissipative operators and hyperbolic systems of partial differential equations, Trans.

Amer. Math. Math. Soc., 90 (1959), pp. 193-254.
[19] O. J. STAFFANS, Positive definite measures with applications to a Volterra equation, Ibid., 218 (1976),

219-237.
[20] A. SUHADOLC, On a system of integro-differential equations, SIAM J. Appl. Math., 21 (1971),

pp. 195-206.
[21] J. A. WALKER AND E. F. INFANTE, On the stability of an operator equation modeling nuclear reactors

with delayed neutrons, Quart. Appl. Math., 34 (1977) 4, pp. 421-427.
[22] K. YOSIDA, Functional Analysis, Springer-Verlag, Berlin-New York, 1974.



SIAM J. MATH. ANAL.
Vol. 10, No. 1, January 1979

979 Society for Industrial and Applied Mathematics

0036-1410/79/1001-0016 $01.00/0

CARDINAL-TYPE APPROXIMATIONS OF
A FUNCTION AND ITS DERIVATIVES*

L. LUNDIN" AND F. STENGERt

Abstract. Whittaker’s cardinal function is used to approximate certain analytic functions in Sobolev
norm. L is of primary interest, although attention is also given to L2(-, o). Results are given for
functions defined on a general contour in the complex plane, and special treatment is given to the important
real domains (-oo, c) (- 1, 1) and (0, ). In all cases, it is slown that the approximations converge to the
function at the rate C exp (-cnl/2), where n is the number of points of interpolation and C and c are
positive constants.

1. Introduction. Recently a family of approximation methods has been derived in
[10] which is based on Whittaker’s cardinal function. These methods are extremely
accurate when applied to functions that are analytic on an interval (a, b), but which may
have singularities at a and b. Formulas were derived in [10] for interpolating f over
(a, b), for the approximate integration of f over (a, b), for approximating the Hilbert
transform of f over (a, b), and for approximating the Fourier transform of f over
(-c, o). The important cases of (a, b)=(-1, 1), (0, ) and (-c, ) were given
special consideration in [10].

The formulas derived in [10] as well as those derived in [9], [12] are shown in [11]
to be optimal in a certain sense. Let be a region in the complex plane having
boundary points a and b, and let denote the class of functions which are analytic in

and which have a finite norm, the norm depending on the particular method of
approximation. For example, [[fll [ o lf(z)l"ldz[] p->_ 1, for the case of quadra-
ture, while the case of interpolation, where b is a
conformal map of onto {w:[Im wl< zr/2} with b(a)=- and b(b)=c. It was
shown in [11] that the rate of convergence of an n-point optimal method of approxi-
mation is cIIfll exp (-cn 1/2) where C and c are constants depending only on and
the particular norm. The error of the formulas derived in [9], [10], [12] is also of the
form Cllfll exp (- cnl/2).

Optimal rules for solving elliptic boundary value problems by integral equation
methods are also being sought by Soviet mathematicians, notably Sobolev (see e.g.
[8]). However, these mathematicians are seeking optimal rules relative to Sobolev
norms, which demand only the existence of the integral of some power of the first m
derivatives of the function. Thus, their rules do not take advantage of a.e. analyticity
of solutions of elliptic boundary value problems that one encounters in applications.
The resulting rate of convergence which they achieve using an n-point approximation
is Cn f l[.

In the present paper we shall derive various n-point methods of interpolating a
function over an interval (a, b)which are analogous to those in [10]. The resulting
approximations may be used to approximate f, as well as a finite number of derivatives
of f over [a, b], to within an error which is uniformly bounded by cIIfil exp (-cn/2).
This was not possible by means of the approximation given in [10] for the case of a
finite or semi-infinite interval.

In 2 we establish our notation. In 3 we obtain some explicit expressions for
approximating derivatives over (-, c) by means of Whittaker’s cardinal function.

* Received by the editors October 26, 1976, and in revised form September 19, 1977. This work was
supported by the United States Army under Research Grant DAHC-04-G-0175.

" Department of Mathematics, University of Delaware, Newark, Delaware 19711.
t Department of Mathematics, University of Utah, Salt Lake City, Utah 84112.
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140 L. LUNDIN AND F. STENGER

In 4 and 5 we obtain some bounds on the error of L2 and L approximation of
derivatives over (-, ). In 6 we consider the general case of approximation of
derivatives over a contour in the complex plane, and we derive a basis for approxima-
tion, which is very nearly orthogonal and for which the coefficients of the approximate
orthogonal expansion may be very simply expressed. Finally, in 7 and 8 we consider
the important special cases of approximation over (- 1, 1) and (0, c).

Due to the simplicity and accuracy the approximations that we shall derive are
particularly useful for obtaining approximate solutions to differential and integral
equations via the Galerkin method. For example, given an elliptic differential equa-
tion Lu =g over a region f, the solution will be an analytic function of each
independent variable at each point in the interior of f whenever g and the coefficients
of Lu are analytic. If f c R 2 and if Of can be subdivided into a finite collection of
analytic arcs {Si} such that the boundary data, g and the coefficients in Lu are analytic
on the interior of each Si, then the solution u will also be analytic there. Approximate
n-point methods which converge more rapidly than C exp (-/’t 1/2) could be derived
if we knew the behavior of u at its singularities; however, this behavior is usually
unknown [2, Chap. 4]. It is in these instances that the approximations derived in this
paper are particularly powerful; since we know where the singularities of u occur, we
can subdivide f (or 0f, depending on the method of approximate solution) into a
finite number of subsets fi such that singularities of u occur only on the boundary of
each fi, and we can then approximate u on each D, by the methods of this paper. The
resulting approximation is accurate to within an error bounded by C exp (-cnl/(2d)),
where d denotes the dimensions of the region.

Let us briefly list some references in which approximations of this type have been
carried out. The solution of the problem Au k2u 0 via an integral equation method
was considered in [1], for a solution u in the exterior of a bounded domain f in the
plane subject to the condition u f on 0f, where 0f is the union of a finite number of
analytic arcs and f is analytic on the interior of each arc. An n-point Galerkin
approximate solution was obtained using approximations derived in [10], for which
the resulting error at any point exterior to f is bounded by C exp (-cnl/2).

In [7], a Galerkin method was derived for solving the integral equation problem

(1.1) :(x A Ioa K (x, y )/(y dy + g(x), x

in which 0D, is the surface of a body and consists of a finite number of "analytic"
patches {S}, K(x, y) is any one of several potential theory-type kernels (e.g., (O/On).
(l/r)), where h may or may not be an eigenvalue of (1.1) and where g is an analytic
function of two independent variables on each S. An n-point Galerkin approximate
solution was obtained using basis functions of the form 4(x)O(y) where b and i
were derived in [10]. The resulting error is bounded by C exp (--cn 1/’) at all points on

An n-point approximate solution was obtained in [3] for the Hilbert problem

F+ GF_ on

in which OO, consists of a finite number of analytic arcs {S} and G is analytic on each
S. The approximate solution is accurate to within C exp(-cn /2) at all points of

In [13] a method was derived for obtaining an approximate solution of Wiener-
Hopf integral equations. The methods of [10] were used there also. Under suitable
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assumptions of analyticity of the Fourier transform of the kernel of the equation and
of the nonhomogeneous term, the error of an n-term approximate solution may be
shown bounded by C exp (-cnl/2).

In the references cited thus far, it was not necessary to approximate derivatives of
solutions. In [4] an n-point approximate solution was obtained for the problem

y"= y y/x, y(0)= y()= 0,

using approximations derived in the present paper. The resulting error is bounded by
C exp (- cnl/2).

In [6] the scattered field due to an axially symmetric body in 3-space was
approximated via the Galerkin method of solution of a vector integral equation. The
assumptions under which the problem was solved are similar to those used in [7];
however, the integral equation formulation demanded an accurate approximation of
both the solution and its first partial derivatives in order to get a final n-point Galerkin
approximation of the scattered field for which the error at all points outside the body
was bounded by C exp(-cna/2). An approximation derived in 7 of the present
paper was used to carry out the procedure.

2. Background and notation, It is convenient to introduce several notations and
definitions which are used throughout the remainder of the paper. As usual, C denotes
the complex plane and R the real line.

For h positive, N a positive integer and f defined on R, we will be considering
each of the following functions"

(2.1) $(k,h)(z)= r(z-kh) sin (z-kh),
forzCandk=O, 1, 2,...;

(2.2) C(f, h)= 2 f(kh)S(k, h);

N

(2.3) Cu (f, h) f (kh)S(k, h);
k=-N

(2.4) e([, h) =/- C(/, h);

(2.5) eu(L h)=f- Cu(L h ).

The functions S(k, h) satisfy the orthogonality relation

h if k =j,
(2.6) S(k’h)(x)S(j’h)(x)dx=

0 ifkj.

Also, it is easily seen that

(2.7) S(k, h )(jh )=

and for this reason, any function g of the form

(2.8) g= E aS(k,h)
k=-

is usually called a (Whittaker) cardinal function.
We consider n-point rules of approximation where n 2N + 1, N 1, and the

initial approximations are as given in (2.3). Our error bounds will be essentially of the
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form C exp(-clN1/2). One obtains a bound of the form C exp(-cn /2) (as
promised in the previous section) via the following:

ClN/2- c n >- cln

DEFINITION 2.1. Let B (h) denote the family of all functions f defined on C such
that f is entire, f LE(R) and

[f(z)l <- C exp

for all z x + iy C and for some positive constant C.
The importance of the function C(f, h) with regards to the class B (h) is indicated

in the following theorem [5].
THEOREM 2.1. Iff B(h ), then f =- C(f, h ) and

(2.9) fE(x)dx h , fE(kh).

The sequence {h-/ES(k, h)}=_o is therefore a complete orthonormal sequence in B(h ).
DEFINITION 2.2. For d positive and p_-> 1, let B, denote the collection of all

functions f such that f is analytic in

(2.10) d {X + iy: [y I< d},
.d

(2.11) J_ If(x + iy)[ dy -+ 0 as x -+ :t: oo,
d

and N(f, p, a)< oo, where

(2.12) N(f, p, a) lim If(x + iy)l’ dx
yd-I

Our next theorem is found in [10], and gives a very useful representation of the
function defined in (2.4).

THEOREM 2.2. Let d and h be positive and let p 1 or 2. Assume f Ba. Then for
each x R,

e(f, h)(x)=Sin (zrx/h) IR f(t-id-)
27ri (t- x id) sin [Tr(t id)/h

(2.13)
f(t + id-) }(t x + id) sin rr(t + id)/h ] dt.

We shall obtain some explicit bounds on e (f, h) in {} 4. It will be seen that not only
e (f, h) but all derivatives of e (f, h) decrease to zero very rapidly as h + 0. Indeed, if h
is sufficiently small, then "for all practical purposes" the sequence {h-x/2S(k, h)}=_o
is an orthonormal sequence in B,. This interpretation is a consequence of the follow-
ing result, the proof of which is similar to that of Theorem 6.4, and is omitted.

THEOREM 2.3. Iff B a, then

(2.14) (Rf(X)S(k,h)(x)dx-hf(k h)l<- N(f’ l’d) -’a/h

2d
e

In order to facilitate the use of formula (2.11), we shall write simply

(2.15) e(f, h)= Sh I(f, h),
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where

(2.16)
1

Sh (X ) f-i sin

and thus I(f, h)(x) is the integral term in (2.13).

3. Function and derivative evaluation. In applying the results of this paper, one
would need to evaluate certain derivatives of a given cardinal function at the points
x kh, k an integer. We demonstrate a method for accomplishing such evaluations by
extending an idea put forth in [5].

Let us consider a function

(3.1) g= E akS(k,h),

where we assume the series in (3.1) converges. Then for each a R, Theorem 2.1
implies that

(3.2) g(x)= E g(a+kh)S(k,h)(x-a), xR.

From this, it is easily verified that

(3.3) g’(x)= Y (- 1)k
k=- kh
kO

g(x + kh),

and so we are led to the relation

1 (-1)t’ ("-1)(x(3.4) g(")(x) - k=-
g + kh ).

kO

In particular, we have

(-1) (-1)(3.5) g(")(kh ) g(,-1) (]h).
h i=-]-k

The result (3.5) may then be used to obtain g(")(kh) in terms of the constants
{ai}i_. For example, we immediately obtain

(-1)k (-1)
(3 6) g’(kh)=

h J=-L ]""k ai.

i0

For the case n 2, one may substitute (3.6) in (3.5) and employ partial fraction
techniques to obtain

(3.7)
1 [r2

)g"(kh )= -L-- ak + 2(-- 1 y (- 1)
i=- (J- k)2 a..

As motivation for the formulas given here, as well as for results given in 4, we
present a theorem regarding the nature of certain functions as in (3.1).
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THEOREM 3.1. Let h be positive and let N be a positive integer. Let g denote the

function k=-uakS(k,N h). Then for each nonnegative integer n, g(") B (h) and hence

(3.8) gO,)=_ 2 g’)(kh )S(k, h ),

and

(3.9) [g(")(x)]2 dx h E [g(")(kh)]2.

Proof. First, since g is entire, so is g("). Calculating S(0, h)(") directly, we find

S(0, h )(")(z

(7) (iw) )i+1 -iz/h

T [e"/h +(-- 1 e ](-- 1)"-i(n --j)tz -("-i+).
2i

So, for z real, we see that IS(0, h)(")l O(Izl as leith. Hence, the continuity of
S(0, h)(") implies S(0, h)(")L2(R). Since g(")is a finite sum of multiples of trans-
lations of S(0, h)("), we conclude that g(") L2(R).

Next, we see that for z x + iy,

h (n(i y/h -(n--/+l)[e ](n
i=0

elyl/h n
[z

hnl lyl/ ( )= h 1

 lzl
e +

Thus, the continuity of S(0, h)() implies the existence of a constant L such that

[S(O,h)(")(z)[Le/, for all z=x +iysC.

Then for C L

_
]a], we have

which concludes the proof that g(")sB(h). Equations (3.8) and (3.9) follow from
Theorem 2.1. Q.E.D.

We close this section with a corollary to Theorem 2.1. The corollary treats only
the case n 1, but similar results for larger n are of course possible.
Cooh. Let h, N and g be as in Theorem 2.1. Then

N N

(3.10) [g’(x)]2 dx h- Y, Y Ck,iakai,
k=-Nj=-N

where

(3.11) Ck,] 3

2(-1)’+i(]-i)-z

Proof. Substituting (3.6) in (3.8), we find

(3.12)

/fi =j,

__oo k[ N (--ly ]S(k,h).g’=
1 y, (-1) ___jkaih k=-
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Hence, we conclude from (3.9) that

(3.13) [g’(x)]2 dx h-1 k=-2 =-N ]-k at
k

which may be written

(3.14) [g’(x)]2 dx h- =-r,r=- (-1)’+aa- (i k)(] k)
ki,]

An application of partial fractions to (.14) yields 0.10). O.E.D.

4. Approximation inH (R).
DIO 4.1. For m a nonneative integer and d positive, let H denote the

family of all functions f such that

(b) foeL(R), for ] =0, 1,. ., m.
For f e H,

(4.1) [[flm,2 IIf)l
i=

We consider next approximations in H(R).
THEOREM 4.1. Let h and d be positive, let m be a nonnegative integer and let

f H7 (R). Then g d/h 1,

n,eN(f, 2, a)
(4,2) II (, h)<"l12 g - _,
forn=O, 1,. .,m.

Proof. For each ] 0, 1,. , n, we define the functions , and + by

[(t-id-)
(t)

(t-x id) sin [(t-id)/h]’

(t) e *(x)dx,

and

Then

+(x + iy)= Io eiX’e-Y’c(t)dt, y >0.

1 (t)
+(x + iy)= | dt,

.R t-x-iy

and we may use Parseval’s theorem as in [10] to obtain

I+(x + iy)l2 dx 27r e-2ytl&(t)l at

=< 27r IR I’/’(t)lz dt
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Thus, taking/+,j(x)= +(x +id) and noting that [sin [rr(t-id)/h]l>-sinh (rrd/h), we
have

[[I+’J[[" =< Ie I(i)(t)12 dt

<_- d-2i[sinh (rrd/h )]-2 IR If(t- id-)[2 dt.

We may repeat the argument above for

f(t + id-)
,(t)

(t x + id) sin [zr(x + id/h)]

to obtain a similar bound on the corresponding I_,i. Recalling the notation of (2.15),
we note that (1 / flu) j!(i+d + I_,), where I I(f, h), and so

[[IU)l] <_-- (j!)2d-2[sinh (rrd/h)]-2N(f, 2, d).
So, using Leibnitz’s formula in (2.15), we find, recalling (2.16), that

lie (f, h)(")ll <= n ]lSO.)i(f, h

--< 2-7 --o
< n,N(f. 2.a).

<_
n IN(f, 2,d) ()" 1_

sin ;=o

which yields (4.2). Q.E.D.
The corollary which follows is now immediate.
COeOLLAR. Let h, d, m and f be as in Theorem 4.1. Then there exists a positive

constant C, depending only on f, d and m, such that

(4.3) fie (, h )1[,,,.2 --< Ch-" e -’rd/h.

Next, we use the results above to obtain a bound on eu( f, h). This bound is of
course more useful in applications since, in general, the practical evaluation of a
function at an infinite collection of points is impossible. First a lemma.

LZMMA 4.2. Let $(k, h) be as defined in (2.1). Then if n is a nonnegative integer,

(4.4) IlS(k, h)(’)[[2 (2n+l)zr a/z ()n-1/2
and

(4.5) ]IS(k, h )(’)[[oo-<
n+l

Proof. We have

h f.rr/h -ikht ixtS(k, h)(x)=--- "-’r/h
e e dt,
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so that

h flh (it)" e -it’h’ e ix’ dt.(4.6) S(k, h)’)(x) --Parseval’s theorem then yields

IlS(k, h)(n)ll2 (2)1/2 h 2t2 dt
-/h

from which (4.4) easily follows. Also, (4.6) gives

IS(k, h)((x)
-/h

It de
+ 1

and so (4.5) holds. Q.E.D.
ToN 4.3. Let h, d, m and be as in Teorem 4.1. Furthermore, assume that

there exist positive constants C and such that

(4.7) I(x)l N Ce

or all x e (-, ). Then iN is a positive integer,

2 sinh (d/h )
(4.

+ 2C-[h(2n + 1)1-/
orn=O, 1,. ,m.

Proofi Applying the triangle inequality to the nth derivative of (2.5) and using
(2.4), we find that

II  (L h

Ikl>N 2

1 2 [If(- kh)l + [f(kh
k =N+I

-(N+h[1 e-,,,]-"

The inequality ah <-eah- 1 and (4.2) now yield (4.8). Q.E.D.
Again, we immediately obtain a corollary regarding approximation in H’ (R).
COROLLARY. Let ]’, d and rn be as in the Corollary to Theorem 4.1, and assume

that 1" also satisfies (4.5). Let N be a positive integer, and take h (rrd/aN)1/2. Then
there exists a constant K depending on ]’, d and m such that

(4.9) Ile(L h)l[,., KN1/2m+1/4 exp [-(’trdaN)l/2].

We pause to note that the bound in (4.9) approaches zero (as N--> oo) faster than
any power of N-1. In particular, we note that the error converges to zero at the rate
C exp (- cN/2).

We remark that if we also knew lie(f, h)")ll, then the inequality

(4.10) (n) 2/pI1 (L h)(")l[o --< lie (f, h) ll2 lie (f, h)(")l[-2/p
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would yield a bound on lie(f, h)(")llp for any p [2, oo]. We shall obtain bounds on

I1 (f, h)("llo in the following section.

5. Supremum norm approximation.
THEOREM 5.1. Let h and d be positive, and assume f Ba, ]’or p 1 or 2. For n a

nonnegative integer,

Furthermore, assuming 7rd/h >-1, if p 1,

n eN(f, 1,@d)

and gp 2 and h < w, letting max (1, d-"), we have

n e/N(f, 2, Ca)
} h2/2)-1/2.

Proof. We have obtained (5.1) previously, and it is easily seen from (2.16) that

IIsllo-< (2)-x(/hy. Also, (2.13) yields

IRI -id-)
I(f, h)(i)(x)=j! (t_x_id)if(+sin [zr(t_id)/h]

f(t + id-) ] dt.
(t-x + id)+ sin [Tr(t + id)/h]

So iffBXa, we use the inequalities [t-x +id[>-d and [sin (u + /v )[ _-> sinh Iv[ for u and
v real to obtain

< /’!N(f, 1, d)
]]I (f, h )311oo dT_i -s:-na (-/-h )"

Hence, if f B and n’d/h >- 1,

.lie(f,

n eN(f, 1,a)
2=a sin (g))

which is (5.2).
Now, if f e B], we have

], IR f(t-id-) f(t+id-) ]}[I(L h)O)(x)[sinh (d/h) (t-x-id)i+x
+

(t-x +id)i+
dt.

Schwarz’s inequality then implies

[(1
d+/ sinh(d/h)"
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SO, it follows that if rd/h _>- 1 and 7r/h > 1,

()
=0
1/2

N /d/ sinh
(1 h e

2 (d/h)

which is (5.3). .E.D.
THEOREM 5.2. Let h and d be positive, and let N be a positive inwger. Assume is

such that

(5.4)

where C and

n eN(f, 1,)
(5.5) II(L h)<">ll gd g) +

(n + 1)a e-h’

while

d] e/N(L 2, )(r/h
(5.6) /d/(1 /)/2 h sinh (rd/h)

+
(n + 1)

where d max (1, d-).
Pro@ Applying the triangle inequality and using (4.5), we find

Ikl>N

1
n + 1 k=N+l

We may use the method of proof of Theorem 4.3 to obtain

I1, (f, h)(")llo -< I1 (f, h)(")ll +
(n + 1)art

e-lh"

Hence, (5.5) and (5.6) follow from Theorem 5.1. Q.E.D.
COROLLARY. Let the hypotheses of Theorem 5.2 hold ]:or p 1 or 2 with h

(zrd/aN)1/z. Then there exists a positive constant K depending only or n, d, f and a,
such that

(5.7) II,(L h)(")ll<--gN("+l)/Z exp [-(TrdaN)l/Z].

6. Applications of conformal mappings. The results of the previous sections may
be extended to yield interpolation and approximation formulas over an arbitrary
interval or even a contour. We consider the general case here.
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Let @ be a simply connected domain in the complex plane C, and let a be
defined as in (2.10). Let 4 be a conformal map of onto a and set 4 -1. Let
a 4,(- o) and b 4,() a be boundary points of , and let us take

(6.1) F={we: w 4,(x), - <-_x <-_ }.

Let B() denote the family of all functions f that are analytic in , such that

(6.2)

and such that (for u real)

N([, ) If(z) dz[ <,

(6.3) I [f(z dzl+ 0
(L+u)

where

asu +c,

(6.4) L ={iy: -d<-y<-d}.

We also set

(6.5) Xk O(kh), k 0, + 1, + 2,. ,
and let g be a function which is analytic in , whose properties we shall determine
more explicitly in what follows.

THEOREM 6.1. Iffck’/g B(), then for each x F,

(6.6)

g(x) sin [zr(x)/h] f [f(z)’(z)/g(z)] dz
2"rri Jo [(z)- (x)] sin [Tr(z)/h]

f(x)
=f(x)- E g(x)S(k, h)o (x).

k=- g(Xk

We omit the proof of Theorem 6.1, since it is a simple application of (2.13) and
change of variables.

In applications it is desirable to be able to choose g so that the infinite sum in
(6.6) is an accurate approximation of f on F; in addition, we shall also want to
approximate the n th derivative of f on F, for n 1, 2,..., rn. We shall thus assume
not only the existence and boundedness of f(") on F, but also the possibility of
choosing g so that the nth derivative of the infinite sum in (6.6) exists and is bounded
on F. From (6.6) it is clear that the introduction of the following notation will be
helpful.

(6.7)

(6.8)

S(g, , k, h)= g IS(k, h)o b],

f(x)
C(f, g, &, h)= E S(g, ;k, h),

,=- g(x,

and

(6.9) Cr(f, g, &, h E S(g,&,k,h).
k=-Ng(xk)
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THEOREM 6.2. Let m be a nonnegative integer and let fqb’/g B(). If there exists
a constant C’ depending on m and g such that for all x F and z

for n O, 1,.. , m, then there exists a constant C depending only on m, g and f such
that for all x F,

(6.11) [f’)(x)-C(f, g, c, h)(")(x)l<-_ Ch-" e -’a/h,

for n =O, 1, m.

Proof. Differentiating both sides of (6.6) n times with respect to x, using (6.10)
and noting that for z, Im (z)l d so that Isin [Tr4(z)/h]l>=sinh (rrd/h), we find
that the left-hand side of (6.11) is bounded by

I[[(z)b’(z)/g(z)] dz[.
sinh (Trd/h )

By assumptionfc’/gB(), which yields (6.11). Q.E.D.
THEOREM 6.3. Let the conditions of Theorem 6.2 be satisfied, and let

(6.12) IS (g, b, 0, h )o,)(x )[ =< Cah -",

]’or n 0, 1,..., m, ]’or all x F, where C1 is a positive constant. Assume furthermore
that there exist constants Cz and a such that ]’or all x F,

(6.13) [f(x)/g(x)[ C2 e -t6(x)l.

LetNbe a positive integer and.take h (Trd/aN)/2. Then there exists a positive constant
K depending only on m, d, f and a such that for all x F,

(6.14) If(")(x)-Cu(L g, , h)(")(x)lKN("+l)/2 exp [-(daN)a/2],
forn=O, 1,...,m.

Proof. Using the triangle inequality, we have

(6.15)
d(x )

S (g, , k, h )")(x )+ llkN g(Xk )

Using (6.12) and (6.13) and recalling that (Xk) kh, we find that

[(Xk) 2CC2 Z e-akh
Ik g(Xk) S(g’ ’ k’ h)")(x)

k=U+x

2CC2 -Uh

ah n+l e

Hence, taking h (d/aN)x/2 and bounding [[t")(x)-C(L g, , h)")(x)l by means of
(6.11), using the inequality (6.15) we obtain (6.14). Q.E.D.

We show next that if h is sufficiently small, then for "purposes of applications"
the sequence {S(g, , k, h)}=_ may be considered to be an orthogonal sequence
when used for approximating functions [ such that [g&’ B().
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If we replace g in (6.6) by 1 and then replace f by f. S(g, , L h), we arrive at the
identity

sin [Trb (x)/h f f(z )S (g, c, , h)(z)’(z ) dz
27ri Jo 4) (z )- cb (x )] sin rcb (z )/h

(6.16)

f(x )$ (g, , ], h )(x ) _f(xi)g (xj)
S (g, , ], h )(x ),g(x)

which is valid, provided fg’6B(). (This may be shown by replacing fqb’/g in
Theorem 6.1 by fgS(g, c, , h)qb’/g.)

If z 0@, then [Im 4 (z)] sgn Jim b (z)] d, so that

1 I,. sin [rrb (x)/h
27ri qb(z)-qb(x)

qb’(x)dx

1 I sin [rrx/h](6.17) 2rr---__oo 4)(z)-x
dx

[iTr4’(Z)sgn lm cb(z)]=exp h
where sgn Im b(z)= 1 (respectively 1) if Im b(z)>0 (respectively<0). Further-
more, we have

(6.18) S(j, h)o c(x)cb’(x) dx S(], h)(x) dx h.

Hence, multiplying (6.16) by b’, integrating over F, interchanging the order of
integration and using (6.17) and (6.18), we arrive at

i f f(z)S(g, c, f, h)(z)exp [izrb(z) sgn Im cb(z)/h]’(z)dz
2 J0 sin [Trb (z)/h

(6.19)

f(x)S(g, &, i, h)(x)b’(x) dx hf(xi)g(xi).

We bound the integral on the left-hand side of (6.19) by noting that if z 0N, then

(6.20a)
"rr

IS(/’, h)o & (z)/sin [rr& (z)/h]l (- 1)" <
h (z)-jh =d

and

(6.20b) lexp [irb(z) sgn Im (z)/h]l e -’rd/h.

Recallihg that S(g, cb, ], h)= g IS(k, h)o b] and substituting (6.20) into (6.19), we
obtain the following result.

THEOREM 6.4. Iffg’ B(), then

;rf(x)S(g, cb, ], h )(x)’(x) dx hf(x,)g(xi)

(6.21)
<- hN(fg’, @) e-’a/h/(27rd).

In the remaining sections, we shall restrict our attention to two important special
cases. In particular, we consider the case when @ is an eye-shaped region, and the case
when is an infinite wedge.
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7. Approximation over (-1, 1). In this case, our maps b and have the form

l+z w
(7.1) b(z) log (w) tanh-2,1-z’

and so

2
(7.2) ,’(z)= .1--Z

@ has the special form (see Fig. 1)

[{z :lz + cot dl < csc d} f) {z :Im z >- 0}]
(7.3)

LI [{z "[z cot dl < csc d} {z "Im z -<_ 0}],

where we assume 0 < d -< 7r/2. Furthermore, we see that

(7.4) F= {z @: b(z) [-co, oe]}= {x:- 1 -<x -< 1},

and a -1 and b 1.
For g, we consider the function

(7.5) g(x)= (1-x2),
where/3 => 0.

We now state the primary result of this section. The proof is based on the
sequence of lemmas which follow.

THEOREM 7.1. Let c be as in (7.1), let m be a nonnegative integer, and let g be as in
(7.5) where B >- m. Assume fc’/g B() where is the eye-shaped region of Fig. 1,
and that there exist positive constants C and a such that for all x [- 1, 1],

(7.6) If(x )/g(x )[ <- C(1 x2)’.

\ csc d / /
\ /

\
\ / /

(0, cot d)

FIG. 1. The region

Let N be a positive integer, h (zrd/oN)1/2 and

(7.7) xk=tanh(kh/2), k O, + l, +/- 2,

If f(") exists on [-1, 1], then (6.14) holds for all x [-1, 1] and for n O, 1, m,
where K is a constant depending only on m, d, f and a.

LEMMA 7.2. Let g be defined as in (7.5), where 3 is a nonnegative constant. If] is
any nonnegative integer, there exists a constant C depending on and ] such that ]’or all
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xe(-1, 1),

(7.8) Ig’)(x )l <- C(1 x2)o-i.

Proof. Leibnitz’s formula gives us

I(x)i(l-xa)l ()[(I+x)](k’[(1--X)]’-k’.
k=0

We note that for x e [- 1, 1], 11 + xl 2 and [1 x 2, and so for 0 k j,

(1 + X)O-k (1 --X)o-i+k (1 X2)O-i(1 + X)i-k (1 --X)k 2i(1 --X2)-i.
Hence, it follows that

k=0

(1 x)-,
which yields (7.8). Q.E.D.

LEMMA 7.3. Let j and k be positive integers with jk, and let (x)=
log [(1 + x)/(1 -x)]. Then for all x (- 1, 1),

(7.9) I)(x)[’(x)]k-i[ C(1 x2)-k

where C is a constant depending only on j and k.
Proof. Differentiating b, we obtain

2 1
’(x)=1-xa-l+x

so that if j _-> 1, then

1

4)(x)=(/._l)![(-1)i-1 1 ](1+ x)f + (i ")j
Hence, we immediately obtain

4(/)(x) (i i1)!
[4,(x)]i [(_ 1)J-l(l_x)i +(1 +x)i],

and so since each of ll + x and I1 x is bounded by 2 on [- 1, 1], we conclude

IO)(x)l-< 2(]- 1)![4’(x)]i.

By combining this inequality with (7.8) and (7.2), we arrive at (7.9). Q.E.D.
LEMMA 7.4. Let ] be any nonnegative integer. Then there exists a constant C

depending only on ] such that for all x (- 1, 1) and for all uniformly bounded positive
h,

]1(7.10) xx sin x) <=Ch-i(l_x

Proof. First, from the definition of b,

(x)’ sin ’[Trh(X)] <= J(x) e ib(x)/h

[(l+x (1 x 1].
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We now use Leibnitz’s rule, as we did in the proof of Lemma 7.2, to obtain

k-o k

(_ 1)j-k( iTr )hJ-k -iw/h( )j-k+ir/h]--’h----I +k + 1 (l-x)k l+x
l-k

For all x [- 1, 1 ], 1(1 +/- x)k+/-i’/h 2k for 0 _--< k -< ]. Moreover, for 0 <= k _-< j,

h k :t:---- k + 1 <-39,
k

where ,i depends only on/’, since by assumption h is uniformly bounded. Hence, we
arrive at (7.10). Q.E.D.

LEMMA 7.5. Let be a nonnegative integer. There exists a positive constant C
depending only on and d, such that if x (- 1, 1) and z 0, then

Proof. The inequality (7.11) is clearly valid for/" 0, since b is real on 1, 1) and
Im b (z)= :t: d. If > 0, it is easily shown by induction that

( d )’ 1 pjk(qb)(x)(7.12) xx b’(Z)’b(x) k-1 [b(Z)--q(x)]k+l’

where

k

s=O q=O

and where Ciks and ljksq are integers; furthermore, liksq 0 for all j, k, s and q, and

Eo qlik,, J. Hence, by Lemma 7.3,

q=0

where C’ depends only on j, k and s. Finally, for z 3 and x
(x)[ d, and so (7.10) follows from (7.12) once (7.13) is applied. Q.E.D.

LEMMA 7.6. Let j be a nonnegative integer, and let h > 0 be uniformly bounded.
Then there exists a constant C depending only on j such that

(7.14) I[S(k, h)o b])(x)l-<- Ch-(1 x 2)-i,

for all x (- 1, 1), and for every integer k.
Proof. The proof is in many ways similar to the proof of Lemma 7.4. We apply

Leibnitz’s rule to the representation

e-ik’ei4"(x)’/h dtS(k, h)o &(x)=
1

e -i,k, (1 + X (1 X dt
2
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and find

[s(, h)o ](x)

1/2h-’ (1 x2)-I_ e

[’ ,-s(f) +irt/h )s-i,t/h(iTrt )kY (-1) (l+xy (1-x s+l
=0 S \Y--

---j+s+l h-s dt.
j--s

The estimates

and

I(1 + x)i-s+i’’/hl <- 2i-s,

I(1 X)s-i’rrt/h] <
-l__<x__<l,

=x 1

+---- s + 1 <- 3’i, O<-s<--],

where %s is a constant depending on j and s, may now be used to obtain
(7.14). O.E.D.

We now complete the proof of Theorem 7.1. To the identity

(n-k)

[& ol(x)

which is a consequence of Leibnitz’s rule, we apply the results of Lemmas 7.2, 7.4 and
7.5, to obtain

2)k 2)-ih-iC3(1 XZ)O+i-k--< CI(1-x -"C2(1-x
k=O/=O

<_C(l_x2)O-nh -",

where C is a constant depending on m and B.
In Theorem 7.1 we assume B >- m. Hence, the conditions of Theorem 6.2 are

satisfied, and so (6.11) holds.
If we apply Leibnitz’s rule to obtain the n th derivative of S(g, 4), O, h) and then

use Lemmas 7.2 and 7.6 to bound each term in the resulting expression, we find that
(6.12) is satisfied, since/ -> n.

Finally, if [f(x )/g (x )l <= C(1-x2) on (-1, 1), where a >0, then

If(x)/g(x)l < c(1 + [xl)"(1- [xl) < 22"C( 1
1-[x],
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But it is easily shown that for x (- 1, 1), we have

l/lxl 1-x

=2 C,Hence, if (7.6) is satisfied, then letting C’ z

l+xl}If(x)/g(x)l<-c exp -,,
1-x

C’ exp {- a 14 (x)l},
and so (6.10) holds. Thus, Theorem 7.1 follows from Theorem 6.3.

We observe that an application of Theorem 7.1 requires that f approach zero
quite rapidly as x +/- 1. Of course, f must also be m times ditterentiable on [- 1, 1]. If
f is sufficiently differentiable, but f does not approach zero as necessary, we consider
in place of f a new function F. The function F is obtained from f by subtracting a
certain polynomial. In particular, we may choose F =f-plvt, M> /, where pt is of
the form

(7.15) p,(x) kZO [ak(12 2
k+ k kx) (1+x)+1].

The polynomial pt is obtained inductively by defining the sequence of polynomials
{pk}ffo as follows:

(7.16) po(x) go(l-x)= +bo(l+x)2 2

where

(7.17) ao =f(- 1), bo f(1),

and

(7.18) Pk+l(X)= pk(x)+ak+(’l’ --X)’+:(l +x"’) -[- bk+l (1-2 2 2 x)k+l(1 q-x) k+22

where

(7.19)

2k+l
ak+l--(k+l)! [f(k+l)(_ 1)_pk+a)(_ 1)],

[f*+(1)-p+1)(1 )1.

8. Approximation over (0, a3). Here, will denote the sector

(8.1) {z’larg zl < d}

where 0 < d -<_ 7r. The functions b and 4’ are given by

(8.2) b(z) log z, q(w)=e

and

1
(8.3) ’(z)

Z
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Further,

(8.4) r ([-

We let B() denote the family of all functions f analytic in such that

and

N(f, d)= o-a-lim fo {If(r ei)l + If(r e-i)l} dr <,
od

(8.6) j_ If(r e’)lr dO 0 as r --> oo.
d

kh
xk=e k=O,:t:l,+2,...,

We shall consider the points

(8.7)

and the function

(8.8)

where/ _-> 0.

g(z)=zL

It is much simpler to prove the validity of Theorems 6.2 and 6.3 for approxima-
tion over (0, oo) than it was over (- 1, 1). We shall therefore give the equivalent of
Lemmas 7.2 to 7.6 in a single lemma. In this lemma, which follows, Cj, Cj,o and C.,a
are positive constants depending only on j, j and/3, and j and d, respectively.

LEMMA 8.1. Let j be a nonnegative integer, let (z)= log z, and let g be defined as
in (8.8). Then for all x

sin[zrb(x)/h] <-Cih-ix- (O<h_-<ho, j=>O);

I[S(k, h)b]’)(x)l <= Cih-ix- (O<h_-<ho, j_>-O,

k an integer).

Proof. Inequality (8.9) is a consequence of the identity

g(i)(x)= x =(-1 (/3)ix

(d)i )j--1 --jxx logx=(-1 (j-1)!x

while (8.10) follows from

If j O, (8.11) is clearly satisfied, since z s O and x s (0, oo) imply Ib(z)-b(x)[->
d. If j > O, it is readily verified by induction that there exist constants Clj, C2i, , C,,
depending only on/’, such that

d)’-X [(Z)--(X)]-I-- x-i E CkI[)(Z)--)(X)]-k-1
k=l

which yields (8.11).
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Next, we have for x (0, ) and 0 < h -<_ h0,

I(x) sin [rr(x)/h]l= IIm (x) exp [icr(logx)/h]l
exp [irr (log x)/h ]l

I-I k+
k=O

x-J- (/’- 1)! 1+k2h2
<_ Ch-x-

where C depends only on/’. This completes the proof of (8.12).
The proof of (8.13) is similar to the proof of Lemma 4.2, starting with the identity

1 I e-i’rrktxit/h dt.S(k, hlo(x)

We omit the details. Q.E.D.
THEOREM 8.2. Let (z)=log z and let g be as in (8.8) with >=m, where m is a

nonnegative integer. Let f’/g B(), where is the sector (8.1), and B() is defined
by (8.5)-(8.6). Let

If(x)/g(x)l fax, O=<x-<l,

If(x)/g(x)l Clx --1, 1-<_x_-<oo,

where CI and c are positive constants. Let Xk e kh, k O, + 1, + 2,... and take
h (Trd/aN)/2, where N is a positive integer. Iff (’’) exists on [0, c], then (6.11) holds
for all x [0, m] and for n O, 1, , m, where K is a constant depending only on m, d,
f and .

The proof of Theorem 8.2 is similar to the proof of Theorem 7.1, and we omit it.
In order to apply Theorem 8.2, it is required that f approach zero quite rapidly as
x 0. If f does not satisfy this criterion, but is sufficiently differentiable on [0, c], then
one may instead approximate F, where

[/3+1]

(8.14) F(x)=f(x)-e Y’. akX k,
k=O

where

ao =f(O),

k---S-- f(k)(0)--
i---0

k=l,2,... ,fl+l.
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BOUNDARY VALUE PROBLEMS OF MIXED TYPE
ARISING IN THE KINETIC THEORY OF GASES*

HANS G. KAPER

Abstract. The linear integro-differential equation

xu(t x)+ u(t, x)- f0--)- exp(-yE)u(t’ y)dy=f(t’x)’

(0, z), x [, is interpreted in functional form as a relation between the mappings ]’: [0, 7.] L2(I, p,) and
U: [0, 7"] L2([, p,) in a weighted Hilbert space L2(R, p,). It is shown that this equation, together with the

appropriate boundary conditions, defines a well-posed problem in LE(R, p,).

1. Introduction. In this article we are concerned with boundary value problems
described by the linear integro-differential equation

(1.1)
Oxu

(t, x)+ u(t, x)
1 I0--7 --- exp (-ye)u (t, y) dy =/(t, x),

e (0, ’), x e . This equation arises in the kinetic theory of gases. It is a linearized
form of the stationary one-dimensional Boltzmann equation, in which the collision
operator is represented by the BGK-model; cf. [1], [2]. The unknown function u
represents the perturbation of the molecular distribution function in phase space
relative to an absolute Maxwellian. In the present case, the phase space is two-
dimensional; u depends on one position coordinate (t) and the t-component of the
velocity vector (x). The function f is supposed to be given.

Equation (1.1) is of mixed type in the sense that although it is parabolic for x # 0,
the preferred t-direction is towards increasing values of for x > 0, towards decreasing
values of for x <0. This property of the equation is reflected in the boundary
conditions that are normally specified, viz. u(0, x) given for x > 0, u(’, x) given for
x<0.

Equations similar to (1.1) arise in the theories of neutron transport and radiative
transfer, where the unknown function u is defined on the domain [0, ’] [-1, 1],
rather than [0, ’] It. In his thesis [3], Hangelbroek presented a functional-analytic
study of boundary value problems associated with the neutron transport equation. I/is

results were subsequently extended by Lekkerkerker [4] to include the case of
neutron transport in a conservative medium, which is most relevant in the context of
radiative transfer theory. Recently, Beals [5] presented a more abstract approach to
this class of boundary value problems.

Utilizing the methods of Hangelbroek, Lekkerkerker and Beals, we present, in
this article, a functional-analytic approach to boundary value problems described by
(1.1). Compared to [3] and [4], two new features arise. One is the infinite range of the
variable x, which implies that the multiplication operator T ("multiplication with the
function x") is unbounded. Another is the nature of the collision operator A which is
a projection operator. A similar situation occurred in [4], but there the resulting point
spectrum of the relevant operator (AT-1) was separated from the continuous spec-
trum. In the present situation, the point spectrum is imbedded in the continuous
spectrum and a different procedure for singling out the eigenspace is called for. The
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reader will also observe that we have adopted the operator AT-1 (in our notation) as
the fundamental operator, rather than T-IA, as was done in [4]. This choice is natural
if one writes the streaming term in Boltzmann’s equation in divergence form, as we
prefer to do and as we have done in (1.1). Taking the variable x from under the
differentiation symbol O/Ot would imply that we solve a stronger form of the transport
equation then is strictly justifiable.

In 2 we give an abstract statement of a boundary value problem for (1.1). In 3
we analyze the operator AT- in some detail. In 4 we prove the existence of a
diagonalizing operator for AT- (some of these results were announced previously in
[6].) In 5 we establish the existence and uniqueness of a solution for the abstract
boundary value problem. In the final 6 we discuss some aspects involved in the
actual construction of the solution of a given boundary value problem. These aspects
are covered in detail in two forthcoming articles [7], [8], in which we also relate our
results to those obtained earlier by Cercignani in his analysis of the slip flow problem
via the method of "singular eigenfunction expansions" [9].

Notation. The sets of real and complex numbers are denoted by I and C,
respectively. Moreover, R/ {x e N: x 0} and

_
{x s : x N 0}. The identity

operator in any linear space is denoted by L The domain, range and kernel of an
operator A in a Banach space X are denoted by D(A), R (A) and N(A), respectively.
The resolvent set o(A) and the spectrum (A) of A are defined as in [10, 1II.6.1].
For z o(A), the symbol R(z; A) is used for the resolvent operator (zI-A)-. A
point z e (A) is said to belong to the point spectrum (A) of A if the equation
(zI-Aff=O has a nontrivial solution feD(A); it is said to belong to the continuous
spectrum (A) of A if R (zI A) is dense in X, zI A is invertible, but (zI A)- is
unbounded. The restriction of the operator A to a subspace M of X is denoted by
AIM.

2. Statement o the problem. Let L2(N,) denote the Hilbert space of
(equivalence classes of) all complex-valued functions defined on , whose moduli are
square integrable with respect to the (finite) measure

/2 2)(2.1) (dx)= - exp (-x dx.

We denote the inner product and norm in L2(, ) by (’,’). and ]l" ]], respectively,

(.) (,gl. I(x)(xl.(xl ,e(,.),

(2.3) Ilfll. (f, f)
The symbol e denotes the element of L2(, #) defined by

(2.4) e(x)= 1 x

We define the multiplication operator T in L2(, #) by the expression

(2.5) Tf(x)= xf(x) x , f D(T)

on the domain D(T)={fL2(, ): , ]xf(x)]2(dx)< }. Its inverse T- is defined
on D(T-) R (T), such that T-g f if g Tf. Both T and T-1 are unbounded and
selfadjoint. Furthermore, we define the operator A in L2(, #),

(2.6) Af f- (L e ),e f L2(, ).
A is a bounded projection, N(A)= sp (e).
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We interpret (1.1) as an equation in L2(R, At),

(2.7a) (Tu)’(t)+ au(t)= f(t) (0, z),

i.e., as a relation between f: [0, "r] Lz(R, At)and u:[O,’r]-)D(T)Lz(It,At), such
that Tu C1(0, "r Lz([, At )). Here,’ denotes differentiation with respect to t, i.e.,
(Tu)’(t)= limb-.0 (Tu(t + h)- Tu(t))/h, the limit being taken in L2(, At).

Let L2([-, At) and L2([+, At) be the linear vector spaces of (equivalence classes
of) all complex-valued functions defined on I_ and +, respectively, whose moduli are
square integrable with respect to the measure At. We identify these vector spaces with
the closed subspaces of L2(, At) which consist of those elements that vanish on +
and _, respectively. Thus, they are Banach spaces with respect to the norm [[. [[,. We
decompose L2([, At) into a topological direct sum,

L2(, At)= L2(-, At)@L2(+, At)

and denote the projection operator which maps L2([, At) onto L2([+/-, At) along
L2([:, At) by O+/-. In the following analysis we show that a boundary value problem
described by (2.7a) together with the boundary conditions

(2.7b) O+Tu (0) Q+g, O-TuO’) O-g, g D(T-1)
admits one and only one solution.

In terms of the function v(t)= Tu(t), equation (2.7a) becomes

v’(t)+AT-v(t) [(t) (0, z),

which is an ordinary differential equation for v in L2(II, At). As its evolution is
determined by the operator AT-a, it is apparent that this operator is fundamental in
the study of boundary value problems described by (1.1). In the following section we
present its relevant properties.

3. The oieraor AT-. Consider the operator AT-1. Its domain is D(AT-)
D(T-a) R(T). Since R(AT-a)m R(A), (/, e)t, =0 whenever [R(AT-a).

AT-a differs from T-1 by a degenerate operator of rank one. Hence, its spectrum
is most easily studied by comparing it with the spectrum of T-1. The latter coincides
with the real axis and is a purely continuous spectrum. An important role is played by
the function co defined by the integral

( ) oo(z) | x(x z)- (dx) zC\

It has the following properties:
(i) w is analytic in the complex plane cut along the real axis;
(ii) w(z)----(2z2)-a[1 +(1.3)(2z2)-1+(1 3.5)(2z2)-z+ .] as z-->oo uni-

formly in arg z, 0 < [arg z < 0r;

(3.2) (iii) ca(z) does not vanish in the cut complex plane (Imw(z)=0 implies
Re oj(z)> 0);

(iv) the limiting values w+/-(h)= lim_,o+ oo(h ie), h , exist and are given
by

to+(h )= w(A )+ iAxexp (-h 2),(3.3)

where we have defined

(3.4) w(h ) x(x -i )-1 (dx) i ,
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Here, denotes the Cauchy principal value integral. The integral (3.4) can be evalu-
ated in terms of Dawson’s integral

(3.)

see [11, 7.1].

D(X )= exp (-h 2) exp (x 2) dx

w(A )= 1 2,D(A);

LEMMA 3.1. o’(A T-a) ; for z p (AT-a) we have

(3.6) R(z;aT_x).f=R(z T_)[/_ 1 (T_XR(z" T_X).f,e),,e],w(1/z)

where w is defined by (3.1).
Proof. Suppose z p(T-x) Consider the equation

(3.7) (zI-AT-a)g =.f

for some g D(AT-I). It is equivalent to

(zI- T-1)g + (T-lg, e)u.e .f.

Since z p(T-a), R (z; T-a)e D(T-x) and g 6D(T-X), we may operate on both sides
with T-1R (z; T-a). Then, taking inner products with e we obtain the identity

[1 +(T-XR(z; T-X)e, e),](T-Xg, e), =(T-XR(z; z-l)f, e),.

The expression in brackets is readily evaluated. Its value is o(1/z), which is nonzero
for z p(T-1), so we can solve for (T-lg, e),. Thus,

(3.8) g=R(z; T-a)f-[w(1/z)]-l(T-aR(z; T-aft, e).R(z; T-1)e.
Hence, z p(T-1) implies z p(AT-a), so o’(AT-a)c o’(T-1).

Next, suppose , e p(AT-a) for some , 6 [I or(T-a). For any h D(T-X), the
equation (hI-AT-X)f (,I-T-X)h has a solution f,.h D(T-X). The element gx.h

h--f,.h D(T-a) is such that

(3.9) (,I- T-1)gx.h (T-a(h --gh.h), e),e.

If , =0, it follows from the identity (3.9) that T-agx,h--(T-agx,h, e),e-(T-Xh, e),e
or, since (e, e), 1, that (T-Xh, e), 0. Suppose A # 0 (h e I). The right-hand side of
the identity (3.9) represents a continuous function. A continuous function which is in
the range of ,I-T-1 must have a zero at x 1/A. Hence, the constant-valued
function (T-X(h-gx.h), e),,e is identically equal to zero, i.e., (T-X(h-gx.h),e),=O.
Then it follows from (3.9) that g,.h 0 and, hence, (T-ah, e), 0. However, here we
have arrived at a contradiction: the element h Te clearly belongs to D(T-1), yet
(T-x h, e), 1 # 0. Hence, , o’(T-x) implies X o-(A T-a), so o-(A T-x) .(r(T-a). This
completes the proof of the first part of the lemma. The identity (3.6) follows immedi-
ately from (3.7) and (3.8).

We observe that both A and T-1 are selfadjoint in Lz(, ix). However, since A
and T-1 do not commute, the product AT-a is not selfadjoint. But, as we will show
next, the nonselfadjointness can be localized in a finite-dimensional subspace of
L2(, ix).

For e o(AT-), let X()= N((,I-AT-)). If is such that X(-) X(l) and
X() X() for + 1, + 2,. , we say that , is an eigenvalue of AT-x of rank l;
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we call X(x) the generalized eigensubspace of the operator AT-1 for the eigenvalue A,
and dim (X(xt)) the multiplicity of the eigenvalue A.

LEMMA 3.2. O’p(AT-1)={0}; 0 is a multiple eigenvalue of rank two and multi-
plicity two; the generalized eigensubspace is spanned by the vectors Te and T2e.

Proof. Suppose (AI-AT-)f=O for some h cr(AT-), h 0. Then (hI-
r-X)f -(T-If, e),e. A continuous function which is in the range of hi-r-1 must
have a zero at x 1/I. Hence, the constant-valued function (T-If, e),e is identically
equal to zero, (T-f, e), 0 and, consequently, (hi- T-1)f 0. However, T- has a
pure continuous spectrum, so f=0 and no h r(AT-) with h 0 can be an eigen-
value of AT-1. For h =0, the eigenvalue equation (AI-AT-)f=O has a nontrivial
solution, f Te, so o’p(Ar-1) consists of the single point h 0.

A is a projection operator with N(A)= sp (e). Hence, any solution of the equa-
tion AT-f 0 is necessarily a constant multiple of Te, so X(o1 -sp (Te). It follows
that (AT-1)2f=AT-(AT-f)=O if and only if AT-f=aTe for some a C, which
in turn, implies f= aTe +riTe for some fl C, so X(oa =sp (Te, T2e). Suppose now
that f satisfies the equation (A T-)3f O. Then A r-lf X(o), so AT-If aTe + flTe
for some pair a, fl C. A necessary condition for aTe +Te to be in the range of A is
that its inner product with e be zero. Hence, fl 0 and we obtain, as before, that f
must be a linear combination of Te and Te. Thus, X(o3= X(o and also X(o= X(oa
for 3, 4,. . This proves that the eigenvalue 0 has rank two. Since X(oa is spanned
by the two linearly independent vectors Te and Tae, its multiplicity is also equal to
two. 71

On the basis of Lemmas 3.1 and 3.2 we introduce a direct sum decomposition of
the Hilbert space L2(I,Ix), viz., Lz(g,Ix)=N((AT-1)2)R((AT’I)Z). Since
D(AT-1) is dense in Lz(R, tz) and both A and T-1 are selfadjoint in L2(R, tz), we
have (AT-a)* T-IA and, therefore, R((AT-1)2) N((AT-1)*2)1= N((T-1A)2)+/-;
see [10, Ill.5.5]. It is easily verified that N((T-1A)2)=sp (e, Te). We put

(3.10) G sp (Te, TZe),
(3.11) H={fL2([, tx)’(f, e), =0e, Te), =0}.

G and H are closed linear manifolds in L2([,/). The (nonorthogonal) projection P
which maps L2([,/z) onto H along G is given by

(3.12) Pf=f-2(f, Te),Te-2(f, e),T2e feL2(N, Ix).

THEOREM 3.1. (i) L2(R,/x) GHand the pair {G,H} reduces AT-1"

(0 1) relative to the basis(ii) A T-I[G is defined on G and has the representation
0 0

(Te, T2e) of G;
(iii) aT-IH is invertible and (aT-a[H)-1 PTIH.
Proof. (i) The first part of the theorem follows immediately from the way the

manifolds G and H have been introduced. We recall that AT-1 is said to be reduced
by the pair {G, H} if each of the subspaces G, H is invariant under AT- and if,
moreover, PD(AT-a)c D(AT-1); see [10, III.5.6]. The latter property is readily
verified from (3.12).

(ii) Any f G can be represented in the form f=aTe +TZe for some pair
a,/ C. Obviously, f D(AT-1) and AT-f aAe +SATe STe.

(iii) Let fD(T-)f’IH. Then, PTAT-lf=Pf-(T-If, e),PTe. Since feH, we
have Pf f. Furthermore, Te G, so PTe 0. Hence, PTAT-If f for all f
D(T-1)H. Next, let fD(T)H. Then AT-IpTf=Af-2(Tf, Te),Ae. Since fH,
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we have (f,e),=0, so Af=f. Furthermore, Ae=O. Hence, AT-1PTf=f for all
fD(T)fqH. Combining these two results we see that AT-11H and PTIH are each
other’s inverse. I-1

In conclusion, we observe that the operator PTIH coincides with the operator
PTP on H. The domain of the latter operator is D(PTP)= D(T), since G c D(T). For
an operator of the form PTP where T is closed and P is a projection whose null-space
is finite-dimensional and contained in D(T), one can define the Weinstein-Aronszajn
determinant of the second kind, tOp(Z; T); see [10, IV.6.1]. It is readily verified that,
in our case, tOp(Z; T) -2to (z ), where to is defined by (3.1). Hence, apart from a
numerical factor, the function to is the W.A.-determinant of the second kind asso-
ciated with the operators T and P. We will further elaborate upon this observation in
6 and in our subsequent article [8].

4. The isomorphism :L2([,I)->C2Lz([,,). In the previous section we
obtained a reduction of the operator AT- by introducing the pair of manifolds

(0 1) Inthe{G, H}. The action of AT-1 on G is completely described by the matrix
0 0

present section we devote ourselves to a study of the restriction A T-IH, or rather to
a study of its inverse which we denote by B,

(4.1) B =(AT-[H)-.
From Theorem 3.1 we know that B PT[H and D(B)= D(T)H. The operator B
differs from T[H by a degenerate operator of rank one,

(4.2) Bf Tf -2(Tf, Te),Te f D(B)=D(T)fqH.
Let Pn([) denote the set of all polynomial functions on which belong to H.
LEMMA 4.1. Pn() is dense in H.
Proof. Take any f H. Then also f L_(,/z). The Hermite polynomials span a

dense subset in L2(I,/x); see [12, 5.7]. Hence, there exists a sequence of poly-
nomials {p,," n 1, 2,...} on such that lip,, -f[[, 0 as n c. But Pf f, so IIPp,
f[[,=[[P(p,-f)[[,_-<[[P[[[[p,-]’[[, and, consequently, [[Pp,-f[[,-.O as n o. Since
Pp, Pn() for n 1, 2,..., it follows that Pn() is dense in H.

From Lemma 4.1 we conclude that D(B), which contains the set Pn(), is dense
in H.

LEMMA 4.2. B is selfadfoint in H, with tr(B)= .
Proof. B maps H into itself. Since D(B) is dense in H, B* is uniquely defined as

an operator in H. For any f,gD(B) we have (Bf, g),=(Tf-2(Tf, Te)gTe, g),=
(Tf, g), =(f, Tg), =(f, Tg-2(Tg, Te),Te)=(f, Bg),, so B is symmetric and D(B)
D(B*). To show that B is selfadjoint it suffices to show that D(B*)c D(B). Suppose
that g D(B*). The mapping f--(Bf, g) defines a continuous linear functional on
D(B). Since D(T)= GD(B) and G is finite dimensional, we can use the identity
(Bf, g), (Tf, g),, which holds for any pair f D(B), g H, to extend the functional
f--(Bf, g), to a continuous linear functional on D(T). Hence, gD(T*)fqH=
D(T)fqH D(B) and (Tf, g), (f, Tg), (Pf, Tg), (f, PTg),, i.e., D(B*)c D(B)
and B* PT[H, which proves the first part of the lemma.

Consider the operator B-I=AT-[H. Since AT-1 is reduced by {G,H},
tr(B -1) =o’(AT-1)\o’(AT-I[G)=R\{O} . B- is a closed invertible operator in H,
so its extended spectrum ((B-) and the extended spectrum (B) of its inverse are
mapped onto each other by the mapping z -> z -1 of the extended complex plane; see
[10, III.6.3]. Consequently, t(B)= Il.J{oo} and therefore tr(B)= . l-I
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Since B is selfadjoint in H it follows from Von Neumann’s general spectral
theoremmcf. [13, Thm. XII.2.3]--that there exists a uniquely determined resolution
of the identity E for B with support or(B)= [ in terms of which we can develop an
operational calculus. In doing so we will adhere to the convention that a function f
defined on [ is denoted by )z whenever R is considered as o-(B).

Let P(R) be the vector space of all polynomial functions defined on . With each
element /eP([) there corresponds a unique operator /(B) such that /(B)=
aoI+alB+" "’+anB if /(A)=a0+ClA +"" "+cnA; see [13, Corollary XII.2.8].
The domain of/(B) is D(B)) D(B"). Since PH([) c D(B) and Pn(N) is dense in
H (see Lemma 4.1), D((B)) is dense in H for any polynomial operator/(B). We let

(B)"/ P([)}.
Next, let eu be the projection in H of the element e L_(R,/x),

(4.3) eH= Pe e 2 T2e.

Clearly, en D((B)) for all/(B) . Let en denote the vector space of functions
defined on E which can be written as (B)eH for some/5(B) . The following lemma
gives a characterization of this vector space.

LEMMA 4.3. If P() is a polynomial of degree n (n >=0)on , then (B)en is a
polynomial of degree n + 2 on and (B)en H; furthermore, en Pn(R).

Proof. First, we show that B"en (n -> 0) is a polynomial of degree n + 2 on E. We
use induction on n. For n 0, the statement is true. Suppose the statement is true for
n k- 1. Then Bken Bpk/l, where Pk/ is a polynomial of degree k + 1 on E. Using
(4.2) we find that BkeH Tpk+--2(Tpk+l, Te)Te, which is a polynomial of degree
k + 2 on . Hence, the statement is true for n k. By induction, it is then true for all
n >-0. Thus, generally, if /P() is a polynomial of degree n, then (B)en is a
polynomial of degree n + 2. Moreover, since eH H and B is a mapping of H into
itself, (B)eH H. Denote by Pn,, (R) the subspace of polynomials in PH(R)of degree
-<_n. Then dim PH,2([)= 1. Since Pn,,(E) contains a polynomial of degree n for all
n >=2, dimPH,+l()=dimPn,n(ff)+ 1 (n =>2). Hence, dim P,,,(I)= n-1. It follows
that the mapping ->(B)en, which is linear and injective by the result above, is a
mapping onto PH(). I-1

The mapping (B).-(B)eH defines a one-to-one relationship between the
elements of and the elements of PH(). Combining this result with the remarks
made in the discussion preceding Lemma 4.3 we obtain the result expressed in the
following theorem.

THEOREM 4.1. There exists a linear isomorphism F: Pn(R)--> P() defined by

(4.4) Fp for p (B)eu.

Under the isomorphism a polynomial of degree n + 2 in PH() is mapped onto a
polynomial of degree n in P(). In particular, Fell , where d eP() denotes the
polynomial function that is identically equal to one on

Next, we introduce the finite positive Borel measure on 0,

(4.5) ,(dA )-IlE(d;

It is actually possible to give an explicit representation of this measure. To this end we
first establish the following lemma.

LEMMA 4.4. For z C\ we have

R(z; B)f R(z; T){f+[w(z)]-l(R(z; T)f, e).Te}.
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Proof. Take gD(B) and let f=(zI-B)g. Since Bg=Tg-2(Tg, Te),Te we
have f=(zI-T)g+2(Tg, Te),Te. For z C\I, the resolvent R(z; T)=(zI-T)-1

exists and is bounded in L2(I,/z), SO g must be of the form g=R(z; T)f+
a,R (z; T)Te for some a C. Since g H, we have (g, e),, 0, i.e., (R (z; T)f+
aR(z; T)Te, e),=(R(z; T)f, e)-a,w(z)=0, so Oz=[O)(z)]-l(R(z; T)f, e),. [3

We now prove the following result concerning the measure v.
LEMMA 4.5. The measure v defined by (4.5) is such that

f I (dA )
v(da) *+

,o

for any interval (a, b)c R, where the functions o w are defined by (3.3).
Proof. First we establish the identity for an arbitrary finite interval (a, b). In the

strong operator topology we have the result

E((a,b))= lira lim
1 1.5|-8 [R (A ie B)- R (a + ie B )] da

-0+ e-O+ da+8

see [13, Thm. XII.2.10]. Hence, in the topology of L2(R,

IN (A ie B)e R (A + ie B)e dA.E((a, b))eH ll_,mo+ }i_,om+ +8

Consequently,
b

f,, v(dA )= (E((a, b))eH, en),,

lira lim
1 --f- [(R (A ie B)en, en). (R (A + ie B)en, en), ]dA,

8-0+ e0+/
since taking the inner product (., en), is a continuous operation in H. Using lemma
4.4 one finds

1 -w(z)
(R(z; B)en, eH),=+2Z Z e C\.

z,(z)

The limiting values w (A)= lim_.0+ w( + is), , of w(z) exist and are nonzero.
Moreover, from the theory of Cauchy integrals we know that the convergence is
uniform in Z on every compact subset of ; see [14, 15, 16]. Hence,

lim [(R ( is B)eH, eH), (R (A + ie B)eH, ell),,
O+

w+(A)- w-(A) 2,n-i

z (,o+,o-)(z) ,o+,o-(z)

uniformly on compact subsets of I. Consequently,
b b-8 bI v(dl)’-’,811mo+’Ia+8 [(’)+)-)(l)]-ll(dl)--Ia[((’+(’-)(t)]-llul’(dl)"

This proves the statement of.the lemma for the case of a finite interval (a, b). Since the
measure v is finite, the extension to the case of an infinite interval (a =-oo and/or
b oo) is straightforward.
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We use the measure v to define an inner product (.,.) and a norm I1" in P(R);
thus,

(4.6) 01,/2) /1(/.)ff2(/. )/ (d/) 1, /Z P(R),

(4.7) I1 11 

The map F: Pn(R)P(N) is an isometry if PH(N) and P(R) are endowed with the
norms I1" I1 and I1" I1, respectively; el. [13, Thin. XII.2.6].

Let L2(N, v) be the completion of P([) with respect to the norm I1" I1 . We define
the multiplication operator T in L2(I, v) by the expression

(4.8) 7)r(A )= A)r(h ) A e I, /Z D(’)

on the domain D(), where D(7")= {)re L(N, v):

_
[h)r(h)[2v(dA )< oo}. Its inverse

-1 is defined on D(’), such that 7-1 =)rif g= 1 Both and - are unbounded,
densely defined and selfadjoint in L(I, v).

THEOREM 4.2. The isomorphism F introduced in Theorem 4.1 can be extended
uniquely to a unitary transformation from H onto L.(N, v). This extension, which we
denote by the same symbol F, has the following properties"

(i) F maps D(B) onto D(), FBf ’Fffor all f D(B),
(ii) F maps D(B-1) onto D(’-I), FB-f "-lFffor all f D(B-).
Proof. Since PH() is dense in H (relative to the norm I1" ]]) and P([) is dense in

L2(, v) (relative to the norm I1" I]), the extension can be accomplished by continuity.
As the proofs of properties (i) and (ii) are entirely analogous, we will give only the
former. For any feD(B) there exists a sequence of polynomials ," n 1, 2,. .} in
P() such that [If-,(B)en[[,0 and [[Ff-/,,l[0 as n. Given such a sequence
we have, for anyq P(R), (q, FBf),, (q (B)en, Bf), (Bq(B)en,f), lim,_.o (’,,6,)
lim,_.oo (, /,). Since P() is dense in Lz(R, ), it follows that {,6, "n 1, 2,... }
is a Cauchy sequence in L2(, u). But is closed and n Ff in L2(R, v), so Ff D()
and /, Ff in L2(, u). Consequently, (, FBf),, (, Ff),, for any P().
Again using the fact that P([) is dense in L2([, u) we conclude that FBf TFf. E]

Because of the properties (i) and (ii) we say that the transformation F diagonal-
izes the operator B. Theorem 4.2 is actually a special instance of the spectral theorem
for unbounded selfadjoint operators in a Hilbert space; cf. [13, Thm. XII.3.5].

By putting

(4.9) For FPf f L2(,/x)

we obtain an extension F0 of F which is defined on all of L2(N,/z). Fo has the property
that it maps the element e s L.(I,/x) onto the element e L(I, v). Of course, the
mapping F0 thus defined is not injective. An extension which is injective is defined in
the following theorem.

THEOREM 4.3. The mappingf L2(, /_t,)--> C2L2([,/) defined by

(4.10) j6f (2(f, Te),,, 2(f, e),,, FPf) f L2(, ix)

is a linear isomorphism. For any f D(T-) we have

(4.11) AT-lf (2(f, e),, 0, -IFPf).
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P is unitary ifL2(N, ix) and CZ(L2(N, 9) are endowed with the norms [1" [Ix and
respectively, where

(4.12) [If[lx= l[(I-P)fll+llPfll ]’ e z(N, ),

(4.13) II(a,b,)ll%=lal=+lbl=+lll (a,b,)eC=@t=(N, ).

Proof. The first part of the theorem follows from the direct sum decomposition
L(N, g)= G@H and the fact that F is an isomorphism from H onto L(N, .). To
prove (4.11) we observe that PAT-lf=AT-Pf+AT-(I-P)f=B-1pf+
PAT-I(I-P)f =PF--aFPf+PAT-(I-P)f =(2(L e),, O, -FPf). Finally, for
any [ L2(N, ) we have IIll= 11(2(, re), 2(, e), fP)ll= 21(, re),l
3l(f, e),[:+IIFP#II= llI-P)l+ llPfL=.

At the end of 3 we already observed that the operator B PTIH coincides with
the operator PTP on H. The maximal domain of PTP in L:(R, ) coincides with D(T).
Hence, by putting

(4.14) Bof= BP[ [eD(T)= L(,

we obtain an extension Bo of B which is defined on all of D(T). It is such that
FBo FBPf FP[ Fof for any f e D(T).

5. Existence and uniqueness theory. We now turn to a discussion of the boundary
value problem (2.7). First, we treat the homogeneous equation

(5.1) (Tu)’(t)+Au(t)=O (O,

for u" [0, ]D(T)L(N,), Tu C(0, ; L:(N,)), subject to the boundary
conditions

(5.2) O+ru(o)=O+g, O_Tu(z)=O_g geD(T-1).

In terms of the function v(t)= Tu(t), equations (5.1) and (5.2) become

(5.3) v’(t)+A T-v(t) 0 (0, ),

(5.4) O+v(O) O+g, O-v(r) O-g g e D(T-1).
Application of the transformation , which is linear and continuous in L:(R, ) and,
hence, commutes with the differentiation operator (’) leads to the following set of
differential equations in CL2(N, ),

(5.5) m (t) + too(t) O, m; (t) O,

(5.6) g’(t)+ -g(t) 0,

for the two scalar-valued functions m0, ml C1([0, r]) and the vector-valued function
v’" [0, r] D(-)c L:(N, ), 5 e C(0, z," L:(N, )), where m(t) (v(t), re),,
0, 1, and 5(t)= FPv(t). The equations (5.5) are satisfied by

(5.7) too(t) , m(t)= a + fl (r- t) [0, ],

where a, e C are arbitrary constants. (The constant r has been inserted for later
convenience.) We use semigroup theory to solve the differential equation (5.6).

To this end we introduce the spaces L:(N_, ) and L:(N+, ) in the same way as
we introduced the spaces L2(N_, ) and L2(N+, ) earlier. We decompose L2(N, ),

(5.8) L(, )= L:(e_, )L:(+, )

and let O be the projection operators which map L(N, ) onto L(N, ) along
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L2(:, v). Since - is reduced by Q+/-, equation (5.6) is solved in L2([, v) by a
function t7 iT_ + t+, t;+ L2([+, v), if and only if it is solved in L2(-, v) by

_
and in

L2([+, v) by
LEMMA 5.1. The operator _.-1 is the infinitesimal generator of a holomorphic

semigroup {exp (wtT-l) Re t> 0} in L2([+/-,

(5.9) (exp (q:t-l)[e)(A)= exp (:th-)/r+/-(h) v-a.e., h +/-,

for every + E L2([+/-, tJ). The operator exp (q:t-1) is uniformly bounded for larg tl----
,r/2-e (e >0) and strongly continuous (within this smaller sector) at t=0 with
exp (q:0. -1)= Z

Proof. We prove the lemma only for the upper sign; the proof for the lower sign is
entirely analogous. -a is nonnegative and selfadjoint in L2(R/, v); hence exp (-t7-a)
is holomorphic for Re t>0 and Ilexp (-t-a)l[--< 1, cf. [10, IX.1.6]. That exp (q:t7-)
may be identified with the multiplication operator (5.9) follows from the fact that
exp (-tA-a), continuously extended to A 0, defines a continuous function of A on R/.
The remaining properties of exp (-t-1) follow from the general theory; see [10,
IX.1.6].

It follows from Lemma 5.1 that any function t(t) of the form

(5.10) (t)=[exp(-t-l)O++exp(O--t)-)O_]t tE [0, -1
where /ED(7-a) is arbitrary, satisfies the differential equation (5.6). Conversely,
each solution of (5.6) has the form (5.10).

Let Op and O,, be the orthogonal projections of H onto the positive and negative
subspaces for the selfadjoint operator A T-alH, viz.,

(5.11) Opf =F-lO+Ff, O,,f =F-’O_Ff fen.
In view of the results (5.7)and (5.10)we introduce the family of operators {U(t)" 0<
Re < -} in L2(I,/z),

(5.12) U(t)=exp ((1/2r-t)AT-1)(I-P)+[exp (-tAT-I)Op +exp (O--t)AT-1)O,,]P.
THEOREM 5.1. U(t) is holomorphic in the open strip S={t:O<Ret<’}, uni-

formly bounded for E S {t: larg tl <-- ,r/2 e, larg (r t)- rl-<- ,r/2 e }, e > 0, and
strongly continuous (within S,) at t= 0 and t= r. The function v(t)= U(t)h satisfies
(5.3) for 0 < < - for any h E D(T-a). Conversely, each solution of (5.3) has the form
v(t) U(t)h for some h E D(T-).

Proof. On G, U(t) is represented by the matrix

(10 1/2,r-l)1
relative to the basis (Te, T2e), which is clearly holomorphic for all E C. On H, U(t)
corresponds via F to the transformation exp(-tT-l)(/+exp(0"-t)’-a)(-in
L2(, u), which is holomorphic in S, uniformly bounded in S and strongly continuous
at 0 and r, according to Lemma 5.1. The range of U(t) is contained in D(T-a).
If v(t)= U(t)h, h E D(T-1), then m(t), too(t) have the form (5.7) and tT(t) has the
form (5.10), so v(t)satisfies (5.5), (5.6). [3

In view of the boundary conditions (5.4)we define two operators V, and W, in
L2(,/.t),

v,=o+u(o)+o_u(r),

(5.14) w, O_U(O)+ O+.U().
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As can be seen from (5.4), the question of the existence of a solution of the boundary
value problem (5.3), (5.4) depends upon the invertibility of the operator V, on
D(T-1). Using the expression (5.12) for U(t) we see that V, is given by

)+ 0- exp (-1/2zAT-1)](I-P)V [Q+ exp (-AT-1

+[O+Op + O_O,, + Q+ exp (rAT-1)Q,, + Q_ exp (--AT-1)Qp]P.
We put

(5,15) IB-11 AT-1Qp-AT-1Q,,.

IB-I is a positive operator in H. Its exponential exp (-IB-1I) is well defined,
Ilexp (-’IB-1I)II--< 1 for z -> 0. We rewrite the expression for V in the following form,

(5.16)
V [Q+ exp (1/2zAT-1)+ Q_ exp (-1/2rAT-1)](I-P)

+[(O+Op + O_O,.)+ (O+O, + O_Op) exp (--IB-11)]P.

Let ]T-11 be the positive operator defined in L:(R,/z) by the relation

IT-I=T-O+-T-O_"

LEMMA 5.2. The operator V is an in]ective map ofD(T-1) into itself.
Proof. Take any h D(T-1). Then Vh, Wh D(T-1) and

(IT-11Vh, Vh), -(IT-1IWh, Wh), (T-1U(O)h, U(O)h), -(T-1UO’)h, UO’)h),

Now,

--d(T-1U(t)h, U(t)h), at

2 IIAT-1 u(t)hllL dt.

IIAT- U(t)hll2.. 2l(h, e).[2 + A-2[exp (-2t/A)]IFPh(A )12u(dA
0

+ I_ A-2[exp (2(’r- t)/A )]]FPh (A)12u(dA ).

Using Fubini’s theorem we find

2 IIAr-U(t)hlldt=41(h, e),l+ a-(1-exp

,0

J_ -1(1 -exp (2-/a))lFPh(a)l,(da)

410, e),l + (IB-I(I- exp (-’l-l))eh, eh
Hence, for any h e D(T-1) we have the inequality

(5.1a) (Ir-l g.h, V.h). -->41(h, e).l+(C.Ph, Ph).,

where C, is a positive operator, C, IB-l[(I-exp (-2-IB-1I)). Now, suppose V,h 0
for some h D(T-1). Then it follows from (5.18) that (h, e), 0 and Ph 0, i.e.,
h aTe for some a e C. However, V,Te Te. Hence, V,h 0 implies h 0. E]
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Next, we want to show that V, is a surjective map of D(T-1) onto itself We will
do so in a somewhat indirect way suggested to us by R. Beals. It is based upon the idea
that one first studies, instead of V,, another operator V (e > 0) which coincides with
V, on D(T-1)f3H for every e >0, but which may differ from V, on G. (We recall that
D(T-1)= G(D(T-1)(’iH.)

Let Ae be the following perturbation of A in L2(, Ix),

(5 19) Aef Af+ 2e(f, 2 T2T e), e fL2(,Ix),

where e > 0. This operator is bounded, positive, selfadjoint in Lz(R, Ix). Its inverse
A2I exists and is given by

-1A-lf=f+((2e +3)(f, e),-2(f, T2e),)e-2(f, e),r2e feL2(N, Ix).

We use this operator A;-1 to define a new inner product (’,’)A and norm [1. [[A in
L(, ),

(5.20) (f, g)A. (A-’f, g). f, g L2(, Ix ),
,1/2(5.21) IIfl[, (f, jja, f e Lz(, Ix).

Since A is bounded and positive in Lz([, Ix), the norm [l’]la, is equivalent to the
norm ][. [], in Lz(lt, Ix). On H, AI is given by the expression

a-af f Z(f, Te),e fell,

which is independent of e, so for all e > 0 we have the identity

(5.22) (f, g)Ae (f, g) f, g H.

The properties of the operator AcT-1 in L2(N, Ix) are very similar to those of AT-, as
may be seen from the following lemma.

LEMMA 5.3. (i) The operator AcT-1 is reduced by the pair {G, H} ]’or all e > O.

(ii) AeT-alG is defined on G and has the representation (0 1) relative to the
e 0

basis (Te, TZe) of G.
(iii) AeT-alH coincides with AT-11Hfor all e > O.
(iv) AcT-1 is invertible in L2(N, Ix), its inverse Be (AcT-l)-1 TA- is given by

(5.23) Bef 2e-(f, e)t,Te + 2([, re)t,T2e + BP[.

Proo[. For any [ D(AT-1) D(T-) we have the identity

AeT-I[ AT-’f+ 2e([, Te)gT:e.
The lemma is readily verified.if one uses the properties of AT- given in Theorem 3.1.

TheexpressionforBe fllws frm the representatin (AeT-lG)-=( 11 le)rela-
tive to the basis (Te, TEe)of G and from the fact that (AeT-I[H)-1= (AT-I[H)-1=
PTIH B. rq

Observe that B coincides with the operator B in H for all e>0. In
Lemma 4.2 we established the selfadjointness of B in H relative to the inner product
(., .),. In the following lemma we establish a similar property for the operator B,.

LEMMA 5.4. Be is selfadjoint in L2([, Ix) relative to the inner product (.,.)A.
r(Be) and o’p(Be) {+ 1/’f-e}.

Proof. Since D(Be)= D(T), D(Be) is dense in L2(, Ix) in the topology induced
by the norm II" II, and, hence, also in the topology induced by the norm 1[. [[e. For any
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f, g D(Be) we have

(Bef, g)A. (A-/TA-f, g). (f, A-TA-/g). (f, Beg)A.,

so Be is symmetric relative to the inner product (.,.)Ae and D(Be)c D(B*). Suppose
gD(B*). The mapping f--(Bef, g)Ae defines a continuous linear functional on
D(Be). But (Bef g)ne =(A-ITA-lf, g), for any pair fD(Be)=D(T), g Le([, ix),
so the mapping f- (Be]:, g)Ae defines, at the same time, a continuous linear functional
on D(T). Consequently, gD(T*). Since D(T*)=D(T)=D(Be), it follows that
gD(Be). Hence, D(B*)cD(Be) and Be is selfadjoint in Le(R, Ix) relative to the
inner product (., )A. The last two statements of the lemma follow from the fact that
Be coincides with B on H, so o-(BelH)= o-(B)= R, and from the fact that Be is

(0 l/e)whose eigenvalues are +l/x/, sorepresented on G by the matrix
1 0

tr(BelG)=trp(Be)={+l/qe}. In fact, it is readily verified that the eigenfunction f
associated with the eigenvalue + 1/x/ is given by f: Te +/- x/-TEe. [3

The spectral measure Ee defined by the selfadjoint operator Be can be used to
develop an operational calculus. Thus, one establishes the existence of a linear
isomorphism Fe which diagonalizes Be on its domain. This isomorphism coincides
with the isomorphism F on H. Let Qp and Q be the orthogonal projections which
map L2(N,/) onto the subspaces positive and negative for Be, respectively. We define
the operator V in L2(,/) by the expression

(5.24) V; (O+O. + O_O.)+(O+O + O_O.) exp (--IAT-II).

where

IAT-I=AT-I(og-O);

cf. (5.15)and (5.16). Then V;[H V,IH for all e >0.
We wish to study V on D(T-1). To this end, however, it is convenient to first

study V as an operator in a complete vector spaee. Therefore, we use the positive
operators IAeT-11 and IT- I to define the inner products , )n, and (.,.)7- on D(T-1),

(f, g) (IAT-1I, g)A ((O, O)f, T-g). f,gD(T-1),

(f, g)T=(IT-lf, g). =((O+-O-)f, f,gD(T-),

with the corresponding norms II" I1. and I1" I1,

,1/2Ilfll- (f, . )B, f D(T-).
Ilfllr (.f, f)g2 fe D(T-’),

and consider the completion of D(T-) with respect to each of these norms. We
denote these completions by Hs, and HT, respectively. We extend O and O by
continuity to bounded selfadjoint projections in Hs. and, similarly, O+ and O- to
bounded selfadjoint projections in HT. The following lemma holds.

LEMMA 5.5. The norms 11" lIB, and [1. lit are equivalent on D(T-).
Proof. Suppose f s D(T-). Let u(t) exp (-tlTI)f. Then u(t) D(T-) for all

t0. Moreover, u(t) and T-u(t)O in L2(N, ) as tm, so (IAT-lu(t), U(t))A
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((Oo-Q,)u(t), T-lu(t)), -->0 as t--> oo. Therefore,

d[1/’[1, -([A,T-)u(t), u (t))a dt

2 Re I0 (IAT-alu(t)’ ITlu(t))a dt

2 Re Io ((O;-O)u(t), (O+-Q_)u(t)), dt

<-2cZ fo ])u(t)ll dt-- cllZll.

Then, also, I111-- (r-’(O/ o_) f,) (AT-I(O+ O_)f, f)A. ((0+-- Q-)f, (0;

c-Xllflk --< Ilfllz --< CIIflk for any f e D(T-1). [-1

It follows that HB and Hr coincide as sets, that Op and Q,, are bounded as
mappings from HB into Hr, that O+ and Q_ are bounded as mappings from Hr into
HB., etc. We consider the map V defined by (5.24) as an operator in Hr and prove
the following result.

LEMMA 5.6. V; is a topological automorphism of Hr.
Pro@ Let

Then

v =O+Oo+O-O, w’=o+O+O_O;.

V: V + W" exp (--[AT-’I).
Since Hr and H), coincide as sets and have equivalent topologies, we may consider
V and W as mappings from HB, into Hr. Their adjoints V* and W’* are defined
by the relations

Vf, g)T (f, V

for all f Hs., g HT. Given the selfadjointness of Q+ and Q_ relative to the inner
product (’,’)T and the selfadjointness of Op and 0,, relative to the inner product
(.,.)s., one verifies that

Ve* OoO+ + OmO-, *

Now, for any h

(5.26) IIVhll-IiWh[l

so I[Vhl[r >= [[hll, i.e., V is injective with closed range. Similarly, for any g Hr,

(5 27) live, = W,g2

so IlV*gllo.>-llgllr, i.e. V* is injective. It follows that V is a topological iso-
morphism from H), onto Hr. Since H), and Hr coincide as sets, we conclude that V
is a topological automorphism of Hr. The same is true of its adjoint, V"*.

Using the identity (5.27) with g (V’*)-lh, h Hr, we find

IIw*(v*)-hll.
where 0 =< 3’ < 1, so the operator W*(V’*)-I: Hn, --> H, has norm less than one. The
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same is then true of its adjoint, (V)-IW’HBe-,HB,. Since the operator
exp (-rIAT-1I): HBe Hs has norm at most equal to one, it follows that the series

(5.28) Y (-1)"[(V)-1W exp (--IaT-al)]
n=0

converges in norm. The operator given by this series is defined on all of HT. As an
operator on HT, it is the inverse of

(V)-’ V; t + (V)-1W exp (-’[AT-’I).
It follows that the mapping (V)- V" HT Hr, and therefore also the mapping V is
surjective.

In particular, considering the operator V on D(T-) we have the following
result.

LEMMA 5.7. V is a sur]ective map ofD(T-) onto itself.
Proof. The operators exp (-’IAT-1I), W, V and (V)-1 map D(T-) into

itself. It follows that the operator ((V)-1V)-I, which is defined by the infinite series
(5.28), maps D(T-) into itself. The same is then true for (V)-1, so V as an
operator in D(T-) is surjective. !-1

The proof of the corresponding property of V, is now almost trivial: V, maps
D(T-1) into itself, V, is injective by Lemma 5.2, and V, coincides with V on a
subspace of finite codimension; hence, V, is a surjective map of D(T-) onto itself. As
this result is crucial to the proof of the main results of this paper, we state it in the form
of a theorem.

THEOREM 5.2. The operator V, defined by (5.16) is a bifective map ofD(T-1) onto
itself.

Combining Theorems 5.1 and 5.2 and taking into account the relation u(t)=
T-Xv(t) between the solution u(t) of the boundary value problem (5.1), (5.2) and the
solution v(t) of the boundary value problem (5.3), (5.4), we arrive at the main result of
our investigation.

THEOREM 5.3. The boundary value problem (5.1), (5.2) has a unique solution u(t)
for every gD(T-X). It is given by u(t)= T-1U(t)V-ag .for t6[0, ’], where U(t) is

defined by (5.12) and V- is the inverse of the operator V, defined by (5.16).
To conclude this section we briefly discuss the solution of the inhomogeneous

boundary value problem (2.7).
Let Lips (0, ’; L2([,/z)) denote the class of mappings [: [0, z] L2(I,/x) which

are Lipschitz continuous with exponent a, i.e., for which there exist two constants L
and t x ’ith 0 < a -< 1 such that IIf(s)-f(t)L <- L(t s) for all 0 <_- s <- <- z.

THEOREM 5.4. The boundary value problem (2.7) has a unique solution u(t) .for
every /Lip, (0, ’;L2(R,/z)), gD(T-1). It is given by u(t)= T-lvo(t)+Ul(t) for

[0, z], where

Vo(t) exp(-(t-s)Ar-)(I-P)(s)ds

+ exp (-(t- s)A T-)Oflff(s) ds

exp (-(t-s)Ar-)O.e(s) ds e [0, ],

and u(t) is the (unique) solution of the homogeneous equation (5.1) which satisfies the
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boundary conditions O+Tul(0) O+gl, (-rul(r)-- O-g1, where g--
g Q+r-1Vo(0)

_
r-vo(7.).

Proof. Under the stated conditions on f the function Uo(t) represents a particular
solution of (2.7a); cf. [10, IX.1.7]. The theorem is then an immediate consequence
of the linearity of the problem and Theorem 5.3. [3

6. Discussion. The theorems established at the end of the previous sect,ion
provide a complete answer to the question of the solubility of boundary value
problems described by (1.1). It must be observed, however, that the proofs of the
theorems are not constructive. For the actual solution of boundary value problems
one needs to know, for example, the representations of the transformations F and F-1

on (subspaces of) H and Z2(, u), respectively, cf. Theorem 4.2, and also the
representation of the transformation V, or, rather, of its inverse V-1 on D(T-1), cf.
Theorem 5.2. We discuss these and other matters in two forthcoming articles [7], [8].
At this oint we mention that the representations of F and F-1 are established rather
easily, at least on certain subspaces of Lipschitz functions. These representations
provide the connection between our Theorem 4.2 and the so-called full range
completeness theorem enunciated by Cercignani in a study of the slip flow problem;
cf. [9, Thm. IV]. A representation for V is much more difficult to establish. It is tied
to the construction of a unique factorization of the function w defined in (3.1) into a
product of two functions analytic in the left and right half of the complex plane,
respectively. It is indeed possible to construct such a factorization and to derive a
representation for V- from it. This representation, in turn, provides a connection
between our Theorem 5.2 and Cercignani’s half range completeness theorem; cf. [9,
Thm. VII.
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SPECTRAL REPRESENTATION OF AN UNBOUNDED LINEAR
TRANSFORMATION ARISING IN THE KINETIC THEORY OF GASES*

HANS G. KAPER"

Abstract. The linear integro-differential equation

Oxu(t, x)+ u(t, x)- IOt - exp (-y2)u(t, y) dy f(t, x),

(0, z), x R, is interpreted in functional form as an ordinary differential equation for the mapping
U: [0, "r]--> LE(R,/z) in a weighted Hilbert space L2(li,/z). In the article Boundary value problems o[ mixed
type arising in the kinetic theory ofgases [SIAM J. Math. Anal., this issue, pp. 161-178] the author proved the
existence of a diagonalizing transformation for the (unbounded) evolution operator associated with the
differential equation. In the present article explicit representations for this transformation are established.

1. Introduction. In this article we are concerned with some constructive aspects
of the solution of boundary value problems described by the linear integro-differential
equation

Ox--u (t, x)+ u(t, x)
1 I(1.1)

Ot - exp(-ye)u(t, y)dy=f(t,x),

(0, ’), x R. In [1], we presented a Hilbert space approach based on an inter-
pretation of (1.1) as an ordinary differential equation for the mapping u’[0,
L2([, /., ),

(1.2) (Tu)’(t)+ Au(t)= O, (O, -).

Here, L2(, tt) is a suitably weighted L2-space,/(dx) r-a/2 exp (-x 2) dx. (See [1]
for the notations and definitions.) The results presented in [1] are, howe+er, not
constructive. For the actual solution of boundary value problems one needs to know
the representations of certain isomorphisms which play a role in the abstract theory.
In this and a subsequent article we address ourselves to these more constructive
aspects. The knowledgeable reader will observe that the approach of the following
sections parallels the approach developed by Hangelbroek [2] and Lekkerkerker [3]
in their study of the neutron transport equation. This, of course, is due to the similarity
of the underlying equations. However, as we pointed out in the Introduction to our
article [1], there are significant differences between the two equations. The most
significant one concerns the range of the independent variable x, which is finite in the
neutron transport case and infinite in the present case. This implies that unbounded
operators are the rule, rather than the exception. Needless to say, it significantly
complicates the discussion.

We refer to [1, 2-4], for the formal statement of the problem and a spectral
analysis of the (unbounded)operator AT- which determines the evolution of the
function u(t)in L2(, tt). An important result expressed in [1, Thm. 4.2], concerned
the existence of an isomorphism F: HL2(, v), where H is a closed subspace of
L.(,tt) with finite codimension and L2(, v) is another weighted L2-space; F
diagonalizes the restriction AT-IH, or rather its inverse B (AT-alH)-, on its
domain. The existence of this isomorphism implies the existence of an isomorphism
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180 HANS G. KAPER

if’" L2(,/z)’-’) C2()L2(, p) which plays an essential role in the solution of boundary
value problems described by (1.1). In this article we address ourselves to the problem
of establishing representations for the isomorphism F and its inverse.

In 2 we show that F and F-1 are represented by certain Cauchy principal value
integrals on polynomial subspaces. Using these representations we define two families
of linear functionals {b" h } and {X’x } and show in 3 that these functionals
can be extended continuously to certain locally convex vector spaces of locally
Lipschitz continuous functions which possibly have a jump discontinuity at the origin.
In 4 we show that on these spaces the isomorphisms F and F-1 are again represen-
ted by the functionals {b" A } and {X" x }, respectively. These results provide a
rigorous framework for the so-called full-range completeness theorem enunciated by
Cercignani, [4, Thm. IV], in his study of the slip flow problem. We formulate such a
theorem in the final 5.

Notation. The notation in this article is the same as in [1]. References to formulas
in [1] are preceeded by the Roman numeral I.

2. The transformations F and F- on polynomial subspaces. In this section we
address ourselves to the problem of finding representations of F and F-1 on poly-
nomial subspaces. Let P() be the vector space of all polynomial functions on . We
recall that P is the (nonorthogonal) projection operator which maps L2([,/z) onto H
along G; cf. 1-(3.12).

THEOREM 2.1. For any p P(R) we have

(2.1) FPp(A)= -A I_ p(x)-p(A)
(dx)+ (A) A 6 I

x-A
/x p

or, equivalently,

p(x) (dx)+(2.2) FPp A ) A
A x l’ o

where denotes the Cauchy principal value integral and w(A is given by I-(3.4).
Proof. First we verify (2.1) for pP()fqH. The subspace H does not contain

any polynomial of degree less than two. The only polynomials of degree two in H are
constant multiples of Pe e 2 TZe, for which (2.1) is readily verified. (We recall that
FPe=Y.) For any polynomial pP(ffC)fqH of degree three or more there exists a
polynomial/Sk P() of degree k ->_ 1 such that Fp k. Such a polynomial ,Sk can be
written in the form

(2.3) /Sk (]b AI)k-1 + ,Sk(A )g,

where /k-IP(E) is a polynomial of degree k-1 (A , A fixed). Applying the
operator F-1 to both sides we obtain

F-1/k (B- AI)F-1/k-1 +/k (A)Pe
(2.4)

(T-AI)F-Ik_I-Z(TF-Ik_I, Te),Te +k(, )Pc.

When we evaluate F-1,Sk at some (arbitrary) point x R and at the (fixed) point ,t 6 ,
subtract the two expressions, and divide both sides of the resulting expression by x -,
we obtain the identity

[F-lffk(X)--F-k(A )](X--A )-1= F-Ik_I(X)_Z(TF-Ik_I Te),- 2/k (A)(X +A ).

Since F-lffk_l H we have (F-lffk_l, We)tz 0, SO upon taking inner products with Te
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we obtain

/k(A)= f_ [F-lfik(x)-F-lk(A)lx(x -A )-IL/, (dx)

-h f_ [F-lk(X)-F-lk(h)](x -h )-llx(dx)+F-lk(h ),

which proves the validity of the representation (2.1)for pP(N)H. Since P(N)=
GO)P(N)H and the right-hand side of (2.1) is zero for p Te and p T2e, the
validity of the representation (2.1) for all p P(N) follows. The representation (2.2) is
an immediate consequence of (2.1) and the definition I-(3.4) of to(A) for A [. 71

THEOREM 2.2. For any P(N) we have

(2.5) F-l(x) x I /(A)-/(x)
,(dA)+(Pe)(x)(x), x,

or, equivalently,

o,(x)
)

/(A) ,a(dA) + (x), x,(2.6) F-lfi(x)=x
ooA-x (o) +to -)(A (to+o)-)(x

Proof. Equation (2.5) holds trivially for all polynomials of degree 0 on P(N),
which are constant multiples of Y. (We recall that F-ly =Pe.) For any polynomial
/Sk e P(i) of degree k >- 1 we start with the same relation (2.3), this time written in the
form ,Sk (-xI),gk-1 +/k(x)Y, with x s I, x fixed. Evaluating/k at some (arbitrary)
point A [ we obtain/Sk-l(A)= ( -x)-l(fik(A )-,Sk (x)), so

(2.7) (ffk- 1, )v [k (/) k (X)] (/ X)-1 p(dl ).

Now, (ffk_l,)v=(F-lk_l, ee)=-2(F-k-1, T2e)w On the other hand, F-/k
(T-xI)F-’k_X-2(TF-’k_x, Te),Te+k(X)Pe, (cf. (2.4))so F-’k=(T-xI)
F-1/k-l+(fik-, Y.)vTe+k(X)Pe. Evaluation at x and substitution of the expression
(2.7) leads to the representation (2.5).

To establish the representation (2.6) we need an expression for Pe which we will
now derive. Consider (2.2) for p Pe. Since FPe , we have the identity

(2.8) A (Pe)(x)(A-x)-att(dx)+w(A)(Pe)(A) 1, A .
We view this identity as a singular integral equation for Pe. Let (z) be defined for
z C\[ as the Cauchy integral

(z) z I_ Pe(x)(z x)-’_tx (dx)

is analytic in the complex plane cut along the real axis. Near infinity its behavior is
given by (z)----z-Z-(51/12)z-4+ as z-eo. The limiting values on the cut,
(I)+(A) lim_.o+ (A + ie), A e N, exist and are given by

13 (1 1

_
(Pe )(x )(1 x )-1 +

t* (dx : 1/2(0, ,o-)( )(Pe )(a ), h [.
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From this result we obtain the identities

(2.9a) (Pe)(x)( x)-x (dx) 1/2(/ + -)(I ),

(2.9b) (Pe)(x)= -(+ -)(A )/((to + to -)(A )),

which we use to rewrite (2.8) in terms of +/-(A) and to+(1),
(2.10) (/to)+(h)- ((P/to )-(h -(to + to-)(A )/((to +to-)(h )), A e I.

Thus, we have transformed the original singular integral equation (2.8) into the
following boundary value problem: to determine a complex function N /to, which
is analytic in the complex plane cut along the real axis and whose limiting values at the
cut satisfy the jump condition (2.10). The general solution of this boundary value
problem having finite degree at infinity is

1 o -o d;
() +p(z),q-N(z

27ri to w A z

where p is an arbitrary polynomial; see [5, 38]. We determine p by noting that the
ratio P/to is bounded at infinity. In fact, limz_,o (dp/to)(z)= 2, so

1 to -to

(I)-_ to(z).+

Since (2ri)-(to/-to-)(1) dl 1(d,) and I_ [to/to-(1)]-x(d,)=

_
,(d,)=

IIPll- 2, we can rewrite this result,

(zl -zoo(zl [o*o-( ll-(a

Using (2.9b)we readily obtain the following expression for (Pe)(x),

o,(x)1 /x(dZ)
t- xeR.(2.11) (Pe )(x x

A x (to +to -)(A ) (to +to -)(x)
The representation (2.6) for F-1 now follows immediately from the representation
(2.5) if one takes into account the relation between the measures /z and ,, cf. [1,
Lemma 4.5], and substitutes (Pe)(x) according to (2.11).

3. Lipschitz spaces and the functionals bx (, [) and X,(x e ). The expressions
(2.2) and (2.6) define two linear functionals 4,x and ’x on P(R),

(3.1) (x, P)= FPp(X ), A e , p e e(N),

(3.2) (Xx,/) F-(x), x , e P(N).

In this section we extend these functionals to certain Lipschitz spaces.
We recall that a complex-valued function f defined on a subset J of N is said to

satisfy a (uniform) Lipschitz condition with exponent a (0 < a <= 1) if the asymptotic
relation f(x)-f(y) 0(Ix y [’) as Ix y --> 0 is satisfied for all x, y e J(x y). A
function is called Lipschitz continuous on J if it is bounded and satisfies a (uniform)
Lipschitz condition there. For 0 < a _-< 1, Lip (J, a) will denote the vector space of all
Lipschitz continuous functions on J with exponent a. Lip (J, a) is a Banach space if
the norm II" Ilz is defined by

Ilfll, sup If(x)l +p, (f), f Lip (J, a),
xJ
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where

pj,,,(f)= sup {If(x)-f(y)l/Ix
x,yf

Furthermore, we will say that f satisfies a (uniform) lipschitz (lower case l) condition
with exponent a(0<a=<l) if-the (stronger) asymptotic relation f(x)-f(y)=
o([x-y]") as Ix-y]-->O is satisfied for all x, y J(x y), and call a function lipschitz
(lower case l) continuous on J if it is bounded and satisfies a (uniform) lipschitz
condition there, if lip (J, a) denotes the vector space of all lipschitz continuous
functions on J with exponent a(0<a <-1), then lip (J, a) is a closed subspace of
Lip (J, a). One has the following inclusion relations,

Lip (J, a) lip (J, fl) Lip (J,/3) for 0 </3 < a =< 1.

For 0 < a-_< 1, we define A(R, a,/x) as the linear vector space of all functions f
defined and continuous on R, which belong to L2(I,/x) and which are locally lipschitz
continuous with exponent a on in the sense that f is lipschitz continuous with
exponent a on every compact subset K of [. For any compact subset K of [ we
define the seminorm ptc.., ("),

Pc,,., (f)= I[f[[, + [Ifll., f h(, a,/z).

A(I, a,/z) is a locally convex vector space by the family of these seminorms. We refer
to the topology thus defined as the lipschitz topology of A(, a,/x). It is stronger than
the topology induced on A(, a, tz) by the norm I1" [[. If A(I, ix) denotes the linear
vector space of all functions f defined and continuous on which belong to L([,/x)
and which are locally lipschitz continuous, then A(II,/z) o<,al A(I, a,/z). A(I,/z)
endowed with the inductive limit topology is again a locally convex vector space; see
[6, 1.8]. The spaces A(I, a, u) (0<a =< 1) and A(, u) are defined in an entirely
similar manner.

For future applications we will also consider spaces of piecewise continuous
functions, in particular, continuous functions which have a jump discontinuity at the
origin. To this end we introduce the vector spaces A(+/-, a,/x), 0<a =< 1, and
A(I+,/z), whose definitions are similar to those of A(, a,/z) and A(,/x), respec-
tively, and form the direct sums A(R_, a,/x) A(I+, a,/z) and A(I_,/z) A(I/,/z).
These are again locally convex vector spaces by the family of seminorms {px.,,.,(.):
K c , K compact}, and the direct sums are topological. Obviously,

(3.3) A(II, tz)c A(_, tz) A(+, tx)c L2([, t).
Since the set {0} c 1_ f3 R/ has Ix-measure zero, A(_,/z)A(R+, tz) can be

mapped identically into L2([, tz). We consider in particular the restriction e/ of e to
/. As an element of A(_,/z)A(I/, ) it satisfies

J0 x _,
(3.4) e+(x)

1 x+.
Each f A([_, tz)A(I/, Ix) can be written in a unique way as f= h + ae/, where
h e A(, tz) and a f(0+)-f(0-)e C, so

(3.5) A([_,/x)A(I+,/) A(,/x)Ce+,

where Ce+ is the subspace spanned by e+.
The spaces A(_, a, ,)A(+, a, u), 0 < a =< 1, and A(_, u)A(+, u) are

defined in an entirely similar manner. They have similar properties as the/z-spaces. In



184 HANS O. KAPER

particular A(R, u)c A(R_, u)ff-)A([l+, u)c L2([, u), where A(N_, u)ff-)A(N+, u) can be
mapped identically into Lz(R, u) since the set {0} c N_ f-I N+ has r-measure zero, and
A(N_, u)ff-)A(N+, u)= A(R, u)CY+, where + is the restriction of Y to N+.

Having established these definitions we now set out towards our first goal, namely
to prove that the polynomials on N are dense in A(N, a, Ix) and A(N, a, u) relative to
their respective lipschitz topologies. This goal will be achieved in a number of steps.

LEMMA 3.1. The set lip0 (R, a) of all functions in lip (, a) which have compact
support is dense in A(N, a,/x) and A(N, a, u) relative to the respective lipschitz topolo-
gies (0 < a <- 1).

Proof. Let f e A([, a, tz). We take a real-valued function 4’ which is defined and
infinitely ditterentiable on R, which has compact support, and which is such that
O(x)= 1 for Ixl-<l. The function f defined by f(x)=f(x)4,(ex) (x) belongs to
lip0 ([, a) for any e > 0. Furthermore,

ff-oo I(f --fe)(X)12ld’(dx)-- ff-oo II--@(F’X)]21f(x)I2td" (dx)

f I1 O(ex)laIf(x)121x(dx)
xl>l/e

-<{sup 11- (x)l2} f If(x)latz(dx).
ff .IIxl>

Since f e L2([, tz), the last integral converges to zero as e 0, so f f in L2(N,/x).
Next, for any compact subset K of R we have IlK e lip (K, a), so

(f-f )(x)l--< {sup Iflx)l}l I (/)1 Ib[l, 11 O(x)l,
xK

By choosing e sufficiently small we can achieve the identity 4,(ex) 1 for all x e K, so
lim_o SUpxz( I(f-f)(x)l 0. Furthermore, for any pair of points x, y e K we have

I(f-L)(x)-(f-f)(y)l--< l1 4,(ex)l ]f(x)-f(y)l + If(y)l [0(ex)- 0(ey)l

<-[[1-O(ex)l+e{ sup Ix-yll-}lllfll,lx-y[.
x,y.g

The expression in the square brackets can be made arbitrarily small by letting e go to
zero, so lim_,o pK.,,(f-f)= 0. Thus, f f in the topology of L2([,/x), as well as in
the topology of lip (K, a) for any compact subset K of N. Hence, f -f in the lipschitz
topology of A(N, a, p.).

Similarly one shows that, for any )re A(N, a, u), one can construct functions
L e lipo (N, a) (e > o) such that f -f in the lipschitz topology of A(N, a, u).

LEMMA 3.2. The set C () of bounded functions on which have a bounded
continuous derivative is dense in A([, a, tz) and in A(R, a, u) relative to the respective
lipschitz topologies (0 < a < 1).

Proof. Let be C (R). Then b eL2(, )and b eL2(, u). Furthermore, ]b(x)-
b(y)[ =< {sup [4’(x)[}[x- Y for all pairs x, y e [, so b satisfies the asymptotic relation
4 (x)- b (y) o (Ix y [) as Ix Y -* 0 if 0 < a < 1. Since 4 is bounded on
lip (, a) for 0 < a < 1 and, afortiori, b [K e lip (K, a) for 0 < a < 1 for any compact
subset K of . Hence, C ()c A([, a,/z) and C (l) A(, a, u) for 0 < a < 1.

Because of Lemma 3.1 it is sufficient to prove that any fe lip0 (, a) can be
approximated arbitrarily closely in the lipschitz topology of either A(, a,/z) or
A(, a, u) by elements of C (R). In [2, Lemma 6.2], it is shown that C () is a dense
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subspace of lip (1, a) (0 < a < 1), so for given e > 0 there exists a b C () such that

Ill- 0 I1, < . Then, Ill- I1 SUpx Iff- )(x)l Ill- I1, < and, obviously,
I-11, 1-11, < for any compact sqbset K of . Hence, f in the
lipschitz topology of A(, a, ). The proof for A(, a, ,) is entirely similar.

Now we come to the following important result.
LZMM 3.3. The set P() of polynomial,functions on is dense in A(, a, and

in A(, a, ) relative to the respective lipschitz topologies (0 < a < 1).
Proof. Because of Lemma 3.2 it suffices to prove that any fe C () can be

approximated arbitrarily closely in either of the lipschitz topologies by elements of
P(). Obviously, P() A(, a, ) and P() A(, a, u) for 0<a < 1. Letf C ()
be given. Accbrding to the theory of weighted uniform approximation of continuous
functions on , cf. [7, 1.8], there exists for any e > 0 a polynomial q P() such that
sup {l f’ (x )-q (x )l exp (-x2): x }<e. Then the polynomial p P() defined by
p(x)= f(O) + q(t) dt (x ) is such that

I(x)-p(x)l ’(t)-q(t) dt

Ne exp (- It) dt

N e D(x)l exp (- x).

for all x e N, where D(x) is Dawson’s integral, D(x)=exp (-x) exp (t)dt for
x eN; cf. [8, 7.1]. Dawson’s integral is bounded, ID(x)l< 1 for x eN, so the poly-
nomial p e P(N) provides a weighted uniform e-approximation of and ’ in the sense
that, simultaneously,

sup {1([-P )(x)l exp (- x)} < e

and

Then,

sup {l(f’ p’)(x)l exp (- 1/4x2)} < e.

(3.6) II-pl[ -<sup {l(f-p)(x)l exp (- 1/4x2)} e -x2/2 dx < e.
xll

Furthermore, on any compact subset K of

and

I(f-P )(x )1 -< {sup eX2/4}l(f p )(x )[ exp (- 1/4x 2) < {sup eX/4}e
xK xK

I(f-p)(x)-(f-p,)(y)l<= (f’-p’)(t)dt -<e e t2/4 dt]
<(sup eX/4}( sup Ix yll-}elx yl,
xK x,yK

so there exists a positive constant C C(K, f, e) such that Ilf-p[l, < C. These
results imply that p f in the lipschitz topology of A(, ce,/x). The proof for
A(, a, u) is entirely similar. I1
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THEOREM 3.1. The linear functions Cx(A R) defined on P(R) by equation (3.1)
can be extended uniquely by continuity to A(R,a,/x), 0<a <1. The extended
functionals, denoted by again, are given by

(3.7) (,f)=-A I f(x)-f(x)
(dx)+f(A),

or, equivalently,

Ae, feA(,a,),

f(Z)
(dx)+ (A)f(A), A e, feA([,a,#).(3.8) (*’ f)= ’x o

Similarly, the functionals Xx(x ) defined on P(R) by equation (3.2) can be extended
uniquely by continuity to A(I, a, v), 0 < a < 1. The extended functionals, denoted by Xx
again, are given by

(3.9) (g, h x rJ_ hA)-.x) u(dAtr)+(Pe)(x)(x), xe, fe A(It, a, v),

or, equivalently,

xe, feA(l,a,v).

Proof. The expression in the right member of (3.7) is well defined for any
A(I, a,/). It therefore defines a linear functional on A(, a,/x) for each A ,

’which is an extension of the functional on P(I). We denote this extension by (x
again and prove that is, in fact, a continuous linear functional on A(, a,/z). Let
K, f-n, n] for n 1, 2,.. . For a fixed A R there certainly exists a value of n,
n n say, such that I;1 < nx 1. Let Ka K,. Then

\Kx

If(x) /(y)[ Ixl (dx)

}+{sup [f(x)l} IAI (dx)+ 1

for some positive constant C(A). Hence, if fO in A(I, a,/), then (,,f)-O in C,
i.e., Ca is a continuous linear functional in A(, a, tx). That is the unique extension
to A(, a, tz) of the original functional defined on P() follows from the fact that P()
is dense in A(, a, tz) (0 < a < 1).

Similarly, the expression in the right member of (3.9), where the measure v is
given in [1, Lemma 4.5], is well defined for any f A(I, a, v). it therefore defines a
linear functional on A(, a, v) for each x , which is an extension of the functional
X on P(). We denote this extension by Xx again. The proof that Xx is, in fact, a
continuous linear functional on A(, a, v) is entirely similar to the proof above that
is a continuous linear functional on A(I, a, tz). Iq
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Finally, in order to obtain appropriate extensions of bx to A(i_,a, ix)
A(I+, a, Ix) and of gx to A(IR_, a, v)A(+, a, v) we define

(3.11)

and

(3.12)

v(da)
xX

A --X

0 (a)
(ee)(x) x--X

A-X

We then have the following result.
THEOREM 3.2. The linear functionals cx (h e It) defined on A(I, c, Ix) in the

previous theorem can be extended to A(t_,a, ix)A(t+,a, ix). The extended
functionals, denoted by 4 again, are given by the same expressions (3.7) and (3.8).
Similarly, the linear functionals Xx (x R) defined on A(I, a, v) in the previous theorem
can be extended to A(I_, a, u)A(N+, a, ). The extended functionals, denoted by Xx
again, are given by the same expressions (3.9) and (3.10).

Proof. Let f e A(N_, a, Ix) A(R+, a, Ix). Then there exist a (unique) h
A(N, a, Ix) and a (unique) a (/(0+)-f(0-)) e C, such that f h + ae/. We define

(4x, f)= (4, h)+ a (4x, e+), heR.

We observe that the expressions in the right members of (3.7) and (3.8) are well
defined when f=e/ and equal to (ba, e/) as defined by (3.11). Hence, (3.7)and (3.8)
can be used to calculate (ba, ]’) for f A(I_, a, Ix)A(I/, a, Ix). This proves the first
part of the theorem. The second part can be proven in a similar manner, l-!

Notice that, at this point, there are two functionals b0 and two functionals Xo.
In the next section we investigate the relation between the functionals

and gx (x !) and the transformations F and F-1.
4. The transformations F amd F-1 on Lipschitz spaces. We now turn to a

detailed investigation of the transformation F and its inverse on the Lipschitz spaces
introduced in the previous section. To this end we first investigate the relation
between the transformation F and its inverse and the functionals bx and g, respec-
tively.

THEOREM 4.1. On A(R, Ix) the composite transformation FP is represented by the
functionals {ba: A 6[}. On A(, v) the transformation F- is represented by the
functionals {X x }.

Proof. Let f e A(R, Ix). Then f e A([R, a, Ix) for some a, 0 < a <- 1. For a 1,
A([R, a, Ix) contains only those elements of Lz(R, IX) which are constant on R. For such
elements we certainly have FPf(a )= (ebx, f), v-a.e, on JR. If f e A(R, a, Ix) for some a,
0<a < 1, then there exists a sequence {p,: n 1, 2,...} with p, eP()such that
p, -+f as n -+ oo in the lipschitz topology. Since the lipschitz topology is stronger than
the topology induced by the norm [[.[[, in A(IR, a, IX), IIP,-f[[, 0 as n-+oo.
Consequently, [[FP(p,-f)[[,-+O as n-+oo, so there exists a subsequence {p,: k
1, 2,...} such that FPp,(h)FPf(h) v-almost everywhere on R as k oo. Now,
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FPp,, (h)= (, p,,k for all h , so

FPf(A lim (&, p,, lim (4), P,, (&, f)

,-a.e. on . In the same way we prove that if e A(R, u) then

F-I?(x)- (X, >
ix-a.e, on R.

If f A(R, ix) then FPf, as an element of L:(R, u), may be identified with the
function with values (, f), A [. In the following theorem we will show that this
function is a locally lipschitz continuous function on N. Hence, FPf may be taken to be
continuous and we have the identity

(4.1) FPf(A)=(f), heR, feA(R, ix).

Similarly

(4.2) F-lhx) (Xx, ]), x G [, lT i(, p).

THEOREM 4.2. If 0 < a < 1 and f A(R, a, ix), then (, f) (h R) defines a

function in A(R, fl,,) for each satisfying 0<fl<a. The composite map
FP: A(R, a, ix)--> A(R, , u) is continuous (0 < < a ). Similarly, if 0 < a < 1 and
A(R; a, u), then (Xx, ) (x ) defines a function in A(R,/3, ix) for each satisfying
0 < < a. The map F-a: A(R, a, ,)--> A(R,/3, ix) is continuous (0 < < a).

Proof. We prove the theorem only for FP: A(R,a, ix)->A(R, fl, t,), since the
proof for F-l: A(R, a, u)-> A(R,/3, ix) is entirely analogous.

Let f A(, a, ix). Then, by (4.1), (O.,f)=FPf, so (., f) L2([, u) and

(4.3) 11(., f)l[ -IlPfll Ilfll,..

Given any compact subset K’ of , we can certainly find another compact subset K of
such that K’ c K and d {sup Ix YI" x K’, y \K}> 0. For A K’ we have the

inequalities

If(x)-f(A )1I<,,., f)l I1 / (dx)+2 I1 If(x)l(dx)+lAllf(A)[ ix(dx) +lf(A)l
\K \K

sup sup
AK’ xK

XK’SUp I I}
\K

If(x)lix (dx) + {XK,SUp If(x)l}
\K

ix (dx) + XK’SUp If(x)l

<= sup
x,hK

If(x) }{ Igf? ]x-A’-l+’ix(dx)} 1/(. )]
sup Il +-{sup I1Ix -A tc’ xc’

SO

(4.4)

x [llfl. + sup If(a)l] + sup
AK’ AK’

sup [(x, f)l -< C1 (11/11. + [[flKllc,)
AK’
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for some positive constant Clo Furthermore, for any pair of points A, s K’,

[(bx’f)-(qbe’f)[<-lh I:f(x)-f(h)x-h I.(dx)-

(4.5, +[A 2sC[{sup ]A[}[I ]f(x)]lx(dx)+{sup If(h)[} I /z(dx)](-/ hK’ \K XeK’ \K

+f(A)-f(:).

The expression between the square brackets is estimated as before, so

(4.6) d {supa,K, Ihl} \Klf(x)ltz(dx)+{supx:’ If(h)[} \Ktx(dx)
-<

for some positive constant c. The difference of the two integrals over K can be
estimated by means of a slight modification of the proof of the Plemelj-Privalov
theorem given in [5, 18], along the same lines as the proof of the inequalities (6.14)
of [2]. Since the modifications are quite obvious we omit the details and give only the
result, which reads

IA IKf(x)-f(h) (dx) ,IKf(x)-f(’) (dx)[x -h
(4.7)

< fC3I[f[KIIK.aIA 1’ if ]h so[ _->1/2 diam (K)
C4[IflKIIr.lh 1 (1 -In [h ’[) if [h [ < 1/2 diam (K),

where C3 and C4 are some positive constants and diam(K)=supx,yK Ix-y[.
Combining (4.5), (4.6) and (4.7) we obtain the asymptotic relation

(4.8) (,,/)-(e,f)=o(Ix -sol) as [h -sc[-->0,

for each fl satisfying 0 < fl < a. From (4.4) and (4.8) we see that (., f)[K’ is lipschitz
continuous with exponent ft. Since the compact subset K’ was arbitrarily chosen on
we conclude that (., f) A(, fl, u) for each fl satisfying 0 < fl < a.

From (4.3) through (4.7) and the definition of the seminorms in A(I, a, IT) and
A(I, a, u) it follows that for any compact subset K’ of I,

P’,t,,, (FPf) <- CpK,,,, (f),

where K is any compact subset of which contains K’ in its interior. Hence, FPf-> 0
in A([,/3, u) if f-> 0 on A(, a,/z), i.e., the map FP: A(I, a,/x)-> A(, fl, u) is
continuous (0

The following statement is an immediate consequence of Theorem 4.2.
COROLLARY. F is a topological isomorphism from A(, tx)H onto A(, ,).
Next we turn our attention to functions which have a jump discontinuity at the

origin.
THEOREM 4.3. On A([_,/x)0)A(+,/x) the transformation FP is represented by

the functionals {b’h R}. On A(R_, u)0)A(+, ,), F-1 is represented by the
functionals {)(x" x }.

Proof. First, consider any
A(R,/x) and by (4.1) we have the identity (bx, TPf)= FPTPf(A) for all h . Since

FPTPf f’FPf for f D(T), it follows that (b, TPf)= AFPf(A ), u-a.e, on . On the
other hand, from (3.7) we readily obtain the identity (bx, TPf) A (bx, f), which holds
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for all h 1. Thus, FPf(A)=(4x,.f), ,-a.e. on II\{0}, at least for any fD(T).
However, D(T) contains the set P(R) which is dense in A([, g), and the element e+, so
D(T) is dense in A(I,g)0)Ce/=A(I_,z)0)A(I/,) and the identity FPf(A)=
(bx, ]’), ,-a.e. on I\{0} can be extended by continuity to all f A(R_, g)0)A(I/, g).

Next, let/r A([_, v)03A(/, v) be in D(7). Then 7/r A(R, v), so by (4.2) we
have the identity (g, /r)=F-:/r(x) for all xil. Since F-I=BF- on D(’) it
follows that (X,,, )=BF-[(x) xF-l[(x)-2(TF-fl, Te),x, /z-a.e. on R. On the
other hand, from (3.9) we obtain the identity (g, / x(x,,, )+ (f, g),,x, which holds
for all x . But ( g) (F-I Pe), =-2(F-X/r, T2e), -2(TF-I Te),, so we find
that F-X)(x) (g,/r), tx-a.e, in [\{0}, at least for any/r D(’). But D(7) contains the
set P(I), which is dense in A(R, ,), and the element g+, so D(7") is dense in A(,
C+ A(I_, ,)0)A([+, u) and the identity F-(x)=(,x,), -a.e. on \{0} can be
extended to all/ A(_, u)0)A(i/, u).

If f A(I-,/z)0)A(+, ) then FPf, as an element of Lz(ff, ,) may be identified
with the function with values (ba, [), A I. In the following theorem we will show that
this function is a locally lipschitz continuous function on

_
and I/, so FP.f may be

taken to be continuous on except at the origin and we have

(4.9) FPf(A ) (x, f), A e \{0}, f e A(_, U)A(+,/x).

Similarly,

(4.10) F-’f(x)=(X,,f), x e[R\{0}, leA(JR_, t,)A(+, ,).

THEOREM 4.4. If 0 < a < 1 and f e A(iR_, a,/x)A(R+, a, it) then (6x, f)
defines a function in A(IR_, fl, t,) A(R+,/, t,) for each fl satisfying 0 < fl < a FP is a
continuous map from the first into the second locally convex vector space. Similarly, if
0 < a < 1 and f e A(R_, a, ,)03 A(IR+, a, t,) then (X,, f) (x e g) defines a function in

;F-1A(I_,/,/x) A(I+,/3,/x) for each fl satisfying 0 < fl < a is a continuous map
from the first into the second locally convex vector space.

Proof. We prove only the first half of the theorem. Take any f A(R_, a,
A(R+, a, /z ). We can decompose f, f=h+ae+, with hA(,a,/x) and a=
(/(0+)-/(0-))C. In view of Theorem 4.2, (bx, h) (A ) defines a function in
A(, fl, v) for each/ satisfying 0<fl <a. The (regular)integrals occurring in (3.11)
define functions which are lipschitz continuous with exponent/3 on I_ and I+ for any
fl satisfying 0 < fl < 1, so (b., e+) A(R_, fl, ,)A(+, , 9) for 0 </ < 1. Combining
these two results we see that (b., f) A(_, fl, v)A(l+, fl, 9) for any /3 satisfying
0<B<a.

Next, choose K and K’ as in the proof of Theorem 4.2. Again using the
decomposition f h + ae+, we have the inequality

Pr’,,(FPf) <- Cp r,,,,, (h) + [a IP r,’,.(FPe+

for some positive constant C. Both p:,,,., (h) and ial can be estimated by 3pr,,,,,, (f), so
there exists a positive constant C’ 3(C + pr,,o,(FPe+)) such that

Pr,’,a, (FPf) <= C pr,,,,,, (f),

which proves that FP is a continuous map from A(_, a,/.t)0)A([+, a,/z) into
A(_,fl, ,)A(+,fl, ,)(O<fl<a<l).

As an immediate consequence of this theorem we have the following result.
COROLLARY. F is a topological isomorphism from (A(_,/z)A([+, Ix)) f3 Honto

A(iR_, v)@ A([R+, v).
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5. A full-range completeness theorem. In his study of the slip flow problem
Cercignani [4] formulated a full-range completeness theorem for which we are now
able to give a precise interpretation.

THEOREM 5.1. An arbitrary function f A(R,/x) admits the full-range expansion

f(x) 2(f, Te),x + 2(f, e )o.X 2 q- (Xx, FPf), x ,
where FPf(A )= (ca, f) for A e . Here, {Ca" h e I} and {Xx" x s } are families of
continuous linear functionals on A(R,/) and A(, u), respectively, which are given by
the expressions (3.7)and (3.9).

Proof. The theorem is an immediate consequence of the definition of the iso-
morphism/6. L2([,/)- C:zt)L2([, u), cf. [1, Thm. 4.3], and of Theorems 4.1 and 4.2
and the Corollary to Theorem 4.2.
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THE SUMMATION OF SERIES OF HYPERBOLIC FUNCTIONS*

I. J. ZUCKER?

Abstract. A method of summing sixteen series of hyperbolic functions is presented. The method is based
on expressing the series in terms of the nome, q, of the Jacobian elliptic functions. The q-series thus obtained
are then expressed in closed form in terms of complete elliptic integrals of the first and second kind and the

corresponding modulus. It is shown that when a certain parameter in these series is the square root of a

rational number the series are summable in terms of F functions.

1. Introduction. Recently Ling [1] proposed the summation of four series of
hyperbolic functions, namely

(1)
I(c) E cosech (nzrc), IIs(c) E sech (nzrc),

IIIs(c) E cosech [(2n 1)rrc/2], IVs(c) Z sech [(2n 1)’rrc/2].

Ling [1] used Weierstrassian elliptic functions to obtain closed forms for these series
for even s, and summed the series in terms of F functions for c 1, and 1/,]-. The
object of this communication is to extend these results so that

(a) IIs and IV may be expressed in closed forms for all integral s,
(b) many other series of hyperbolic functions may be expressed in closedform

e.g.

V Y, n cosech (nrc), VI E n sech (nzrc),

(2) VII Z n cosech [(2n 1)rrc/2], VIII n sech [(2n 1)n-n-c/2],

IXs E (--1)"+1 cosech (nrc), etc.

(c) all series which can be put in closed form may be summed in terms of F
functions whenever c is the square root of a rational number. The results for closed
forms of various series are exhibited in Tables l(i-xvi) in terms of K, E, k and k’
where K and E are the complete elliptic integrals of the first and second kind
respectively, k is the modulus of the elliptic integrals and k2 + k’2= 1.

(3)

2. Deduction of results in Table 1. Let

dx
k 2 ,2 KK

4(1-x2)(1-k2x2)
+k 1, K(k’),

fol (1- k2x2) 1/2

E l_x2 dx,
K

-c, q =e

All the hyperbolic series may be expressed in terms of q-series, and all the q-series
may be generated from Fourier expansions of the Jacobian elliptic functions or their

* Received by the editors May 9, 1977.
"t" Department of Physics, University of Surrey, Guildford, Surrey, GU2 5XH, England.
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squares. As an example consider
2s

I2s E cosech2S (nrrc)=
2

q --q
2

(4) 22s 1
q

(1 __q2n)2s
_22 (m+2s-1)!

q
,.=o m!(2s- 1)!

22s (m + 2s- 1))
(2s 1)’

y
.-o m!

2(re+s)q
1-q

2n(m+s)

Now let (m +2s- 1)!/m!=-(m +s)2s-1 + Ol(S)(m +s)2S-3+ol.2(s)(m +s)2s-5

For m l-s, 0= 1 -[-tl(S "+’2(S)’’’,

(5) m =2-s, 0= 22s-1 +al(S)22s-3 +2(S)22s-5’’"

m =--1, O=(s--1)2s-+o(S)(S--1)zs-a+o2(S)(S--1)2s-5"’"

These equations may be solved for a,, (s) to give the solutions

S--1

(6) a.,(s)= (-1)" E I-[ ]2
jx#j2.. "#ira----1 m=l

Thus

s-1 1
I(S)’- E ]2_. --g(S-- 1)s(2s- 1),

/=1

s-1

(s)= X
i1#i2

2.2
1112

(s 2)(s 1)s(2s 1)(2s 3)(5s + 1)
360

and so on. Some values of a,,(s) are tabulated in Table 2. Hence (4) reduces to

22s
(7) Izs (2s_1)

where

Thus

[A2s-1+ Otl(S)A2s-3 + a2(s)A2s-5

I2 4A1,

I6 I(As- 5A3 + 4A I),

I4 38-(A3-A1),
I8 3-5(A7 14A5 +49A3- 36A 1) etc.

The As are obtained from the Fourier expansion of the square of the Jacobian elliptic
function ns. Whittaker and Watson [2, p. 535] quote Jacobi [3] and give

(8) 2K\ =(2Kx) 4K nq2,,
--) ns ,,-----/=-g(K-E)+cseC2Xrr -8 1 1-----’ cs (2nx).
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Expanding cos (2nx) as a power series then yields

(2K) 2(2Kx)4K (2x)2S
(9) ns ,----/= ---(K,n. -E)+csec2 x 8 s=oY (-1)SA2s-1 (2s)!

Now the power series exansions of the functions sn(x), cn(x) and dn(x) are easily
found. They are given to quite high orders by Hancock [4, p. 486]. The power series
expansion of any Jacobian elliptic function may thus be deduced. For example.

3 7
2 X 2 4 X 2 k 4 X

sn(x)=x-(l+k )-7+(1+14k +k )-,-(1+135k +135 +k6)-2: "...

Hence

(10)

ns(x)=
sn(x)

1 2 X 2 X5
-+(l+kx ).+(7-22k +7k4)3 51.

7

+(31_15ke_15k4+31k6) x.
3 7!’""

1 l+k2
2ns (x)=-+

x 3

2 4
4 X X+(1-k+k )]-+(l+k)(1-2k2)(2-kZ)189...

Then by comparing coefficients of x in equation (9) using (10) in the left hand side one
has

(2K)2(3E+k2 )1-24A1= V \-- -2

1 +240A3 (2---) 4(1 k + k4), etc.

Ramanujan [5] has evaluated A2s-1 to A31! From these results and by use of (7) the
hyperbolic series Is may be summed in closed form, that is in terms of K, E and k, for
all even s. The series IIs, IIIs, IVs, IXs, Xs, XIs and XIIs may all be obtained in a similar
manner, sometimes only for even s and sometimes for only odd s and occasionally for
both. For odd s the coefficients fl,(s) which appear in equations analogous to (7) are
defined by

/3.,(s)= (-1) [I (2/. 1):
]a]2’" "]m=l m=l

and some values for these are given in Table 2.
The other series such as Vs may be put into closed form more easily. For example

2n n Sq
(11) V,=ZnScosech(nrrc)=E .=2 . 2C

q --q 1--q

where the generating function for Cs is

(12) (2__) dn2(2KxI 4KE (2x)s

,,--’--/= --W-+ 8 2 (-1)SC2s+l
rr s=o (2s)!

Tables l(i-xvi) thus show in order a q-series, its generating function (a Fourier
expansion of a Jacobian elliptic function), the value of the q-series in terms of K, E, k
and k’ for a few values of s, and the hyperbolic series which can be summed in closed
form with these series. The Fourier expansions for the squares of the elliptic functions
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used in Tables 1(i-iv) are all found in Jacobi [3]. The other Fourier expansions may be
obtained from standard text books e.g. Abramowitz and Stegun [6, p. 575]. The
values of the q-series for particular values of c are also given.

3. Summation of series in I’ functions when c2 is rational. Whenever a series may
be written in closed form in terms of K and k then the sum may be written in terms of
F-functions and algebraic numbers whenever cz is rational. For when c2 is rational a
theorem of Abel states (Whittaker and Watson [2, p. 525]) that k is an algebraic
number. Selberg and Chowla [7] further showed that when c2 is rational K is
expressible in terms of F functions. The results for K in terms of F functions when
c2= 1, 3 and 4 are well known [2, pp. 524-526]. The result for c2= 2 is implicit in
some work of Ramanujan [8] and has been given explicitly by Glasser and Wood [9].
Selberg and Chowla [7] gave the results for c2= 5 and 7. Zucker [10] has given K in F
functions for all c z from 1 to 16 excluding cZ= 14. These results are given in Table 3.
Corresponding results for kZ are given in Table 4.

Now whenever c z is rational E can be expressed in terms of K (Ramanujan [8]).
This is not stated explicitly by him but his results imply that

7r K 2(13) E 4--c+[2- k +fc (k)]

where fc(k) is an algebraic function of k depending on c. Ramanujan unfortunately
does not give details of how to compute fc (k), but the author has deduced expressions
of E in terms of K for several c and these are given in Table 5. it is clear that with
sufficient labor E may be expressed in terms of K and hence in F functions. Hence
whenever a hyperbolic series is expressible in closed form in terms of K, E, k and k’
then it may be summed in terms of F functions and algebraic numbers.

4. Discussion. It is immediately evident from Tables 1 (i-xvi) that all the series A
to U inclusive can only be found in closed form for either s even or s odd, but never
for both. Thus the hyperbolic series can usually only be found in closed form for either
even or odd s. However, some curiosities appear. For example, IIz is expressible in
terms of B2s+l and II2s+x is expressible in terms of G2s and expressions for B2s+l and
G2 may be found in closed form. A similar situation occurs for IVy. So both II and
IV are expressible in closed form for all integrals s. But for Ix and III although
expressions may be found for them for both even and odd s in terms of q-series--
Tables l(i), (iii), (v), (vii)---only for s even are the appropriate q-series expressible in
closed form.

Whenever the factor (1-2kz) appears, the term including it will vanish when
2k2= 1. For this value of k, k k’ and K K’, hence c 1. Thus certain sums will
vanish. For example from Table 1 (xvi) it is observed that

(14) 2U3(1) (-1)"+a(2n 1)3 sech (2n 1) O.

This result is part of a general theorem stated by Ramanujan [11] that

(15) Y. (-1)"+(2n 1)4"- seth (2n 1) 0

for all positive integral m. This would suggest that a possible way of proving this
general result would be to show that U4,-1 always contained a factor (1-2k2). We
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have confirmed this for U7, in fact

4U7= kk’(1-2k2)(1 136k2- 136k4)
\7/’!

but we have not been able to prove the general result. The general result has been
proved recently by Berndt [12] using a different approach.

Another result in Ramanujan’s famous letter to Hardy [13] has its solution in the
q-series considered here. This is

113 213 313 1
(16)

e
2,, -1

+;" -i + e 6"n" -1
+

24

This series is just A 13(1) and (16) follows from the fact that A4n+l always contains the
factor (1- 2k2); hence

A4n+l(1) 0.

Indeed it follows that

k4n+l B4n+2(17)
=e -1 4(2n+1)

a result proved by Berndt [12] who quotes Glaisher [14] as first having given this
result.

It is also evident in Ramanujan’s letter that he had attempted to find closed form
expressions for As when s is even, but was not successful. Thus in his letter he gives

12 22 3 2 1 X X
3

(18) + 2 i + + -v3’(3) t-
e"-I e e3-I x 12x 1440 181440

The left hand side of (18) is essentially A2.
The formula for U5 yields a result similar to (18). U5 contains the factor (1-

16k2+16k4) and this vanishes when k2= (2-/)/4. For this value of k 2, c =’,/;
hence

(19) E (- 1)"+1(2n 1)5 sech [(2n 1)/r/21 0.

Other interesting results deducible from Table 1 are

(20) Y cosech2 (nTr)=
1 1
6 2r

(21) Y’, (-1)"+In cosech (nzr)=4zr 2
sech2 [(2n 1)

(22) E (-1)"+an cosech (nzr)= O.

Certain factors in Table 1 will obviously become zero for other values of k. For
example, in Table l(viii) it is apparent that J4 vanishes when k2= 1/5 but we do not
know what c is for this value of k. The determination of c when k is given seems an
interesting problem.
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Note. Berndt (Private communication) comments that (19) is a special case of

2 (- 1)"+’(2n 1 )6m-1 sech [(2n 1)x/rr/2 0], m>0,

and (22) a special case of

)n+l 4m+lE (- 1 n cosech (nTr) 0, m > 0,

both of which he has proved. Equation (21) goes back to Cauchy.

TABLE (i)

TABLE l(ii)

2K)1+8B5 (1-k2)(2-k2)

22s s-1

II2s Y’. sech2s (n,n-c) (-1)s-l
(2s- 1)! m=0" tmB2s-2m-1
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TABLE l(iii)

TABLE (iv)

TABLE l(v)

(2n- 1)Sq2n-1
Fs(c)=F(s)=Y’. 2,,-11-q

ns cosec x 4 2 (- 1)SF2s+l
s=o (2s + 1)!

1+ 24Fl (2K2(1+ k=)

7 240F3 ((7 22k + 7k4)

31+504F5 (1+ k)(31-46kZ+ 31)

2
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TABLE (vi)

Gs(c) Gs Y’. (-
1)"+1(2n 1)q2"-1

2n-11-q

2I:
dc =secx+4 Y’, (-1)SGEs

s=0

2K
+4Go

X
2s

(2s)!

1-4G2= (l-k2)

5+4G4= (1-k2)(5-k2)

61 4G6 (2K)7(1 k 2)(61 46k + k4)
7’/" /

2
mG2s-2mI12+1 (- 1) (-s).l =0

TABLE (vii)
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TABLE (viii)

TABLE (ix)
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TABLE l(x)

22s s-1

(2s- 1)! m=O l’mM2s-2m-1

TABLE l(xi)
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TABLE l(xii)

22s s-1

(2s- 1)! m=o
groPEs-Era-1

TABLE (xiii)

Q(c) Qs Y’. (2n
1)’q2"-1

l+q2n-1

/2Kx\ x2S+12I
ls-) cosec x-4 (-

)!
1) QEs

=o (2s /

2K)1-2401= (1-2k2) 01(1)=2"

7 + 24003 (7 + 8k2 8k4)
\T/’/

31- 504Qs (-)6(1- 2k2)(31-16k2+ 16k4) 31
Qs(1)=

504

IX2’+1= Y" (-1)"+1csech2’+11 (nrc)
m-O

mO2s-2m
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TABLE (xiv)

Rs(c) Rs E
(-1)n+(2n 1)q2n-a

2n’ll+q

2Kk’) [2Kx\ x 2s

---:nc----) =see x-4 (-1)SR2(Es)--.
2Kk’

1-4Ro

5-4R4 k’(5-4k

61 +4R6=(2K)7k’(61-76k2+ !6k’)

X2s+l=Y’.(-1)n+lsech2S+l(n’n’c)=(-1) 2--- OmRzs-2m(2s)! m=o

TABLE (xv)
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TABLE I(xvi)

Us(c) Us Z
(-1)"+(2n- lfq"-/2

l+q2n-1

sdk--)=4 (-lfU2"+(2s+ 1)

4Ul=()2kk
()44u= ’(- u3()=o

4u,= ’( +)

XII2s+l= (-1)+sech (2n- 1) =(-1)
=0

XVI,=2(-1)*(n-1) sech (2n-l) =2U

TABLE 2

4

ao
al 0 -1 -5 -14 -30

2 0 0 4 49 273

if3 0 0 0 -36 -820
a4 0 0 0 0 576
flo
81 0 -1 -10 -35 -84
8E 0 0 9 259 1974

83 0 0 0 -225 -12916

84 0 0 0 0 11025

TABLE 3

[r(1/4)l
47r/

(4+ )’/r()r()
213/477.1/2

31/4[r(1/2)]
27/37r

(4+ )[r(1/4)]

F F F F 9 /

384
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10

11

12

13

15

16

TABLE 3 (continued)

4r()r()r()
7/44,rr

2x/+ (1 + 5x/)/2] /z (/+ 1)’/4r(k)r()

3 /4(2 +,,/-)/
12rr,/2 IV(1/4)]

+ 5)r()r()r()r()r()r()r()r()] ’/(2+3 " " ’ ’"

FZ F XF 4 F F 9

[2+(7+3),/+(7_3),/] n, n, n, n, n,
11a/4144z

(+)(+)(2-)/3’/4[r(k)]
23/3

s)’/4[r(&)r()r()r()r()r(E)r()r()r()r()r()r()]’/(8+ t J
(+ a)r()r()r(,)r()]

2407r J

(,,/ + 1)a/:’(9-3,,/ + 4 21/4)1/2[F(1/4)]
29/2/2

TABLE 4

k

2

3

4

5

6

7

8

9

10

11

12

13

15

16

1/2

(,,/- 1)2
(2- x/-)/4
(q/- )4

[1 2(,/-- 2)a/:’]/2
(,/- ,,/)2(2 -,,/)2

(8- 3,4)/16
113 + 8()-4(5 +4)(14 + 10)/2

(2-)(-3/4)2/2
(-3)2(3-2)

[1-{(xZ-64)/x}’/z]/2 x=[2+(3+ 17)a/-(3 17)a/3]/3

[-6(- 18)’/1/2
(-)(4-)(-)/64
(9--4.2’/")(+ )
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TABLE 5

" K
4K 2

r K

4K *

7r /-+
4x[K 2x/

7r+2(/- 1)K
8K

4x/K
+ +2(V-2)1/2+3

rr 7+2v
+- K
4VK 14
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ON THE DERIVATIVE OF THE DRAZIN INVERSE
OF A COMPLEX MATRIX*

ROBERT E. HARTWIGf AND JIM SHOAFf

Abstract. It is shown that the derivative of the Drazin inverse of a differentiable matrix A(t) exists for
all values of in the domain of definition except for the kernels of the nontrivial eigenvalues. Expressions
are found for this derivative in terms of the characteristic polynomial, the spectral components and the
matrices A, A and Aa respectively. A short proof is given for Stewart’s theorem on the continuity of the
Moore-Penrose inverse, and a formula corresponding to Wedin’s formula is given for the Drazin inverse.

1. Introduction. In the last few years the concept of the Drazin generalized
inverse of a matrix [1, p. 169-172], which is defined as the unique solution to the
equations

(1.1) A’I+IXA=A"1, XAX=X, AX=XA, ml=index(A),

has received increasing attention. Applications have been found in such unrelated
fields as Markov chains [16], differential equations [17] and Neumann iterations [13].
Most of the continuous applications of the Drazin inverse (.)d, in such fields as optimal
control [4] and singular perturbations [8], [5], are due to its use in solving explicitly the
linear system A,(t)+Bx(t)=t(t), where A and B are constant matrices and A is
singular. For example, the system Ai x, with t-> 0, has a solution if and only if x(0)
lies in the range R(Ad) of Aa, in which case the general solution is given by
x(t)= eAtAAdq, with q arbitrary [7]. Similarly the singular autonomous system

has the property that every solution has a pointwise limit at > O, as e 0+, precisely
when the matrix

B(O) B(O)]
has a group inverse [14], and nonzero eigenvalues have negative real parts [8]. While
the Drazin inverse enters the first type of problem through the core-nilpotent decom-
position, it enters the second type of problem through its contour integral represen-
tation. Since all of these applications dealt with constant matrices, it is to be expected
that a study of Drazin inverses of variable matrices will be useful in any future
generalizations of these applications to the time dependent case.

It is the purpose of this paper to initiate such a study by showing that the Drazin
inverse Aa for a square difterentiable matrix A(t), defined by (1.1)exists for all in
the domain of definition except for the kernels of the nontrivial eigenvalues Ak(t) 0,
and may also be expressed in terms of A, A and Aa. Furthermore, denoting time
differentiation by (.)0, we shall show that (A) satisfies for these values of t,

(1.2) A(Aa)A AAaAAAd +NA(A’I-I)(Aa)"- +(Ad)m-l(Am-l)Na,
where NA A(I-AAa)is the nilpotent part of A and ml is the index of A. This reduces

* Received by the editors May 10, 1976, and in final revised form September 26, 1977.

" Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27650.
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208 ROBERT E. HARTWIG AND JIM SHOAF

to the well-known result

(1.3) A(A-1)A -A

when A-1 exists.
The motivation for this work was given by the recent papers of Decell [9] and

Golub and Pereyra 11], who derived an expression for the derivative of the Moore-
Penrose inverse A* for a differentiable matrix A(t), in terms of A, A= (d/dt) A(t)
and A*, for the cases where the derivative exists.

We shall throughout this paper denote the real or complex (open) domain of
definition by 9, and shall use the notation R(.) and N(-) to denote the range and
nullspace of a matrix (.). A solution to the equation AXA A will be called an inner
or 1-inverse of A and is denoted by A- As usual, a matrix will be called continuous,
differentiable, etc. if all its entries are continuous, differentiable, etc. We shall assume
A to be permanently degenerate and permenantly singular on 9, [15, p. 64]. For later
convenience let us write

s(t)

AA(A)= IAI--A(t)[ A"’(0 1-I [A -Ai(t)] "’(0,
i=2

and let the minimal polynomial of A(t) be denoted by PA(A)=
/ ml(t i-Is(t) mi(t

.i=2 [h -hi(t)] where the nontrivial eigenvalues hi(t) are distinct for at least
one value of 9. The eigenvalues will always be continuous functions at 9, 17, p.
221], but in general little can be said about their differentiability. When A(t) is
analytic for

_
C, however, it is known that the eigenvalues are continuous in

and will also be analytic except for the exceptional points of which there can only be a
finite number in each compact subset of 9, [15, p. 64]. The term "near" shall as
always stand for "in a sufficiently small neighborhood of", and the interior, boundary
and complement of a set (.) will be denoted by int(. ), 0(. ) and (.)c respectively.

2. The existence of [A(t)a]. It is well-known that for a square real or complex
matrix A, its Drazin inverse Aa always exists and is a polynomial in A, [1, p. 172]. We
shall examine its dependence on as ranges over the domain 9. Suppose that

(2.1) Aa(t)(h) h"-trl(t)h "-1 +’’" (- 1)"-o’,,-(t)h g,

where the coefficients tri(t) are fixed functions of t, and trn-k(t) is the largest coefficient
not identically zero for all in 9. That is, tr,,-k (t’) 0 for some t’ 6 9. For other values
of it is possible that trn-k(t)-- 0 and so we may define for all 9:

(2.2)
mA(t)(/.) h" O-l(t)A "-1 +...(- 1)n--nl(t)O’n_nl(t)(t)l nl(t)

s(t)
h "’(0 H [h hi(t)l "’(0,

i=2

i-Is(t)where O’n_nl(t)(t)=i=2 hi(t)n’( is the highest coefficient not zero at this particular
value of t. It is a "variable" function which by definition never vanishes on 9. The
integer n-hi(t) is commonly called the core rank of A(t), that is n-hi(t)--
rank (A2Aa(t)). The fact that o’n_k(t’) 0 combined with the definition of r,_,(o(t)
implies that

k nl(t’) min nl(t) -> ml(t’)=>min ml(t).
t t

Incidentally, it is unknown whether ml(t’)=mint ml(t). Since O’n-n,(t)(t) O, we may
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write for all 9:

and

mA(t)(l)= (-- 1)n-k (t) nl(t)[ 1
Aq(A, t)]

(2.3) A(t)a A’(t)[ q(A) ]1+1 l>--ml(t).
L O’n-nl(t)-I

Let us now assume that A(t) is continuous on . Since the coefficients cri(t) are sums
of leading principal minors, they are also continuous on 9. Consequently the sets
N ker trn-k-i(t),i O, 1,’’’, n--k are all relative closed subsets of 9. Our main
observation is the following result upon which all our later conclusions in this section
are based.

LEMMA 1. LetA (t) be continuous on @ and let Ni ker tr,-k-i(t), 0," , n k.
Then

(a) the core rank of A(t) is an integer valued function with discontinuities exactly
at S U n-ki=ocgS, where S0=N0 and Si=(NofqN1 O Ni-1)\Ni, i=
1, , n- k. The set S is closed with no interior.

() Near a point of discontinuity the core-rank of A(t) cannot decrease.

Proof. (a). Let A(t) be continuous on and suppose that AAU)(A) is given locally
by (2.2) and globally by (2.1). As observed earlier core-rank A(t) <- n-k with core-
rank A(t)< n k for t ker cr,_k(t). By how much the core-rank will drop depends on
which of the other th(t) also do vanish at and in which order. Now consider the sets
Ni and Sj as defined above. Their most important property is that the sets
{Si, Si+l,’’" ,Sn-k} form a partition of the set NofqNI"" (")Ni-1, i= 1,... ,n-k.
This means not only that the sets {So, St, S, , S,-k} partition , but also that the set

So U S, U... U S (S+, U S’+:z U S,,_)’: (No N N-.. N Ni)

will be open for each 0, 1,..., n-k. From the definition of Si, we may conclude
that core-rank A(t) n k S O, 1, , n k. This implies that the jump
discontinuities of core-rank A(t) occur precisely at the boundaries of the S, i=
0, 1,--., n- k. Indeed, OS means that every neighborhood of contains points of
S and S; that is, points with core-rank (A)= and core-rank A : respectively. In
other words, core-rank (A) has a discontinuity at t. Conversely, if to is a discontinuity of
core-rank A(t), then to S for some i, since the S partition . But t,g int S because
core-rank A(t) is constant on int S. Hence to OS S. The set S U OS S
"- OS is clearly closed and has (Baire’s theorem) no interior.

(fl). Suppose t0 is a point of discontinuity of core-rank A(t) and that to OS S
for some i. Now OSSSoUS1... U S, which is an open set, and thus all
sufficiently small neighborhoods of t0 only contain points of S0, $1,"’, S. Hence
core-rank (A) cannot decrease at these points, thus completing the proof.

We shall now show that most of the main results of [6], [19] and [3] follow as easy
corollaries of this Lemma, once we recall [2, p. 38] that an idempotent matrix E(t) is
continuous near t0 if and only if its rank is continuous near t0.

COROLLARY 1. If Ax,(t) is continuous on , then
(i) rank A(t) is an integer valued function with discontinuities at a closed set with

no interior.
(ii) near a point of discontinui rank A(t) cannot decrease.
Proof. Observe that rank A(t)= core-rank (A*A(t)).
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We remark in passing that rank (A)= core-rank (A) precisely when A equals its
core A2Aa.

COROLLARY 2. Let A(t) be continuous (differentiable, C", analytic) on 9. Then
Aa(t) is continuous (differentiable, C’, analytic) near to if and only if core-
rank A(t) is constant near to, that is to \S.

Proof. If core-rank A(t) is constant, say n-p, near to, then trn-p(t)#O near to
and consequently trn_p(t)-1 is continuous (differentiable, Cm, analytic) near to. For
these values of t,

[ q(A)Act(t)=A(t)
trn_p(t)J l>-P"

Now because the coefficients in q(A) are among the tri(t), it follows that they and
hence Aa(t) are also continuous (differentiable, C", analytic) near to. Conversely, if
Ad(t) is continuous near to, then so is the idempotent matrix AAct(t). Hence
rank (AAd) core-rank A(t) is constant near to.

COROLLARY 3. LetA,,n(t) be continuous (differentiable, C", analytic)on . Then
A*(t) is continuous (differentiable, C", analytic) near to if and only if rank A(t) is
constant near to.

Proof. Since A*A is an E.P. matrix [1, p. 163], with rank A =rank A*A =core-
rank A*A and (A’A)a (A’A)# (A’A)*, it follows with aid of Corollary 2, and the
properties of A* (such as A*=(A*A)*A*, (A*A)+=A+A*), that the following are
equivalent:

(i) rank A(t) is constant near to,
(ii) core-rank (A’A) is constant near to,

(iii) (A’A)* is continuous (differentiable, etc.) near to,
(iv) A*(t) is continuous (differentiable, etc.) near to.
Remarks. (i) Both the real and complex cases are taken care of in the above

analysis.
(ii) If A*(t) has a discontinuity at to, then so do all A-(t) (otherwise AA- would

be continuous near to implying that rank A(t) is constant near to). On the other hand,
if A*(t) is continuous near to there may exist A-(t)which are discontinuous at to, as
seen from the example where to 1 and

[0 ;] [0 00] ;]A(t)= A*(t)=
t- A-(t)=

t-

(iii) The question of whether or not Act is continuous near to is independent of the
index ml(to). Indeed, if

A= 0
0 0

then A A (h 1)(A t) for all t # 0, while for t 0, Ao h 2(h 1), ko A (A 1).
Thus the index remains the same through t- 0, yet

Ao ((t)[(l + t)I-A(t)]2/t2’
(0) A2(0),
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which fails to be continuous at 0. On the other hand, if

A= 0 0
0 0

then A 4 A 2(h 1) for all # 0, while for 0, A0 h 2(h 1), qo A (h 1). Hence
the index changes through 0, yet Ad is differentiable for all t! Indeed, A’ A2(t),
for all t, which may be seen from (2.3) on taking 2 for all t.

(iv) The results of Lemma and Corollaries 1-3 are easily adapted to the case
where A A(t) is a continuous function of, say, rn variables (tl, t2, , t,,) . This
includes as a special case the additive perturbation A +E A(eq), c.f. [19, p. 50].

(v) If Aa(t)is differentiable at toff)\S, and rn_p(t)#O near to, then

[A(t)]O=(Al)O[ q(A) ]/+1
L o-,_p(t)J _t_Al{[,,q(A,) ,]/+1}o[trn-p(t)J >--P"

Because this is not too convenient a form we shall give two alternative expressions for
(Ad), one of which uses the spectral theorem, and the second of which expresses the
derivative in terms of A, A and An.

3. An and the sleelral theorem. Suppose first that we fix e . The spectral
theorem for matrices states that

(3.1) f(A) -’E fo)(x )z o)
k=l j=0

for any function/(A) for which the scalars fO)(Ak) are well defined, and where the Zk
are the spectral components of A.

Using an obvious generalization of the method of Englefield 10], for calculating
the group inverse for a matrix, we have the following. If

P-AP CN,

where C is invertible, N ,,,,,, is nilpotent of index ml and O) denotes a direct sum,
then it is well-known that

(3.2) Aa=P[C-a@O.,.,]P-.
Consider now the resolvent

,,k-’ j!Z
(3.3) (AI- A)-1= E )+1, A1 =0.

k= j=O (A Ak

If we multiply this by 1/A and integrate along a contour F in the complex plane,
enclosing all the nonzero eigenvalues of A, but excluding A1 0, then we obtain the
residue theorem

(3.4)

l lr(AI_A)_,dA j!ZIv dA

2"n’i -= 2"rri A(,--Ak)/+1
ink--1 "!ZJky’, (- 11 ’/k+k=2 /=0
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On the other hand,

1 (AI_A)_ldA p[ 1 dh_ 1 Iv dh]p_
27ri T i (AI-C)-’T@ti (’I-N)-I

AJ
(3.5) p[c_l@OlP_ Aa

since N has only zero eigenvalues and C-1 exists. Combining these we get

(3.6) a d ml (_11"Zk g(A),
k=2 1=0 Ak

where g() is ay differenfiable function of such ha

hO, k=l,...,s,g0(X) -0, =0, ]=0,...,m_.

If we set [(A)= 1- Ag(A), then f(0)= 1 and (A)= 0 otherwise. Hence

(3.7) I-AAa Z and Na=A(I-AAa) ZI,

that is, the nilpotent part of A is exactly the principal nilpotent matrix of A associated
with A 0! Moreover ZI (Ai/f!)(I-AAa), ] 0,. , ml- 1, while the core of A is
given by

(3.8) CA A2A h(A)= (,Z +ZI ),
k=2

where h(A)= A2g(A). In a similar fashion using any function f(A) such that f(A)= 1,
f’)(At) 0, j 1,. , mt- 1 and fO)(Ak) (1/A )()[x =k, if k : l, we obtain

(3.9) Z I (A AtI)(A AI)a projection on N(A All)m’.

We may subsequently rewrite the spectral theorem (3.1) in terms of Drazin inverse as:. (A ,I)i[I (A AkI)(A I)d]
= =o j

in which for any eigenvalue Al,

ml (-lj! Z{.(A All)a Y.

Let us now return to the case where A A(t) and let us assume that A is analytic
in C. The spectral representation (3.6) for A(t) is valid for all except those
for which A(t)= 0 or for which the spectral components Z (t) do have an algebraic
singularity. The latter set of points is contained in the set of exceptional points and
depends on the order of the branch point of (t) at these exceptional points [15, p.
70]. Hence for any nonexceptional value of in S, we may differentiate (3.6) to give

=
Again this formula is not very easy to handle in practice. Before we turn to our last
expression for (Aa), we remark that for matrices over a field , the Drazin inverse Aa

may be characterized as follows.
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LEMMA 2. If ml=index (A), Al+lX--Aland XR(Ap) for some 0-<p=<ml,
then Aa AI-PXI-P+ Aml-pxml-P+ 1.

Proof. Since At+Ix A implies l=> ml, and AI+qxq At, we have
AI+I(AI-pxI-p+I) AI+(I-p+I)xI-p+I A t. Also AI-PXXI-p AIyxl-p R(Al) and
thus (At-pxI-p+I-Ad) R(AI)N(At+I) {0}. The second result follows similarly.
In particular, if p 0, then At+ix A implies that Ad= AIXl+l, which shows that
the commutivity assumption in Lemma 5, p. 171 of [1], may be dropped! If we set
p ml, we see that AI/Ix A and X R(Aml) imply that Ad X. The above result

1) rX P+is useful for example, when AA (-- "1 [1- h r(h)] with o’,,, 0, since then
Ad A,,-Pr(A)m-p+l A,-Pr(A),-p+ 1.

4. The derivative of Aa, in terms of A, , and Aa. Let us first consider the case
where ml index (A) 1, and to \S. Then (Ad) (A#) exists near to and we may
differentiate the defining equations (1.1) to give with X A#,

(a) AXA + AlgA +AXA
(4.1) (b) flAX +xAx+XAff

(c) AX+ Aff ffA + xA.
Multiplying (b) on the left and right by A we obtain

(4.2) AfA AffA +AXAXA+AffA
and hence

(4.3) AfA= AXAXA,
which reduces to (1.3) when A-1 exists. Next, multiplying (4.1 c) by A on the left yields

a2( affa +AXA-AAX
which on multiplication by X2 on the left yields

(4.4) xaf( X2(afa +X2a XAX.
Similarly multiplying (4. lc) on the right by A gives

ffa2 AXA +affa Xfla,
so that a multiplication on the right by X2 produces

(4.5) flAX AX2 + (afca)x2-xAx.
Hence substitution of (4.4) and (4.5) into (4.1b) gives

( AX2 - (afca)x2-xAx 21- xAx
(4.6)

+ XZ(AffA)+xzA XAX,
which reduces, with aid of (4.3), to

(4.7) XAX+ (I-AX)AX +X:A(I- AX).
In the general case when m => 2, we use the fact that

ad a"-l(a"’)# and (area)# (aU)",
so that

(4.8) (AU)= (A"’-I)(Am’)# +A"-I[(A")#].
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Using (4.7)we get

(Aa) (A",-1)(Aa)m, + A",-l(I AAa)(Am)(Aa)2"h
(4.9)

/ (Aa)m’+.(A")(I AAa)-Aa(Am)(Aa)ml.
Since (Ak)=AAk-1 + A(Ak-1), k 1, 2,. ., this reduces to

(Aa)= -AdflAa +(I-AAa)(Aml-1)(Aa)’+A’-l(I-AAa)A(Aa)m+1

(4.10)
+ (Aa)ml+I/(I- AAa)Am-1 + (Aa)’(Am-)(I- AAa),

which only requires the calculation of (Am-l)0 from Am’- which has to be computed
anyway. Finally, multiplying this result by A on both sides immediately yields (1.2).

When A is E.P., that is R(A*) R(A), then A# exists and equals A*, [1, p. 163],
so that (A*) then becomes by (4.7)

(4.11) (A*)= -A*AA* +(I-AA*)fl,A*2+ A*2(I-AA*).
If we now use the identity

(4.12) (A’A) [(A*A)*]
we obtain

[A*A- (AA*)*](I AA*) {[A(A*)]* (A*)A}(I AA*)= 0,

so that (4.11) reduces to

(4.13) (A*)= -A*AA*+(I-AA*)(A*/)*A+A*(AA*)*(I-A*A),
which is the result given in [9], 11 for the derivative of the Moore-Penrose inverse. It
was remarked in 11 that this formula could be obtained from Wedin’s formula [20],
[21]

B*-A*= -B*(B-A)A*
(4.14)

+(I-B*B)(B-A)*A**A* +B*B**(B-A)*(I-AA*),
on letting B tend to A. A similar formula is

Ba_Aa -Bd(B-A)Ad

(4.15)
+(i- BaB)(B Aa)AAd + BaB(Ba Aa)(I AAd)

which cannot, however, be used to calculate the FrOchet derivative of A at t, since it
involves Bd-Ad on both sides. The exact analog needed is the following formula:

(4.i6)

1-1

Bd-Ad= -Bd(B-A)Ad+(I-BdB) E Bi(B-A)(Ad)i.2

i=0

1-1

+ E (Bd)i+Z(B-A)A’(I-AAd),
i=0

which is true in any finite dimensional algebra provided _->min {index (A), index (B)}.
On setting B A / dA and letting dA - 0 we obtain the Fr6chet derivative

(4.17)

1--1

d(A(t)d) -Ad(dA)Aa+(I-AAa) , A’(dA)(Ad)’+2

i=0

1-1

+ ., (Aa)’+Z(dA)A’(I-AAa).
i=0
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Indeed, if I1" is any norm on Onn, then

BU-Aa-d(Aa)
lim

lim
1

-Aa a)BiIIdAIl-,olldnll -(BU )(dA)AU +,=oE [(I-BB -(I-AAU)A

(dA)(Aa)’++ E [(Ba -(AU)’+:](dA)A(I-AAa)
i=0

Since (I-BBa)Bi-(I-AAU)A =(Bi-A’)-(Ba-Aa)B’+1 +Aa(B’+I-A+I), this
limit is zero provided again that Ba -Aa, that is, that \S. If we replace d(. ) by
(d/dO(’) in (4.17) we obtain the presentation of (AU) as given by Campbell [3].

We thus have that while the right hand sides of (4.10), (4.13) and (4.17) are linear
functions that exist for all they become the FrOchet differentials of Au and A*
respectively, only where the latter are differentiable. Let us conclude this section with
an example of the use of (4.10).

It 10] Then A=-t[1-(1/t),t], t#0, andso aa=a/t2.Example. Let A
0

Since a2= tA, Aaa=a/t,/IA=A and A/I= [ ], we have by (4.10)

(An) -AUAA +(I-AA)/I(A) +(AU)2/I(I-AAa)
Aa/t4 q- (I A/t),ZlA/t4 q- (Aa/t4)/l(I At)

2a/t3 + aA/t = [- a/t
0 0 j’L

which is exactly (d/dt)[A/t2].
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STABILITY OF INTERCONNECTED SYSTEMS
DESCRIBED BY STOCHASTIC NONLINEAR
VOLTERRA INTEGRAL EQUATIONS*

R. L. GUTMANN[ AND A. N. MICHEL-l

Abstract. New results are established for the stochastic stability of interconnected systems (also called
composite systems or large scale systems) described by nonlinear Volterra integral equations with uncertain
weighting functions, uncertain nonlinearities and stochastic inputs. We utilize the viewpoint of analyzing
complex systems in terms of lower order (and simpler) subsystems and in terms of the system interconnec-

ting structure. Whenever appropriate, frequency domain techniques (including circle criteria and Popov-
like conditions) are emphasized. The results are applied to systems described by stochastic nonlinear
differential equations. In addition, a specific example is also presented.

1. Introduction. In this paper we establish new stability results for a large class of
dynamical systems described by nonlinear Volterra integral equations with random
driving functions and random coefficients. Such systems, which arise naturally in
applications, have for some time been the subject of several investigations (see, e.g.,
the survey paper by Kozin [4]) and are of current interest (see, e.g., Morozan [15],
Tsokos [22], and Tsokos and Padgett [23]). As in the case of deterministic dynamical
systems, difficulties can often arise in applying these results to complex systems of high
dimension and intricate structure. In the present paper we circumvent most of these
difficulties by viewing such systems as an interconnection of lower order (and usually
simpler) subsystems; and by accomplishing the stability analysis at different hierar-
chical levels (i.e., in terms of the subsystems and systems interconnecting structure). In
the current literature, such systems are often referred to as large scale systems,
composite systems, interconnected systems, and in certain applications, decentralized
systems.

Although the present results are phrased in terms of general operator gains, we
emphasize frequency domain techniques whenever appropriate (including circle
conditions and Popov-type criteria). In arriving at the present results, we use several
existing results as motivation: single-loop results for deterministic dynamical systems
(see, e.g., Sandberg [19], [20]); single-loop results for stochastic dynamical systems
(see Tsokos [22] and Tsokos and Padgett [23]); results for deterministic composite
systems (see Lasley and Michel [5]). For additional related work dealing with qualita-
tive analysis of interconnected dynamical systems, refer to Michel [8]-[10], Michel
and Rasmussen [11], Rasmussen and Michel [18], Lasley and Michel [6], Porter and
Michel [17], and Miller and Michel [13], [14]. As a final note we emphasize that
several of the present results, when reduced to corresponding deterministic results,
have not been reported elsewhere.

Notation used throughout this paper is established in the next section. The main
results are presented in the third section. In the fourth section these results are applied
to dynamical systems described by stochastic differential equations endowed with

* Received by the editors February 1, 1977, and in revised form August 29, 1977. This work was
supported by the National Science Foundation under Grant ENG 75-14093 and by the Engineering
Research Institute, Iowa State University.

Department of Electrical Engineering and Engineering Research Institute, Iowa State University,
Ames, Iowa 50011.
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random coefficients. A specific control system is considered in the fifth section. All
results are proved in the Appendix.

2. Preliminaries. Let A [aq] denote an n rn matrix and let Ar denote its
transpose. Let A* denote the complex conjugate transpose of A. The inverse of a
nonsingular n n matrix, A, is denoted by A-1. If C and D are real n m matrices,
then C -> D means cij => dij for all and ] and C _>- 0 means co >= 0 for all and . Let
denote the N N identity matrix. Let AIM] denote the positive square root of the
largest eigenvalue of M*M. If the elements of a real matrix, B, depend on a real
parameter, t, we say that B is bounded if there exists a real number, K, such that
Ibq(t)l _-__ K < oo for all allowable t. We define R (-oo, oo), RN R R . ., R,
and R+=[0,). If X=[X(’),X(2),’..,XN)lr6R, then Ixl=[(x(l))2+(x2))2+

+ (xU))2] 1/2. The set of all real, Lebesgue-measurable N-vector-valued functions
of the real variable R + is denoted by Hc)(R +) and Lpc)(R +) {f H(lV)(R +):

]f(t)lp dt < }, 1 _-< p <. The inner proauct of two elements, f anti g, of L_m(R+)
is denoted by

(f’ g)= J0 frg dt.

The norm of f L2tv)(R +) is defined by Ilfll= (f, f)’/. The norm of a linear operator,
T, on L2u)(R +) is denoted by [ITII. If A(t)=[ao(t)] is an arbitrary real N1 N2
matrix-valued Lebesgue-measurable function of R +, we say A Kp(NlxN2 (R+),
1 -< p < c, if laii(t)lp dt < for all and j.

Given a probability space (fL if, P), denote by Xu) the space of all N-dimen-
sional real-valued random vectors over which are square integrable with respect to
P, that is, if x(to)=[x)(to), xU)(w)]r XN), then xt)(to) is off-measurable, i=
1, 2, -, N, and

x r to )x to ) dP(to) < oo.

Let H(v)(R +, f) denote the space of all real-valued N-dimensional random vector
processes over R + such that if x Htu)(R +, f), then x (., to) Hrq)(R +) for fixed
to 12, and x(t,. ) X(u) for fixed R +. Define Lpc)(R +, Loo(f)) by

Lp(c)(R + Loo(l))) x H(N)(R + tl): ess sup Ix(t, to)IP dt < oo

1---<p<c. Let A(t, to)=[aq(t, to)] denote an arbitrary real N1 N2-matrix-valued
stochastic process with aij6 H(I)(R +, f). Then Kp(IN2)(R +, L()), l <p< cx3,
denotes matrix processes A(t, to)such that

ess sup [aq(t, to)lp dt <c for all and j.

Let T 6 R+ and define, for x HN)(R +, 1),

x(t,,o)={x(t,,o), 0_-<t< T,
O, t>T.

Define gp(rq) {x e H(c)(R +, ): XT C= Lp(u)(R +, Loo(12))}, 1 p < oo. Define the trun-
cation operator, IIr, on H(r)(R +, ) by Ilrx xr. Let g(N) denote those processes in
g’.() with time-derivatives in
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Let r/(N) denote the collection of memoryless nonlinearities of the type

tp(x(t, to), t, to)= [q(1)(x(1)(t, to), t, to), , ff(rq)(x(r)(t, to), t, to)lr,
with x Ix(l), ", x(N)] T H(rq)(R +, ), R+, to 612, where q(i)(g, t, to),
1, 2, , N, are real-valued functions of the real variables g 6 R and R+, and the
variable to f such that

(i) P{to: (’)(0, t, to)= 0, tR+, i= 1,..., N}= 1;
(ii) there exist real numbers a and b with the property

P{to" a<=
q()(g’ t’ to)<=b, tR+, gO:O, i= 1,... ,N}= 1;

g

(iii) $(x(t, to), t, to) is a Lebesgue-measurable function of and an -measur-
able function of to whenever x is a Lebesgue-measurable function of and an
o-measurable function of to; and

(iv) (i)(x(t, to), t, to)e H(r)(R +, f) whenever x H(rt(R +, f). Define Cl(q)
{to f: (i) and (ii) above are true for O e

DEFINITION 1. The stochastic N x N matrix, A(to), whose elements are measur-
able functions of to, is said to be stochastically stable if for some positive real 3’,

P{w: Re (1(w)) <-,/, k 1, 2,..., N} 1

where ,(to), k 1, 2,..., N, are the eigenvalues of A(to).
We consider composite systems described by the following stochastic integral

operator equations:

e,(t, to)= u,(t, to)-y,(t, to),

y,(t, to)= J0 k,(t-’, to)Oi(ei(7", to), t, to)dr,
(S)

u,(t, to)= r,(t, to)+ . Bqej(t, to)+ Z Dqyi(t, to),
j=l j--1

for i, j M 1, 2, , m}. For each M we assume that r, e, y, and u belong to

2,; /0; k KIN,,. For each i, j M, B/j and Dq are operators on
with values in 2,. These operators are assumed to be one of two types" either a
Type A operator with

Bqej(t, to)= bAq(t, to)" ej(t, to), or

Dqyi(t, to)= dAq(t, to)" yi(t,

where baij(t, to) and daq(t, to) are /V x N.-dimensional matrix-valued random pro-
cesses with elements in L2(1)(R +, Loo(O)); or a Type B operator with

Bqei(t, to)= bnq(t-r, to)ckq(ej(% to), r, to)dr, or

IotDqyi(t, to)= dnq(t-r, to)ij(yj(7", to), r, to)dr,

where bBq and dBq belong to KI(,N)(R+,L(II))f-IK(r,(R+,Loo(I)))and
rt(r,r). We define the following i___ N x

__
N-dimensional matrices of operators:

BA=[BAq]
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where

and

where

I BqBAli
0

if Be is of Type A,
if Bij is of Type B, i, ] 34,

Bu [BBii]

if Bi is of Type B,
if Bii is of Type A, i, ] M.

We also define the operators Ki and O on <’2(Ni), M, by

and

Kix(t, w) Io k,(t-r, w)x(r, w)dr, e R+, x 2(Ni)

Oix(t, w)= ,i(x(t, w), t, w), e R +, x e $2N,).

Furthermore we define the Laplace transform K(s, w) by

/,(s, w)= I0 k,(t, w)e -s’ dt.

Recall that an operator, H, on $’2(N) is causal if, for an arbitrary T e R+,

HTHX(t) IITHIITX(t), R +, X 2(N)
where 1-IT is the truncation operator on ’2(N). It is assumed throughout this paper that
Ki, Oi, Bq, and Dq are causal operators for all and ].

System (S) may be viewed as the interconnection of rn free or isolated subsystems,
each of dimension Ni and each described by an equation of the form

(S,) e,(t,w)=r,(t,w)-| k,(t-’,w)qt,(e,(r,w),’,w)d% ieM.
3o

We now define the type of stochastic stability we will be concerned with.
DEFINITION 2. System (S) is said to be stochastically absolutely stable if (see

Tsokos [22] and Tsokos and Padgett [23, Chap. 9])

and

P{w" lim e,(t, w)= O} 1, e M,

P{w" lim y,(t, w) 0}= l, e M.
t-oO

We now present two lemmas which are used throughout this paper. The first deals
with Minkowski matrices or M-matrices (see Ostrowski [16] and Fiedler and Ptak
[1]).

DEFINITION 3. A square matrix A =[aq] is said to be an M-matrix if the
off-diagonal elements of A are all nonpositive (a -< 0, ]) and if all principal minors
of A are positive.
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LEMMA 1. Let A [aq] be an n x n matrix with nonpositive off-diagonal elements.
Then the following conditions are mutually equivalent.

(i) The principal minors ofA are all positive (i.e. A is an M-matrix).
(ii) The successive principal minors ofA are all positive.
(iii) The matrix A is nonsingular and A- >-O.
Lemma 1 is proved in Ostrowski [16] and Fiedler and Ptak [1].
The second lemma concerns the asymptotic behavior of the function f(t)

defined by

(1) f(t) k(t-’)h(’) d’,

where k Lltl)(R /) and h L2I(R/). The following lemma and associated proof are
presented in Sandberg [19] (see also Hewitt and Stromberg [2, p. 398, Thm. 22.31]).

LEMMA 2. If in (1) k LI(1)(R+)I’-)Le(1)(R+), then f(t)-O as t-oo.

3. Main results. The following theorems are proved in the Appendix.
THEOREM 1. System (S) is stochastically absolutely stable if the following condi-

tions hold"
(i) rieLe(l,(R/,Lo(f))and [ri(t, to)[-0 as t-oo a.e. [P], geM;
(ii) det[I(r,l+1/2(a+b)I(s, to)] -0 for Re (s)0, a.e. [P], iM;
(iii) there exist constants a, Yk, k and with

a, (b,- a,) sup+ A[(I(,)+(a, + b,)g,(jh, ))-lgi(jh, )]
AR

a.e. [P], i M,

Y,k I[(I+(,+b,)K,)-B,[I a.e. [P], i, k M,

,k [l(I + (ai + bi)gi)-lOikll a.e. [PI, i, k M,

, max (la, I, Ib, I) where I denotes the identity operator,

such that the matrix A [aq] has positive successive principal minors, where

1 a Tii iii, k,
ak

--Yik--kk, k, i, k M

(the matrix A is referred to as a test matrix); and
(iv) the operator (I BA) has a bounded inverse on L2(z si)(R +, L()) for > T*,

a.e. [P] for some T* R +.
Remark 1. If Bk or Dk are Type B operators with kek ek or kYk Yk, ek,

Yk ), then the A-matrix elements Yk or k may be found from

Yk SUp+ A{(I,)+(ai + b)L(jh, ))-Xik(jh, )} a.e. [P], or
AR

k sup A{(I,)+(a, + b,)L(jh, ))-l,k(jh, )} a.e. [P],
AR

where i(s, ), ik(S, ), and Dik(S, ) represent the Laplace transforms of ki(t, ),
bnk(t, ), and dnk(t, ), respectively. For the case where N Nk 1, the above
A-matrix elements may be determined graphically. It can be seen that under these
conditions Yk is the smallest number, b, such that the locus of (1/b)k (jh, ), A R,
is interior to the locus of (1 +(a+b)(jh, )), h R+, for almost every . For
further frequency-domain interpretations, see Remark 4.
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Remark 2. The deterministic version of this theorem (which has not previously
appeared) may be obtained by taking 12 { 1 and P{ 1 } 1.

Remark 3. For m =/V 1, Bl1= DI =0, and for the deterministic case (see
Remark 2), Theorem 1 reduces to a version of the familiar circle theorem introduced
by Sandberg [19] and Zames [24], [25].

Remark 4. For /V 1, the A-matrix terms ai may be determined from the
Nyquist locus of /i(j)l, 0). Note that we desire to find an a such that for almost
every

or

1/2(b, a, )[/ (jh, ca)[-<a,[1 +1/2(a, + b,)/ (jh, ca)[

-ai
2

2ci ]
Ig,(ya, +1/2(a,+b,)I,(jA, ca)l 2,

that is,

bi-ai]
2a /

K(jA, w)g (jA, w)(1 +(a,+b,)L(jX, w))(1 +k(a,+b,)g (j, )).

We may write, for almost every w ,
0<1+(ai + bi,i +,ai + bi,[(alibi) 2- (bi -ai] 2]i,2ai ]

where the arguments of , are understood to be (jA, w). Defining

(2) Ai
bi- ai ai + bi 2 2

2a 2

we have

We now consider three cases.
(a) If p > O, (3) may be written, for almost every w , as

L +

or equivalently as

(4) O’il > [(0"i)2 (1)]
’/a

;,
The implication of (4) is that the locus of/(j,, ca) avoids the circle with center -o-i/p
and radius ]A/p[ for almost every ca 6 . A minimum a R+ is sought so that this
condition is met.

(b) If pi < 0, (3) may be written, for almost every ca 612, as

o>--+ K + +

and we proceed to (4) with the inequality reversed. This implies that we are seeking a
minimum O R+ such that the locus of/(j,, 0), , R, is contained in a circle with
center-cr/p and radius la,/0,1 for almost every ca
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(c) If pi 0 (if pi changes sign for 0 < o- < 1 we need to consider the possibility of
this case) we may write (3), for almost every to e D., as

0_-< o-/i +aK* + 1,
or equivalently as

That is, we require

or, Re (/)+1/2=> O.

1Re//(A, to)_-->-, A e R, a.e. [P]
2th

(for p to change signs for 0 < a < 1, it is necessary that tri > 0).
Remark 5. Condition (ii) of Theorem 1 may be checked graphically if N 1, by

applying the principle of the argument (see, for instance, Holtzman [3]) for complex
functions. To satisfy the condition

l +1/2(a,+b)IT(s, to)O forRe(s)->0, a.e.[P],

we require that the locus of/i(fl, to), A 6 R, does not encircle the point (2/(a + b), O)
with probability one.

An example using these graphical techniques is worked in 5.
The following theorem is a composite stochastic system version of the Popov

stability criterion.
THEOREM 2. System (S) is stochastically absolutely stable if the following condi-

tions hold:
(i) N=I, i6M;
(ii) Dj O, i, M, Bq is a Type B operator with chiei(t, to)= ei(t, to), i, M;
(iii) Oie l(1) withal=O, b>0, iM;
(iv) k,, l LI(I)(R +, L(f)), k L2(R +, L(f)), M;
(v) r, ieL2I)(R+,L(O)), Iri(t, to)l-0 as to, a.e. [el,
(vi) there exists a q > 0 such that

->6i>0, a.e. [P]Re [(1 +jAqi)I (jA, to)] + b,

for some real 6; and
(vii) there exist constants a, yi, and flij with

o, >- s.up+ II.(],. .,)l a.e. [P],

yq _--> sup/ I(1 +jXqi)bq(jX, to)l a.e. [P], and
AR

/30 _-> sup+ [/}/(/’, to)[ a.e. [P],
heR

such that the matrix A [a0- has positive successive principal minors, where

(/3, + a,6,71y,), j
ai -a6-1Y0 flq, ], i, ] 6 M,

(the matrix A is referred to as a test matrix).
Remark 6. The comments of Remark 2 hold for Theorem 2 as well. For the

deterministic case with m N1 1, Theorem 2 reduces to a version of the Popov-like
theorems of Sandberg [21] and Zames [24], [25]. For m 1, Theorem 2 is somewhat
similar to Theorem 9.2.1 of Tsokos and Padgett [23]. We do not, however, require
boundedness or continuity of the nonlinearity, ff, as in [23].
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Remark 7. Condition (vi)of Theorem 2 is the familiar Popov condition. The
value of 6i may be determined graphically. It is the minimum distance, parallel to the
real axis, between the graph of the modified Nyquist plot o the linear operator Ki and
the Popov line with intercept -b-1 and slope q-l.

Remark 8. In setting the D0., i, j 6 M, terms of (S) to zero, we are allowing the
subsystems to be interconnected only through the error terms, e(t, to). This, however,
is quite natural when applying the theorem to interconnected systems described by
differential equations (see 4) and is rather flexible in control system work (see
McClamroch [7]).

4. Applications to stochastic nonlinear differential equations. In this section we
present conditions for stability of interconnected stochastic systems governed by one
of the following two types of differential equations,

(5)

or

(6)

with

dt
A,(to)x,(t, to)+ qt,(x(t, to), t, to)+ f(t, to)+ 2 dij(to)xj(t, to),

dxi(t, to)
dt

A,(to)x,(t, to)+ v,(to)d/,(x,(t, to), t, to)+ fi(t, to)+ ’, d,i(to)cr(t, to),

(t, ,o)= cS(,o)x (t, ,,,),

where for both equations i, j e M {1, 2,..., m}. It is assumed that for (5) and (6)
with i, j M, A(to) is an N N matrix whose elements are ,-measurable functions
of to; x(t, to), c(to), vi(to), and f(t, to) are N 1 vectors whose elements are random
variables for each e R +, and where the elements of ci(to) and vi(to) are essentially
bounded; dq(to) is an N N random matrix; o-(t, to) is a scalar random variable for
each R +. For M {1}, (6) is similar to one studied by Tsokos [22] and Tsokos and
Padgett [23].

We apply Theorem 1 to determine conditions for stochastic absolute stability of
systems governed by (5) and Theorem 2 to determine conditions for the stability of
systems governed by (6).

THEOREM 3. Differential system (5) is stochastically absolutely stable if the
following conditions hold:

(i) A(to) is a stochastically stable matrix, M;
(ii) f Lz(t,)(R +, L(I))), M;
(iii) q /(v,), M;
(iv) det [(s+1/2(a+ bi))I(N,)-a]O for Re (s)_->0 a.e. [P], iM; and
(v) there exist constants y, 6k with

y, >--1/2(bi--a,) s?PR A{[(jA +1/2(a, + b,))I(lv)+Ai(to)] -1} a.e. [P], and

6,k >----SUPR+ A{[(jA +1/2(a, + b))Iov,)+A,(to)]-[jAI-A(to)] di(to)} a.e. [P],

such that the matrix C Cik] has positive successive principal minors, where

1 /i, i=k
Cik

--tik, k, i, k M.
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THEOREM 4. Differential system (6) is stochastically absolutely stable if the
following conditions hold:

(i) Pi r/(1), withal=O, bi>O, iM;
(ii) Ai(to) is a stochastically stable matrix, M;
(iii) f 6 L2(1)(R +, Lo(l))), 6 M;
(iv) there exists a qi > 0 such that

Re [(1 + Aq,)c.T, (w)(AI A(to))-lv,(w)] + b, >= 6 > O,

a.e. [P], [or some real 6i; and
(v) there exist constants , Yk, Bik with

----> (to)(IA Crq,) Ai(to))- vi(to)l a.e. [P],ai SUPR+[CT "I

,,,, _-> sup+ l(1 +jAq,)cT,(to)(jA- A,(to))-lv,(to)d,(o)l
AeR

and

a.e. [P],

B,k >---- sup IC, (to)(IA (s, A(to))- v,(to)d,,(o) a.e. [PI,
A6R

such that the matrix C [Cik has positive successive principal minors, where

1 Oli-l’)tii -[- Bii, k
Cik

-6 Yik- Bk, # k, i, k M.

5. Example. We apply Theorem 1 to the control system shown in Fig. 1, which is
described functionally by

el(t, to)-- rl(t, to)--FlYl(t, to)+ y2(t, to),

yl(t, to)= lSlel(t, to),

e2(t, to)=-F2Y2(t, to)+ y(t, to)+ S3Y3(t, to),

Y2(/, to)= 2N2e2(t, to),

e3(t, to)-- r3(t, to)--y3(t, to)+ y(t, to),

y3(t, to= N3b3e3(t, to),

FIG. 1. Block diagram of the system for the Example.
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where N1, N2, N3, F2, and $3 are random convolution operators on c2(1)(R+ Lo(f))
characterized by their transforms:

/,(s, w)= G,(s +2) Nz(S, w)=
10

(s + 1)(s + 3)’ (s + 2)(s + 5)’

]Q3(S, to
(S q- 5) #2(S to

(s + 6)(s + 2)’ s + 1’

13(s, w)=
s + d(w)’ P[w 4_-< d(w) -< 6] 1

F1 is a Type A operator with

Fy(t, 0) O(o)y(t, 0), P[o: II =< 0(0)-< 2II] 1;

ql, q., q3 e rt() with

qqx(t, w)= sin (xa(t, w)), qzX2(t, w)= al(w)Xz(t, to),

O3x3(t, to)= 0.5 sin (az(to)x3(t, to)),
where al(to) is a uniform random variable on [0, 1], and a2(w) is a standard normal
random variable; e, e2, e3, yl, Y2, y3e 2(1)(R +, Lo())and r, r3GLz()(R +,
(we will define rz(t, w)= 0). The gain G R+ is to be determined in such a fashion as
to insure a stochastically absolutely stable system. Note that in the present form, the
system is not of the form of (S). In order to restructure the problem, define

e’i(t, w)= Niei(t, w), i= 1, 2, and

r(t, to)= Nri(t,w), i=1,2.
We now find

e] (t, w) r] (t, to)- NFqae’ (t, to)+ Nqze’z (t, to),

(7) e’(t, w)= r’z(t, w)-NzFzOze’z(t, to)+Nz4qe’(t, to)+NzS3Y3(t, w),

e3(t, to) r3(t, to)-N33e3(t, to)+ ,el (t, to).

This system is depicted in Fig. 2.

3 N2S3

FIG. 2. Modified block diagram o]: the system for the Example.



STABILITY OF INTERCONNECTED SYSTEMS 227

Note that if modified system (7) is stochastically absolutely stable, then the
original system is also. By comparison with (S) we may make the following
identifications: Ka NaFa, K2 N2F2, K3 N3, B12 Nat2, B2a N2a, B3a 0a,
D23 N2S3, and Baa Ba3 B22 B23 B32 B33 Daa D12 D13 D2a D22
D31 032 D33 0. We check conditions (ii) and (iii) of Theorem 1 by the graphical
method of Remark 4. The Nyquist plots of K2 and K3 are shown in Figs. 4 and 5. Note
that since Ka NaFa depends explicitly on w through Fa, we show in Fig. 3 a region
where the locus of KI(]A, w) will fall with probability one. From the nonlinear

-1.0

2.0

-3.0

gl

1.0 2.0 3.0 4.0 5.0

FIG. 3. Nyquist plot of/l(/’A, o9)/G1 ]’or the Example.

elements, we determine the following parameters" aa =-0.2122, ba 1.0, a2=0,
b2 1.0, a3 =-0.5, and b3 =0.5. We apply Remark 4 to determine the A-matrix
terms ci, 1, 2, 3. For the first subsystem (Sa) we have from (2) that

ba-al 0.6061 aa +blAa ra==0.3939, and
2al a 2

01 r2 -A 0.1552
0.3674

2

Since pa < 0 for 0 < a < 1, we apply case (b) of Remark 4 and therefore we are looking
for a circle that contains the locus of/a(A, w), A R, with probability one. The center
and radius of allowable circles are given by ca and ra respectively, and may be
computed from Remark 4"

O" 0.3939a IAICl and ra
pl 0.3674-0.1552a

0.606 lal
0.3674-0.1552a

Note that C and rl are monotone increasing functions of a for 0 < O < 1. Using this
fact and Fig. 3, we seek the minimum O such that

C -[- ra max R (0, (.o) 4.1888
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-0.6

lrn/2

0.? 0.6 0.8 1.0

ReR

FIG. 4. Nyquist plot of/2(jA for the Example.

This is equivalent to the relation for al,

x/0.3674 + 2.4248G1 +4.0G 0.6061
(8) 1 0.7878 + 13.002G1
In a similar fashion we solve for 2 and a3,

a2=0.3333, and a3=0.2084.
In order to determine the A-matrix coefficient 3’12, observe that

(1 +1/2(al + bl)K1)-1
0 l-I"

So we choose 3"12 Crl/II. Similarly we choose 3"21 =0.825, 3"31 1.0, 23 =0.2063,
and x2 1. The remaining A-matrix parameters are zero. We compute the test
matrix, A, as

--3"21 1 a2 --23 --0.825 0.6667 --0.206

--3’31 0 l--a3 -1 0 0.7916

-0.1

-0.2

lm/3(j2, ,))
0.1 0.2 0.3 0.4

2=0
0.5

Re g 3(j., o9)

FIG. 5. Nyquist plot of/3(jA, o) for the Example.
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In order to satisfy condition (iii)of Theorem 1, we need positive successive principal
minors of A, that is

0.825c1
l--a1 >0, (1-al)(0.6667)->0, and

H

0.7916((1 a l)(0.6667)
0.825a1.)H 0.2063a

1H
It can be seen that all three inequalities are satisfied if the third one is satisfied. This
happens for c1 < 0.6585. In order to compute G1, we must satisfy (8), that is

x/0.3674 + 2.4248G1 +4.0G- 0.6061
0.7878 + 1.3002G1

<0.6585

or

0< G1 < 0.4535.

6. Concluding remarks. New stochastic absolute stability results for a large class
of multi-input-multi-output systems modeled by stochastic Volterra-type equations
were established. Whenever appropriate, frequency domain interpretations were
emphasized. The deterministic results obtained when the probability space (fl, o%, P) is
trivial, are also new.

As in related existing results for deterministic interconnected systems, [5], [8],
[13], etc., the objective here was always the same: to analyze composite systems in
terms of lower order subsystems and in terms of the interconnecting structure.

To demonstrate the method of analysis advanced, we applied the results to two
types of systems described by differential equations and to a control system.

Appendix. Proofs of theorems.
Proof of Theorem 1. Define the following subsets of :

C2 {to : (i), (ii), (iii), (iv) of the theorem are satisfied for all A//};

C3, {oo e -’- ei e c2(Ni satisfies (S)}; and

C4,i {to e : ki e

Recall the definition of Cl(ff) from 2, and define

D={ f’l Cl(li)}r{C2}O{ r c3,i}o{ 0 c4,i}.
iM iM iM

Note that P[D]- 1. Using the definition of the operators Ki, O, and 1/7- given in 2,
we may rewrite (S)as

e(t, to)= u(t, to)-KOie(t, to), teR +, toED.

Truncating at T e R +, we have

eir(t, to)= uir(t, to)-IIrKiOiei(t, to), t, TEN+, toED.

Since K and Oi are causal operators, e M, we may write

eiT(t, to)=uir(t, to)--IIrKIIrOeir(t, to), t, TeR+, toED
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or

liT(/+1/2(a, + bi)Ki)eiT(t, to)= U,T(t, to)-IITKilIr(Q,-1/2(a, + b,)I)e,T(t, to)

where I denotes the identity operator on L2(v,)(R /, Lo()). For to D, condition (ii)
of the theorem assures that (I +1/2(ai + b)K)-1 exists on L2(so(R +) and is causal (see
Sandberg [19] or Miller [12]), so that

e,r(t, w)= Hr(I +(a, + b,)K,)-u,r(t, w)- H(I+(a + b)K)-HTK,HT(Oi-k(a, + bi)I)eiT(t, m), t, T R +, w D, M,

and hence

]leirJ N llHT(I + (a, + b, )Ki)- u,rl + llHT(I +(a, + bi )K, )- HTK,

IIn(o,-(a, + b)/)ll" Ile,TII, e D, We e +, e M.

Since Hr is a projection on L2(u,)(R +) (for fixed w e D) we have

Iln(I +k(a, + b,)K,)-lnKilJll( +k(ai + bi)Ki)-lKill
N+ A[(I +(a + b)R(g, w))-R(g, w)]

(see Sandberg [19]). Also note that

[O (a + b)[[ N(b a), w e D, e M.
Thus

(by the definition of a given in (iii) of the theorem). Defining 6 by

Iln(Z+(a+b,)K)-l6, eD, ieM,

we have

+ E IIHT(I +(a, + b,)K,)-’HrDqyrll+

for T R +, e M, and w D. This implies that

IleiT[I illriTl] + E I1(I +(a, + b,)Ki)-lBijll
j=l

Using the fact that 11011 max (Ib,[, la, I) and the definitions of ,, ,, and as given in
(iii) of the theorem, we have

j=l j=l
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Using vector notation with Ilell [[[elTll,""", [le,ll], and IIrll defined similarly, we
have

AlleTII <= [diag
by the definition of A given in (iii) of the theorem. Since by condition (iii) A is an
M-matrix, it possesses an inverse consisting of all nonnegative elements, and hence

Ilell A-[diag
For D we have r L2n,(R +) and by letting T we have e L2n,(R +).

Using the matrix notation [e]=[el(t, ),..., e(t, )] with [r] and [y] being
defined similarly, and defining the operators on L2En,(R +, L())

K [diag (K)], O [diag (O)], D [Di],
and recalling the definitions of BA and Bn from 2, we write (S) as

[e] [r]- KO[e] + Bale] + Bn[e] + ogO[e].
By condition (iv), (I BA) has a bounded inverse for T*, D, for some T* R +.
We therefore have

[e] (I- Ba)-{[r]-- KO[e] +B[e] + D[y]}.

Observe that since e L2n,(R +) for D, then Oe Lan,(R +) for D. Note that
(KO[e] + Bn[e] + DKO[e]) may be written as a linear combination of integrals of the
form g(t-r, )h(r, ) dr, where for D, g KI(lxl)(R+)K2(lxl)(R +) and h
L2(R+). Therefore using Lemma 2 it follows that these integrals approach zero as. Since ]r[ 0 as by hypothesis, the theorem follows.

Proof of eorem 2. Define the following subsets of :
C2 { : (iv), (v), (vi), and (vii) of the theorem are satisfied};

Cai { : e(t, ) satisfies (S)};

C4 { : k, k KI(R+), k K2I)(R+)}; and

C5i { a: ri, Yi L2(1)(R+), Ir,(t, )l0 as }.

Recall the definition of C() from 2, and define

iM iM iM iM

Note that P(D)= 1. Condition (iv) guarantees that for D we may write the
operator K as

K= KiK, i,

where K is a linear mapping of 2() into itself and K2 maps 20) into
characterized by its transform:

K,(a, )=( +aq,)-’.
Also note that there exists a time-invariant linear mapping K3 of () into 2() such
that

K3K2 I (the identity operator on ()); and

K2K3 I (the identity operator on ()).
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Note that Ki3 is characterized by the transform

K,3(jA, to)=(l +jAq,).

We define the new variables vi(t, to)= K3iei(t, to) (or el(t, to)=K2ivi(t, to)) and
zi(t, to)= OiK2ivi(t, to). From (S) we have

g3iei(t, to)= g3iui(t, to)-g3ig2igliOiei(t, to)
or

or finally

v,(t, to)= K3u,(t, to)-K,,Q,Kz,v,(t, to)

Vi(l, to)= K3iui(t, to)-Kl,z,(t, to),

from which we may write

(A.1)
g3iUi )T, ZiT K iZ )T, ZiT + t)iT, ZiT

((K, izi)T, ZiT)+(ViT, (OiKzivi)T).

Since Ox(t, w) bx(t, w) for x e L2(R + L()), w D and K2,(]A, w)= (1 +]Aq,)-by an application of Lemma 2 of Zames [25], we have

(Vir,(Q, Ke,vi)r}b;1]lZirll2, TR+, vi2(1) wD, iM.

Also note that

((KZ)T, ZT} ((K,ZT), ZT}

2

1
Re d,

2

2

(i- b )llZir[I2

The above result uses condition (vi)of the theorem. Equation A.1 becomes
--1 --1b [[ZiT[[2 + (i b )J[ZiT[[2 ((K3iUi)T ZiT)

or

We may now write

i=1 i=1

Using the notation ai ][Kil, Tq ]K3,Bql, flii= lBiil], we have

i=1
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or, using the vector notation used in the proof of Theorem 1, we have
-1Allell [diag (Olit )]llKrll+ ]lrT]l,

where the matrix A is given in (vii)of the theorem. Since by hypothesis
L2(R 4, Lo(D.)), for to 6 D we have ri L2(R 4) and hence K3iri L2(R 4) for to 6 D (see
Holtzman [3, Chap. VIII]). Since A is an M-matrix by condition (vii), we have as a
result that ei L2I)(R /) for to D, M. By the argument in the proof of Theorem 1,
since e L2(R +) for to 6 D, then Oei 6 L2(R +) for to 6 D and y L2(R +) for to D;
and since k K111) (R+)f-) K21) (R /) for to D, then by Lemma 2 and the fact that
[ri(t, to)[--- 0 as to we have ]e,(t, to)l0 as t-o a.e. [P].

Proof of Theorem 3. From (5) we have

dx,(t, o)
dt

-A,(to)x,(t, to)=-q,(x(t, to), t, to)+ f(t, to)+ Z dq(to)xj(t, to),
y=l

or, using the usual differential equation techniques,

d[e-Ai(’)tXi(t, to)]----e-Ai()td/i(Xi(l to), t, to)+ e-A’(’)tfi(l 09)dt

M
q- 2 e-Ai(’)t dij(to)xj(t, to)
j=l
ji

or

xi(t, to)--eA’(’)txi(O)--fO eA’(’)(t-)d/i(Xi(7", to), % to)dr

q- eAi(’)(t-z)fi(’l" to) dr

+,2.__ e’("(’-’ d(o)x(r, o) dr

which is of the form of (S) with the following assignments:

e,(t, to) x,(t, to);

ri(t, to)= eAi()txi(O)+ IO eai()(t-)fi(T’ to) dr;

ki(t % to) e a’()(t-)

Bqei(t, to)= fo eA’(’)(t-’) di(to)ei(r’ to) dr,

We will show that, under the conditions of this theorem, the hypotheses of Theorem 1
are satisfied.

Note that the elements of k(t, to) are linear combinations of k exp (pi(to)t),
k exp (pi(to)t) sin tri(to)t, and k exp (pi(to)t) cos tri(to)t, where k {0, 1, , Ni},

pj(to) denotes the real part of the jth eigenvalue of A(to) and tri(to) is related to the jth
eigenvalue of Ai(to). Recall from the definition of a stochastically stable matrix that
Re (Ak (to )) =< y < 0 a.e. [P]. Hence we have k6KltN,N,)(R +, L()), i6M.
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Clearly, ri L2(N,)(R +, Loo(f)) by the same argument. Also

ki(t-", w)fi(z, oo)-O t-o a.e. [P]as

by Lemma 2, since kKI(N,N,)(R+)IqKz(N,N,)(R +) for almost every w and
R+Lz(N,)( ) for almost every w. Obviously [eai(’)xi(O)lO as t-OO a.e. [P]. Hence

condition (ii)of Theorem 1 is satisfied. In this case

det [I +1/2(ai + b,)R,(s, ,o)] =det [I +1/2(a + b)(sI-ai(w))-1]
=det [sI-ai(w)+1/2(a + b,)/l" det [(sI-a(w))-1]
# 0, Re (s) => 0 a.e. [P].

The above relation is due to conditions (i) and (iv) of Theorem 3. Conditions (iii) of
Theorem 1 and condition (v)of Theorem 3 are equivalent as may be verified from

IIDol 0, i, j M,
and

su_p+ A[(I + (a, + bi)Ii(]A,
AR

su_p+ A[(I

su_p+ A[(jAI +Ai(eo)+1/2(ai + bi)I)-m],
AR

and similarly

su_p+ A[(I + 1/2(a, + b, lIi(]A, wll-/,,(jA, 1]
AR

sup A[(I +1/2(a, + b,)(jAI +Ai(o9))-1)-1(],I +Ai(w))-1 d,(w)]
AR

sup+ A[(jAI +A,(o)+(a + bi)I)-1 d(w)].

Since Bq, i, ] M is a Type B operator, condition (iv) of Theorem 1 is satisfied. The
proof is now complete.

Proo of Theorem 4. From (6) we have

dx,(t, w___))_ A,(w)x,(t w) t)i(og)i(o’i(t,
dt

with

,(t, o,)= c(o,)x,(t,
As in the proof of Theorem 3 we arrive at

xi(t, o)= eA’()’xi(O 00)+ IO eA’()(t--z)t)i(OO)ff’Ji(O’i(T’ O))’, 09) dr

IO
+ eAi()(’-) dq(o)o)(% oo) dr.
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Noting the definition of ri(t, to), it is obvious that

O’i t, 0) c iT to ) eA (a’)tx O, to)

+ c2(o e’’-’v(o((,, o, , oo d-

+ 2 c(o) e’((’-’ a(o);(-, o) d-.

This equation is of the form of (S) with the following identifications:

e(, o= (, o,

(, o= c2(o eA’%(0, o+c2(o Io eA’-’f’(% O a"

O)= IO C[(O) eA((’-, cle(r, o) d’.Boej(t,

We will show that, under the conditions of Theorem 4, the hypotheses of Theorem 2
are satisfied. As in the proof of Theorem 3 we know that e A’(’)t E

KIV,N,) (R +, Lo(f))K2N,I,)(R +, Lo(l))). Since the elements of Ci(to) and vi(to)
are essentially bounded, we have that ki E KIII(R/, Lo(f)) f) K2II(R/, L(f)),
and k K2II(R /, Lo(f)). In a similar fashion r, i L2(R/, Loo(D,)). The fact that

Cf(to)eA’’txi(O, to)--O ast-c a.e.[P], iM

may be seen by recalling the constituents of e A’(’)t as given in the proof of Theorem 3.
Also, the term

cf(to) JoeA’)t-(’,to)dzO asto a.e.[P], iM

by the same argument as in the proof of Theorem 3. Since

/(]A, o)= cf(o)(]AI-A,(o))-v,(o),
it may be seen that condition (vi) of Theorem 2 is satisfied by condition (iv) of
Theorem 4. Condition (vii)of Theorem 2 follows as a direct consequence of the form
of K(jA, to) as given above and by condition (v) of Theorem 4.
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STABILIZATION OF FLOWS THROUGH POROUS MEDIA*

B. H. GILDINGt

Abstract. Let u(x, t) be the solution of the Cauchy-Dirichlet problem for the porous media equation in
one space dimension in the quarter-plane (0, c)(0, ). An estimate is obtained for the asymptotic
behaviour of u(x, t) as t-c, in terms of the prescribed lateral bbundary value of u. The paper is an
enlargement on a result of Peletier [SIAM J. Appl. Math, 1971].

1. Introduction. In this paper we shall discuss the asymptotic behaviour, as time
tends to infinity, of solutions of a class of mixed initial boundary value problems for
the porous media equation in one space dimension.

Let ST denote the half-strip (0, )x (0, T] for some fixed number T>0. We
consider the following mixed initial boundary value problem:

(1) u, (u"),, in ST,

(2) u(x, 0)= Uo(X) for 0 <-x <,
(3) u(0, t) 0(t) for 0 -< <= T.

Here, the subscripts x and denote partial differentiation with respect to the space
and time variable, respectively, and rn is a constant greater than 1. The functions u0
and 0 are assumed to be bounded, nonnegative and continuous on their respective
intervals of definition, and it is assumed that they satisfy the first compatibility
condition: u0(0)= 0(0).

Equation (1) arises in the theory of flows through porous media. Let u denote the
density of a polytropic gas flowing through a homogeneous porous media. Then if the
flow is in one dimension, u satisfies (1) [4].

It is well known that problem (1)-(3) need not have a classical solution [5].
However a class of weak solutions has been defined by Oleinik, Kalashnikov and
Yui-Lin [5]. In their definition a function u(x, t) defined on Sr is said to be a weak
solution of problem (1)-(3) if: (a) u is bounded, nonnegative and continuous in St; (b)
u(0, t)= O(t) for all [0, T]; (c) (u’) has a generalized derivative with respect to x in
St, which is bounded in every set of the form (6, )x (0, T], 6>0, and square-
integrable in every bounded subset of St; and (d) u satisfies the identity

for all CI(T) which vanish for x 0, large x and T. Under the assumption that
u’ and 0" are both uniformly Lipschitz continuous, Oleinik, Kalashnikov and
Yui-Lin have proved that problem (1)-(3) has a unique weak solution.

If a function u is a weak solution of problem (1)-(3) in any half-strip ST, i.e. T
may be an arbitrary positive number, then we say that u is a weak solution of problem
(1)-(3) in the domain S (0,

It will be useful later if we state here some properties of the weak solution u(x, t).
The weak solution can be constructed as the pointwise limit of a decreasing sequence
of positive classical solutions of (1){u,, (x, t)}_-1, in an expanding sequence of cylinders
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O-=(0, n)x(0, T], n 1, 2, 3,..., [5]. By applying the theory of uniformly
parabolic equations to this sequence it is then possible to deduce some properties of
the weak solution. For instance, it can be shown that u is a classical solution of (1) in a
neighbourhood of any point where it is positive. Also, one can show that if u and u2
are two weak solutions of problem (1)-(3) with respective data u01(x), Ol(t) and
Uo2(X), I//2(t) satisfying

and

Uol(X)>= u02(x) for all x [0, ),

4,1 (t)=> 4,2(t) for all [0, T],

then Ul -> u2 everywhere in ST. Consequently, by comparison with a family of explicit
weak solutions it is possible to prove that if Uo(X) has compact support in [0, ) then
u(x, t) has compact support in ST. Following on from the work of Oleinik, Kalash-
nikov and Yui-Lin it has been shown that the generalized derivative (u’)x is actually
continuous in ST, and that the function u"-l(x, t) is Lipschitz continuous with respect
to x for any t>0 [1], [3].

Throughout the paper, we shall make the following assumptions about Uo and
A1. Uo is a nonnegative function defined on [0, ) with compact support, such that

m--1
Uo is Lipschitz continuous on [0, ).

A2. 4’ is a nonnegative function defined on [0, ), such that 4" is Lipschitz
continuous on [0, ) and 4,(0)= u0(0).

Assumption A1 is stronger than we need for existence of weak solutions of problem
(1)-(3). However, in view of the regularity properties of u, and the fact that we are
only interested in the behaviour of u as to, it involves no loss of generality.
Assumption A2 is precisely the one needed for existence of weak solutions in S.

We consider now a class of similarity solutions of equation (1) in S. Suppose that
there exist solutions of equation (1) in S of the following forms"

(5a) I. u(x, t)= (t + 1)’fx(r/), r/= x(t + 1)

(5b) II. u.(x,t)=exp(at)f2(l), ,l=x exp{-1/2a(m-1)t}.

Then, formally, fl and f2 should satisfy the equations"

(6a) I. (fT’)"+1/2{l+(m-1)a}qf =all, 0<r/<;

(6b) II. (f’)"+1/2a(m-1)rlf’a=af2, O<r/<;

respectively.
Similarity solutions of these types have been investigated in a recent paper [2].

Instead of considering equations (6a, b) the authors studied the more general equation

(7) (f")" + pr/f’ qf, 0</<,

where p and q are arbitrary real constants. They defined a weak solution of equation
(7) by analogy to the definition of a weak solution of problem (1)-(3) and searched for
weak solutions satisfying

(8) f(0) u > 0, f() 0.

It was shown that problem (7), (8) has a weak solution with compact support if and
only if p => 0 and 2p + q > 0. Moreover, problem (7), (8)can have at most one weak
solution with compact support.
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For the moment we restrict our attention to equation (7) when p >= 0 and 2p + q >
0. Denote by f(r/; U) the weak solution of problem (7), (8) with compact support.
Then there exists a point a(U) (0, c) such that f(r/; U) is a positive classical solution
of (7)in [0, a(U))andf(rl; U)=O in [a(U), o). Moreover, if U1 > U2 then f(r/; U1)
f(r/; U2)for all r/[0, c). We note furthermore; that as Uo, a(U) and
f(r/; U)- o uniformly on compact subsets of [0, ); whereas as U O, a(U)- 0 and
f(r/; U) 0 uniformly on [0, c) [2].

If we return to the discussion of equations (6a, b) we see that problem (6a), (8)
has a weak solution with compact support if and only if a > l/m, whereas problem
(6b), (8) has a weak solution with compact support if and only if a > 0. In both cases
there is at most one such weak solution.

It is easy to verify that under the transformations (5a, b) the weak solutions of
problems (6a, b), (8) with compact support become weak solutions of equations (1) in
S. Thus, for any a >-1/m and U > 0 there is a unique (weak) similarity solution of
(1) in S of type (5a) which vanishes for large x and satisfies

Ul(O,t)=U(t+l) for =>0.

Whereas, for any a >0 and U >0 there is a unique (weak)similarity solution of (1)in
S of type (5b) which vanishes for large x and satisfies

u2(0, t)= U exp (at) for t-> 0.

The object of this paper is to discuss the asymptotic behaviour as c, of the
solution u of problem (1)-(3) in S, if either

(t)---U(t+l), U>0, a>-l/m, ast-c,

or

(t)--- U exp (at), U > 0, a > 0, as c.

Specifically, we shall show that u converges towards the appropriate similarity solu-
tion.

The main result of this paper is contained in the following two theorems.
THEOREM 1. Let Ul and u2 be two weak solutions of problem (1)-(3) in S with

corresponding sets of boundary data uOl, 1 and Uo2, 2 which satisfy the assumptions
A1 and A2. Suppose that for some a > 1/m there exist positive constants A and B
such that

A(t/l)<_-l(t), b2(t)<=B(t+l) fort>=O.
Then, for all (x, t)6 S

lu(x,t)-u(x,t)l<-C(t+l) (t+l)-("+ 1+

where

A =min {1/2, 1/(2m- 1)}

and C is a constant which only depends on m, a, A, B, U01 and U02.
THEOREM 2. Let ul and u2 be two weak solutions of problem (1)-(3) in S with

corresponding sets of boundary data uol, 1 and Uo2, 2 which satisfy the assumptions
A1 and A2. Suppose that for some a > 0 them exist positive constants A and B such that

A exp (at) <-_ tl(t), bz(t) <- B exp (at) for >= O.
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Then, for all (x, t)e S

where

lUl(X,t)-u2(x,t)l<-Cexp(at) exp(-mat) 1+ IO(s)-4,’(s)lds

A min {1/2, 1 / (2m 1)}

and C is a constant which only depends on m, a, A, B, Uol and U02.
Thus, suppose that u(x, t) is a solution of problem (1)-(3) with data satisfying

assumptions A1 and A2, such that for some a > 1/m and some U>0:

Then, since

t0(t) > 0 for >- O, tO(t)’ U(t + 1) as .
d/re(s)- Um(s + 1)ml ds o(tma+l as

subject to the normalizing factor (t + 1), u(x, t) converges to the similarity solution of

equation (1) with lateral boundary data U(t + 1)’ as - oo uniformly with respect to x.

Similarly, suppose that u(x, t) is a weak solution of problem (1)-(3) with data

satifying assumptions A1 and A2, such that for some a > 0 and some U > 0"

Then, since

4,(t) > 0 for -> 0, O(t)’ U exp (at) as - c.

Io I’(s)- U" exp (mas)[ ds o(exp (mas)) as t,

subject to the normalizing factor exp (at), u(x, t) converges to the similarity solution
of equation (1) with lateral boundary data U exp (at) as oo uniformly with respect
to x.

The theorems extend a result of Peletier [7]. He considered a weak solution of
problem (1)-(3) whose initial data satisfied A1 and 0(t)--- U >0. He showed that this
solution converged to the similarity solution with lateral boundary data identically U.
His work may be considered a special case of Theorem 1 with a 0 and t 2, and
produces the same rate of convergence. The method which we use to prove our
theorems is based largely on Peletier’s ideas.

We shall prove the theorems in three stages. In 2 we shall prove an integral
identity for weak solutions of problem (1)-(3) and then introduce two lemmas which

allow us to convert this integral identity into a pointwise estimate. However, we shall
first require some results on the H61der continuity of weak solutions of problem
(1)-(3). In 3 we shall therefore derive an estimate of the H61der continuity of a

positive classical solution of (1). As a weak solution of problem (1)-(3) can be
constructed as the limit of a sequence of positive classical solutions of (1), this allows
us to derive our required estimate for weak solutions of problem (1)-(3) in 4, and
thus to prove the theorems.

2. An integral identity. The proof of Theorems 1 and 2 rests on the following
basic identity.
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LEMMA 1. Let u be a weak solution ofproblem (1)--(3) in STfor some T > O. Then
for any to 6 (0, T]:

(9) I I Iot (t)dt.xu (x, to) dx XUo(X dx + $

Proof. Because Uo has compact support, there exists a number O > 0 such that for
all t [0, T], u(x, t)-0 if x-->O. Since (u")x C(Sr), this implies that (u’)x =0 on
[0, oo)x(0, T]. It follows that (4) continues to hold for all $ Cl(gr) which only
vanish for x 0 and T.

We first assume that to < T. Let

exp {- 1/(1 s2)} for Isl < 1,
k(s)

0 for Isl 1.

Then we can define, for any n -> 1, a function Jn by

fn(T-’o’ (I_oo -1

In view of the preceding remarks it is easy to verify that for u, &(x, t)= xJn(t) is an
admissible test function in (4). Substitution of $ yields for any n => 1, remembering the
continuity of (u’)x"

xJ’ (t)u (x, t) dx dt J (0) XUo(X) dx +
T

Jn (t)$ (t) dt.

If we now pass to the limit, and use the dominated convergence theorem, we obtain
(9) for to < T. For to T (9) now follows by continuity.

We use this identity to prove the following inequality.
LZMMA 2. Let U and u: be weak solutions of problem (1)-(3) in S, with cor-

responding data UO1, 01 and Uo:, 1[2. Then for any to 6 (0, oo):

(10) XIUa(X, to)--U2(X, to)[ dx <= XlUox(X)-Igo2(X)l dx + I,T(t)-’(t)l dt.

Proof. Set u-(x)= max{uol(x), Uo2(X)} and 0+ (t)= max {01(t), 02(t)}, similarly set
u(x)=min {Uol(X), uo2(x)} and 0-(t)= min {01(t), O2(t)}. Then as the functions uo,

+01 and u02, 02 satisfy assumptions A1 and A2 so also do Uo, and u, 0-. Thus
equation (1) has a weak solution u+(x, t) in S satisfying

+ +u (x, 0)=Uo(X) for0=<x<

u+(O, t)= O+(t) for 0 =< <

and a weak solution u-(x, t) in S satisfying

u-(x, O)= u (x)

u-(O, t)= o-(t)

for O_-<x <

for 0 _-< <
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Moreover, by Lemma 1, (9) holds for both u + and u- for any to e (0, oo). Hence

(11)

x{u+(x, to)-u-(x, to)} dx X{Uo

ifo (t) (g,-l"(tl}dt+ {(+)

t
XlUoI(X)-- Uo2(X)[ dx t_ [g’’(t)-’(t)l dt

for any to (0, o). Now, there is a maximum principle for weak solutions of problem
(1)-(3) which implies that

u-(x, t)<-_ Ul(X, t), u2(x, t) <- u+(x, t)

for all (x, t) $. Hence

(12) [Ul(X, t)- u2(x, t)[ _-< u+(x, t)- u-(x, t)

for all (x, t)e S. Combining (11) and (12) we have proved (10).
Remark. If uol(x)>-Uo2(X) for all x el0, m) and l(t)=>2(t) for all t6[0, to]

inequality (10) is in fact an equality. Hence (’10) is sharp.
To prove Theorems 1 and 2 we need to convert the integral estimate obtained in

Lemma 2 to the pointwise estimate. To do this we use a modification of a result due to
Peletier [7]. The alteration is only slight and presents no extra complexity of proof.
We shall therefore omit the proof. The modified result is the following.

LEMMA 3. Let O(x) be a nonnegative function defined on [0, oo) satisfying the
conditions.:

(i) 0 is uniformly H61der continuous on [0, oo) with exponent y (0, 1] and
coefficient K,

(ii) xO(x) dx <=L <
(iii) O(xo)- 0 ]:or some Xo [0, oo).

Then for all x [0, oo)

O(X) <= CoK2/(v+2)Lv/(v+2),
where

Co {2(7 + 2)/y}v/(+2).

For two weak solutions Ul and U2 of problem (1)-(3) in S, we wish to apply
Lemma 3 to [Ul(X, t)-u2(x, t)l for fixed t. Lemma 2 implies that (ii) holds, whereas
because Ul and u2 have compact support condition (iii) is satisfied. We therefore only
have to show that [Ul(X, t)-u2(x, t)l is uniformly H61der continuous with respect to x
on [0, oo).

3. A Hiilder continuity estimate. In this section we shall deal only with positive
classical solutions of equation (1). In the next section we shall apply the results we
obtain to the sequence of positive classical solutions of equation (1) from which a
weak solution of problem (1)-(3) may be constructed.

An estimate of H61der continuity for positive classical solutions of (1) was
obtained by Aronson [1]. However, this estimate is derived in terms of the supremum
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of a solution in its domain of definition. Here, we wish ultimately to apply our result to
weak solutions of equation (1) in S which have a definite asymptotic behaviour on the
lateral boundary of $. We look for a method by which we may capitalize on the
asymptotic behaviour on the lateral boundary. It turns out that by considering the
similarity transformations of equation (1) we can derive the estimate that we require.

Denote by R the rectangle (0, H)x (0, T] for some H > 0, T > 0, and by R* the
rectangle (0, 1/2H) x (0, T].

LEMMA 4. Assume p >=0 and 2p+q >0. Let v e C2’1(1) be a positive solution of
the equation

(13) Vr (Vm), q- P’0Vrl qv

in , such that vn C2"1 (R ). Suppose also that there are positive constants A, Mand Ca
such that

(14)

and

(15)

Then

(16)

where

v(’0, "r)<-_M for all (’0, ’)e R, v(O, "r) >- A for all r [0, T],

[(vrn-1)rl(’0 0)1 C1 ]:or all’0 [0, HI.

IV(’01, 7")-- V (’02, 7")1 KI’01- "0e],

, min {1, 1/(m- 1)},

for all (’01, 7"), (’02, "1")e R*. Here K is a positive constant which only depends on m, p, q,
A, M, C1 and H.

Proof. Conditions (14) and (15) imply that v(’0, O){Am-l-c’0}x/(m-) for all
"0 e [0, HI where "0 <-Am-1/C1. We choose a U (0, A] such that problem (7), (8) has a
weak solution with compact support, f(’0; U), with the property that f(-’0; U)_<
{Am-1 C’0} 1/(m--l) on [0, Am-I/C1] and a (U) -<_ H. Now, f(’0 U,) is easily verified to
be a steady-state solution of equation (13) in (0, a (U))x (0, T]. Moreover

v(0, z) -> A ->_ U f(0; U) for - e [0, T],

v(a(U),z)>O=f(a(U);U) forz[0, T],
and, by the above

0(’0, O)>{Am-l-Cl’0}l/(m-1)>-f(’0 U) for all "0 el0, a(U)].

By applying the maximum principle to equation (13) in (0, a (U)) (0, T] we therefore
deduce that v(’0, z)_->f(’0 U) everywhere in this domain. It follows that equation (13)
is uniformly parabolic in [0, 6][0, T], where 6 =1/2a(U). By a standard barrier
function argument [6] we can subsequently estimate Iv, in [0, 6] [0, T] in terms of
m, p, q, A, M and C1. Plainly this implies that (16) holds in [0, 6] x [0, T].

To prove the lemma we now only have to show that (16) holds in [6, 1/2H] [0, T],
that is assuming that 6 < 1/2H. Observe that if p =q 0 then equation (13) reduces to
the porous media equation (1), and a result of the kind we are seeking has already
been obtained for this equation by Aronson [1]. In fact, his work extends to equation
(13) with little extra difficulty. As the argument is almost identical we shall not present
it here.

Now, suppose that v(’0, z) is a positive solution of (13) in R satisfying the
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(19)

(2o)

and

conditions of Lemma 4 in the particular case where

p=1/2{l+(m-1)a} and q=a,

for some a > 1/m. Then setting

(17) rt x(t + 1)-l+(m-1)a} Z log (t + 1),

we find that

(18) u (t + 1)v

is a positive solution of (1) in the set D ={(x, t)" O<x <H(t+ 1) (){l+(m-1)a}, O<t <=
exp (T)- 1}, which satisfies

u(x,t)<-M(t+l) forall(x,t)6D,

u(O, t)>-A(t + 1)" for all [0, exp (T)- 1],

u(x, 0)= v(x, 0) for all x 6 [0, H].

Conversely, if u(x, t) C2"1(/) is a positive solution of (1) in E3 such that ux C2’a(D),
and such that (19) and (20) hold for some positive A and M, where also
[(u"-l)x(x, 0)1-< Ca for all x [0, H], then using the transformation (17), (18)we can
construct a positive solution of (13) in R satisfying the conditions of Lemma 4 in the
particular case where p 1/2{ 1 + (m 1)a} and q a.

Similarly, if we let

p=1/2a(m-1) andq=a,

for some a > 0, by means of the transformation

r/= x exp {- ,a (m 1)t}, z t, u exp (at)v,

we can find a correspondence between solutions of (1) and (13).
This allows us to reformulate Lemma 4 in terms of solutions of equation (1). The

outcome is the H61der continuity estimate which we require.
LEMMA 5. Assume a>-l/m, and denote by D the set {(x,t)’O<x<

X(t+ 1) {l+(m-1)a}/2, 0<t <= T} and by D* the set {(x, t)" 0<x <1/2X(t+ 1) (l+(m-1)’}/2,

0< t<= T}. Let u C2’a(/) be a positive classical solution of (1) in if) such that
Ux C2’1(D). Assume also that there exist positive constants A, M and Ca such that

u(x, t)<=M(t+ 1) forall (x, t)6D,

and

Then

u(O, t)>=A(t + l) for all [O, T],

I(u -X)x(X, 0)l C1 for all x [0, X].

]U(Xl, t)-u(x2, t)l<=K(t+ 1)-vl+(m-1)]Xl--X2[

for all (Xl, t), (X2, t)6 D*. Here K is a constant which only depends on m, a, A, M, C1
and X.

LEMMA 6. Assume a>.O, and denote by D the set {(x,t)" 0<x<
X exp{1/2a(m-1)t}, 0<t< T} and by D* the set {(x, t): 0<x <1/2X exp{1/2a(m-1)t},
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0 < <-_ T}. Let u e C2’1(J0) be a positive classical solution of (1) in such that ux
C2’1(D). Assume also that there are positive constants A, M and C1 such that

and

Then

u(x, t)<=M exp (at) for all (x, t) D,

u (0, t) _-> A exp (at) for all [0, T],

I(u’-l)x(x, 0)l C1 for all x e [0, X].

lu(xl, t)-u(x2, t)l<-K exp {1/2a[2- p(m 1)]t}lXl-X21

]’or all (Xx, t), (x2, t)e D*. Here K is a constant which only depends on m, a, A, M, C1
and X.

4. The main result. Consider now a weak solution u (x, t) of problem (1)-(3) in S,
whose data satisfies assumptions A1 and A2. Assume also that

(21) A(t+l)<-g/(t)<-B(t+l) for all t->_ 0,

for some a > 1/rn and some B _-> A > 0. Then it is possible to find a U -> B such that
the weak solution with compact support of problem (6a), (8), f0?; U), is greater than
or equal to Uo(rt) on [0, c). We denote by u(x,t; U) the similarity solution of
equation (1) in S, which is derived from f(rt; U) by using transformation (5a).

Now,

u(0, t;U)=U(t+l)>-_B(t+l)>-_O(t) for all >- 0,

and

u (x, 0; U) f(x U) >= Uo(X) for all x >_- 0.

Thus, by the maximum principle for weak solutions of problem (1)--(3) it follows that
u(x, t; U) >- u(x, t) everywhere in S. Specifically this means that there exists a positive
constant Mo such that

u(x, t)<-Mo(t + 1) for all (x, t)e S,

and that u is identically zero in E* ={(x, t)S" a(U)(t+ 1)1+(’-1)/2 _-< x}, in which,

as in 1, a(U)is defined as sup{,/" f0?; U)> 0}.
Let X=2a(U), and let D={(x,t)" O<x<X(t+l)1+(m-1)/2, 0<t<T}= for

some T>0. Denote by {u.(x,t)}=l the decreasing sequence of positive classical
solutions of (1) in the cylinders Q} from which u may be constructed as a pointwise
limit. We can assume that (i) u. eC2"l(t-), (ii) (U.)xeC2"l(Qer) and (iii)
I(u-1 )x(x, 0)1-<- C1 for all x (0, n), where C1 is a constant which is independent of n.

Now by Dini’s Theorem u.--> u as n-->oo uniformly on D. Thus given any constant
M > M0, we can choose a number N so large that u. is defined on d and, (iv)

u.(x,t)<-M(t+l) forall(x,t)eD,

for all n _-> N.
The conditions on the decreasing sequence {u.} which we have indexed (i)-(iv)

together with (21) provide sufficient evidence to show that for all n _-> N, u. satisfies
the requirements of Lemma 5. Thus applying this lemma, for all n _-> N,

lUn(Xl, t)- u,(x2, t)[ < K(t + 1)a- ’{l+(m-1)a}lX 1-- X2l
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for all (xx, t), (x2, t) ST\E*. Here K depends on m, a, A, M, C1 and X, i.e. on m, a,
A, B and u0, but not on n. Because u,, - u as n pointwise in ST, because u 0 in
E*, and because T>0 was arbitrary, we have therefore proved the first of the
following two lemmas. The proof of the second is similar.

LEMMA 7. Let u(x, t) be a weak solution ofproblem (1)-(3) in S, and suppose that
for some a > 1/m there are positive constants A and B such that

Then

where

A(t+l)<-d/(t)<=B(t+l) fort>=O.

[U(Xl, t)-u(x2, t)[<=K(t+ 1)-vl+(m-1)lxl-x2lV,

, min { 1, 1 /(m 1)},

.for all (Xl, t), (x2, t)6 S. Here K is a constant which only depends on m, a, A, B and Uo.
LEMMA 8. Let u (x, t) be a weak solution ofproblem (1)-(3) in S, and suppose that

for some a > 0 them are positive constants A and B such that

Then

where

A exp(at)<-(t)<-B exp(at) fort>=O.

[u(xx, t)-u(x2, t)[<=K exp {1/2a[2- u(m- 1)]t}lXl-X21,
u =min {1, 1/(m 1)},

for all (x 1, t), (x2, t)e S. Here K is a constant which only depends on m, a, A, B and Uo.
We observe now that if yl(x) and yz(X) are two functions satisfying a HSlder

condition with exponent y and coefficients K and K2 respectively in some set D,
then lYl- yzl(X)satisfies a HGlder condition with exponent 3’ and coefficient (K1 + K2)
in D.. Using this observation and those of 2, Theorems 1 and 2 become a simple
consequence of Lemmas 2, 3, 7 and 8.
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ON THE BILATERAL PREDICTION ERROR MATRIX OF A
MULTIVARIATE STATIONARY STOCHASTIC PROCESS*

A. G. MIAMEE" AND H. SALEHI

Abstract. A formula for the bilateral prediction error matrix of a multivariate stationary stochastic

process in terms of the spectral density and its generalized inverse is given.

1. Introduction. An important problem in prediction theory of stationary sto-
chastic processes is to obtain a formula for the bilateral prediction error matrix. This
matrix represents the error arising when a stationary stochastic process (S.S.P.) is
predicted on its combined past and future, and is related to the minimality problem of
such processes. A. N. Kolmogorov in his celebrated paper [1] gave a complete
solution to this problem for a univariate S.S.P. More precisely for a univariate S.S.P.
Xn,-co < n < oe, with spectral density F- he obtained the expression

(1) O-x (1/F’x(O))dO

for its bilateral predictor error o’. In [4], P. Masani considered the minimality
question for multivariate stationary stochastic processes, and therein gave a spectral
characterization for minimal full rank processes. As a result he obtained the formula

(F’x(O))-1 dO

expressing the bilateral predictor error matrix Y-,x of a minimal full rank S.S.P.
Xn,-co < n < co, in terms of the inverse of its spectral density matrix Fk-, thereby
extending Kolmogorov’s result to the minimal full rank multivariate processes. The
question of minimality was also the subject of a paper [6] of H. Salehi where he
extended the above formulas to the multivariate processes which are not necessarily of
full rank. He showed that

(3)

where tz is a measure with respect to (w.r.t.) which F is absolutely continuous, J is the
matrix representing the projection operator onto the range of x, and A# stands for
the generalized inverse of matrix A. However for practical purposes the appearance of
this matrix J in the right hand side of (3) is not convenient because of its dependence
on Y-,x itself. Therefore for computational purposes it is desirable to improve relation
(3) and obtain an expression for Y-,x in terms of the spectral density alone. The aim of
this paper is to establish such a formula. More precisely we will prove

(4) x (F’x(O))# dO

for a minimal (not necessarily full rank) stationary stochastic process X,,,
under certain regularity conditions.
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The questions of minimality and interpolation for multivariate stationary pro-
cesses were also studied by H. Salehi and J. K. Scheidt in [7], where the idea of
Wold-Cramer concordance w.r.t, the past and future was introduced and some
sufficient conditions for such a concordance were given. Recently these ideas have
been pursued by A. Makagon and A. Weron in [2], where some important results such
as a characterization for concordance in terms of the generalized inverse of the
spectral density were obtained. To establish our results we will use their charac-
terization of concordance w.r.t. J0, the family of the complements of singletons in the
set of integers.

2. Preliminaries. In this section we shall set down notations and preliminaries
which will be needed in this paper. These notations and definitions are standard and
can be found in [8].

Let be a complex Hilbert space, q >- 1, and q be the Cartesian product of
with itself q times, i.e., the set of all column vectors X (X 1, X2, Xq)r such that
X Y. To make Hq serviceable in prediction theory, we endow it with a Gramian
structure. For X and Y e q the q x q matrix

(x, Y) [(x’, X )]i,]:

is called the Gramian of X and Y. It is easy to verify that

(X, X)_-> 0; (X,X)=OcX=O;

E AiXi, E Bi E Ai(Xi, Xi)B
i=’1 i=l

for any X, Y, Xi, Y. ’ and any q x q matrices A, Bi. We say that X is orthogonal to

Y in YE if (X, Y)= O. It is well known that q is a Hilbert space under the inner
product

q

((X, Y))= trace (X, Y)= , (X, yi).
i=1

A closed subset / of is called a subspace if it is a manifold, i.e., AX +BY ePl
whenever X, Y and A, B are q x q matrices. It is easy to see that if//is a subspace
of 2E if and only if /// for some subspace of . For any X in 9, (Xl/)
denotes the projection of X onto . We note that the kth coordinate of (X I/) is

(Xk [), where and (Xk 1) is the projection of X onto .
DEFINITIOY 2.1. A sequence X,-oe< n <oe, of elements of q is called a

q-variate S.S.P. if the Gramian (X,, X,,) depends only on m n.

It is well known that given any q-variate S.S.P., say X,, there exists a q x q
nonegative matrix valued measure F, called its spectral measure on [0, 27r] such that

(X,,, X,)= e-i’-’ dFx(O).

We denote the Radon-Nikodym derivative of Fc, the absolutely continuous

component of Fx, w.r.t. Lebesgue measure dO by Fc or fx and call it the spectral
density of the S.S.P. X,-< n <.

DEFINITION 2.2. A stationary stochastic process X,,-o<n <o, is called
minimal if for each integer n, X /(n) the subspace of Wo generated by Xk, k n

or equivalently Xi, J//(n)= the subspace of W generated by X,, k n, 1 <= j =< q; for
some i, 1 =< -<_ q. [Note that J2 (n) (J//(n )).]
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The bilateral innovation process Jn of the S.S.P. Xn is defined by Jn
X- (X, I(n)),-co < n < co. The bilateral predictor error matrix of X is defined to
be Y-,x (Jo, J0). Clearly an S.S.P. Xn is minimal if and only if Y-,x 0. An S.S.P. X is
said to be minimal full rank if X x is invertible.

The following interesting result is due to P. Masani [4]. It gives a characterization
for a minimal full rank q-variate S.S.P.

THEOREM 2.3. Let X, -co < n < co, be a q-variate S.S.P. with spectral measure
Fx, and the bilateral predictor error matrix ,x. Then Xn is minimal full rank if and only
if (F-(0))-1 exists a.e. and is summable w.r.t, dO. In this case we have

(F(0))-1 dO

DEFINITION 2.4. For any q q matrix A there exists a unique q q matrix A#

satisfying

AA#A=A, AAAC=A# (A#A)*=A#A, (AA#)*=AA#

This matrix A # is called the generalized inverse of A [5] and has the following further
properties

AZ+/-(A) (A#), +/-(A) A/’(A#),

where for each matrix B, (B) and (B) stand for the range and null space of B,
respectively.

DEFINITION 2.5. Let J0 denote the family of all complements of singletons {n} in
the set of integers. An S.S.P. Xn is said to be Jo-regular if f3 nM (n)= 0, and it is called
Jo-singular if for some n, (n)= (co)= the subspace of q generated by Xn,-co <

It is well known [2], [7] that any q-variate S.S.P. Xn, w.r.t, past and future, admits
a unique Wold-decomposition

X. Y. +Z., -<n <,

where Y, and Z,, are orthogonal processes such that v(n),z(n)_,/tlx(n); Y,, is
Jo-regular and Z, is Jo-singular. This gives the decomposition Fx Fv + Fz. There is
also the usual Cramer decomposition Fx Fa+F of Fx as the sum of its absolutely
continuous component F and its singular component FS. We say that the Wold and
Cramer decompositions are concordant whenever Fa= Fv and Fs= Fz.

In the proof of our main results we use the following interesting theorems of [2]. For
ease of reference and convenience of readers we state them below.

THEOREM 2.6. Let Xn,-co < n < co, be a q-variate stationary stochastic process
with spectral measure Fx. Then Wold and Cramer decomposition are concordant if and
only if (F(0))= constant a.e. dO and (F’x(O))# is integrable w.r.t, dO.

THEOREM 2.7. Let Xn,-co < n < co, be a q-variate stationary stochastic process
with spectral measure Fx. The process X, is Jo-regular if and only if

(a) Fx is absolutely continuous w.r.t, dO,
(b) (F’x(O)) is constant a.e. dO,
(c) (F’x(O))# is integrable w.r.t, dO.
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3. Main Results. In this section we give explicit formulas for evaluating the
bilateral predictor error matrix Ex of a (not necessarily full rank) stationary stochastic
process X,,- < n <, in terms of its spectral measure Fx. These results extend
Theorem 2.3 due to Masani to the nonfull rank case. These also improve Theorem 3
[6] of Salehi under some mild conditions. In the proof of our results we will use
Theorems 2.3, 2.6 and 2.7 mentioned in 2.

THEOREM 3.1. Let X,, -oe < n < oo, be a q-variate Jo-regular S.S.P. Then

(6) Ex - (F’x(O))# dO

Proof. By Theorem 2.7, Fx is absolutely continuous w.r.t, dO and (F,(0))=
(fx(O)) is a.e. a constant subspace, say . Let hl,"’,hv; hv+l," .,hq be an
orthonormal basis for the q-dimensional complex Euclidean space Ca such that

{hl, h2," hp} andW= +/- W(F’x) @{hp+l, hp+2, ha}. Let el, e2," eq
be the standard basis of Cq. We define the unitary operator U on Cq by Uhi ei,

1 <=i<=q. Letting 1= @{el, e2,’’’, ep} then - {ep__>l, ep+2,’", eq}. Clearly U
maps onto and +/- onto and U* maps onto and onto -. As usual
we will identify any linear operator onto Cq with its matrix w.r.t, the standard basis. By
the Choice of U we have

where g is a p x p nonnegative matrix valued function whose rank=p a.e. Let
Y, UX,, -eo < n < o0. For the q-variate process Y,, -oo < n < o0, we have

(Ym, Y.)= (ux.,, ux.)= u(x.)u*

e-i("-"lfx(O) d U*

1 I2o27r
e -i(" )Ufx(O)U* dO

l I/’r [g(_O)_ ]e -i(’n-") i dO.
27r L 0

This shows that the component yk,, of Y, is zero whenever 1 + p < k =<q and -oo <
n <oo. The p-variate S.S.P. Z,,=(Y,..., yp,,)r, --oO<n <oo, has spectral density
fz g. Noting that U takes onto 1 and +/- onto i one can see that

(7) 6, (v&v*) g.v*.

Now since X, is Jo-regular by Theorem 2.7, (fx(O))# is integrable and (7) implies that
],,1 g-1 is integrable w.r.t, dO; and hence by theorem 2.3, Z,,- < n <, is mini-
mal full rank. Hence by (5) we have
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Now

UXxU* U( o, 2o)U* (U2o, U o)
(UXo, UXo)=(Yo,

0 0
2

[ Io 7 q fo(Ufx(8)U*)* d (fx(8))* d8 U*;

the third equality above follows from the fact that x(0)= r(0) and the rest of them
can be easily verified. This gives the desired result.

Consider the Wold decomposition X, Y, + Z,,-< n <, of an S.S.P. X,
with respect to Jo. Then Xx Xv and since the S.S.P. Y,,- < n <, is regular
applying Theorem 3.1 to the process Y, we get

This proves the following theorem.
THEOREM 3.2. Let X,,-oo<n <, be an S.S.P. Let Y, be the Jo-regular

component ofXn in its Wold decomposition having spectral density fy. Then

Xx= (fr(O))#dO

Theorem 3.2 expresses x in terms of the spectral density of the regular
component of Xn. A more useful formula linking x to Fx, is given in the following
theorem.

THEOREM 3.3. Let X,,-oe < n < oe, be a q-variate S.S.P. with spectral measure
Fx. Suppose F’x has constant range a.e. andF is integrable w.r.t, dO. Then

x= (F’x(O))#dO

Proof. By Theorem 2.6, Wold-Cramer concordance holds and hence F, Fr.
Now one can apply Theorem 3.2 to complete the proof.

Remark 3.4. We would like to mention that the following questions are still open:
What are necessary and sufficient conditions in terms of the spectral measure Fx in
order that the S.S.P. X, be minimal? A second question which seems to shed some
light on the first question is to find a formula for evaluating x in terms of Fx. As the
following examples show one should not expect that formula (6) holds for the general
case.

Example 1. Let X,, -oe < n < oe be a bivariate S.S.P. whose spectral measure Fx
is a.c. and has density

1 [1 e i]fx(0)= e_iO 1
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It is easy to see that Y-,x 0, range of f is not constant a.e., (f(O))# f(O) is integrable
and

1 f 1 [1 O]2rr
(f(O))# dO=- 0 1

Hence Y-,x [(1/(2)) ([(0))* dO]*.
Example 2. Take a bivariate S.S.P. X,-< n <, whose spectral measure Fx

is a.c. with respect to Lebesgue measure and its density is given by

[ 1

(0)

where

x/1-1/2e 1/, 0<0<__2r,
q(0)=

1, 0=0.

This density is studied in [3]. One can see that" Rank of f(0) 2 a.e., (fx(O))# is not
integrable, Y-,x has rank one. So Xn is a minimal process for which formula (6) cannot
hold.
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INVERTIBILITY OF LIPSCHITZ CONTINUOUS MAPPINGS AND ITS
APPLICATION TO ELECTRICAL NETWORK EQUATIONS*

YOSHIAKI KAWAMURA’

Abstract. Conditions for unique solvability of nonlinear simultaneous equations satisfying Lipschitz
conditions and an application to nonlinear network equations are proposed. It is shown that the global
invertibility of a Lipschitz continuous mapping f of I" into itself and the Lipschitz continuity of f- are
verified by investigating the positivity of some principal minors of the Jacobian matrix of f in spite of the
existence of nondifferentiable points of f. This is a generalization of previous works, especially Fujisawa and
Kuh’s theorem, obtained for continuously differentiable or piecewise-linear mappings. This generalization
is given by employing the Lebesgue integration of the Jacobian matrix over an open interval of IIn.

This result is applied to network equations, both resistive and dynamical; especially to the latter, the
Lipschitz continuity of such inverse mappings is of great importance to guarantee the uniqueness of the
solutions. In addition, network examples for which the above result is useful are given, and it is demon-
strated that simple conditions for the unique solvability are obtained in terms of differential coefficients of
network element characteristics.

1. Introduction. The equations describing nonlinear resistive networks or
memoryless systems are expressed in the form fz(x, u)=0 or f(x)= y when some
unknown signals are denoted by x =(xl,"’,xn) and known signals by u
(u l,’’’, urn) or y (y l, , yn). In addition, these equations arise in deriving state
equations of dynamical systems as RLC networks. The problem, whether these
equations are uniquely solvable for all input signals, depends on the global inverti-
bility of mappings determined by fz. The necessary and sufficient condition for a
global diffeomorphism of 1" onto itself, which is a basic application of the well-known
local inverse mapping theorem and is referred to as Palais’ theorem by network
theorists [15], has played an important role in this area of network analysis. However,
the same proposition is not sufficient except for continuously differentiable mapping.
The piecewise-linear mapping, which is continuous and is composed of a finite number
of regions with linear characteristics, is a typical one of this case. In 1972,-Fujisawa
and Kuh showed the following useful theorem [8]: A piecewise-linear mapping is a
global homeomorphism if the leading principal minors associated with the first k rows
and the first k columns of matrices describing the mapping do not vanish and have the
same sign through all regions for each k. It is known [9] that a similar result is valid for
the continuously differentiable mapping and is a fairly general sufficient condition
containing most of earlier works [14], [16], [18] related to positive definiteness and
class P matrices.

In this paper, we prove that similar sufficient conditions are also valid for the
mapping satisfying a local Lipschitz condition. This class of mappings is general
enough to include both continuously differentiable and piecewise-linear ones.
Furthermore, this class is of great importance due to the fact that state equations of
dynamic networks are given by using inverse mappings of resistive equations and that
the Lipschitz condition is the most standard restriction for unique solvability of
differential equations. Haneda has recently studied the invertibility for this class by
introducing a local functional to express the monotonicity of mappings [10]. We see
that many of his results are very much simplified and generalized in terms of the
Jacobian matrix.

* Received by the editors February 19, 1976, and ifi final revised form August 6, 1977.
? Department of Electronics, College of Engineering, University of Osaka Prefectur, Sakai, Osaka,

Japan.
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2. Properties of the Jacobian matrix. We study the signals in R with the
Euclidean norm. However, the main results are commonly verified even if the 11 or l
norm is used because the Lipschitz condition, the Jacobian matrix and the
homeomorphism are common conceptions for these norms.

We say that a mapping f is LC (Lipschitz continuous) if f satisfies a Lipschitz
condition. It is essential that a mapping, although being LC, is not always differen-
tiable at every point of its domain. We will show in the following, however, such
inconvenient points are negligible. The foundation is given by the next property of
Rademacher.

Rademacher’s theorem [7]" Let f be a mapping of an open set B c R" into R" and
suppose that f is LC. Then f is differentiable (totally differentiable) at almost all points
in B.

In the above theorem, "almost all points" are, by definition, such that the
Lebesgue measure of the total exceptional points in " is equal to zero. For example,
a piecewise-linear mapping is differentiable at all points except the boundary points of
all linear regions and the total of the boundary points has measure zero.

Since a Jacobian matrix J of f is determined at every differentiable point, it
follows that J(x) is defined at almost all x (x1,"’, x) in B. However, it should be
noted that the above theorem does not hold for the points of a line segment for n -2
because the line segment is not open in " and has measure zero. In other words, it is
possible that f is not differentiable at every point of a line segment. Therefore, to
employ relations obtained from total differentiability, we introduce an integration of
the differential coecient over an open interval of " instead of a line segment to
evaluate f(x)-f(x), where x and x are points of the domain. Such problems are
essentially reduced to the evaluation of fl(X, a)-f(x, a) by a coordinate trans-
formation, where fl is a mapping of a subset of " into 1, X 1, X1 and
X X2X3" Xn

LEMM 1. Let V be the interval defined by V={x[x<xl<x, Ix -x l<
8/2, , Ix, xl < 8/2}, where x =x< and > O. Suppose thatf is LC on V when
is suciently small. Then

fl(X, a)--fl(X1, a): n-i OX
where , represents Lebesgue measure in ".

Proof. Let 8o be a positive number such that fl is LC on Wso. By referring to the
definition [17, Chap. 3-74, p. 217] we know that the Lipschitz continuous function in
one variable is also absolutely continuous. Hence fx(xl, ) is absolutely continuous in
x when =(x2,’",x,) is fixed. From a fundamental property of absolutely
continuous functions [17, Chap. 3-74, Thm. 3, p..219], we know that fl(Xl,$) is
differentiable at almost all Xl for fixed , and that

t Ofl(Xl, z)
() eXl fl(X, Z)-- fl(X , Z).

0Xl

Let us prove that Of(x)/OXl is integrable over V. Let {h(x)} be the sequence of
continuous functions on Vo defined by

h(x) {(x -0, )-(x, )}/0 if x + O

where {0} is a sequence of positive numbers such that O 0. Then it follows by
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continuity that {h(x)} is a sequence of measurable functions [12, Chap. 2-42, p. 115]
and that h(x)=Ofl(x)/Oxl at almost all x in V if u. Hence Of(x)/x is also
measurable [12, Chap. 2-9, Thm. 1, p. 54]. Since a bounded measurable function is
integrable [17, Chap. 3-11, Thm. 4, p. 65] and Of(x)/Oxx is bounded by the Lipschitz
coefficient, we can conclude that it is integrable over V for 8 < 80. Hence the integral
I is representable, by Fubini’s theorem [12, Chap. 3-16, p. 87], as

fv u [x ofl(xa’y) }(2) I 0fl(X d, dXl d,_1,
OXl .x7 OXl

where U is the interval of ,-1 defined by (l(Xl $) W} for 6 <6o and x <Xl <x b
1,

Suppose that x V = Vo. Then $ U. Since I1-11 <n 1 6/2 and fl is
we have

(3) {fx(x, )-f(xT, )}-{/(x, )-fx(xT, )} <4n 1

where n is the Lipschitz coefficient of fl on Vo. Substituting (1) and (3) into (2), we
get

(4) lI-6"-{fl(X,X)-fa(xT, X)}l<4n-1
Dividing both sides of (4) by 6"- and letting 0, we obtain Lemma 1. Q.E.D.

The Jacobian matrix of the inverse mapping is determined as follows.
LEMMA 2. Let f be a mapping of an open set B " into ". Suppose that the

inverse f-1 on [(B exists, and that both [ and [-1 are LC. Iff is differentiable at a point
PdB, and J(Pd) is its Jacobian matrix, then [- is differentiable at f(Pd) and its
Jacobian matrix agrees with [J(Pd)]-1.

Proof. Let y f(x). Since [ is differentiable at Pd, the increment at Pd may be
expressed as

ay J(P )ax +

where

From the Lipschitz continuity of f-l,

0 if Ilmxll- O,

Ilaxll
(7) iiAyl-- <
From (6) and (7), there is a neighborhood B’ of f(Pd) such that [IAyll>ll(Ax)ll, if

+/-y Therefore, II+/-y- (+/-x)ll 0 implies [l+/-xll= II+/-yll= 0 in this neighbor-
hood. This means that the matrix J(Pa) is regular in (5). From (7) and the existence of

[J(Pd)] -x, the equations (5) and (6) are rewritten as follows:

Ax [J(Pd)]-lAy +[J(Pd)]-(Ax),
(8)

II[J(ed)]-l (+/-x)ll/ll+/-yl[- o if Ilayll-->o.

Since (8) holds in the neighborhood of f(Pa), this proves Lemma 2. Q.E.D.

3. Local invertibility. From the results of the preceding section, it seems possible
to extend many of relations obtained for continuously differentiable mappings in

terms of Jacobian matrices. In this section, we prove a local property of a homeomor-

phism which is an extension of Fujisawa and Kuh’s theorem.
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THEOREM 1. Let f be a mapping of a neighborhood B of a point Po " into
Suppose that f is LC and let Dk (x be the determinant of the matrix consisting of the first
k rows and the first k columns of the Jacobian matrix J(x) off. If Dk(x) maintains its
sign and there exists a positive number e such that

IO(x)l_->

at almost all points in B for each k 1, , n, then the inverse mapping f-1 is uniquely
determined in a neighborhood off(Po) and f-1 is LC.

Proof. We prove Theorem 1 by induction. Let y f(x) and define f():B --> " by
f(k)(X) (fx (X),’" ", fk (X), Xk + 1," ", Xn) for k 1,. ., n, where fl(x),. ., fk (X) are
the first k elements of f(x). The identity mapping f(o) clearly satisfies the statement of
Theorem 1. We investigate f(l)(X) under the assumption that f(l-l(X) satisfies the
statement.

For simplicity, we denote (Xl," , Xl-), (X//x, , x,) and (YI," Y/-) by
and 3, respectively Then

()

(10)

(, Xl, 2) f(l-1)(, Xl, 2),

09, y,, 2)= f(/)(2, Xl, 2)

for each x (, Xl, 2) B. Since f(/-1) is clearly LC on B and with the leading minors
DI(X),’" ", Dl-l(X), 1,’" ", 1, it follows, from the assumption of induction, that there

-1exists the inverse f(l-x being LC on a neighborhood of f(l-x)(Po). Without loss of
generality, we assume that this neighborhood is an open interval V0 such that
f(l-1)(Po) Vo c f(l-x)(B). Denote fo)o fll) by &. Then & is LC on Vo and

(11) (f, y,, *)= 6(f, x,,

-1 -1Let us prove the existence of f(- f(t-1) & by deriving the existence of iJ) -1.
Let Pa ()3a,x, 2’) and Pb (b, x’, 2) be arbitrary points in Vo, where x <-x’ is
assumed without loss of generality. Denote corresponding points by P1 (33, x’, 2a)
and 02 ()a, t(p), 2) as illustrated in Fig. 1, where t is the/th element of &. Since
P, P and P1 belong to Vo, it follows that

(12)
116 (Po)- 6(P)ll II6 (P)- o11 + II{o2 6 (P1)} + {b (P1)- 6(Pa)}ll=

IIPb Pill2 + I{l(Pb )-- Pl(P1 )} q- {b/(P1)- (l(Pa)}12.

Po P

@( Pb
71

FIG. 1. The relation of the points in the domain and range of .
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Now, we use the integration over an open interval shown in Lemma 1 to evaluate
I&I(Pa)--&I(P,)[ in (12). Let V be defined by w={ff, xt, x)llyl-yTl<a/2,...,
ly/-a--Y-ll<6/2, x’ <Xl<X, IXl+a--X’+II<(/2, ", [Xn--Xanl<t/2}. Since Wc Wo
for a sufficiently small 6 and & is LC on V, then

(13) (l(P1)- 61(Pa imo l-l Iv 061(’ xl’ dtz,,.

Since -1 -1f(-a) and & are LC, it follows from Rademacher’s theorem that both of f(/-1)
and & are differentiable at almost all points in V0. Now, let Pa be any one of such
points. Then f(/-1) is differentiable at fl-1)(Pd) by Lemma 2, and kl) & f(/-1) is
differentiable at the same point. Since yl is a function of , Xl and g as is shown in (11),
we can assume d3) 0, dg 0 in the differential at Pd of (11), and in this case we know
that O&l/OXl at Pd agrees with dyl/dXl. On the other hand, the above differential dyl, dXl
must satisfy the equation

(14) (dOyl) Jl Qa)( dxld’ )
given from the differential at Oa for the first equations of (10) under the assumption
that d33 0, dg 0, where Oa f(/-1)-I (Pa), Jl(Qd) is the submatrix of J(Qd) cor-

-1responding to DI(Qd) and d,f is the differential given by f(l-1). Solve (14) for dXl in
terms of dyl by making use of Cramer’s rule, and obtain dyl/dXl. Then we get

(15) 06l(ed).__ Dl(Od)
OXI Dl-l(Od)’

where Dl_x(Qa) 1 if l= 1.
Let r/ be the Lipschitz coefficient of f on B. Since f(l)is differentiable at Qa B,

then

(16) Dl(Od) >- e < 0

(17) O<Dl_l(Qd)<--(l 1)!r/-1
or Dl(Qd)<=--e < O,

or O>Dl_a(Od)>--_--(l 1)!r I-1

from the assumption of Theorem 1 and the fact that all elements of Jl-1 are less than

r/. From (15)-(17) and the definition of Pa, we have

Ol(X)
(18) 061(X) or _--<--" where

OXl OXl (1 1

at almost all x V c Vo. Substituting (18) into (13), we have

(19) 16/(P1)- 61(Pa )l e ’llel-

Here, we rewrite (12) as follows"

116 (P)- 05 (Pa)ll= -IIP Pill= / (O-lllP Pill / o-=llP1 P, II)
(20)

---->][Pb Pill2;
then from (19) and the Lipschitz continuity

(21) !rll < n, r e

should be satisfied, where r/ is the Lipschitz coefficient of l on Vo. Furthermore,
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(20) is also transformed by making use of (21) as

(22)
II(P)-(P)II=

1+o-1 IIP-PII=+\IIPx-PII+41+’ I[P-PII

--> {(2/(1 + r/)}IIP1-ell
Adding (20) and (22) multiplied by (1 q- ’0b)/"2, we have

(23)

Since Pa and Pb are arbitrary points in V0, (23) indicates that &-i is uniquely
determined and that &-i is LC. Recalling that f!l) is LC on Vo and noting that &(Vo)

o-1is a neighborhood of fl)(Po) & f(l-1)(Po), we conclude that f f(]ll) is
determined and is LC on the neighborhood. Thus f satisfies the statement of
Theorem 1, and the proof of the theorem is completed. Q.E.D.

4. Global invertibility. We show some global properties derived from Theorem
1. We say that a mapping f defined on R" is LLC (locally Lipschitz continuous) if f is
LC on a neighborhood of each x ".

THEOREM 2. A mapping f: " is a homeomorphism of [ onto itself andf-1 is
LLC if

(i) [is LLC,
(ii) there exist a neighborhood B(z and a positive number e(z ]:or each z "such thatD(x ) maintains its sign and

Im(x)l >-e(z)

at almost all x B (z for each k 1, , n,
(iii) II(x)ll-" i Ilxll- ,
Proof. It is known [19] that a mapping f is a homeomorphism of [" onto itself if

and only if f is
(a) a local homeomorphism,
(b) a proper map.

Clearly, (a) is obtained from the assumption (ii) of Theorem 2 and Theorem 1, (b) is
obtained from (iii) of Theorem 2 [19], and [-1 is LLC from Theorem 1. Q.E.D.

Remark 1. Fujisawa and Kuh have expressed their condition for invertibility of
piecewise-linear mappings in terms of certain minors instead of the leading minors of
the above theorems [8]. The results of this paper can be extended in like manner as
follows. In general, the next proposition is clearly valid: A mapping f*: " R" is a
homeomorphism of " onto itself if there exist two homeomorphisms 1 and 02 of "onto itself and if (i)-(iii) of Theorem 2 are satisfied by letting [= 01 f*o 02. As a
special case, 01 and q2 may be regular matrices describing interchanges of the orders
and directions of the coordinate axes. Therefore, in Theorem 2 and its corollaries,
Dl(X), D,(x) can be replaced with D (x),. , D* (x) defined as follows: Let
(il,"" ",ik) and (/’1,""" ,/’k) be two permutations of (1,...,n), let D(x) be the
determinant of the k k submatrix consisting of the ilth,..., ikth rows and the
]lth, jkth columns of the Jacobian matrix J(x).

On the other hand, if all leading minors Dl(x),..., D, (x) are positive, it can be
considered to be the canonical case of the theorems. Then, the condition (ii)of
Theorem 2 is clearly related to the class of constant square matrices whose leading
principal minors are positive. (Note that matrices are not assumed to be symmetric.)
This class clearly contains the class P introduced by Fiedler and PtS.k [6] as a
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generalization of positive definiteness because the class P requires the positivity of all
principal minors. To simplify the understanding, we only consider the canonical case
in Remark 2 and 3.

Remark 2. In Theorem 2, the words "almost all x" can be replaced with "all
differentiable x". Although the theorem shows a sufficient condition for global
invertibility, it is not necessary [8, Example 1]. On the other hand, if f is continuously
differentiable, Dn (x)-> e (z) alone is sufficient in (ii) of Theorem 2. However it should
be noted that this condition is not sufficient for mappings being LC. A counterexam-
pie, in which f: R2 [2 is piecewise-linear and a local homeomorphism at every point
except the origin but is not one-to-one at every point except the origin, is seen in [8,
Example 2]. Yet a little doubt about the necessity of other leading minors Dl(X), ,
On-l(X) may remain from the following facts: 1) f of the example is transformed into a
mapping of class C with isolated singular points of the Jacobian matrix by a sufficiently
small modification of f, that is, smoothing the edges; 2) for the mapping of class C with
isolated singular points to be a homeomorphism, assumptions that D, (x) 0 except the
singular points and (ii) of Theorem 2 are sufficient when n 2 [1]. In the case of the
Lipschitz continuous mapping, however, the conditions of the other leading minors can
not be omitted even if n => 3. An illustrative example y =f(x) is easily obtained by
adding y3- X3, ", Yn--Xn to the above example of n 2, where f must possess
connected singular points if smoothed.

Remark 3. Recently, Haneda has shown conditions for a homeomorphism of the
Lipschitz continuous mapping by making use of the local ix-functional [10], and his
result is a generalization of the monotone operator by Minty [13] et al. in finite
dimensional cases. In his result, the positivity in terms of the ix-functional is essentially
used instead of condition (ii) of Theorem 2. We can now translate his conditions in
terms of the Jacobian matrix. It is known that the positivity of matrices in terms of the

Ix-functional is related to positive definiteness, column-sum dominance and row-sum
dominance for the 12, 11 and l norm, respectively [4], [10]. Haneda has given a further
condition corresponding to an arbitrary norm. However the positivity of matrices in
terms of the ix-functional implies the positivity of real parts of all eigenvalues [4, the
property 4), p. 480], and such matrices belong to the class P [6, Thm. 1.1]. Therefore,
recalling Remark 1, we see that the conditions by Haneda can be essentially derived
from Theorem 2. On the other hand, it is notable that some matrices with the positive
leading minors never satisfy the positivity in terms of ix-functional. For example, the
2 2 matrix {Jii} with Jll --J21 1, J12---6 and J22 "--4 has positive leading minors
and has a negative eigenvalue. Therefore, there are mappings which satisfy the
conditions of Theorem 2, but do not satisfy the monotonicity by ix-functional. These
mappings often arise for networks with active elements such as transistors and tunnel
diodes, and an example is shown in 6.

From Theorem 2, we will derive some practical conditions. The next is an
extension of the ratio condition introduced by Fujisawa and Kuh [9].

COROLLARY 1. Suppose that f: " - " is LLC, each OfVl(X), V2(x)/Vx(x),
D.(x)/D._l(x) maintains its sign and there exists a positive number e such that

Dz(x > e,101(X )l E,
91(X On-1(X’)

at almost all x ". Then f is a homeomorphism of g" onto itself and f-1 is LLC.
Proof. Assumptions (i), (ii) of Theorem 2 are easily obtained from those of

Corollary 1. Therefore, we derive (iii) by induction. Notations used here are the same
as defined in the proof of Theorem 1. It is easy to verify (iii) for f(0). Now assume that



260 YOSHIAKI KAWAMURA

the statement of Theorem 2 is satisfied for f(/-1). Then the size of the interval V0,
where (19) holds, can be determined arbitrarily. We see that sr of (19) is bounded
regardless of the size of Vo by referring to (15), (18) and the assumption of Corollary
1. Let one of Pa or P1 be the origin of " and let liP1-PII IXl[ Then we have

(24) Ilf<l)(Xl)ll-+ oo if oo

from (19)and the fact that On the other hand, we have

(25) [[f(l-1)(Xl)l}">O0 if

from the assumption of induction. By definition of notations, (iii) of Theorem 2 for At)
is verified from (24) and (25), and the proof is completed by making use of the
theorem. Q.E.D.

A global Lipschitz condition holds in the following case.
COROLLARY 2. Suppose that f: "-> " is LC, D(x maintains its sign and there

exists a positive number e such that

ID(x)l_->
at almost all x " ]’or each k 1, n. Then is a homeomorphism of " onto itself
and f-1 is LC.

Proof. Since all elements of J and its leading minors are bounded by the Lipschitz
condition of f, assumptions of Corollary 1 are satisfied from those of Corollary 2 and,
furthermore, all elements of J- are bounded. Hence we conclude that f- with
bounded partial derivatives on " is LC by referring to Lemma 1 and Lemma
2. Q.E.D.

The authors have started by extending the uniformly positive definiteness to the
mapping being LC [11]. On the other hand, it is known that the uniformly positive
definiteness implies the ratio condition [9]. Similarly, we obtain the extension as a
corollary of Theorem 2. Note again that the following Jacobian matrix is not assumed
to be symmetric. Recalling Lemma 1, we see that this result is related to the monotone
operator by Minty [13].

COROLLARY 3. Suppose that f: Rn" is LC and that there exists a positive
constant e such that

(z,y(x)z>>-e(z,z>

]’or all z " and ]’or almost all x ", where (., indicates the inner product. Then f is
a homeomorphism of " onto itself and f-a is LC.

5. Application to resistive network equations. We consider a network consisting
of A +m branches where A branches are independent signal (current or voltage)
sources and m branches are resistive elements. The network equation is determined
by the interconnection of the branches and branch characteristics, and is expressed as

(26) rE(X, U) 0,

where u " is the set of independent signals of the sources, x R2x/,,, is the set of all
branch currents and voltages with the exception of u, and rE:
represents A + m Kirchhoff relations and A resistive branch characteristics. To clarify
the existence of a unique solution and the dependence on source signals, we apply
Corollary 2. Since it is possible to eliminate some unknown signals by substitutions in
many cases, we replace A + m with an arbitrary positive integer n and consider fE to
be an arbitrary Lipschitz continuous mapping.
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COROLLARY 4. Suppose that[E: "+"" is LC, Dk(x, u) maintains its sign and
there exists a positive number e such that

IDk (x, u)I->- e

at almost all (x, u) +" /:or each k 1, n, where D(x, u) are the leading minors
o] the Jacobian matrix OrE(x, u)/Ox. Then, (26) has a unique solution x " for each
u ’, ad the solution is expressed as

x=g(u)

by making use of a certain mapping gE: " -- " being LC.
Proof. This is easily verified by applying Corollary 2 to the mapping f: (x, u)-

(rE(x, u), u). Q.E.D.
Let us continue in more detail. Usually, Kirchhoff’s law associated with the

resistive branches of the network and characteristics of the resistive branches are
written respectively as follows"

(27) [1, 0 0 -wT] vt =[j]0 It w 0 v, e fR (it, l.)l, 13,, it) O.

In (27), and v denote currents and voltages of the resistive branches respectively,
and they are classified with the subscripts and indicating their association with a
tree or its co-tree respectively of the network graph; the notations It and It denote
unit matrices, and w (superscript T indicates its transpose) denotes a matrix describ-
ing the interconnection of the resistive branches (precisely speaking, [lt w] and
[-w r lt] are the fundamental loop matrix and the fundamental cutset matrix
respectively [5, Chap. 11]); j and e denote current sources and voltage sources
respectively; fR" N2_> Na is the mapping representing characteristics of the resistive
branches and is assumed to be LC.

Now we study (27) directly without considering the elimination process of
unknown variables. Then the preceding theorems and corollaries are applicable by
investigating the Jacobian matrix

(28)
o&(x, u)

Ox

0 it w

o(x______)) o.(x) o(x)
Oit O)l OUt Oil -J

where x (i, /)l, /)t, it) and u (/’, e). Interchanges of the coordinate axes related to
Remark 1 are sometimes required. However, the total number of possible inter-
changes is not usually large because the majority of elements of the Jacobian matrix
(28) for practical networks are zero elements. For many networks, preceding
theorems are directly applicable provided that the elements of (vt, it) and those of [R
correspond to ,t branches in the same order.

6. Application to dynamic network equations. We study this problem basically
from the viewpoint of the simultaneous differential equations in the form

(29) foE(x 1, 22, x2, u, t)= 0

defined on a time interval T [to, tl], where foE" "’+2"2+" x T N"I+"; Xl e N"I and
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X2ERn2 accompanied by 2=dx2/dt are unknown vector-valued function on T;
u E R" is a known vector-valued function on T (nl, n2 and m are allowable to be zero
as long as n + n2 1). This is a more primitive form of system equations than the
normal form. For example, equations of RLC networks (networks composed of
resistors, inductors, capacitors and independent signal sources) in this form are usually
obtained by letting x2 be the set of the capacitor charges and inductor fluxes and xl be
the set of all unknown network signals with the exception of x2 and 2. Although
further considerations on the determination of x l, x2 are interesting, they are outside
of the purpose of this paper.

Now, consider x2, u, to be fixed points and xl, .’2 unknowns in (29). Then (29) is
considered to be a set of resistive equations. When this set of the equations has a
unique solution for each (x2, u, t) the solution may be expressed as

(30) xl=gl(x2, u,t),

(31) 22 g2(x2, u, t).

Clearly, (31) is a set of differential equations in the normal form. In other words, the
existence of the solution shown in (30), (31) means that the system (29) has a state
equation and that x2 is suitable as a set of state-variables. By the well-known
uniqueness theorem of the normal form [3], the following is easily obtained, where a
global Lipschitz condition guarantees the uniqueness of the solution on the whole
interval T.

LEMMA 3. Suppose that (29) has a unique solution (x 1, 22) in N"1+" for each fixed
(x2, u, t)e N"+x T and that g2 is continuous on the domain and satisfies a Lipschitz
condition with respect to x2 in the domain. Then the simultaneous differential equations
(29) have a unique solution (Xl, x2) on T for each continuous function u on r and for
each initial value x2(t0) in N".

The following result is obtained by applying Corollary 4 to Lemma 3.
THEOREM 3. Suppose that fo: n+2n2+mx TN"+" is continuous on the

domain and satisfies a Lipschitz condition with respect to (Xl, 22, x2) in the domain. Let
Dk (x 1, 2, x2, u, t) be the determinant of the matrix consisting of the first k rows and the
first k columns of the Jacobian matrix Ofo(Xl, 2z, X2, U, t)/O(Xl, 22). If
Dk(Xl, 2, x2, u, t) maintains its sign and them exists a positive number e such that

O(x, , x, u, t)l e e

at almost all (Xx, , x, u, t) nl+2n+mX T for each k 1,..., n, then simultaneous
differential equations (29) have a unique solution (x, x) on T for each continuous

function u on T and for each x(to).
Proof. Consider u, to be fixed points in (29) and apply Corollary 4 to the

equation. By the assumptions of Theorem 3, there exists a unique solution (x l, )
shown in (30) and (31), and gl, g satisfy Lipschitz conditions with respect to x for
each (u, t). Therefore, by letting y =f(x,2a, xa, u, t), their differential coecients
satisfy

at all differentiable points. Since 1/D,+, and all elements of Oy/O(Xl, x2) are boun-
ded regardless of x2, u, t, all elements of [Oy/O(Xl, x2)]- are bounded as well as Oy/Ox2.
By Lemma 2, it follows that Lipschitz coefficients of gl, g2 with respect to x2 are
bounded regardless of u, t. If we denote matrices describing ratios of increments in a
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similar manner to (32), we have

correspondingly, where (x2, t) or (x2, u) is fixed. Since f is continuous and each
element of [y/(Xx,2)]-1 is bounded by the maximum value of the elements of
[Oy/O(Xx, 2)]-1, it follows from (33) that gx, g are continuous in u and t. Thus the
conditions of Lemma 3 are satisfied and the proof is completed by making use of the
lemma. Q.E.D.

Now, we consider the network example shown in Fig. 2 which contains a current
source i1, a capacitor S, a resistor R, an inductor F and, moreover, an ideal diode such
that the voltage v across it is zero if forward-biased and the current i is zero if
backward-biased as shown in Fig. 3(a). In Fig. 2, q and represent the charge and
flux, respectively. Let us define fo: 21 by

i ifiD--VD,
(34) (i,

--Vo ifi>--V.

vs =S(q s)
||

vR =R(i R) ir =F(r)
fD(iD,VD) =0

FIG. 2. Example of a nonlinear RLC network.

\
\ fD( iD
\

fD(iD,VD) =iD \

fD(iD,VD)=O

VD)=-Vo ,VD)--O

o -Vo O --’Vo
(a) (b)

FIG. 3. Voltage-current characteristics of fo" (a) the ideal diode, (b) an example which guarantees the
unique solvability.

Then fD is LC and the characteristic of the ideal diode is expressed as

(35) lo(io, vo) O.

From Kirchhoff’s law and branch characteristics, the equations of this network are
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expressed as (35) and as follows:

is io i, 0, iR + iO + ir jl, liD + liS liR O,
(36)

vv + Vs vR O, Vs S (qs ), v R (i ), iv F(bv),

where

(37) is gts, Vr br.
Even if $, R and F are continuously differentiable, the whole equations are not so
because of the existence of the diode, and the preceding results become useful. The
Jacobian matrix of Theorem 3 arranged in a similar manner to (28) is

Oflg(is, ie, vo, Vr, Vs, ve, io, it, qs, br, jl)

(38)

O(is, iR, vo, Vr, Vs, v, io, ir)

1
1

1

dR(ig)

diR

-1 -1
1 1

Ofo (io, vo) Ofo (io, vo)
Ovo Oio

Note that the differential coefficients about fo are + 1 or 0. The leading minors are

Da D8 1 if io <= -vo,
dR(iR)

Da D6 1, D7 D8 if iD > --liD.
diR

Thus we conclude, by Theorem 3, that if there exists a positive constant e such that
dR(i)/di >-e at each differentiable iR, then the simultaneous equations (35)-(37)
have a unique solution for each continuous input/’a and for each qs(to), br(t0).

The ideal diode is a typical element which is neither current-controlled nor
voltage-controlled, that is, neither current nor voltage of the diode can be considered
to be dependent on the other. Chua and Rohrer have studied another formulation of
networks with such branches [2], but for their examples the unique solvability is not
taken into account. We show one more example with unique solvability. Suppose that
the diode is replaced by a resistor with more general characteristic and that R is a
linear resistor in Fig. 2. Then the above leading minors become

Ofo (io, vo Ofo (io, vo )
D1 96 1, D7 08 R

OiD 0190

from (38). Hence the conditions of Theorem 3 are satisfied if there exists a positive
constant e such that

Ofo(io, vo)_ROfo(io, vo)> e
Oio
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at all differentiable (io, vo). Thus it can be easily verified that a suitable [r, with
characteristic shown in Fig. 3(b) satisfies this condition and this network has a state
equation with unique solvability. In such cases, some real parts of eigenvalues of the
Jacobian matrix become both positive and negative (for example, consider the case
that R =ofo/oiE, 1, ofo/OVo =0 at a point and R =-Ofo/Oio 1, Ofo/OVr, =-2 at
another point in this network), and the results of this paper exhibit its usefulness as
mentioned in Remark 3.
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A NOTE ON RESTRICTED PSEUDOINVERSES*

JOACHIM HARTUNG’

Abstract. For the restricted pseudoinverse of a linear Hilbert space operator, introduced by Minamide,

Nakamura (1970) and further considered for instance by Holmes (1972), representations are derived that

extend results of Den Broeder and Charnes (1962) and Morozov (1969) for nonrestricted pseudoinverses.
This representation permits computation with ordinary methods of inversion. In often occurring problems of

optimal control and best approximation, the operators to be inverted then are positive definite symmetric

matrices.

Let H1, H2 and H3 be real Hilbert spaces, where (., denotes the inner product,
which then defines the norm II. II--<.,. >,/2. Let T:H1 H2, S:H1 H3 be continuous
linear operators, and (T, S):HIH2xH3 defined by (T, S):x--(Tx, Sx)be the pro-
duct transformation, where H2 xH3 is a product Hilbert space equipped with the
induced inner product. Denote R (T) the range, N(T) the null space, T* the adjoint,
T-1 the inverse, and Tr the pseudoinverse of T.

The pseudoinverse Tr:H2H1 is uniquely determined, provided it exists, by
producing for every y H2 the "best approximate solution" x(y)= Try of the linear
equation

(1) Tx =y, x H1,

i.e. Try is the element of minimum norm which gives a minimum value for the
discrepancy IITx- y[I, x H. Let

(2) i(T) := inf I- x O’x N(T)

where N(T)+/- is the orthogonal complement of N(T) in the domain of definition of T,
then (e.g. Petryshyn [6]):

(3) i(T)>0 => R(T)is closed =), T+ exists and IIT+II i(T)-1

Restricting in (1) the x to satisfy Sx O, x H1, we come to the concept of restricted
pseudoinverses, introduced by Minamide, Nakamura [4] and further considered by
Holmes [3]. Since the null space N(S) of $ is a closed linear subspace, we can regard
N(S) as a Hilbert space Hr(s). Let us consider the restriction of T to Hu(s) and
denote this transformation by Ts. If R(Ts) is closed, the pseudoinverse Tr

s from H2
into Hu(s)exists and is well-defined.

DEFINITION. The pseudoinverse T, regarded as a linear transformation from H2
into H1, is called the (N(S)-) restricted pseudoinverse of T.

LZMMA 1. If (T, S) has closed range, then

T’ exists and IIT

* Received by the editors February 14, 1977, and in revised form September 27, 1977.
"1" Abteilung fiir Angewandte Statistik, Universitit Bonn, Bonn, West Germany.
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Proof. Note that

I[xll
x O,x N(Ts

inf IITxll--Ix O,x sN(S),x s(N(T)N(S))+/-}
inf {ll(T’ S)xll

=i((T,S)),

xO, xsN((T,S))’}

hence (3) gives the lemma.
We give in Theorem 1 a representation of T+

s, which permits the application of
ordinary methods of inversion for self-adjoint positive definite operators. In the case,
often occurring in optimal control problems, that H2 H3 are finite dimensional, the
assumptions are satisfied, and the operators to be inverted then are positive definite
symmetric matrices.

Let us consider the linear equation Tx y, x HI, y R(T) given. If R(T) is
finite dimensional as for instance in the fixed endpoint quadratic regulator problem, it
may be convenient to change over to the dual problem, find a solution z0 of TT*z y,
z H2, because then TT* is a matrix. Now x0 T’z0 is the minimum norm solution of
Tx =y. If TT* is invertible, then we have Xo T+y T*(TT*)-ly, otherwise we
consider the perturbed system TT*z + rI2z y, where r > 0 and 12 is the identity on

Ha. (TT*+ rI2) is invertible and we get (cf. Corollary 1 after Theorem 1 below) that
limr-,/o T*(TT* + rI2)-ly exists and is equal to T/y. An analogous formula for Ty is
given now by the following theorem.

THEOREM 1. If (T, S) has closed range, then we have the representation

(4) T lim (r2T, rS)*((rT, S)(rT, S)*+ r3I)2x{o}
r+O

(in the sense of pointwise convergence on H2), where r R, and I denotes the identity on
H2 xH3.

Proof. Let r e R, 0 < r =< 1. Then

i((rT, S))= inf {ll(rT, SDxll llxlt- 1, x N((rT, S))z}
inf {(llrTxll2 /llSxll2)1/2] Ilxll- 1, x N((T, S))+/-}
inf {(llrTxll2 +llrSxll +ll(1 r2)1/2Sx[[2)/211[x[I 1, x N((T, S))+/-}

-> inf {([[rZxll2 + IlrSxllZ)l/= Ilx[[ 1, x N((T, S))+/-}
inf {[l(rT, rS)xll[llxll- 1, x N((Z, S))+/-}
r. i((T, S)),

and by (3) i((T, S))> 0, (rT, S)/ exists and

1
(5) II(rT, S)+II<--i((T, S))-a.

r

Let Yo e H2 be arbitrarily chosen, but fixed. Then for (y, z) H2 H3 the equation

(6) (rT, S)(rT, S)*(y, z)+ r3(y, z)= (ryo, 0)
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has the unique solution

(7) (y, z)r ((rT, S)(rT, S)* + r3I)-l(ryo, 0) =: 0;-1 (ryo, 0).

Pre-multiplying in (6) with (rT, S)* and putting

x (rT, S)*(y, z)

we get

(8) (rT, S)*(rT, S)x + r3x (rT, S)*(ryo, 0),

which is uniquely solved by

(9) Xr (rT, S)*(y, Z)r (rT, S)*Q;-1 (ryo, 0).

Now the solution of (8) is the solution of the variational problem

(10) minimize {ll(ryo, 0)-(rT, S)xll= / r311xll21x H1}.

Denoting the solution of (10) by Xr, we have the estimate

rllxrll <-[l(ryo, o)-(rT, S)xll= / rllxll=- min II(ryo, o)- (rT, S)xll=
xH1

--< II(ryo, 0)-(rZ, S)(rZ, S)+(ryo, 0)ll= + r3ll(rZ, S)+(ryo, o)11=
(11) -II(ryo, O)-(rT, S)(rT, S)+(ryo, o)11=

<= r311(rZ, S)+(ryo, 0)11=,
which gives, with (5),

(12) Ilxrll<-II(rZ, S)+(ryo, 0)11_-< i((T, s))-llyoll,

and so the sequence {X}r-,+0 is uniformly bounded. Let {Xr}r,r {Xr}r+O be a
subsequence converging weakly to an 2 e Hi"

Putting

and

Xrk .f, for rk --> +0, k --> o.

f(x) :-II(ryo, O)-(rT, S)xll= IIxll=+ r=llyo Txll=

gr(x) := f(x)+ rllxll=,
we have for all x N(S)

rllxrll= / r2llyo TXr,[I2 gr (Xr)--llSXrkll2

(13) <=gr(Xrk)<=gr(X)

rllyo- Txll= / rllxll=,
which gives limk_, gr (Xr)= 0, and so

(14) lim IISXr II- o,
koo

Finally, dividing (12) by r, we have

(5) iminfllYo-Txrll<=llYo--.Txll, foranxN(S).
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Since the occurring functions as convex and continuous functions are lower semi-
continuous in the weak topology, it follows from (14) and (15)

IlYo- T11 <= Ilyo- Txl[, for all x N(S),

[[S[[ <_- 0, i.e. N(S),

hence

(16) Tyo + N(Ts),

the solution set of min {[[yo- Tx[[I x N(S)}. By (9), xrk R ((T, S)*), which is assumed
to be closed, and thus is also weakly closed, and so R((T, S)*)= N((T, S)) +/-. Now
N(Ts) N((T, S)) and (16) gives

4-(17) x TsYo.

Because of (12) this yields, that the whole sequence {xr}-.4-0 converges weakly to
T4-sYo,

(18) xr--" Tyo, for r +0.

It remains to show the strong convergence. Similarly to (13) we have the estimations

r ([lyo Tx,ll=/llSxll=)<=g(x)- (1 r=)llSx I[=
(19) <-gk(x)

<= r(llyo- r[[ + [Isll) + rl]l[=,
and

[[yo- T1[ + IIS112 -< lim inf {[[Yo- Tx,.,,[[2 + [[Sx 2}

(20) _<-lim sup {llYo- TXrkll2 1-]lSXrkll2}

thus

(21)

Now splitting up

lifo- TII2 + IIsll2,

lim {llyo- Txr,l]2 + IlSXr,II2$ IlYo-- TII= + IISII2,
kooo

I[yo- Tx,.,,:llz +llSx,.,,ll:z =: (x,.,,, (T*T + S*S)x,.)+ h(x,.,,),

where h is an affine functional on Hi, for which we have

h(x,.,)h(), for k

we get by (21)

(22) (xr, (T*T+S*S)x,)-(, (T*T+S*S)), for k.
x, R ((T, $)*) and so on R ((T, S)*) we define the norm

II1" III := (’, (T*T + S’S). )1/2,
which is equivalent to
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since i(T*T + S’S)> 0 if i((T, $))> 0, and this is by (3)our assumption. Of course

xrk + 2, lim inf IIIx / 1112 >--lll2lll2,
k-+oo

and the parallelogram law

I[Ix -ll[2 2111xlll2 + 2Ill’Ill2- Ilx, + lll2

yields, with (22),

lim IIIx -111-- 0.

The equivalence of the norms gives with (17), the strong convergence of {Xr}r-.+0 to
+TsYo.

Thus with (7) and (9) we have

(23) Tyo lim (rT, S)*((rT, S)(rT, S)* + r3I)-l(ryo, 0),
r+O

and since (23) holds for every yo H2, we have proved the theorem.
If S 0, we get by (23) the following
COROLLARY 1. Let T have closed range, then

(24) T+= lim T*(TT* + rI2)-1, (r 1),
r-+O

(in the sense of pointwise convergence on H2) where 12 is the identity on H2.
The formula (24) (for square matrices T), tracing back to Den Broeder and

Charnes [2], is cited as Theorem 5 by Ben-Israel and Charnes [1].
Estimating the rate of convergence, respectively deriving an error bound, we

show now, that in (4) the operators also converge in norm.
THEOREM 2. Let S and (T, S) have closed range, then

I[T -(raT, rS)*((rT, S)(rT, S)* + r3I)oll
r

(25) <- r
1 r2

Proof. Let

II(r, s)ll. i((T, S))-1" i(S)-2. (IIT*TI[" i((T, S))-I+IITII)

2

+i((T, S))-3. 1 +]_ r2. i(S)-1" II(T, S)II (0<r< 1).

Pr := (rT, S)*(rT, S)+ r311,

where [1 is the identity on H1; then by (7), (8), (9), for all y e H2,

(26) P-/r2T*y (rr, S)*O-; (ry, 0).
Let for a fixed y e H2 and q, r e R, 0 < q, r < 1,

Xr =P71r2T*y, and xq =P-lq2T*y;
then by the identities

(P, Pq)xq (r2 q2)r* rxq + (r3 q3)xq,
P,xq (P Pq)xq + q2T*y
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we have

Pr(xq x,) (P Pq )xq + q2T*y r2 T*y

(27) q2T*y -q2T*Txq --q3xq r2T*y + r2T*Txq + r3xq
S*SXq + r2(T* Txq T*y ) + r3xq.

+By Theorem 1 and (26), x converges to Xo := Tsy, as q +0, and (27) yields

(28) P(xo-x)= S*Sxo + r2(T*Txo T’y)+ r3xo.
Now Xo N(S), that is,

(29) Sxo= 0,

and IITxo- yll2= minxus IITx y[[2, which implies that

T*Txo- T*y N(Sf-,
Because R(S) is assumed to be closed we have N(S)+/-= R(S*) and S+ exists. Now
Zo := (S*)+(T*Txo T’y) satisfies the equation

(30) S*Zo T* Txo T*y

and, by Lemma 1 and (3), has the property

(31) Ilzoll <_-i(S)-(IIT*TII i((T, S))-1 / IITII)IlylI.

Since Xo R((T, S)*), (, ):= ((T, S)*)/Xo satisfies

(32) Xo (T, S)*(), ),
and

(33) ]l(, )11--< i((T, S))-Zllyl[.

Using (29), (30) and (32), then (28) becomes

P(xo-xr)= r2S*zo + r3(T, S)*(, ).(34)

Now

[I(Y, z)ll
(y, z)e H2 H3

sup
II(y, z)ll

(y, z) H2 x H3

IIPT*
From (34)we get

(35) Ilxo-xll r211Ps*ll IIzoll+ r3fllPT*ll+llPS*ll) II(, )ll.

By (12), IIxlI i((T, S))-, Ilyll and since x, PTr2T*y it follows that

(36) IIPT*ll
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Let z H3 be fixed, then vr := P-aS*(1- r2)z minimizes

(1 r2)llSv ell= / r211Sv = / r211Tvll2 / r31[vll
and we get

re(llSvr[[z + I[Tv[Iz) + (1 r2)[ISv- zllz

which gives

(37)

over Ha,

r2([ISS+zll + IITS+zlI2)+ (1 r2)llSS+z zll=
<- rZ(llSS/zll= / IITS+z[12)/ (X r2)llSv- zll=,

Since Pv S*(1- r2)z, we have
3r v=(1-r2)S*z-(rT, S)*(rT, S)v,

and thus vr R ((T, S)*)= N((T, S))z’, hence for v 0

I[(T, S)v,.ll>_ inf
II(T, S)xll[ }Ilvrll Ilxll

x N((T, S))+/-, x # 0

_-> ((T, S)),

which with (37) gives the estimate. Also for v 0,

Ilvr[l<= i((r, S))-x. [I(T, s)ll, i(S)-1" Ilzll,

or

(38) 2i((T, S))-a" i(S)-1" I](T, S)II.

Now (35) yields with (33), (36) and (38)

(39)

r
2i((T, S))-li(s)-all(T, S)I["Ilxo- Xrll < r

1 r

+ [i((T, S))-3 +
2

1 r2i((T, S))-3" i(S)-III(T’ s)ll Ilyll

Since x0 Ty, and Xr (rT, 8)*071 (ry, 0) by (26), therefore (39) together with (31)
gives the proposition (25).

Implicitly we have proved the following
COROLLARY 2. If S and (T, S) have closed range, then

(40) T+
s lim ((rT, S)*(rT, S)+ r311)-lrZT* (r R),

+O

where 11 is the identity on H1, and the estimation (25) holds.
For S 0 we get from (40)

(41) T+ lim (T* T + rI1)-I T* =: lim Tr
r-+O r-+O

and from (25)

(42) liT+ TII < rllT+[[3.
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(41) and (42) were given by Morozov [5]. (40) is of particular interest for approxima-
tion problems over subspaces. Here often the space H is finite dimensional and so the
operators in (40) to be inverted then are positive definite symmetric matrices.
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SOLUTIONS OF VOLTERRA INTEGRAL EQUATIONS*

T. KIFFEt AND M. STECHERf

Abstract. The existence of a unique L2[0, T; H] solution of the equation u(t)+ o a(t-s)g(u(s)) ds
f(t) is shown for any L2[0, T; H] function f(t) where g is any maximal monotone operator satisfying a linear
growth condition.

1. Introduction. We are interested in the question of the existence and unique-
ness of solutions to the nonlinear Volterra equation

(1.1) u(t)+ a(t-s)g(u(s))dsf(t), O<=t <- T.

The unknown function u(t) may be scalar or vector valued, i.e., u: [0, T] [n, (n -> 1).
In fact our theorems will only assume that the range of u lies in some real Hilbert
space.

In a recent paper by Levin [5], some a priori bounds for solutions to (1.1) are
obtained where it is assumed that the range of u is contained in [n (1-< n < oe) and
that the nonlinearity g is, among other things, assumed to be a continuous map from
!" to I". These bounds are then used along with a local existence result of Nohel [7]
to prove global existence. In the one dimensional case Levin [5, Thm. 1’] is able to
deduce some a priori bounds by only assuming that g is nondecreasing and that f is
differentiable. He is not, however, able to show existence in this case since he does not
have a local existence result when g is not continuous.

One purpose of this paper is to obtain an existence result without imposing any
continuity assumptions on g or differentiability conditions on f. The techniques which
we use are those developed by Barbu [1], and Londen [6] who have proven existence
and uniqueness theorems for (1.1) in a Hilbert space setting.

More precisely Barbu has shown that if the nonlinearity g is the subdifferential of
a lower semicontinuous proper convex function, that a(t) is a smooth real valued
function of positive type, and that the forcing term f(t) has an L2 derivative, then (1.1)
has a unique solution. Londen, using a different technique, has been able to prove that
(1.1) has a unique solution without assuming a(t) is of positive type. In fact Londen
only assumes a(0)> 0, and a’ of bounded variation, but he too assumes f(t) has an L2

derivative and that g is a subdifferential. This last condition on g has been removed by
Gripenberg [4]. In a recent paper [3] Crandall and Nohel were able to extend these
existence results to an arbitrary Banach space with g an m-accretive operator.

The authors of this paper, using the techniques developed by Londen and Barbu,
have been able to show that (1.1) has a unique solution for arbitrary f in L2 and g
maximal monotone. This generality however is obtained by drastically restricting the
growth of g. This restriction rules out the possibility of g being a nonlinear partial
differential operator, which the works of Barbu and Londen permit. It does however
give new existence results in the finite dimensional case since we need not impose any
continuity conditions on g.

The outline of this paper is as follows: Section 2 consists of notations, definitions,
and the statements of our results whose proofs appear in 3 and 4. Some examples
are presented in 5 which illustrate the applicability of our theorems.

* Received by the editors June 23, 1977, and in revised form September 13, 1977.
t Department of Mathematics, Texas A & M University, College Station, Texas 77843.
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2. Statement and discussion of results. Throughout this paper the functions a and

f will satisfy a" R -> R 1, f: R ._> H and g will denote a nonlinear possibly multiple-
valued maximal monotone operator with its domain D(g) and range R (g) contained
in a real Hilbert space H whose norm and inner product will be denoted by I" and
(., respectively. By a solution of (1.1) on the interval [0, T] we mean a pair of
functions u, w:[0, T]->H which satisfy

(2.1) u, w L2[0, T; H], w(t)s g(u(t)) a.e.,

io(2.2) u(t)+ a(t-s)w(s)ds=f(t) a.e., 0-<_t <-T.

L2[0, T’,_H] denotes the Hilbert space consisting of all functions u" [0, T]-> H which
satisfy 0 lu (t)l dt <

We recall that a function g: D(g)c H -> H is monotone if (xl-x2, yl- y2)-> 0 for
all yl g(xl), y2 g(x2), xl D(g), x2s D(g), and g is maximal monotone if g has no
proper monotone extension. The following closed graph property of maximal mono-
tone operators is essential for the proof of the existence of solutions of (1.1).

PROPOSITION [2, Prop. 2.5]. Suppose {x,,} and {yn} are sequences in H which
satisfy x, D(g) and yn g(x,) for all n. If xn x, y,---y and lim supn_. (x,, yn) -<

(x, y), then x 6D(g) and y g(x). We use.--- to denotb weak convergence and ->

strong convergence in H.
If g is maximal monotone it is well known that (I + Ag)-1 is a contraction defined on

all of H for each A > 0 where I is the identity operator. We will let Jx (I + Ag)-1 and
gx A-I(I-Jx), the Yosida approximation of g. In this paper we will need the facts
that g (x)s g(Jxx) for all x s H and that gx is a Lipschitz function with constant A -1.
We will denote by G the usual extension of g to L2[0, T; H], i.e., v Gu if and only if
v s L2[0, T; H) and v(t) g(u(t)) a.e. on [0, T]. Then G is a maximal monotone
operator on L2[0, T; H], and Ga, the Yosida approximation of G, is just the extension
of g to L2[0, T; H].

In addition to the above preliminaries we will assume that D(g)= H and there
exist constants C and c2 such that either

(2.3) lyl ca + c2]xl, for all y g(x), x c= H

or

(2.4) lylclxl, c.lx[: <- (x, y) for all y g(x), x H.

THEOREM 1. Suppose (2.3) is satisfied and
i) a(0)>0, a sAC[0, T], a’ BV[0, T],
ii) f L[O, T; HI.

Then there exist unique functions u, w satisfying (2.1) and (2.2).
THEOREM 2. Let the hypotheses of Theorem 1 be satisfied and suppose
iii) {f,} is a sequence in L:Z[0, T; H] such that fn f in L2[0, T; H]. Then if

u,, w,, u, and w satisfy (1.1) for f, and f respectively, we have u, u and w, w in
L[0, T; H].

In Theorems 1 and 2 we impose the same conditions on the kernel function a (t) as
Londen [6]. Our proofs of these theorems rely heavily on the ideas developed by
Londen in [6, Thm. 1]. The essential difference between our approach to (1.1) and that
used by Londen and Barbu is that we do not differentiate (1.1).
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We can remove the differentiability condition on a and allow a(0)= oe and still
prove existence for (1.1) if we require a(t) to be of positive type on [0, T].

DFFYrrION. A function a eLl(0, T) is of positive type if for every function
u e L2(0, T)we have

(2.5) u(s) a(s -z)u(z) dr ds >=0 for all 0 -<_ -<_ T.

The following characterization is due to Nohel and Shea [8, Thm. 2].
TI-IZORFM. Let a (t) e -t L (0, oe) for all r > 0 and let

(s)= Io e-Sta(t) dt [or Res >O.

The following are equivalent,
iv) a(t) is of positive type on [0,
v) Re (s)_->0 for Re s >0,
vi) U(iz) ->_ 0(-oo < z < oo) where U(iz) lira infs-,i Re (s).

Re s>0

Functions of the form a (t) e -’ cos yt(0 _-< a < 1,/3 _-> 0, y real) are of positive
type.

THZORFM 3. Let (2.3) and ii) be satisfied and suppose that a(t) is of positive type
on [0, T]. Then there exist functions u(t) and w(t) satisfying (2.1) and (2.2). If g is

strictly monotone, i.e., (yl--y2, Xl--X2)=O implies Xl--’X2, (yig(xi)), then u(t) is

unique.
Our next result gives an asymptotic property of solutions of (1.1) if we impose

further restrictions on g.
THEOREM 4. Let (2.4) be satisfied. Suppose a(t) is of positive type on [0, ) and

f6L2[0, c; H]. Then there exists a unique function u and a function w, both in
L2[0, ; HI, which satisfy (2.1) and (2.2). The proofs of Theorems 3 and 4 will use
techniques developed by Barbu [1].

The following lemma which Londen proved in [6] is stated to aid in the exposition
of our results.

LEMMA. Let a(t) satisfy i) of Theorem 1. Let {u} be a sequence in L2[0, T; HI
such that [[u][0,7-;nl are uniformly bounded. Then either o a(t-s)u,(s) ds converges
uniformly on [0, T] to zero as n tends to infinity, or there is a , 0 < < T, such that

(2.6) limsup,,__,oo Io(Io a(’r-s)un(s)ds’un(z)ld’r>O"
3. Proofs of Theorems 1 and 2. To begin the proof of Theorem 1 let ux (t) denote

the unique L2[0, T; H] solution of

(3.1) ux(t)+Io a(t-s)gx(ux(s))ds=f(t), O<=t<-T, A>0.

Since the Yosida approximates gx of g are Lipschitz continuous the existence and
uniqueness of the ux is immediate. (By IIh[k.to,;. we will mean the usual Lp norm of
h as a mapping from [0, T] into H.) Pick ,/ small enough so that c211all,ato,; _-< 1/2,
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where C2 is the constant in (2.3). We then have from (3.1),

(3.2)

Thus we have

(3.3) Ilu>, II  ro.,, ;,-,a--< 2(cl Ila L [O,"I/; l]t] +

Since the length of the interval on which we have a bound for [[uxll is determined by
a(t) and c2 and not the norm of we are able to translate and obtain a bound for Iluxll
on [0, T], i.e., there is an M> 0 such that

(3.4) Ilu, ll  to. ;m =<M, X >0.

The constant M depends on Ilalklto,,;=i, c2,1Pfllz.to,r;l and how many integer
multiples of 3’ are less than or equal to T. From the fact that Iga (ua (t))] _-< Ig(ua (t))l and
(2.3) we see that the norms of ga(ua) are also uniformly bounded in a. We may
therefore extract subsequences ua. and ga. (ua.) such that

(3.5) ua. u, gx. (ux.) w

in L2[0, T; H]. Clearly u and w satisfy (2.2). To establish existence it only remains to
show that w(t)eg(u(t)) a.e. As in Londen’s paper we claim that ’oa(t-
s)gx.(ua.(s)) ds converges uniformly on [0, T] to f a(t-s)w(s)ds. Suppose not; then
there are subsequences gx. and ga., denoted by g. and g,. respectively such that
a(t-s)[g.(u.(s))-g.,(u.,(s))] dk does not converge uniformly to zero. Putting
g. and then g,. into (3.1), subtracting the two equations, multiplying by
and then integrating from 0 to ’, we have,

fo (U. (t)- u,. (t), g,, (u. (t))- g,. (u,. (t))) dt

(3.6)

=-Io(Io a(t-s)[g.,(s)-g,.,(s)l ds, g.,(t)-g,.,(t)) dt,

where ’ is as in the Lemma. Using the fact that u. a.g.(u.)+Ja.u.,
g(Jx. (u.)), and that g is monotone, we derive from (3.6) the following inequality:

IO (a,kg,k dt

(3.7)
<-- Io (Io a(t-s)[g,,(u,,(s))-g,,(u,,k(s))] ds, g,,(u,,(t))-g,,,(u,,,(t))) d,.

Letting k oo we get from the lemma that 0<0. This contradiction implies the
uniform convergence of the integral terms [ a(t-s)gx.(ux.(s))ds on [0, T]. This
result along with (3.1) implies that ua. -+ u. Hence we have by [2, Prop. 2.5], applied to
L2[0, T; H] that u(t)eD(g) and w(t)e g(u(t)) a.e. To see that u and w are unique,
suppose a and is also a solution. This implies

(3.8) u(t)-a(t)+ a(t-s)[w(s)-lb(s)] ds =0.
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Multiplying (3.8) by w- we conclude, by arguing as above, that the integral term
must be zero on [0, T]. This of course gives u(t)= r/(t) a.e. and w(t)= }}(t) a.e.

To prove Theorem 2 let u,,, wn and u, w be solutions of (1.1) for ]’n and f
respectively. We first note that IlU, I]L2[O,T;] are bounded independent of n. This
follows as in the derivation of (3.4). We also have

(3.9) u.()-u()+ a(-s)[w.(s)-w(s)]ds=L()-().

We claim as in Theorem 1 that the integral term converges uniformly to zero on the
interval [0, T]. To see this one argues as in Theorem 1 using the assumption that

fn - f. Clearly the uniform convergence of the integral term implies that u,, u. To see
that w.---w we note that any subsequence of the w,, must have a weakly convergent
subsequence w.k. Moreover the wnk and u. must then converge to the unique solution
of (1.1). Thus w,,-- w, which implies w-- w.

4. Proof of Theorems 3 and 4. Choose y > 0 as in the proof of Theorem 1. Again
letting u denote the L2[0, T; H] solution of (3.1)we have that {u} and {g(u)} are
uniformly bounded in L2[0, y;H]. Hence we can extract sequences {u.} and
{g,. (u.)} which satisfy (3.5) for some u, w 6 L2[0, y; HI. To show that u(t) D(g) and
w(t)6 g(u(t))a.e. O<=t<-y we follow Barbu [1, Thm. 1]. Write (3.1)with A =A, and
A A, subtract, multiply by g. (ua.)-g(u) and integrate. Since a (t) is of positive
type we get

J0 (gx.(ua.(t))-ga(u(t)), ua.(t)-u(t)) dtO.(4.1)

Expanding (4.1) we have

Yo" (g" (ua. (t)), u. (t) )dt

(4.2) (g(u (t)), ua (t)) dt + (g. (u, (t)), u (t)) dt

Fix Am. Then, by (3.5), we have

I0"lim sup (g.(u.(t)), u.(t)) dt
An --0

(4.3) <-- (g,, (u,, (t)), u,, (t)) dt + (w (t), u (t)) dt

+ (g,, (ua,, (t)), u (t)) dt.

Letting A, 0 in (4.3) we have

(4.4) limsup (g.(u.(t)), u.(t)) dt (w(t), u(t)) dt.
An0

Combining (3.5) and (4.4) with [2, Prop. 2.5] applied to La[0, ; H] we get u(t) D(g)
and w(t) g(u(t)). The fact that u(t) and w(t) are solutions of (1.1) on [0, ] follows
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from exactly the same argument used in Theorem 1. If g is strictly monotone, the
uniqueness of u(t) is an immediate consequence of the assumption that a(t) is of
positive type. The continuation arguments of Barbu and Londen can now be applied
to extend u(t) and w(t) to the whole interval [0, T]. This completes the proof of
Theorem 3.

To prove Theorem 4 multiply (3.1) by gx(u;(t)) and integrate. By (2.4) and
Young’s inequality we have

(4.5) c lux (t)] 2 dt<=- I(t)l= dt+- Igx(ux(t))l2 dt, 0<A _-< 1.

We note that (2.4)holds for gx(0<A =< 1)with c2 replaced by c =c2/(1 +cx)2. Choose
c so that Cla < c. By (2.4) we have that there is a constant M such.that

T TYo ]ux (/)l 2 dt <=M J0 ]f(t)12 dt.(4.6)

Since T was arbitrary, and f e L2[0, oo; H] we have

| lux (t)l dt <(4.7) sup
O<h<__l 0

Combining (2.4) and (4.7) we have

| Ig (u (t))[ 2 dt < c.(4.8) sup
O<h<l 0

From (4.7) and (4.8) we can conclude that there is a sequence {A} converging to zero
and functions u, w s L2[0, o; HI such that

u,-- u in L2[0, 0(3; H]
(4.9)

g, (ux,) w in L2[0, oo; H].

By the same argument used in Theorem 3 (lines (4.1)-(4.4) with 3’ replaced by
arbitrary T) we get u(t)e D(g) a.e. and w(t)e g(u(t)) a.e. for 0_-< < oe. The fact that
u(t) and w(t) are solutions of (1.1) follows as before. To prove that u(t) is unique, let
ul, Wl, u2, w2 be solutions of (1.1). Subtract these equations, multiply by wl-wz,

integrate and use (2.4). We have

(4.10) 2 I0 lul(t)-- u2(t)[2 dt <= 0

so /’/1 /12 a.e. This completes the proof of Theorem 4.

5. Examples. Our first example demonstrates that if we remove the linear growth
condition, then (1.1) will not have a solution, in the standard sense, for arbitrary
f e L2[0, T; H]. This example seems to indicate that this definition of a solution is too
narrow.

Example 1. Let H=R,g(u)=lulu, f(t)=t-1/4, a(t)=l. Clearly fL2[O,T].
Suppose (1.1) had a solution. That is, there exists a function u(t) such that

u L2[0, T], g(u)= IttlU L2[0, T], and
(5.1)

U(i)q- lU(S)IU(S) ds --’-/,-1/4.
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Since g(u)EL2, we have u EL4 which implies that f= -1/4 EL4 which is absurd. We
also note that if g(u)= ]ulu, a >0, then (1.1) will not have a solution for an arbitrary
function " in L2[0, T].

We next give a simple example of a discontinuous g for which our theorems
apply.

Example 2. Let H=[, a(t)= -/2, ff(u)=[u], where [. denotes the greatest
integer function. The function has linear growth and is monotone but it is not
maximal in the class of monotone operators. Thus let g(u) be its maximal extension,
i.e.,

(u), uei g,
(5.2) g(u)

[n 1, n ], u n N,

where N is the set of integers. Then for any L2 function f(t) equation (5.3) has a
solution.

(5.3) u(t)+ (t-s)-/2[u(s)] ds f(t).

It is understood that if U(to)= n N for some to then [U(to)] may be any number
between n 1 and n. Since g(u) is not strictly monotone (cf. Theorem 3) we are not
able to claim that (5.3) has a unique solution.
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ON THE INVERSE PROBLEM FOR SELFADJOINT OPERATORS
DEFINED ON CERTAIN RIGGED HILBERT SPACES*

JOHN B. BUTLER, JR.

Abstract. We consider the inverse problem for a selfadjoint extension H of a differential operator
L (i(d/dx))" + q (x) defined on the rigged Hilbert space

_
b --- ’ where b L2(12" R ), C (12" R

and q(x) is a selfadjoint operator valued function of x which is piecewise continuous in the 12 norm. It is
shown using the methods of I. M. Gel’fand, B. M. Levitan that q(x) may be reconstructed if we are given
(n, n) matrices VX(l + iO) whose elements are operator valued functions of which are associated with the
spectral density measure for H and the scattering operator corresponding to Hx. The results extend to
operators of the form/-)a T" + Q, T, Q selfadjoint, defined on a rigged Hilbert space

_ _
(’ in case

TII->-I111, b, since under conditions given by Ju. M. Berezanskii such operators have a representation
as extensions of L1 on a space of distributions W-("’" (/2 R) containing L2(12 R).

1. Introduction. Let T, Q be operators defined on a rigged Hilbert space
_ ___

(b’ where T is selfadjoint, IITulI>-IlulI, u , and Q is bounded selfadjoint. In this
paper we shall consider the problem of determination of the operator Q assuming that
the spectral density measure of the operator (T" + Q) has been given. Ju. M. Berezan-
skii has given sufficient conditions such that an operator T with the above properties is
similar to an extension of the operator (i (d/dx )) on a representation space
W-("’")(12 :R) of distributions over Lz(lz:R) [2, pp. 64, 663]. Assuming such a
representation to hold we consider the inverse problem for an operator H which is a
selfadjoint extension of a differential operator of the form L1= (i(d/dx))" +q(x)
defined on the rigged Hilbert space

_
t
_
’ where b L2(12" R), C (/2" R) and

q(x) is an operator valued function of x which is piecewise continuous in the 12 norm.
The operator q(x) in the representation space corresponds to a bounded operator O
in the original space when bounded in the L2(/2 :R) norm. It is shown that the
procedure employed by I. M. Gel’fand, B. M. Levitan to solve the inverse problem for
differential operators in L2[0, 0(3) may be extended to the solution of the above
problem. For n > 2 we also use a generalization of the Gel’fand-Levitan algorithm
due to L. A. Sahnovff:, and certain results obtained by the writer for operators defined
on Lz(R) [3], [4], [13], [14]. The operator q(x) is reconstructed assuming that one is
given (n,n) matrices Vl(l+/-iO) whose elements are operator valued functions of
which are related, to the spectral density measure for H and to the scattering matrix
for H 1.

In 2 of the paper the spectral theory of the operator H is outlined and the
matrices Va(l +/- iO) are defined. Sufficient conditions such that the inverse procedure
can be applied and a description of the inverse procedure are given in 3. The sufficient
conditions are analogous to those employed by I. M. Gel’land, B. M. Levitan in their
paper dealing with differential operators of second order on L2(0, oo) [7]. The main
result of the paper is contained in formula (3.2) which states the relationship between
q (x) and the generalized translation kernel k l(x, y). As is usual in inverse theory q (x)
is obtained as a generalized multiplication operator. Formula (3.2) is a generalization
of the formula given by I. Kay, H. E. Moses for differential operators on L2(0, oo),
n 2, and by L. A. Sahnovi. for differential operators on L2(0, oO), n 3> 2 [9], [13],
[14]. Proof that the inverse procedure is effective under the stated conditions is given

* Received by the editors July 5, 1973, and in final revised form February 2, 1978. This paper extends
results presented to the American Mathematical Society, Abstract 71T-B213, Notices of the American
Mathematical Society, Vol. 18, No. 4 Issue 130 (1971) 643.

? Department of Mathematics, Portland State University, Portland, Oregon 97207.

281



282 JOHN B. BUTLER, JR.

in Theorems 1 and 2. In 4 of the paper we present an example in which n 4 and
q(x) has a diagonal form. Further references to the inverse theory for differential
operators on L2(0, oe) and L2(R) spaces are given in [1], [5], [111, [15].

2. Spectral theory of differential operators on L2(12: R). Let b L2(12 R) denote
the Hilbert space of vector functions u(x)= (u(x), u2(x), ") on 12 with inner product
(u, v) defined by

(2.1) (u, v)= I (u(x), v(x)) dx.

(u, v)t2 denotes the inner product on 12, [lullt2 the vector or operator norms on Iz and [[u[[
the norm in D [12]. Let C’ (/2" R) denote the set of infinitely differentiable vector
functions in L2(12" R) which vanish outside a compact set and let D(12" R) be the
nuclear space consisting of vectors in C (/2" R) with topology generated by the norm
[lull together with the sequence of Sobolev norms {l[ull,,} where Ilu[[2,,=(u, u), and

n_ (k) (k)(U, V)n Y’q--1 2’q 2k=0 -oo P Ui (x)p V (X) dx, n 1, 2,..., u, v Co (/2" R), p
exp (x 2) [2, p. 59], [8, pp. 82, 108]. Let W(2’’p) (/2" R) be the Sobolev spaces obtained
by completion of C (12" R) with respect to the norms ]lull, and let W("’p) (/2" R) be
the duals of these spaces [2, Chap. 1], [5, Chap. 1]. The triple of spaces -b---’
forms a rigged Hilbert space, is the intersection of the spaces b and W(2"’), and ’ is
the union of the W("’). For b e , b’e ’ write b’(b)= (b’, b). Nuclear kernels
P e ’(R)’ are linear mappings from into ’ such that the bilinear form B(b, 0)=
(P(b), 0) is continuous for b, 0e. If Pe’(R)’ and A1, A2 are selfadjoint opera-
tors on I whose domains contain , 1, 2 then (AI@Az)P is the linear operator
from to ’ such that ((AI@Az)P(), d/)=(P(Azt),AIO), q, tt:I). For A1, A2
powers of (i(d/dx)) we shall write (A (R)A2)P (i(d/dx)) (R) (i(d/dx)fP
i+(O+/Ox 0y)P i+DDyP. A kernel p e’(R)cp’ is said to .-commute with an
operator A iff (A (R)I)P (I(R)A)P. t)(R)D is the set of those nuclear kernels which can
be extended to Hilbert-Schmidt operators from I into [. If P e[(R)D is a kernel such
that DDPe b(R)I), i, ]- 0, 1 then P is an integral operator of Fredholm type" There
exists a linear mapping P(x, y)from 12 into/2, P(x, y) C(I2"R R)such that

[2, p. 48, 8, p. 11].

For such kernels we identify P and P(x, y). Let 6, ,/denote the kernels associated with
the delta distribution and the Heaviside distribution. These kernels by definition
satisfy (6(b), 0)= (4,(x), b(x)), (r/(b), 0)= (4,(x), _o X.,oo) (y)b(y) dy) for b, 4t
where Xt,,(Y) is the characteristic function of [x, ). We also use the notations 3 , rt
for kernels such that (8 (b ), 4,) =($(x), $(-x)) and (r/(4’), 4’)= ($(x),
oXt-x,* (y)$(y)dy) [6, p. 71]. If Pb(R)b is an integral operator with kernel
function P(x, y) C(12"RR) then (6. P), (r/. P) are defined to be kernels
such that ((6" P)(4), ’)= ($(x), P(x, x)ck(x)) and ((rt" P)(4’), $)= (p(x),
o ,t,,.oo (y)P(x,y)ck(y) dy), b, $ . Kernels (8 P), (r/v. P) are defined similarly.
Using convolution one may define a dot product of nuclear kernels in general follow-
ing the methods of [6, p. 73] but we do not require this degree of generality here.

The operator (iD) acts as a right and left derivation with respect to the dot
products ( P), (r/ P) defined in the last paragraph and it follows directly from the
definitions that the following lemma is valid"
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LEMMA 1. kIfDxDyP e t)(R) l, , k =0, 1, 2 then
(i) Dx*1 =-6, Dy*1 6, Dx6 =-Dy6,
(ii) Dx(*1 P)=-6" P + .1" DxP, Dr(*1 P)= 6" P +,1. DyP,
(iii) (Dx + Dy)(8 P) 6" (Dx + Dy)P.

Also (i)’ D*1 6 , Dy*1 6 , D6 Dy6 ,
(ii)’ Dx(*1 P) 6 P + .1 DP, Dy(*1 P) 6 P + .1 DyP,

(iii)’ (D Dy)(6 P) 6 (Dx + Dy)P.
Extending this to higher powers leads to:
LEMMA 2. Let P eb(R)b be a nuclear kernel such that DDkyPb(R)b, ], k=

O, 1, , rn and (8 DiyP)= O, ] O, 1, , rn 3. Then the following are valid"
(a) 6 .DiDP=O,]+k=O, 1,. .,m-3;
(b) 6 D+DkyP -8 DDyk+P, j + k m 3, ], k O,1, m 3",
(c) 8. (D+2D y +D+IFIk+ )P=-6 (Dix+lD+aP DiDk+zpy + ...y -, j+k=m-3

],k=O, 1,2,...,m-3.
Also if6 DyP=O, ]=0, 1,..., m-3, then

(a)’ 6. DxOkp=o, ]+k =0, 1,..., m-3;
(b)’ 6 D+1 +lP, f + k m 3"DyP =-6 DiDy
(c)’ 6

k=0, 1,2,.-., m-3.
Proofi The proof of (a) is by a recursive argument. Suppose that 8. D{DP O,

/’+k=0,1,...,r, 0=<r<rn-3. Then by (iii) of Lemma 1 for /+k=r, (D+
Dy)(6 DDP) 6 (D+lDyk + DxDyi+l)p 0. Since by hypothesis (6. D’+IP)=y0

r+lwe obtain (8. Dy P)=-8. D,DyP (-1)r6 Dr+IP=O and 8. DDP=O
/" + k r + 1. Therefore (a) holds. Conclusion (b) follows from (a) using (iii) of Lemma
1 and (c) follows from (b) in the same way. Conclusions (a)’, (b)’, (c)’ are obtained by
the same reasoning using (i)’, (ii)’, (iii)’ of Lemma 1 in place of (i), (ii), (iii).

Let q(x) be an operator valued function of x from 12 into 12 which is piecewise
continuous in the 12 norm with respect to x, -< x < m. We shall consider operators
H, p 0, 1 on D where H is a selfadjoint extension of L= (i(d/dx))" and H is a

(x,Z),]=l n,p=O, 1 beselfadjoint extension of Ll=(i(d/dx))" +q(x). Let s/.
linearly independent operator valued functions of x from 12 into 12 satisfying the
equations Ly Ay normalized so that D/.-as(O,/)= 6ikL ], k 1,..., n, where I is

D,s (x, are continuous in x inthe identity mapping on 12 [12] [14] The functions
the 12 norm,/" 0, 1, , n and they are entire in A. The resolvent operators R o()=
(H-M)-1 are integral operators with Carleman kernels of the form

(2.2) G(x,y,A)= Mik(a)s(x,a)s(y,Z), x->y
],k

with G(x, y,&) equal to the conjugate of the right side of (2.2) with (x, y) inter-
changed and )t replaced by when x < y. The kernels G(x, y, A) are given explicitly
by

(2.3) G(x, y, A)= fl/.
,,1 exp fliw(x y)

/=1 nw

when n 2v is even and

,explw(x y)+ Y -1 exp/3iw (x y)(2.4) G(x, y, A )=
2nw /=2 nw

for n =2v-1 odd, x <y, with w=A1/"=[A[ 1/" exp (i (O/n )), 0 argA, 0_<- 0 <27r and
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[3j =-iej where ei are nth roots of unity ordered so that 0<_-arg el <" .<arg e. <2rr.
The elements MVik(h) of the matrices MY(A) have limits along the reals except at
poles of RV(h)which will be denoted by Mi’(l +iO), R. We introduce operator
valued matrices V’ (l + i0) to be solutions of the system of equations, ] 1, , n,

(2.5)
Vi (l + iO)s(x, l)

k=l

si(x’ /)+(-1)q Gq(x’ y’ + iO)q(y)s(y, l) dy.

Since q(x) is piecewise continuous these equations have solutions except at poles of
R(h), -oo<x < oo. It follows from the normalization condition Di-ls(O,/)= 6iJ
applied to (2.5) that Vv (l + i0) satisfy

(2.6)
VV(l + i0)= I + (- 1)[MO (/+/- iO)F (1)

+ M’(l q: iO)*F (/)1 forp+q 1,

p, q 0, 1 where F}’ (/), 1, 2 are matrices whose elements are operators from 12 into... EVil,,l- a12 defined uy )= JSoo s,(x, l)q(x)s’(x, l) dx, F’’ (l) fo sT(x, l)q(x)s’(x, l) dx.
We shall suppose throughout that the resolvents R(h) have no poles along the

real axis. In this case it follows from the spectral theory of ordinary differential
operators that there exists measures tz (A) and matrices cV(l) integrable with respect
to t*

v such that for A _c R

(2.7) c (1) d/x (I)= lim
1 Ia Im M (l + ia) dl.

a$o rr

Moreover for A finite the spectral measures E(A) associated with H are integral
operators with kernels E (x, y, A)e C(12" R R) given by

(2.8) OE"(x, y, a)= E c(t)s;(x, t)s,(y, t)
j,k=l

and also by (2.5), (2.7)

(2.9) Ia c(1)dtz(l)I= Ia V(l+iO)cq(l)V(l:iO)rdlxO(l) for Ac_R

[4, p. 12]. The matrices V (1 + i0) satisfy V (I + i0)V (1 + i0) L p + q 1, p 0, 1
and the matrices of the scattering operators S associated with H, p 0, 1 may be
given in terms of V (l + i0) by the equation

(2.10) S(1) V’(l + iO)V(l + iO), [4, p. 11].

We shall refer to the matrix measures c (1)dtz o (1) as the spectral density measures
of H in the following section. Since c(1),/z(1) are explicitly known from the formula
for G(x, y, A) it follows that the spectral density measure for H is known when the
matrices Vl(l + iO) have been given.

3. The inverse problem. It was shown in 2 that the spectral density measure
corresponding to L=(i(d/dx))" +q(x) depends on (n, n) matrices V(l+iO) whose
elements are operator valued functions of l,- < <. In this section we suppose
that the matrices V(l+iO) have been given and consider the question of recon-
struction of q(x) from V(l +/-iO). Following the procedure of I. M. Gel’fand, B. M.
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Levitan we first form a nuclear kernel f(x, y)eb(R)b which is .-commutative with
L= (i(d/dx)). Next a generalized translation kernel k X(x, y)e b(R)b is determined by
solving the integral equation.

(3.1) k (x, y)+ n(x, y)+ (x, t)n(t, y) dt O,

-x -<_ y _-< x, 0 _-< x < c and finally q (x) is obtained from the kernel k (x, y) by means of
the formula

(3.2) q(x)=-(i)n6 (D- +D’-D)k(x, y).

We first consider operators Wc", p 0, 1 on I) to D whose kernels are given by the
formal expression

(3.3) W (x, y) c 7, (t)s (x, l)s (y, l) d# (l).
j,k=l

In physics applications these operators W[ are called weight operators [9]. Since in
general the integrals (3.3) are not convergent we assume following I. M. Gel’fand, B.
M. Levitan that W[ have the form W[ 6 +’ where e b(R)b are defined in terms
of kernels F by setting 1 D,DF", p 0, 1 and F" is given by

f/ Io io(3.4) F"(x, y) rT (1) s’(t, l) dt s (t, l) dtd"(l)
j,k=l

with r (I) V(I + iO)c(l)Va(l + iO)*-c(l).
Our results are based on the following assumptions regarding the kernels F and

D.=DDF: For some integer rn _-> 2"
(i) DD oyF e b(R)b and these operators are integral operators whose kernels are

continuous inx, y forx+y>0,0=<x<,j,k=0,1,...,m+l.
m--1 [-0(ii) .Df=0, /=0,1,...,m-2, 8 .Dy =a0, where a is an

operator from l: to 12 independent of x, y.
(iii) r/.Df=0,j=0,1 m-2Y

(iv) (I + rio) is a positive definite operator.
These assumptions are generalizations of those employed by I. M. Gel’fand, B. M.
Levitan for differential operators of second order on L2(0, oe) and of A. R. Sims for
differential operators of second order on L2(R) [3], [7], [14], [15]. An operator
U"=I+K on b to b is said to be a generalized translation operator for H iff
U’Uq I and

(3.5) I UvW (UP)*

for p + q 1, p, q 0, 1. We shall also refer to Kp as generalized translation operators.
Writing (3.5) in terms of K leads to the equations

(3.6) K" + fo + K"fo (K")*,

and also

(3.7) K" +K’ + K"K 0

p+q 1, p, q =0, 1 [9, 71.
THEOREM 1. Let D,= DxDyFeb(R) D be a nuclear kernel *-commuting with

(i(d/dx)) such that assumptions (i), (ii), (iii), (iv) hold. Then there exist kernels K
b(R)D satisfying (3.6), (3.7). These kernels have the following properties:
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a) K", p 0, 1 are kernels of integral operawrs with kernel functions k" (x, y) of the

form k"(x, y)=(Xt_,(y)-Xtx.)(y))P"(x, y), p =0, 1 where P"(x, y) C"(12 :R R)
and pX (x, y) is the solution of (3.1).

b) DDkK D(R)D, j+k =0, 1,..., m and

(3.8)
DK1=0, j=0, 1,..., m-2,

8.D =-a.

kl0Proof. By assumption (i) DDy are Hilbert-Schmidt operators j, k 1,..., m
and these operators are integral operators with kernels continuous in x, y for x + y >
0, 0<-x <oo.

By assumption (iii) and the definition of r in 2, ;_x,oo)(y)Df(x, y)=
Df(x, y), / 0, 1, , m 2, so that these kernels vanish for y < -x, 0 =< x < co.

Now fixing x, 0 <= x < consider the Fredholrn equation (3.1) as a function of y
for -x <- y =<x. By assumption (iv), (3.1) has a unique solution pl(x, y) which is
continuous in y, -x =< y <=x. Also by a lemma of I. M. Gel’fand, B. M. Levitan the
function pl(x, y) is continuous in x, 0=<x < oe, [7, p. 273]. Let P(x, y) be extended
continuously to all (x, y) R R such that P(x, y) 0, -co < x <= 0 and define
k(x, y)=(X_.o)(y)-x.o)(y))pl(x, y). Let K be the integral operator whose
kernel is k X(x, y). Next let P(x, y) be the solution of the integral equation

(3.9) pI(x, y)+P(x, y)+ pI(x, t)P(t, y) dt 0,

for -x <- y <-_ x, 0 -< x <. Equation (3.9) is an equation of extended Volterra type and
has again a unique continuous solution P(x, y) which we extend to be zero for
-ee < x <= 0, -< y <. Let K be the integral operator with kernel k (x, y) defined
by k(x, y)= (X-x.oo)(y)-Xx.oo(y))P(x, y). By construction Kp I)(R)t), p 0, 1. The
operator K has adjoint (K)* with kernel k*(x, y)= k(y,x). Since k(y,x)=0,
y <=x and Kl(x, y) satisfies (3.1) it follows that K", p =0, 1 satisfy (3.6), (3.7).

kApplying the operators DxDy to integral equations (3.1) and (3.9) leads to a
sequence of integral equations for the derivatives t3t3kP"(x,xy- y), ] + k 0, 1, m

[3, p. 155]. It follows from these integral equations that P(x, y) Cm(lz’R R),

DDkI(X, y)--- (X_y.oo3(x)- g,,ooa(x))DD kyP (x, y ),

except possibly on the lines y x, y =-x, that the operator K satisfies DDKI
b(R)I, j+k =0, 1,..., m, and that (3.8) holds.

Given operators Kv, p- 0, 1 defined in Theorem 1 define s (x, A) by the equa-
tions

(3.10) s (x, h )= s (x, h )+ k (x, y)s (y, h dy, ] 1, , n,

where k (x, y) is the kernel of the integral operator K a. The s] (x, A) are operator
valued functions of x from 12 into 12 which are entire in and D{sl(x, l)e C(12" R),
j-0, 1,...,n.

LEMMA 3. Let f=DDyFb(R)I be a nuclear kernel *-commuting with
(i(d/dx)) such that assumptions (i), (ii), (iii), (iv) hold for m >- n. Let K, p O, 1, be the
integral operators defined in Theorem 1 and let s (x, be given in terms ofs (x, by
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(3.10),/" 1,. ., n. Then the following estimate holds"

f_ l(/)IaCik s(t,l) dtf slk(t,l) dtdlxl(1)
(3.11) i,k=l

2eI + O(e)
ase$O.

Proof. The proof of this lemma will be omitted as it employs the same steps as
those used in a corresponding argument given by the writer for differential operators
on L2(R)[3, p. 149].

The purpose of Lemma 3 is to ensure that during the course of proof of Theorem
2 that (2.8) defines the kernel of a spectral measure when p- 1 and s (x, A) are
defined by (3.10).

THEOREM 2. Let D=DxDyFb(R)t) be a nuclear kernel *-commuting with
(i(d/dx)) such that assumptions (i), (ii), (iii), (iv) hold and let K", p O, 1, be the kernels
obtained by solving (3.1). Let n be the least integer, 2 <-n <-m such that 6 DiyK 1= O,

n-2gl0_-</’<n-2, and 8.Dr #0. Then K, p=0, 1, are generalized translation
operators for H, p O, 1, where H are selfadfoint extensions of differential operators
L=(i(d/dx))", L=La=(i(d/dx)) +q(x) and the operator q(x) is given in terms of
k a(x, y) by the formula (3.2).

Proof. According to Theorem 1, K a is an integral operator of the form K=
(r/U-r/) el with kernel function k l(x, y)= (Xt_x.)(y)-xtx,(y))pa(x, y), el(x, y)
C(/2" R R). k has the same form. The hypotheses 8 DiyK O, ] O, 1, , n 3,
and (3 8) imply using Lemma 2 that yK 8 .DieD kyK =0, ]+k=0,
1, n-3, and also 8. Dix+aDK =-8. DDk+KIr ]+k n-3 and
8 DixDK +, ] + k n 2, n m. Also the conclusions (c), (c)’ of Lemma 2 hold
with g in place of P and n in place of m.

(x, l) are given inLet El(x, y, A) ’(R)’ be the kernel defined by (2.8)where si
terms of s (x, l) by (3.10), A___ R. By considering piecewise constant vector functions
on 12 one may show following the argument given in [7, 5] that (3.11) implies that
Parseval’s formula in the following form is valid for all u, v I):

(3.12)

Parseval’s formula (3.12) implies that El(x, y, A) are kernels of bounded, selfadjoint,
idempotent operators El(A), A_ R and Ea(A’)EI(A") Ea(A (3 A") for all Borel sets
A’, A"___ R. Also Ea([-n, n]) converges weakly to I as n-oe. Therefore the kernels
El(x, y, A) define a spectral measure on R. Let H denote the selfadjoint operator
whose spectral measure is El(A), A___ R. Since for p 0, 1, EO([-n, n]) both converge
weakly to I as n oe it follows referring to the definition of W that (3.5) holds and
therefore K are generalized translation operators for H", p 0, 1.

It remains to check that H is an extension of L (i (d!dx))n + q (x) where q (x) is
given by (3.2). Let VO(l+iO:A) be matrices equal to VO(l+iO) for lea and zero
otherwise where A is a Borel set in R and let Wc (A) be defined as in (3.3) except that
the integration is over the set A. Let M, (A) be operators from b into the range of
E" (A) defined in terms of V" (1 + iO A) byM (A)b 4’ iff

V (1 +/- iO" A)s(x, 1), ok(x) (s(x, 1), ,(x)),
k
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where the equality holds for almost all with respect to/.P(l), p + q 1, p, q 0, 1.
From the definitions of MP (A), Ep(A), Up and the properties of Vp (l + i0) it follows
that M (A) has a partial inverse MP (A)-1 from D into the range of EP(A) and

Mp, (A)Mp, (A)-1 E" (A),

(UPM (A))* M (A)-1Uq, p + q 1, p, q O, 1, and also

E%) U"W()(U)*,

W(a)=m(a)m (a)* (compare with [4, p. 7]).

From these relations we obtain

El(A) 0 1), 0U M+ (A)M, (A)*(U U M+/- (A)(U1M (A))*
0 V0U M+/- (A)M, (A)-1 UIE(A)U A R

and therefore H UIHU. If 0 is such that HI=H+0 then O
(U1H-HU1)U or equivalently

(3.13) O (KIH-HK1)(! +K).
Next by the properties of K given above

n-2K1 =Dn-2 ,__ p1(3.14) Dy ((r r/). )= (r -r). D’-2K 1,

(3.15) D-2KI= D-2 ((r/, r/). el)= (r
_

r). D,-2K 1,

and using (ii), (ii)’ of Lemma 1, we obtain

(3.16) Dv 1K1=-8 D,-aK1+( q). D-IK
(3.17) D",-1Kl=8 D’-aKI+("-). D’-IK 1.
Multiplying (3.16), (3.17) respectively by Dy, Dy and forming the differences using

n-2K1 n-lK18.D =(-1)"8.Dx"-2K 1,8 .Dy =(-1)%5 .Dx-lKl=const.,and(iii) of
Lemma 1 leads to the equation

(3.18) (-Dy)nK1-D’KI=-8 r +(l"-l) ((-Dy)nKI-D’K 1)
where r (2D-1 +D-2D + (-1)"D-I)K 1. Since (K1H-HK1)=
((-iDy )" (iDx )" )K formula (3.18) may be written

(3.19) KIH-HK1=-(i)%5 r+("-). (KIH-HK1),
and by (3.13), (3.19) and properties of the kernels K, K we find that

(3.20) O -(i)"6. r + (*7 q h,

where h ={K1H-HKI-(i)"(6. r)K+(K1H-HK1)K}. Next using the rela-
tions (c) of Lemma 2 which hold for K1 in place of P and n in place of m it turns out
that

(3.21) ,5 r= nS (D-1 +Dx Dy)K

or alternatively - )K(3.22) 8 r= (-1)"n8. (VxV’-2 +Dy

By (3.21), (3.22) (i8 r)*= i(8 r) and since Q is selfadjacent it follows from (3.20)
that ((r/ r/). h)* (r/ r/). h. Because by definition the kernels (r/" r/) vanish
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when -oo < x < y a kernel of the form (r/U-r/). h can only be selfadjoint when it is
zero and consequently O =-(i)"6 r and formula (3.2) follows from (3.21).

The above proof follows closely the argument given by I. Kay, H. E. Moses for
differential operators of second order defined on Lz(O, oe) [9, pp. 288, 289]. During
the course of proof of Theorem 2 it was shown that (rtV-r/). h 0 which implies
h(x, y)= 0, -x < y < x, 0=<x < oe. Referring to the definition of h, we find K1H-HK OK1, from which it follows that

(3.23) (H(R)I)K=(I(R)H)K, p+q= l, p=O, 1.

This anti-commuting property of the kernels K with H is characteristic of these
generalized translation kernels.

Let b’(R) b’ denote one of the spaces W-(’’} (l R)(R) W-("’} (l R) for some fixed
n. Theorems 1 and 2 remain valid if in the hypotheses and conclusions one replaces
the space b(R) b of Hilbert-Schmidt kernels by a larger space @ consisting of kernels
which are in b’(R)b’ and which extend to Carleman integral operators on b. The
example presented in 4 involves kernels which are initially in a space of type @. By
modifying the example by truncating the kernels we obtain an example involving
kernels in the space

4. An example. We shall present an example in which n 4 and the operator
q(x) has a diagonal form. Let a be an operator from lz into 12 defined by au(x)=
(OlUl(X), a2U2(X), --’) where (O1, O2,"" ") 12; let fi(1) 1

6
/l--[i= (l +/3it), /3i > 0 and

choose a kernel F on 12 into 12 with diagonal components oF gven by

1 --ilt --ilt(4.1) F (x, y)- -- e dt e dtf(l) dlc.

Correspondingly fo has components

1 I --il(x+y(4.2) fl/O(x, y)= --- e ).fi(l) dlai.

fl(x, y)= 0, k=0 1 2 3 4 Also forx+y>0we find byintegra-For x+y<0, Dy
tion

6

(4.3) D,(x, y)= e-t3ii(x+Y)ol,i.
/=1

Choose the constants/3ii such that

F, DO are Carleman kernels in the space b’(R)b’, b’= w-(a’) (/2:R) and fl satisfies
assumptions (ii), (iii), (iv) of 3. We shall suppose these kernels to be modified outside
a bounded rectangle [-a, a]x [-a, a] so that they are continuously differentiable and
satisfy assumptions (ii), (iii), (iv) of 3 and such that they vanish identically outside
some bounded measurable set. Then these modified kernels F, II are in b(R)b and
satisfy assumptions (i), (ii), (iii), (iv) of Theorems 1 and 2 with m 4.

Assuming the operator k(x, y) to have a diagonal form ka(x, y)u(y)=
(kl(x, y)Ux(X), k(x, y)u2(x), ...) we try a solution of (3.1) with components

12

k(x, y)= 2 Cii(x) epi’y,
(4.4) /=1

Pi+6,i --Pi, i, Ci+6,i(x F_,iiCii(x ), f 1, 2,’’’, 6.
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Substituting k (x, y) into (3.1) and equating terms we find that Pii must satisfy the
equation

6 6
oi i(4.5) 1 k=I__ P [k k= Pfi -[" [k

O;

Eii =’H=a aJ(Pii-i) and Cii(x) are solutions of the system

12 e piix

1+ E Ci,(x)=O, k=1,2,...,6.
= Pii ki

For fixed i, the six constants ]i satisfy four conditions stated above. Now choose ]i
such that the additional conditions Cki(x)pi e pkx: 0, ] 0, 1 are satisfied [3, p.
147]. Then k l(x, y) is a solution of (3.1) such that Dk l(x, y)]= 0, j 0, 1. k (x, y)
satisfies the conditions stated in Theorem 2 with n =4 and K is a generalized
translation kernel for a differential operator L1= (i(d/dx))4 +q(x)where q(x)is given
by (3.2),

12

(4.6) q,(x) -4 E (C{ (x)pi +C (x)) exp (px)
k=l

for x [-a, a] and q(x)= 0 outside some bounded interval. Starting with k l(x, y) one
may construct generalized eigenfunctions s (x, ), ] 1, 2, 3, 4 using (3.10) and then
the matrices VO(liO) may be computed using (2.3), (2.4), (2.5). Note that the
operator q(x) given by (4.6) has a diagonal form given by q (x )u (x (q (x )u (x ),
q2(x)u2(x), .) since F has this form. A nondiagonal q(x) can be obtained by taking
a to be nondiagonal. The method of construction of the above example is similar to
the method that was used for constructing examples for the theory concerning
differential operators on the space L2(R) by A. R. Sims for n 2 and by the writer for
n =4 [3], [15]. Recently a method for constructing examples for inverse spectral
theory of ordinary differential operators defined on a bounded interval, n 4, has
been given in [10].
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COMPLETELY CONVEX FUNCTIONS AND CONVERGENCE*

DALE H. MUGLER"

Abstract. A function f(x) is completely convex (c.c.) on [0, 1] if (--1)k/2k(X)>= 0 for k ->0 and all x in
[0, 1]. This paper studies the convergence of the partial sums of the Maclaurin series of the function; in
particular, how quickly the partial sums turn into a c.c. function. It is shown that no matter where the series
is truncated, the resulting partial sum is a completely convex function in at least the interval [0, x/-6/5].

1. Introduction. Functions whose derivatives have prescribed signs have been
studied at least since 1914 when S. Bernstein showed that a function f(x)which
satisfies f(’(x)>=O for k->0 and all x in an interval is actually analytic in a disc
containing that interval. Different types of conditions on the signs of derivatives have
since been studied in relation to the region of analyticity of the function. See [3] for a
general survey of those results.

A function f(x) is called a completely convex (c.c.) function on an interval I if f(x)
has derivatives of all orders on that interval and if (-1)’f(2’(x)>= 0 for x in L k => 0.
D. V. Widder [9, p. 178] showed that any completely convex function on [0, 1] is
actually an entire function of exponential type 7r. Further, every c.c. function on [0, 1]
is of the form g(x)=f(x)+c sin (Trx) for a "minimal" c.c. function f(x) and nonne-
gative constant c.

Completely convex functions have been linked to positive harmonic functions in a
region of the complex plane in an earlier report [5], and they have also been considered
as a special case of solutions to certain Sturm-Liouville differential equations [4].
Further information about them thus does seem in order.

In this paper, we look at the question of how quickly a sequence approaching a
c.c. function becomes completely convex. We consider in particular the Maclaurin
series for the function, and how quickly the partial sums of that series become
completely convex. One way to approach this might be to try to find a partial sum of
high enough degree so that the sum itself always became a c.c. function. A second way
is to consider the intervals in which each partial sum has the property.

At first we pay special attention to the c.c. function f(x)= sin (Trx). We show in
Theorem 1 the remarkable condition that all the resulting partial sums are completely
convex in the interval [0, x/-/Tr]. However, no matter how high the degree of the sum,
the interval does not increase; for any partial sum s,,(x) always has some even
derivative (--1)kSk(X) nonnegative in only that interval. It is thus the second way
that is further explored to see how quickly this c.c. property is attained.

In section three we consider a class of c.c. polynomials made up of what are
essentially the Lidstone polynomials. The polynomials considered were recently
shown [1] to be, along with sin (rx), the functions which lie on the extreme rays of the
convex cone of c.c. functions on [0, 1]. We find that there are several different
intervals where their partial sums are completely convex. However, one such interval
is found to be minimal.

The main theorem is presented in 4, where we use the results of the previous
sections to show that every partial sum of a c.c. function on [0, 1] is itself a c.c.
function in at least the interval [0, x/-i-6/5]. (x/]--6/5 .63).

As a matter of convenience in stating some of the relationships in 3, we will
follow [1] and use the notation A, (x) to refer to those unique polynomials that satisfy

* Received by the editors September 1, 1976, and in final revised form November 10, 1977.
t Department of Mathematics, University of Santa Clara, Santa Clara, California 95053.
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A0(x) x, A’,’(x) -A,-x(x), and A,(0) A,(1) 0 for n -> 1. This terminology differs
slightly from the usual expressions for Lidstone polynomials, for example, [8], where
(- 1)" A, (x) would be the nth Lidstone polynomial.

The other class of related polynomials will be denoted by A*(x), where A,*(x)=
A, (1-x). Often both of these classes of polynomials share the same properties, so we
will use A,(x) to represent either of the polynomials A,(x)or A*(x). For example, a
property that is satisfied by the A,(x) will be satisfied by both of these polynomials.

The partial sum of order m of the polynomial An(x)will be denoted A,,,,(x).
An(x) is a polynomial of degree 2n+ 1, so An,,n(X)= An(x) if m _>-2n + 1. It follows
from the definition of these polynomials that

(1) a (2j)n,, (x) -+- (- 1 )iAn_i,m_zi(X ),

where a b will mean that a is a positive multiple of b.

2. Partial sums.
THEOREM 1. The partial sums of the Maclaurin series ]’or sin (rx) are com-

pletely convex functions in the interval [0, x/g/r].
Proof. We consider Sn(X)=Yk= (--1)k+l(rx)Ek-1/(2k--1)! for n _-->1, so that n

stands for the number of terms in the series. An alternate method might be to look at
the partial sum of degree n corresponding to a sum whose highest power is n, but in
that case all sums of even degree would be equal to the preceeding one of odd degree.
Thus there is no loss of generality here.

We must first show that each Sn (X) is nonnegative on the interval. Note first that
the terms in the series for sn (x) alternate in sign, beginning with the positive function
Sl(X) rx. Considering the terms of the series in pairs from the first, a general pair is
of the form (rx)Zk-X/(2k 1)!--(’rrx)Ek+/(2k + 1)!. Thus each pair is nonnegative if
(rx)2k-a/(2k 1)! >--(rx)Zk+a/(2k + 1)! or

(2) (2k + 1)(2k)/r2 _-> x 2.
The left side of (2) is smallest when k 1, corresponding to Sz(X)= rx- (rx)3/3!. In
this case, (2) becomes 6/r2>=x 2, or x/-/r >= x. Thus sz(x) is nonnegative only in the
interval [0, x//r].

However, more terms increase the interval on which the sum is nonnegative. If n
is even, sn (x) consists of pairs of terms each one of which is nonnegative in at least the
interval [0, x/-/rr]. If n is odd, then Sn(X) consists of pairs of terms along with a final
positive term. In any case, each Sn(X) is nonnegative in [0, x/g/r].

To consider the derivatives, note that

d2 )2k a/(Zk 1)!}s(x)= (-l)+ax{(rxk=l

(--1)k+l zr:(2k- 1)(2k--2)(,n’x)Ek-3/(2k- 1)!
k=2

2 (__1)k+1"rr (’rrx)2k-3/(2k 3)! --Tg2Sn-l(X).
k=2

Calculation of further derivatives proceeds as above, giving

(3) S(n2k)(x) (--1)zr2Sn_ (X)

for k less than n. But since we have already shown each partial sum to be nonnegative
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in [0, //r], (3) shows that each partial sum is actually completely convex in this
interval.

3. The extremal polynomials.
LEMMA 1. The An,3(x) are nonnegative in an interval o[ the Corm [0, c l, for c < 1

and n >-2, and the smallest such interval corresponds to Az*,3(x).
Proof. The form of each of these sums is An,3(x)=A’(O)x+A)(O)x3/6

x{A’(0)+ Al(O)x2/6}. Thus to consider the lemma, we need to consider the interval
for which A’(0)+ A)(O)x2/6 is nonnegative or

6a’n(0)
(4) xZ_-<_a)(0).
The Fourier series representation of these polynomials can be found in [7], [2], or [1],
and has one of two forms: Either

2 sin (krrx)
(a) A,*(x) 2n+----- .

37’ k---1

or

(b) An(x)= 2n+------r Y (-1)k+’sin (krx)
"/T k=l k 2n+l

for n > 0 and 0 <= x < 1. The series converge uniformly for n > 2, so the values of A’n(0)
and A)(0) can then be found. Using these representations, we find that inequality (4)
has one of the following two forms" If An (x)= A,*(x), then (4) becomes

(5) X2__< 6.2 r(Zn)
rr r(2n 2)

where the zeta function is r(s) k=l (1/kS), and if An(x)= An(x), (4) becomes

(6) x2<__ 6 r(Zn)
r rt(2n 2)

where r(s) =2 )k-l/ s)=1((- 1 k
To consider (5), ((2n)/((2n-2) is always less than 1. Also, as n increases this

ratio increases monotonically. This can be seen as follows: If f(x)= ((2x)/((2x-2),
then f’(x)=Z[((Zx-Z)(’(Zx)-((Zx)(’(Zx-Z)]/[((Zx-2)]2. Thus f’(x)>0 if r(Zx-
2)(’(2x) > ((2x)(’(2x 2) or

(7) (’(2x)/((Zx)> (’(2x-Z)/((Zx-2).

However, (’(u)/((u)=-n=a A(n)/n [6, p. 1], where here A(n)=logp if n is a
power of the prime p, and otherwise A(n)= 0. Note that A(n) in this series is not
related to the polynomial An(x). From this form, one can see that (’(u)/((u) is an
increasing function of u. Therefore (7) holds and f(x) is seen to be monotonically
increasing.

The smallest interval corresponds to n 2, where A*,3(x)= (8x-20x3)/360. The
corresponding inequality is x 2 _-< 6((4)/[rrsr(2)] .4, or x _-< ,fi-d/5 ---.632.

For the second case (6), it can be shown by using properties of alternating series
that (2n)/q(2n-2)>=1 for n _>-2. Thus the inequality will certainly be satisfied if
X26/2 or XX//Tr’.78. The interval where A,,(x) is nonnegative is at least
0 <= x <= /g/r, and,this interval includes the one corresponding to Az*,3(x).
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DEFINITION. Let I be the interval [0, x/-J-/5], the interval where A*,3(x) is
nonnegative.

LEMMA 2. The A,,, (x are nonnegative for x I and nonnegative integers n and m.

Proof. This lemma will be proved in three cases. The first case will deal with the
partial sums of order 4/" + 1, the second with m of form 4] + 3, and the third for the
even ordered sums. In each case, the equation

(8) fo (x-t)f(+(t) dt=
k=0

f(k)(O)k---. X
k

will be used.
Case 1. An,ni+l(X)>-An(x) for]>=O and x e[0, 1].
Proof. Applying (8), we find

(X t) i+1

(4j + 1)!
A(i+2)(t) dt An(x)-An,4i+l(X).

But the polynomial An(x) is completely convex, so that Ai+2(x)<=0. Thus the
integral is less than or equal to zero, and equivalently An(x)-mn,4i+l(X) O.

Case 2. An,4i+3(x)>-An,4i_l(X) forj>- l, n >-3, and x eL
Proof. We use (8)applied to mn,ni+3(x);

x(X-t)4i-1
-(t) dt=A (x)-A (x)

(4f-- 1)!
A n,4i+_(4/) n,4/’+3 n,4/’--1

Now property (1) of these partial sums applies so that -4i) )2iA-ln,4j+3tX (--1 n-2j,4j+3-4j(X)
An-2.,3(x). Using Lemma 1, we can see that the integral on the left above is positive.

Thus An,4i+a(x)-An,4i-1 (x) >- O.
Case 3. An,, (x) is nonnegative in Ifor rn even.
Proof. First note that there are no strictly even partial sums for An (x), n ->_ 0. This

follows from the fact that Ak(o)=(--1)kAn_k(O) and the original condition that
Ai(0) 0 for j ->_ 0.

However, Ao*(0) 1, so that An*(En)(0) (-1)n. This will make the only even partial
sum for A,*(x) to be of degree 2n, since for other positive n" A,*(0)= An(l)= 0. Thus
Case 3 will be proved if it is shown that A,*,2n(X) is nonnegative in I for any n.

If n 1, AI*,2(x) (2x- 3x2)/6. This is nonnegative in the interval [0, 2/3] which
does contain I.

A,(En-E)t,X )n-1If n _->2, we note first that (1) gives ..2n )--’(-1 A*,z(X). Applying (8) to
A.*.z.(X), we see

X(x t)2n-3 ,(2n-2) ,
An,2n ).

(2n 3)! Xn,2n (t) dt A.*,2n(x) -3(x

Using property (1), we find the integral on the left is a positive multiple of AI*,2(x) if n
is odd. Thus in this case A*,n(x) > A*n,2n-3(X) in I. But the nonnegativity of *An,2n-3(x)
follows from Cases 1 and 2, since 2n- 3 is odd.

Finally, if n is even, An*,zn(X) An,zn-* (x)+ A*(Zn)(O)x2n/(2n)n But since A.*(x) is
completely convex, A*2")(0) is nonnegative The nonnegativity of the sum A* (x)n,2n--1

follows from the previous cases, so An,2n(x) is the sum of two nonnegative functions in
I.

This completes the proof of Case 3. In Case 1 we have shown the partial sums of
order 4j / 1 to be bounded below by the completely convex, and thus nonnegative,
function An (x). For each n, it follows from Case 2 that all partial sums of order 4j + 3
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are bounded below by the sum of degree three. Since this was shown by Lemma 1 to
be nonnegative in the interval I, the proof of Lemma 2 is complete.

Combining now the conclusion of Lemma 2 with the general property (1), it
follows that we have proved:

THEOREM 2. The polynomials An,,(x) are all completely convex functions in at
least the interval L

4. Main result.
THEOREM 3. If the Maclaurin series for a completely convex function is truncated

after any term, the resulting polynomial is still a completely convex function in at least
the interval I 0, x/-i--6/5 ].

Proof. It follows from [8] that we can write every completely convex function f(x)
in the form

f(x)= {anAn(x)+ bnA*(x)}+ c sin (zrx)

where the an, bn, and c are nonnegative constants for n _>-0. The series converges
uniformly on compact sets, and can be differentiated term-by-term.

One could find the Maclaurin series for f(x) by substituting the Maclaurin series
for the terms An (x), A*(x), and sin (zrx), n _-> 0. In fact, if the Maclaurin series for f(x)
is truncated after the term containing the multiple x", the resulting polynomial will
consist of n__o {anAn,,(x)+ bnA*,,n(X)} and a partial sum of the Maclaurin series for
sin (rrx). But each of these terms has already been shown to be completely convex in
at least the interval I, so the result also holds for the truncated Maclaurin expansion
for f(x).

Aeknowlelgment. The author wishes to thank the referees for their encouraging
and helpful remarks.
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WEAKLY PERTURBED FORMS AND THE SPECTRAL PROPERTIES OF
ASSOCIATED EIGENVALUE PROBLEMS*

WILLIAM KOLATA

Abstract. A bounded sesquilinear form, a(.,. ), defined on a Hilbert space X is called a weak
perturbation of a Hermitian form, h(.,.), if an operator associated with a(.,.) is a weak perturbation, in
the sense of Krei’n, of a selfadjoint operator associated with h(., ). Under suitable hypotheses on the forms
a(., and h(., ), it is shown that a(., is a weak perturbation of h(., ). In this case, results of Keldy
and Krei’n on the spectral properties of weakly perturbed selfadjoint operators are applied to the eigenvalue
problem, a(u, v)= h(u, v), where (., -) is the inner product on X. In particular, the completeness in X of
the space of generalized eigenvectors and various results on the localization and distribution of eigenvalues
are demonstrated. Applications of these results to three different kinds of elliptic differential eigenvalue
problems are included. Among these applications is a problem from the theory of hydrodynamic stability
and a problem in which the eigenvalue parameter appears in a boundary condition.

Introduction. The formulation of elliptic boundary value problems in terms of
sesquilinear forms is a standard and very flexible technique for studying the solutions
to such problems. It has proved useful in both source and eigenvalue problems.
Usually, in the study of the spectral properties of linear, elliptic eigenvalue problems,
it is the differential operators and their resolvents that play the central role (cf. 1], [5],
[6]). The associated forms are used to prove statements about differential operators.
In this paper however the focus is on eigenvalue problems posed in terms of forms,
and the main theorem concerns the spectral properties of such problems. Elliptic
eigenvalue problems appear as examples of the application of this theorem. The
advantage of this approach is that it can be applied to a wide variety of elliptic
eigenvalue problems, including problems with eigenvalue parameters in the boundary
condition (see 3). Moreover, in many cases, the hypotheses are easy to verify.

The forms that are studied in this paper are perturbations of bounded, Hermitian,
positive definite forms, h(.,.), defined on a Hilbert space V by bounded but not
necessarily Hermitian forms, k(.,.) also defined on V. The perturbation, a(-,.)=
h(-, )+ k(., .), will be called a weak perturbation if a compact operator associated
with a(., ) is a weak perturbation, in the sense of Krein [7], of a selfadjoint operator
associated with h(.,-). In this case it is possible to apply theorems of Keldy and
Krein to deduce conclusions about the location and distribution of the eigenvalues
and the completeness of the space of principal vectors (generalized eigenfunctions)of
the problem: a(u, v) A(u, v) for all v in V, where (., .) is the inner product on a
Hilbert space X in which V is compactly imbedded.

1. Weakly perturbed forms. Let X be a complex Hilbert space with inner
product (.,-) and norm i’1, and let V be a Hilbert space with norm I1"11 that is
compactly imbedded in X, i.e., there is an injective map of V into X that is continu-
ous, compact, and has dense range. Identify V with its range in X and assume without
loss of generality that V c X and for all v V, Ivl _-< Ilvll.

Let h(.,.) and k(.,.) be bounded sesquilinear forms on V, and set a(.,.)=
h(., .)+ k(., .). The adjoint form a*(., .) is defined by a*(u, v)= a(v, u). Assume

* Received by the editors August 11, 1977.
Department of Mathematics, Statistics and Computer Science, American University, Washington,

D.C. 20016. The results in this paper form part of a Ph.D. thesis written at the University of Maryland,
College Park, under the direction of Professor John E. Osborn.
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h(-, ) is Hermitian, and suppose that there are positive constants a0, a such that

(1.1) h(u, u)>-aollUl[- for all u e V;

(1.2) Re a(u, u) >- al]u[[2 for all u V.

Note that both a(., ) and h(., can be considered as densely defined forms on X.
The following definitions and results from [8] play a fundamental role in this

section. Suppose t(., .) is a sesquilinear form defined on a subspace D(t) of X. The
form is closed if for every sequence {u,} in D(t) such that lu, u and t(u, u,, u,
u,,) converge to 0 as n, m approach oo, it follows that u D(t) and t(un-u, un-u)
converges to 0 as n approaches oo. The form is called sectorial with vertex "/0 and
semiangle 0o if the convex set of complex numbers {t(u, u): u eD(t); lul 1} is
contained in the sector larg (z- y0)[--< 00 < r/2. Suppose - is an operator on X with
domain D(--). is accretive if the convex set of complex numbers {(-u, u): u e
O(-); lul-a/is contained in the right half-plane. -is m-accretive if for every
complex A with Re A>0, (-+A)-1 is a bounded operator on X with
(Re A)-. If for some constant a, +aI is accretive (m-accretive) then - is called
quasi-accretive (quasi-m-accretive).

LEMMA 1. An m-accretive (quasi-m-accretive) operator -has no proper accretive
(quasi-accretive) extension.

Proof. See [8, Chap. V, 3.10].
If the set {(-u, u):u eD(t), [ul- 1} is contained in a sector, larg (z 3,0) _-< 00<

r/2, - is called sectorial; if - is sectorial and quasi-m-accretive, it is called m-
sectorial.

THEOREM 2. Let t(., ) be a densely defined, closed, sectorial form on X. Then
there exists an m-sectorial operator -on X such that

(1.3) D(-)c D(t), and for every u D(-) and v e D(t), t(u, v) (-u, v);

(1.4) if u D(t), w X, and t(u, v) (w, v) for all v V, then u D(-) and -u w.

Proof. See [8, Chap. VI, Thm. 2.1].
Theorem 2 can be applied to the forms a, a*, and h provided they are shown to

be closed and sectorial on X. That they are closed follows immedihtely from (1.1) and
(1.2). Because h(., .) is Hermitian and satisfies (1.1) it is sectorial with vertex 0 and
semiangle 0. Assumption (1.2) allows the estimate IXma(u,u)l=lXmk(u,u)l <-

Cllull2 (C/a) Re a(u, u) from which it follows that a(., ) and a*(., ) are sectorial
with vertex 0 and semiangle tan- (C/a). Consequently, by Theorem 2, there are
m-sectorial operators sO, sO*, defined on X satisfying (1.3) and (1.4) with respect to
the forms a, a*, and h respectively. It is easily seen that sO* is the adjoint of
is self-adjoint. For example, the adjoint of s is an extension of sO* and is accretive,
but sO* cannot have a proper accretive extension and so is the adjoint of

The Lax-Milgram lemma implies that there is a bounded linear map T from X
into V such that a(Tf, v)= (f, v) for all feX and ve V. Similarly there is a map H
that satisfies h(Hf, v)=(f, v) for all feX and v e V. Because V is compactly
imbedded in X, the maps T and H are compact when considered as operators on X.
The adjoint of T on X, T*, satisfies a*(T*f, v)= (f, v) and H is self-adjoint on X. A
straightforward verification shows that T= s-, T*= (sO*)-, and H (o-).

Again by the Lax-Milgram lemma, there is a bounded operator, J, on V such that
h(u, Jr)= k(u, v) for all u, v V. The operator J will be said to have the extension
property if the restriction of J to D(sg*) has an extension to a compact operator on X
such that 1 is.not an eigenvalue of this operator.
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THEOREM 3. Suppose (1.1) and (1.2) hold, and the operator J satisfies the extension
property. Then a(., is a weak perturbation of h(., ). That is, there exists a compact
operator S on X such that T H(I + S). Moreover, 1 is not an eigenvalue of S and so

1 o’(S).
Proof. Let . denote the restriction of J to D(*). For any v D(*) and any

u V, (u, *v) a(u, v) h(u, v)+ k(u, v) h(u, (I+.)v). By Theorem 2, (1.4), (I+
J)v D() and (I+J)v sg*v. Thus, o(I + J) is an extension of * and
consequently so is o(I + J), where J is the compact extension of J to X.

For any fe X, f *T*f Y(I + Y)T*f (I +])T*f. Since 1 or(j), it
follows that (I+])-Hf=(I+Y)-H(N(I+Y)T*[) T*[. Thus, (I+])-H T*,
and H(I + ]*)- T. Set S (I + ]*)- I -(I + ]*)-]*. Then T= H(I + S), S is
compact, and since,/S (1+]*)-, 1,’o-(S).

If the form k(. satisfies certain bounds, it is easy to see that the operator J has
the extension property.

LEMMA 4. Assume that (1.1) and (1.2) hold, and that

[k(u, v)l <= CIlul[ Iv[ for all u, v V,

where C is a positive constant. Then J has the extension property.
Proof. By (1.1)and (1.5), aollJvllZ <- h(Jv, Jv)= lk(Jv, v)l <- CIIJv[I Iv[, where v V.

The operator J can be extended by continuity to a map J that is bounded from X into
V. Because V is compactly imbedded in X, . is compact when considered as an
operator on X. Thus, J, and so J, has a compact extension J to X.

As in the proof of Theorem 3, (I +
D(Y((I + )); then (I +.)v D(Y()c V. Since iv V, v is also in V. Thus (v, (I +
])v)=h(v, (I+Y)v)=h(v, v)+k(v, v)=a(v, v). By (1.2), it follows that (I+Y) is
accretive. But ’* is m-accretive, and so *= (I+ a?). Since * is injective, -1
cannot be an eigenvalue of

Remark 5. If (1.1) and (1.5) hold, then for.a suitably large constant y0 the form
a(u, v)+ yo(U, v) satisfies (1.2). The effect of adding.the term yo(U, v) to the original
eigenvalue problem a(u, v)= A(u, v) is to shift the eigenvalues by y0 and leave the
principal vectors unchanged. It follows that without loss of generality it is enough to
have (1.1) and (1.5).

2. The theorems of Keldy and Krein. A complex number A is an eigenvalue of
the form a(-,-)on X if there exists a nonzero vector u in V such that a(u 1, v)-
A(u , v) for all v in V. The vector u is called an eigenvector or principal vector of
order 1 with respect to A. A nonzero vector u in V is a principal vector of order j, j an
integer > 1, with respect to A if a(u, v)= A(u, v)-Aa(u-, v) for all v in V, where
u- is a principal vector of order j-1. It is easy to see that A is an eigenvalue of
a(., .) on X if and only if/z A- is an eigenvalue of T. Moreover, u is a principal
vector of order j with respect to A if and only if u is a principal vector of T with
respect to/x of order j, i.e., Tu txu + u-.

The operator T is compact on X. By the Riesz-Schauder theory of compact
operators, tr(T) is a countable or finite set of complex numbers with cluster point
possible only at 0. Each nonzero member of o-(T) is an eigenvalue of T, and in this
case, by (1.2), 0 is not an eigenvalue of T. For/x o-(T), tx O, there exists a smallest
positive integer c=c(/x), called the ascent of /x-T, such that N((/z-T))
N((/x-T)/), where N denotes the null space. The subspace N((-T)) is finite
dimensional and its members are the principal vectors of T with respect to/x. The
order of a principal vector u is the smallest positive integer j such that u 6 N((/x T)).
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The dimension of N((- T)) is called the algebraic multiplicity of and the dimen-
sion of N(/-T) is called the geometric multiplicity of . If T is self-adjoint or
normal, the algebraic and geometric multiplicities are equal.

Let sp(T) denote the linear span of the principal vectors of T with respect to each
of the eigenvalues. The space of principal vectors of T is called complete in X if sp(T)
is dense in X.

Set K--(T*T)/2 where T* is the adjoint of T on X. The operator K is
nonnegative, self-adjoint, and compact. Let S _->" _>-sj => Sj+l -->" denote the eigen-
values of K counted according to multiplicity. The numbers sj are called the singular

P<cfor with0< <c T is said to be of class Cp.values of T. If j= lSi p p
THEOREM 6 (Keldy). Suppose H is a sel[-adjoint operator of class p onXfor some

p > 0 and S is compact on X. Let T H(I + S). If T is infective, then the space of
principal vectors of T, as well as the space of principal vectors of T*, is complete in X.
For any e > O, all eigenvalues of T, except for possibly finitely many of them, lie in the
sectors e < arg A < e, zr e < arg A < zr + e. IfH has finitely many negative (positive)
eigenvalues, then T has no more than a finite number of eigenvalues in the sector
zr-e<argA<zr+e(-e<argA<e).

Proof. See [7, Chap. V, Thm. 8.1 and Remark 8.1].
For a compact operator T, and an r>0, let n(r; T)denote the number of

characteristic values of T (the reciprocals of the eigenvalues) in the disc
counted according to (algebraic) multiplicity.

THEOREM 7 (Keldy). Let S be a compact operator with 1 g tr(S), and let H be a
positive, compact operator. Set T H(I + S). Suppose there is a nondecreasing function
q9 defined on [0, c) such that for some y > 0,

(2.1) q(s)-< () for all sufficiently large r with r < s;

(2.2) lim (n(r; H)/cp(r))= 1.

lim
n(r; T)

r-n(r;H)

Proof. See [7, Chap. V, Thm. 11.1]. I-l
For a compact, self-adjoint operator A, let/.I(A), p,2(A), denote the eigen-

values of A counted according to multiplicity and ordered in decreasing size of their
absolute values.

THEOREM 8 (Krein). Let T be a self-adjoint operator of the form T H(I + S),
where H is a compact, nonnegative operator, and S is a compact operator with -1
: or(S). Then, T has at most finitely many negative eigenvalues, and

Proof. See [7, Chap. V, Thin. 11.4]. [-1

These theorems can be immediately applied to the operators considered in
Theorem 3.

THEOREM 9. Suppose the hypotheses of Theorem 3 hold, and let T, H, and S be the
operators in the conclusion.
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i) Suppose H is of class c@ for some p > O. Then the principal vectors of T and T*
are complete in X. For any e > O, all but finitely many eigenvalues of T lie in the sector
-e <argA <e.

ii) ff a nondecreasing function q exists on [0, oo) satisfying (2.1) and (2.2) for
some 3’ > O, then

n(r; T)
lim 1.
r-,oon(r;H)

iii) If T is self-ad]oint, then T has positive eigenvalues and

Proof. The proof follows immediately from Theorems 3, 6, 7, and 8. 1
By Theorem 9 and the remarks at the beginning of this section, the conclusions

i)--iii) hold for the eigenvalues and principal vectors of the problems a(u, v) A(u, v).
In particular, by iii) if a(.,.) is Hermitian, then T is self-adjoint and the large
eigenvalues of a(u, v)= A(u, v) differ from the large eigenvalues of h(u, v) st(u, v)
with small relative error.

3. Examples. Several applications of the results from 2 are outlined in this
section. These applications were chosen to illustrate the flexibility of this approach to
studying the spectral properties of elliptic differential eigenvalue problems.

The first example involves an elliptic partial differential operator of order 2m
with Dirichlet boundary conditions. The spectral properties of these operators were
studied by Browder and Agmon (cf. [5], [1], [3]). The second example includes two
Steklov type eigenvalue problems. In the first problem, the eigenvalue parameter
appears in a boundary condition and in the differential operator. In the second
problem, the eigenvalue parameter appears only in the boundary condition. The
spectral properties of problems of the latter type on Riemannian manifolds were
studied by Koevnikov [10] who used the theory of pseudodifferential operators. In
both cases, if the problem is self-adjoint, it is shown here that lower order pertur-
bations in the boundary conditions do not disturb the large eigenvalues very much.
The final example involves a system of ordinary differential operators arising in the
linearized theory of hydrodynamic stability. This is the general Taylor problem,
the spectral properties of which were studied by Di Prima and Habetler [6]. In this
example it is particularly easy to apply the results of 2, and the result is a simpler
proof of the completeness of the principal vectors of the general Taylor problem than
is in [6].

The following notation and fundamental facts will be used. Let fl be a bounded
domain in ff" with boundary F. For simplicity, F will be assumed smooth. Let
dx dxl.., dx, denote Lebesque measure on iq, and ds surface measure on F.
Suppose that E(D.) is the space of complex valued C functions on 12 with Coo
extensions to F, and () is the subspace of E(O) formed by the functions with
compact support in . For any real s, let H(), H (F) denote the Sobolev spaces of
order s on and F respectively 11 ]. For any positive integer k, let H() denote the
subspace of H () formed by functions satisfying

OU ok--lu
On On
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on F in the sense of trace [11], [4]. Denote by I[’[[s, (’,"), the norm and inner product
of H’(fl) and by (.), (., ), the norm and inner product of HS(F).

For sl > s2, H’I(tl) is compactly imbedded in H2(fl). A similar statement holds
for HS’(F) and HS2(F). For any positive integer k, Ho (t-l) is compactly imbedded in
H(a),

As the first example, consider the eigenvalue problem

(3.1)
Au Xu infl,

OU om-lu
U

On Onm-1
0 on F,

where A is the uniformly strongly elliptic operator of order 2m defined by the
expression Au =(-1)llDt(aD"u)+cu, where ce and/3 are multi-indices, and 0<
I 1, It l--< m. Assume that a, c e E(fi), at is real valued and at at for Icl [/31
m, and there is an c0>0 with a"scsct>01l2 for any eHn. The summation
convention is assumed.

Problem (3.1) can be put in the context of 1 by posing the problem in terms of
forms. This will be called a variational formulation of the problem. Set V--/-/g’ (f),
X H(fl), a(u, v)= Ia a’DuD6+cu dx, 0 < Is[, I1 <-- m, and h(u, v)=
J, aD"uDe+ (Re c)ue dx, I1 Il m. The forms a(.,. ) and h(.,. ) are bounded
on V, and h(., ) is Hermitian. Moreover, it follows from GSrding’s estimate (cf. [2])
that (1.1) and (1.2) hold provided Re c >0 and is large enough. It can be assumed
without loss of generality that this is true. For if not, add a suitably large positive
constant y0 to c. This has the effect of shifting the eigenvalues of (3.1) by y0 and
leaving the principal vectors unchanged. The results of 2 for the unshifted problem
are then easy to reinterpret.

Recall that the operator * is defined by a(u, v)=(u, s*v) for all u e V. It
follows from regularity theorems (cf. 1 1 ]) that D(s*) He"(D) f-’l Hg’ ()) and sO*
A’ (the formal a2joint of A). Thus, for I) GH2m()f"IH(.), h(u,]v)=k(u,v)=
Ia(u(-1)IID (a D6)+i(Imc)uO)dx, where 0<l l/[t l<2m. Thus can be
immediately extended to any v H2’n(f). Call this extension . It follows from the
estimates of [12], that for any integer k such that 1-< k, c llvll - for some
positive constant ck. But then . can be extended by continuity to a bounded map ]
from X H(O) into H(I) that is bounded from Hk-(f) into H (D.), for 1 _-< k _-<
2m. The map is compact when considered as an operator on H(f).

Suppose -1 were an eigenvalue of ] with eigenvector v e X. Then ]v =-v and
consequently v H2m(-) 1H ([-). Thus v (s*), ]v v v, and sC*v
(I+])v--O. But this contradicts the fact that s* is injective. Consequently J
satisfies the extension property and Theorem 9 applies.

The operator H, defined on H(f) by h(Hf, v)= (f, V)o for all v V, is of class
(92k if 2mk > n/2, and n(r, H)= corn O(Fn/2m) as r approaches oo (cf. [2]). Thus
the principal vectors of (3.1) are complete in H(O). The eigenvalues of (3.1) (or a
suitable translate of them) are, except for possibly finitely many of them, in the sector
-e < arg A < e, and the number of eigenvalues of (3.1) in the circle of radius r is
Corn/2" + o(rn/2m).

As a second example, two Stekov type boundary value problems will be consi-
dered"

On
(3.2a) Lu Au in 1, -2-- +/3u Au on F,
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and

OU
(3.2b) Lu=O in, --+/3u=Au onF.

Ou

The operator L is the uniformly strongly elliptic operator of order 2 in 1 given by the
expression Lu -(a’Tu,i),j + biu,a +cu, and OnaJu,ni. In this example .,-=
0 ./Oxi. Assume that a , b , c e E((I),/3 e C (F), a ii is real valued, a i aji, and there is
a constant c >0 with aiitji >=112 for all :Rn. Let

Co: min ]hi(x)[, and /3o:min Re/3(s).
x sF

i=l,...,n

It can be assumed without los.s of generality in (3.2a) that Co>=b2/(2a)+a/2 and
/30 > 0 (otherwise add a suitably large positive constant 3’ to c and/3). Suppose that in
(3.2b), Co=> b2/(2ce)+ ce/2, and without loss of generality assume/30>0.

To get an appropriate variational formulation of (3.2a), let X be the completion
of E() with respect to the norm I" I=(11 [l+( >()1/2, V-- HI(),), and set

and

a(u, v) I (a q
u,iv,j + b u, + cu) dx + uds

u,v,i +(Re c)uO) dx + (Re )u6 ds.

The inner product on X is (., )= (., )0 + <’, )0.
It follows from the trace theorem that 1.1_-<cI1.11 / /2 for s>0, [111.

Consequently, V= H(f)is compactly imbedded in X and since I1" Iio=<[ l, X is
contained in H(f). The forms a (., ) and h (. ) are bounded on V and satisfy (1.1)
and (1.2). Furthermore, the form

k(u,/.))= Ill (biu’i +(Im c)u)dx + Ir (Im )u6 ds

satisfies (1.5), Ik(u, )l<-Cllull,l l, as straightforward estimation shows. Thus,
Theorems 3 and 9 apply.

If k + 1/2 > n/2, the operator H in this problem is of class 2k (cf. [9]). Thus, the
principal vectors of (3.2a) are complete in X and all but finitely many eigenvalues are
in e < arg A < e for any e > 0. Suppose b 0 and c,/3 are real valued; then a(., )
h(., .) is Hermitian. If/3 is perturbed by some real valued function/3o defined on F,
then by Theorem 9 part iii), it follows that the large eigenvalues of the perturbed
problem differ from those of the unperturbed problem with small relative error.
Roughly speaking, lower order perturbations in the boundary condition do not alter
the large eigenvalues much.

A variational formulation of (3.2b) is given by

(3.3) a(u, v)= A(u, V)o for all u, v e HI(-).
If U is the map from H(F) into H() defined by: a(Uf, v) (f, v)0 forf H(F) and
v H(f), then the eigenvalues of (3.3) are the characteristic values of the compact
operator U- on Hl(f), where - is the trace mapping from H(12) into H/2(F). This
variational formulation of (3.2b) does not fit into the context of 1. However, an
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auxiliary variational problem can be defined on H1/2(F) that fits into the context of
1, has the same eigenvalues as (3.3), and has principal vectors that are the traces of

the principal vectors of (3.3) on H1/2(1-’).
For q e H/Z(F), let q be the weak solution of the Dirichlet problem Lq 0 in ,

q =q on F. The solution p is unique and is contained in H(D.). If q H+I/2(F)for
a->0, then q$H+I(D.) and IIg311+1_-<C(0)+1/2. By the trace theorem, (1/C)
(q)1/z_-<llpl[1 (el. [11]). For q, qe H1/Z(F)let a(q, )--- a(q$, ), h(p, 0)-= h(q, ), and
k(q, q)= k(q, ), where a(.,.), h(., .), and k(., .) are defined as in (3.2a). It is
easily seen that these are well-defined bounded forms on H/Z(F), and a(-,.) and
h(-,. satisfy (1.1) and (1.2). Let V= H/z(F), X H(F), and consider the varia-
tional problem

(3.4) a(q, 4’)= h(q, 4’)0 for all 4’ V.

Problem (3.4) fits into the context of Theorem 9 (see below). Moreover, if is the
operator defined by a(f, 6)= (f, 4’)o for f in X and all 4 in V, then it is easily seen
that = rU (cf. [9]). From this it follows that the eigenvalues of (3.3) and (3.4) are
identical, and the principal vectors of (3.4) are the traces of the principal vectors of
(3.3) on H’/2(V).

The form k(., .) satisfies (1.5). To see this, note that Ik(q, 4,)]=[k(q, 6)1_-<
c{ll lllll6110+<}0( }o}--< But by the estimates in [12]; [13];
1[[10-<1[[[1/2--< C"(P)o, and this implies that (1.5) holds for k{.,. }.

If U, is the map from X H(F) into HI(D.) defined by a(u, U,f)= (u, f}o for f
in X and all u in Hi(D,), then *, the adjoint of ]P on X, is equal to zU,. Thus,
I2k=(*)k=(rU,ru)k. Using the regularity properties of U, and U, it can be
shown that if 2k +1/2 > n/2, I2k is of class (2 and so P is of class 4k (cf. [9]). Since
-/2/(I +) and 1 o’(), /2/= (I + )-1 , and thus is itself of class cgak. From
Theorem 9, it follows that all but finitely many eigenvalues of (3.2b) are in the sector
-e <arg h < e for any e >0, and the traces of the principal vectors of (3.2b)on
H1/z(F) are complete in H(F).

As the final example, consider the general Taylor problem:

(3.5)
(DD*- a2)2 ax/Tf(x)

2) 0 p
U =A U,

a/Tg(x) -(DD*- a

where D d/dx, D* D + /(1 + x), 0 <- <= 1, a, T, and v are positive constants,
f(x), (gx) are in L(I), and I= (0, 1). Equation (3.5) is assumed to hold for all x e I
with boundary conditions u Du u 0 at 0 and at 1, where .u (u, u)r

Let V Hg U)(R)H (). For .u, .v e V, set

h(.u, .v)= f (1 +x){DuDO +2a2D*uD* +a4u+D*uD*+au2} dx,
Jo

and

a(.u, r) h(.u, .v)+ k(.u, r)

h(.u, . )-[-- 6 Jo U*u’U(Al) dx + 26 J0 D(Au,)DO, dx

+ (1 + 6x)ax/T(N251 + gu152) dx,

where A A(x)= 6/(1 + 6x). Let X be the completion of @(I)x E(I)with respect to
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the inner product

J0 (1 + tx){D*ulD*Ol + a2ulO1 + ,u252} dx.(.u, .v)=

Then (3.5) has the variational formulation" a(.u, .v)= A(.u, .v) for all .v e V.
Straightforward estimation shows that the inner product (., ) is equivalent to the

standard inner product on H (I)@H(I). Thus, X-H (I)O)H(I), and so V=
H(I)O)H (I) is compactly imbedded in X. Furthermore, there is a suitably large
positive constant 3’0 such that a(.u, .v)+ yo(.U, .v)= (h(.u, .v)+ yo(.U, .v))+ k(.u, .v) satisfies
(1.1) and (1.2). Finally, it is easily seen that k(.u, .v) satisfies (1.5). The operator ./4,
defined by h (.HI, v.)+ yo(.I--If, .v)= (f, .v) for f in X and all .v in V, is of class c2 on X. In
fact .Hf=(Hlfl, Hzf2)T, w’here/4"1 is of cass (92 on H(I) and H2 is of class (92 on
H(I)’(cf. [9]). By Theorem 9, the principal vectors of (3.5) are complete in H (I)@
H(I), and all but finitely many of the eigenvalues of (3.5) lie in the sector -e <
arg (A + 3’o)< e for any e > 0.
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SINGULARLY PERTURBED LINEAR STOCHASTIC
DIFFERENTIAL EQUATIONS*

G. BLANKENSHIP" AND S. SACHS$

ORDINARY

Abstract. Singularly perturbed linear differential equations with random forcing functions have
recently been studied as models of control and filtering systems. The analysis in these studies has been
somewhat formal, and important properties of the boundary layer behavior have been neglected as a
consequence. In the present paper we examine the asymptotic analysis of systems of this type using some
limit theorems from the theory of stochastic processes. We show that a natural separation of time scales
occurs between the "outer" and "boundary layer" solutions and their respective stochastic fluctuations. A
total of four basic time scales is necessary for a complete description of the solution. The separation of scales
is characterized by a parameter e related to the time constant of the parasitics (fast subsystem) and the
correlation time (inverse of bandwidth) of the stochastic fluctuations. We show that certain diffusion
processes may be identified as the natural limits as e-> 0 of the "outer solution" and the "boundary layer
correction" of the original system.

1. Introduction and problem statement. Singularly perturbed deterministic
ordinary differential equations have received considerable attention over the past
decade as models of engineering systems (see [1], [2] for a survey of results and
applications). Typically, systems of the form

d
(1.1a) -x(t, e)= AlX(t, e)+A2y(t, e)+ f(t, e)

d
(1. lb) e-y(t, e )= A3x(t, e )+ A4y (t, e )+ g(t, e

x(O,e)=xoR n, y(O,e)=yoR’, O<-t<- T,

have been studied. We identify the "outer solution" (f(t, e), 37(t, e)) of (1.1) as the
solution of

d
(1.2a) -Y(t,e)=(A1-A2A-’A3)Y(t,e)+f(t,e)-A2A21g(t,e)

d
e-(t, e )= A3(t, e )+ A4(t, e )+ g(t, e)

(1.2b) ,f(O, e) Xo, (O,e)=yo+A-IA3xo
and the "boundary layer corrections" as

(1.3)
X0", e)= x(e’, e)-(e’, e)

YO’, e y (e-, e )- )7(er, e

in the fast time scale

(1.4) ’=t/e.

Under simple smoothness conditions on f and g, one may prove

(1.5) lim (x(t, e), y(t, e))= (x(t), y(t)), 0 < -< T,

* Received by the editors March 11, 1977, and in revised form October 17, 1977. This work was
supported in part by the National Science Foundation under Grant ENG75-08613.

t Division of Electric Energy Systems, Department of Energy Washington, D.C. 20545. On leave from
Case Western Reserve University, Cleveland, Ohio 44106.

: Systems Engineering Department, Case Western Reserve University, Cleveland, Ohio 44106.
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where (x(t), y(t))satisfies the "reduced system"

(1.6)

d -1-x(t) (A1-A2A A3)x(t)+f(t, O)-A2A-ag(t, O)

y(t) -A]-1 (A3x(t)+ g(t, 0)); x(0)=Xo

and lime o (X(r, e), Y(r, e))= (0, Y0")) where

(1.7)

and

dyO(r)= A4 yO(z) + y(r),
d

Y(O) yo + A-dAXo

(1.8) y(r)= lim g(er, e).
e--0

On the closed interval [0, T] we have the uniform approximations

(1.9)
x(t, e x(t)+ O(e ), 0 <= <-- ’,

y(t, e)= y(t)+ Y(t/e)+O(e), O<_t<_T.

The asymptotic analysis of (1.1)as e -->0 has two basic features:
(i) Order reduction characterized by the difference in dimension between that

(n / m) of system (1.1) and that (n) of the reduced system (1.2),
(ii) Separation of time scales of order 1/e between t, the natural time scale of the

outer solution, and r, the natural time scale of the boundary layer correction.
(For an elaboration and details of the analysis summarized above see [1] and the

references therein.)
Recently, the analysis of (1.1) has been extended to the case when the functions

f(t,e), g(t,e) are stochastic processes. In each of the papers [3]-[11] it has been
assumed that f(t, e), g(t, e) are "white Gaussian noises" independent of e. With this
hypothesis the outer solution (x(t), y(t)) will be a Gauss-Markov process and the
limit (1.5) is a limit of Gaussian processes. However, because g(t) is a white noise, the
analysis of the boundary layer behavior (1.3), (1.6) is much more delicate than before,
and it is at this point that the formal analysis in [3]-[11] is weakest.

In this paper we reformulate the model (1.1) in the case when the forcing
functions are stochastic processes in a way which clarifies the relationships among the
time scales of the slow (1.1a) and the fast (1.1b) subsystems and their stochastic
elements. Specifically, we consider the system

(1.10a)
d 2) 3)-X =Al(t)x +A2(t)y+lf(t/ee +lg(tlee

(1.10b) e-y=A3(t)x+A4(t)y+e (fie +e (t/e

x(O)=xo6R", y(0)=yo6R’, O<-t<-T.

Here Ai(t), 1, ..., 4 are matrices of appropriate dimensions, and we assume that
the stochastic processes f(s), g(s), h(s), ](s) are independent, zero mean processes
which are rapidly mixing in a sense made precise below (equation (2.2)).
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To illustrate the asymptotic behavior of the stochastic elements, suppose that the
processes f, g, h, ] are bandlimited. That is, we define

cb(s)= Ef(t)fr (t + s)
(1.11)

5/(09)= Jo ei’t(t) dt

and suppose S(to) O, Iw] -> wo > O. Consider the process

(1.12) / (t) lf(t/e2);
E

then

(1.13)

and

I) (s) Ef (t)(f (t + s))r

,(s/1

S (oa) I ei’’dp (t) dt

(1.14)
2-0, Iol >_- oo/

2That is, we may regard lie as the normalized bandwidth of process [ (t), and, as the
bandwidth approaches infinity, f’(t) approaches a white noise. (The noise (1/e)g(t/e 3)
0 as e 0 and is introduced in (1.10a) for symmetry. 1)

The e on the left side of (1.10b) summarizes the effect of "parasitic elements"

(see [2]), defining the length of time (O(e))over which those elements have a

significant effect on the system behavior. In writing the model (1.10) we have presup-
posed a normalization of the time so that e also parameterizes the stochastic
fluctuations. That is, suppose > 0 is identified as the normalized time constant of the

parasitic elements in the usual way [2] and lip 2 is identified as the normalized

bandwidth of the disturbances as above; i.e., in (1.10), f(t)=(1/p)f(t/p2), etc.

Suppose there exist a, b, e > 0 so that
2 2 2(1.15) p =a e /x=be.

If we define the new time scale s t/b and the new variables

fi, i(s) bai(bs), i= 1, 2, i(s)= ai(bs), 3, 4.

(1.16)

f s --e f( ab2 2) b [ bs)(S) -a-ffga3e3

" (s -a-ffh\a 2
e

/’ (s)= e/’( abs 3

(s)= x(bs), f(s)= y (bs),

Convergence is weak convergence in the set of probability measures on C([0, T]). See Lemma 3.1
below.
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then the normalized system (1.10) results. Thus, (1.10) implicitly assumes a relation-
ship of the form (1.15) between the scalings of the parasitic elements and the
stochastic fluctuations.

The asymptotic analysis of (1.10) proceeds as follows. We identify

(1.17) /(t) lim 1--f(t/e2), /-:/(t) lim 1--h(t/e2)
e-O E e-O

as the vhite noise limits of f (t) and h (t) in the sense of (1.13), (1.14). Then the pair
(x(t), y(t))defined by

d
-x(t [a (t A 2(t)a -1 (t)a 3(t)]x(t x/-a 2(t)a -1 (t)I(t + /-l+(t),

x(0)=Xo, 0=<t-<T,
(1.18)

y(t) -A- (t)(A(t)x(t + x/-I:-I (t ))

is a logical candidate for the limiting solution of (1.10) as e-+0. The limit Y(r)=
lim_,o Y(r) of

dr
(r)= A4(0) (r)+

8
2)

(1.19)
Y(0) yo-y(0), r =>0,

is a logical candidate for the "boundary layer correction." We may anticipate that

Y(r) A4(0) Y(r)+4(r)

(1.20)
Y(0) yo- y(0), r _-> 0,

where )(r)= lim ,o (1/e)j(r/e 2) is a white noise.
In 2 we give conditions on Ai(t), f(t),. , so that these conclusions hold. A

precise statement of the results is given in the theorem and its proof.

2. Formulation and statement of the theorem. Let (, 0%, P) be a probability
space and let f(s), g(s), h(s),/’(s), s ->_0 be random processes defined on (, , P). We
assume

(A1) The processes f(s),...,/’(s); s >-0 are independent.
(A2) Let k(s) stand for any one of (f(s),...,/’(s); then k(s) is a zero mean,

stationary, ergodic process with autocorrelation

(2.1) R (t) Ek (s)k T (s + t)

which satisfies

(2.2) tllR (t)ll dt < oo

where [1.11 is an appropriate matrix norm. Also, k(s) has bounded trajectories which
are right continuous and have left-hand limits at every point.

(A3) The matrices Ai(t), 1,..., 4, are continuously differentiable on 0 -< t-<_

T and independent of e. Also, all the eigenvalues of A4(t) have negative real parts for
O<_t<__T.
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LEMMA 2.1. Let k(s), s >-_ 0 satisfy (A2) and let

(2.3) K (t)
1 f’ 2)k(s/e ds, 0 <t < T.

Jo

Then K (t) converges weakly 2 in C[0, T] to K(t), a Wiener process with zero mean
and covariance

(2.4) EK(t)(K(s))r=(f 2R(u)du) min(t,s).

Proof. See Khas’minskii [12, Lemmas 3.1, 3.2, 3.3], where it is also shown that
there is a c > 0, independent of e, so that

(2.5) ElK (t + 6)-K (t)l4 C2, sup ElK (t)l 2 _-< c.
OtT

LF.MMA 2.2. Let A(t) be an n x n matrix-valued, continuous function on [0, T]
and let k (s), s >= O, satisfy (A2). Then the process x (s) defined by

d 1
k )--x(s) =A(s)x (s)+ (s/e

ds e
(2.6)

x(0)= Xo, O<=s<-T,

approaches weakly in C[0, T] the solution x(s) of
dx(s) a(s)x(s) ds + 4- dK(s)
x(0) Xo, 0 -<_ s <= T,

where K(s) is the Wiener process identified in Lemma 2.1. Moreover, .for any smooth
function f R" R, s >- t.

(2.7) [E(x (s))lx" (t)= x, o/]-E[f(x(s))lx(t)= x]l <= ec(f, T, x)

]:or some constant c > O, dependent on f, T, x, but independent of e. Here ,o is the
tr-algebra generated by k (r), 0 <- r <- t.

Proof. See Khas’minskii [13], Papanicolaou and Kohler [14], and [15].
Remark 2.1 [14]. The result (2.7) is not implied by weak convergence; in fact, it

plays an important role in our proof of weak convergence. As a consequence of (2.7),
moments of any order of x (s) converge to the corresponding moments of any order
of x(s). The O(e) estimate on the right of (2.7) is consistent with the central limit
theorem and is the best possible. It was not achieved by Khas’minskii in [12], [13].

Remark 2.2. Suppose that the process k(s), s >= O, is Markov with state space
S c R" and generator O. Then the pair (x(s), k(s)) is Markov with state space
R" x (S 1 / e) and generator

(2.8) L, =(A(t)x)r
0 1 r 0 1_+ k + O.
Ox e Ox e

As e 0, x (s) approaches a diffusion Markov process x(s) with state space R" and
generator

(2.9) L, (A (t)x + trace R (u dUx
That is, weak convergence of the associated probability distributions. See [12], [1"7] for details.
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(here O/Ox =gradiant, 02/OX2= Laplacian). Thus, the limiting behavior of (2.6) as
e-+ 0 is singular in the sense that an order reduction occurs. This is parallel to the
observation (i) made in 1 on order reduction in singularly perturbed deterministic

2problems. Note also that the natural time scale of the disturbance process k (s) is s/e
relative to the natural time scale s of the system variable x (s). Thus, the system (2.6)
exhibits a separation of time scales analogous to observation (ii) in 1.

Let f(t), g(t), h(t), ](t), >-O, be the processes in (1.10) and let

O(t)- Ef(t)fr (0), r(t)- Eg(t)g (0)
(2.10)

II(t) Eh(t)h 7- (0), A(t)= Ef(t)j 7" (0)

and let F(t), G(t), H(t), J(t), >= O, be the limiting Wiener processes associated with

f (t),..., ] (t)in the sense of Lemma 2.1.
Associated with (1.1 0) we define an "outer solution" ($ (s), 97 (s)) by

dY’(s) [Al(s)-A2(s)A-l(s)A3(s)].g(s)+!f(s/e A22)_ (s)a’ (s-h(s/e 2)
ds e e

1_h )(2.11) ed;(S)=A3(s)Y(s)+A4(s)(s)+ (s/e
ds e

(0) Xo, ; (0) -A’ (0)A 3(0)Xo, 0_-< s =< T,

and the "boundary layer corrections"

x()=x()-()
(2.12)

Y (o-)= y (eo-)- 37 (eo-).

THEOREM. Under assumptions (A1)-(A3) the system (1.10) has a unique solution
x (t), y (t), 0 <= <= T which satisfies

(2.13) lim x (s)= x(s)

(2.14) lim y(t) dt- w(s 0
$0

where the limits are taken weakly in C[0, T] and x(s), w(s) satisfy

dx(s) (A I(s)-A2(s)A (s)A3(s))x(s) ds -,/-A2(s)A; (s) dH(s)+ x/- dF(s)
(2.15) xO(0) Xo, O<=s<=T.

(2.1 6)
dw(s -A -1 (s )[A 3(s )x(s ds + 4- dH(s )]

w(0) 0, 0 < <s-- To
The boundary layers X (o-), Y (o-) satisfy

(2.17) limX(o-)= 0, lim Y(o-)= Y(o-)
$0

(weakly in C[0, Tx] for any fixed T1 > O) where

(2.18)
dY(o-) A4(0) Y(o’) do" + 4- dJ(o")

Y(0) yo +A’ (0)A 3(0)Xo, 0 -< o" =< T1.
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Remark 2.3. Note that the limiting behavior of the system (1.10) is singular in
two senses---first, in the sense of an order reduction as in deterministic problems
(Remark 1.1), and second, in the stochastic sense (of Remark 2.2) of a decrease in the
size of the past information r-algebras (or state in the Markov case).

Remark 2.4. Evidently, the process g(t)plays no role in the limiting behavior.
3)The process (1 !e)j(s!e acts as a wide band noise disturbance to the "fast subsystem’

which describes the boundary layer correction Y’(r). Its presence completes the
symmetry between (2.15) and (2.18). Note that the system (1.10) has four basic time
scales: (i) s, the natural scale of the dominant system state x (s); (ii) r s/e, the fast

2time scale of the boundary layer correction Y (r); (iii) r s/e the time scale of the
2 3disturbances to the outer solution (2 (s), 7 (s)); and (iv) er/e s/e the time scale of

the disturbances to the boundary layer correction Y (r). Or, in another sense there
are two pairs of time scales (s, s/e2), (er, r/e2). In a stochastic system with small
parameters el,’’’, 6"1 (see for example, [16, 3], and [10, Chap. 4]) there would be
21 pairs of time scales.

Remark 2.5. The network of Fig. 1 has the description

(2.19)

d
-77P A lP + A2q + e8 (t) + bu(t)

d
e--Tq A3P + A4q + eT(t)
at

where a M2-LIL2, p(t)= Ix (t), y(t)] T, q(t)= [z (t), w(t)] T, and

(2.20)

A1
-R2M R1

A2
L2 a M L2

( 0 C71 (1/(R3C1)n3= C-1 0 ]’ A4=-
0

fl(t)= /2(t)]’ /l=--(Llr/2-M’/X)a

/32 1(L2r/1- Mr/2) "Y1 -l/’l/C1, ")/2
a

Using a result of Chang [19, p. 522], we introduce the variables

(2.21)

where T, S satisfy

(2.22)

4(t) q + T(t, e)p, p + eS(t, e)4

dT _IA -1
e 4T- TAI + TA12T-e A3

dt

-I -1AdS
(A1-AzT)S-e S(A4+eTA2)-e 3.

dt

Existence of solutions S(t, e), T(t, e) uniformly bounded on [0, T] [0, eo], for some
eo> 0, is guaranteed by the simple structure of A 1,’", A4. Moreover for 0 < < T,

(2.23) lim T(t, 6.)= A-IA3, lim S(t, 6")= -A2A-
e$0 $0
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u(t)

xR(
erie(t)

.L
(t) ">R(

FIG. 1. Network containing parasitic and fluctuating elements.

In terms of the variables/, , (2.19) becomes (assume u(t)= 0 for simplicity)

(2.24)

d/= fl l(t, e)/ + e(t, e)
dt

-" fl4(t, 14 + e’(t, e

where

A1 =A1-A2T
(2.25)

A4 A4 + eTA2
and fi(t, e), 3(t, e), are obvious. To apply the results of the Theorem, we assume

(2.26) i(t, e )= aio(t)+ e2fi, i(t, e ), 1, 4,

where Ai(t, e) is regular in e. Let ql(t) be the fundamental matrix associated with A lo

on [0, T], and 4(t) with A4o. Introducing the variables

/3(t) dP-a(t)(t), 4(t) l(t)4(t
fi(t, e )= ]-l(t)fi(/, e ), 3(t, e )= 1(t13 (t, e

(2.27)
i(t, e)= 7,1(t)fi, icbi(t), 1, 4,

we have

d/3 2A (t, e )/3 + eft (t, e"-E
dt

(2.28/
dq
E--- E 2z4(t, E )q "b e(t, e ).

Assuming that (t) and (t) have zero mean, that

(2.29)
(t) [(t)+ g(t/e)

(t)=h(t)+](t/e),
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and introducing the slow time variable s ezt in (2.28) and the variables

2)x (s) (s/ ), y (s) 4(s/
(2.30)

ai(s) Ai(s/e2), i= 1, 4,

we can convert (2.28) into the form (1.10). The hypotheses (2.26) and (2.29) are easy
to interpret in terms of the circuit in Fig. 1. Note that the small fluctuation noise
sources eft(t), ey(t) in Fig. 1 affect the system dynamics at times greater than e -2,
and that the effect is a diffusion process.

3. Proof of theorem.
LEMMA 3.1. Let g(t) satisfy (A2) and let

(3 1) G(s
1 [ g(t/e3)ds;
E ao

then limso G (s) 0 in C[0, T].
Proof of lemma. Let F(t) be the autocorrelation function of g(t). Then

(1 IoS IoS- ( ’t-u )1/2EIG(s)] <- tr F\ e ]
dtdu

$/e3 $/e3 1/2

( 4f fo(3.2) e tr F(t- u) dt du
-’o

1/2

<=(eSnlo [[F(t)lldt)
Here tr is trace and n is the dimension of g(t). Thus, lim+o EIG (s)l 0. Also, using
(2.2) and an integral estimate of Khas’minskii [12, Lemma 2.1], we have

(S+)E (S+)/E

Ela(s+6)-a(s)14-e Egi(tl). gi(t4)dtl. dt4
as/ .s/

(3.3) 2 2<=e6c

for some constant c depending on F and T, and each component G7 (t)of G (t). Since
G(0)=0, we conclude that E[G(s)14<oe, and this together with (3.2) and (3.3)
implies weak convergence [17]. Q.E.D. (Lemma 3.1.)

LEMMA 3.2. Let A(s), i= 1, ..., 4, and f, g, h satisfy (A1)-(A3) and let (s),
the "outer solution," satisfy

d -A2(s)A21 (s)h(s/e +-f(s/e
ds

$(s)=[AI(s)-A2(s)A-I(s)A3(s)]$ (s)-18 2) E1 2)
(3.4)

-(0)x =Xo, 0<s<T"

then with x(s) given by (2.15) we have

(3.5) lim $ (s) x(s).
e$0

Proof ofLemma 3.2. Let

(3.6) F (s) _1 f(t/e 2) dt, /- (s)
1 A2(t)A_2a(t)h(t/e2)d
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then there exists a continuous reciprocal kernel L(s, t) so that

(3.7) g(s)= t(s)+F(s)+ L(s, t)[t(t)+F(t)l dt + go(S)

where go(S) is the initial condition response. To see this, use the variation of constants
formula for the solution of (3.4) and integrate by parts. Since g(s) in (3.7) is a
continuous functional of (F,/-)), and (F,/-) converges weakly to (F,/_)o) for
some Brownian motions F(s), t(s) (by Lemmas 2.1, 3.1), (x, F,/_)o) is a limit
process for (x , F,/-)’) in the sense of weak convergence and it must satisfy (2.15.).
Uniqueness of solutions of (2.15) gives the desired conclusion. O.E.D. (Lemma 3.2.)

Remark 3.1. It is a simple matter to extend the moment estimate (2.7) to show
that (s) has moments of order four bounded on 0 <= s <= T.

Now by the assumption (A3) there exists a > 0 such that the real part of every
eigenvalue of A4(t) has absolute value => 2a. Therefore by [18, Lemma 1], the linear
equation

dp
A4(t)p, 0 < < T,(3.8 

has a fundamental matrix P" (t) satisfying

(3.9) lIP (t)(P (s))-lll <= exp (-a(t s)/e ),

for some c > 0 independent of e.

LEMMA 3.3. Under assumptions (A1)-(A3)

O<=s<_t<_T,

(3.10) lim x (s)= x(s)

weakly in C[0, T].
Proof. With Y(s) from (3.4) let z(s) x(s)-g(s); then

1 2)]d 1 3) (s)a-l(s) a3(s)Y(s)+_h(s/ed-Z(s)=Al(s)z(s)+A2(s)y (s)+-g(s/e +A2
E E

(3.11)
z(0)= 0, O<=s<=T.

Now from (1.10b)

(3.12)

y(s)= eA-(s) d y(s)-A-(s)A3(s)x(s)
ds

_A-l(s)lh(s/e 2) A- (s)-](s/el 3).
E E

Let A(t)=Al(t)-A2(t)A-l(t)A3(t); then using (3.11), (3.12)we have

(3.13)

d d

d-z (s A (s )z (s + eA2(s)A-1 (S)ss y (s)

_Az(s)A-I(s)I__f(s/e 3) nt___g(s/E3)zl (0) 0
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or

z(s) A(t)z(t)dt+eAe(s)A-l(s)y’(s)

d
(3.14) -eA2(O)A2(O)yo-e -(A2A- )(t)y (t)dt

1 IoS a e(t)a- (t)j(t/e 3) dt +-1 IoS g(t/e 3) dt.
E E

Let P(t) be the fundamental matrix associated with Aa(t)/e via (3.8) and let
P (t, r) P (t)(P (r))-1. Then

lfot llo’y (t) P (t)yo +- P (t, r)a 3(r)z (r) dr +- P (t, r)a 3(r).f (r) dr
E E

aIot 2) llo __lj+- P(t,r) lh(r/e dr+- P(t,r) (r/e 3) dr.

Using (3.14), (3.15), we wish to show

(3.16) E[z (t + 6)- z (6)14 <- c.62
(3.17) Elz (t)l4 -< c

(3.18) lim E[z (t)l 0
e$o

which will establish the weak convergence of z (s) to zero, and so, (3.10).
Using the boundedness of Ai(t), etc., and the identity

IotP (t, r)N(t) dr -e [A- (t)N(t)-P(t)A- (O)N(O)]
(3.19)

p d
+ (, r)(A2 (r)N(r)) dr

and introducing

0(t) 1 3)g(r/e dr

(3.20) (t) P(t, h(r/e)dr

j(l e (t, 1(/r
E

then we find there is a positive constant K so that

( 1o’ o’ r) 1 1
(3.21) ly (t)l g 1 +- z (r)l dr + lY (t)l + I (r)l d +-I (t)l +-I (t)l.

8 8

From (3.14)and (3.21)we have

[z (s)[ N g ]z (t)[ dt + e 1 + IZ<s)l + [Z (t)l d

5o t) ( fo t)(3.22) +K(ID"(s)l + [D(t)l d +g [Y(s)[ + l] (t)[ d
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for some constant K and

(3.23)

If A(t)= Ej(t).i r (0), then

Elr(s)l < e trace [A2(e3t)A-l(e3t)
a0 a0

A(t-r)A(er)(A21(e3))r] dt d)
e IIm(t-,)lldrd

aO aO

1/2

. (s) -1 A2(t)A_l(t)f(t/e 3) dt.
8

1/2

for some k, k’ positive. In a similar way we can show that EI("(s)l, EI/-(s)l, and
E[ (s)] are O(4).

Taking expectations in (3.22), using (3.24), the fact that (t) has a bounded
fourth moment, and Gronwall’s inequality yields

(3.25) sup Elz (t)l <= x/-c
O<_t<=T

for some c > 0, which establishes (3.18).
Also, using Khas’minskii’s integral estimate [14], we easily find ((, Ĵ , and /-

are handled similarly)

(3.26) sup E[J (s)l4 e2k
O<s<=T

for some k > 0. Taking fourth powers in (3.22), we have

io 4 2(3.27) EIz (s)[4 kl E[z (t)l4 dt + k2_, E]$ (s)]4 + k3e4 EI$ (t)l4 dt + e k4

for some ki >0, 1,. , 4. Gronwall’s inequality yields (3.17).
Finally, from (3.14) (3.21) we have

s+8 s+8

Iz(s+6)-z(s)l<=kl It Iz(t)ldt+ekz [ I(t)]dt

s+6

+K(l(s+6)-(s)]+
(3.28/ s+

+

for some k, k>0. Now for each component (s)of ] (s)
(+)/e (+)/e

8 f f ]i(tl) i(t4) dtl" dt4
/ /

(3.29)
Nk3e
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for some k3 > 0; ( (t),/- (t), and ,] (t) are treated similarly. Taking fourth powers in
(3.28), and using (3.29) and the bound on the fourth moments of " (t), we find

2(3.30) Elz (s -- )- z (s)14 c32e
which proves (3.16)and (3.10). Q.E.D. (Lemma 3.3.)

LEMMA 3.4. Let x(s), w(s) satisfy (2.15), (2.16), respectively; then [or y(s)
given by (1.10b) we have

l iN =o.

Pro@ Let the "outer solution" (s) be defined by

d 1
e ss 17 (s)= A 3(s)i (s)+ A4(s)37 (s)+-he (s/e2)

(3.32)
(o) -a2 (o)a 3(O)xo

and let q (s)= y (s)- 17 (s). Then

(3.33)

d 1
e -s q (s)= A4(s)q (s)+ A 3(s)z (s)---- i(S/F_, 3)

q (0) Yo +A-I(0)A 3(0)Xo

and it is clear from (3.25) (3.28) that

(3.34) lim q(t)dt=O.

If we rewrite (3.32) as

(3.35)

where

(3.36)

Io d7 w(t) dt e a- (t)- (t) dt + (s)

w (s)--=- A-l(t) A3(t)Y(t)+-h(t/e

a simple modification of the argument of Lemma 3.3 (integrating the first term by
parts, substituting the variations of constants formula for 7 (t) in the result, etc.) leads
to the conclusion

io(3.37) lim (t) dt w(s’).

Combined with (3.34), this yields (3.31) (or (2.14)) as desired. Q.E.D. (Lemma 3.4.)
It remains to establish the limit (2.17)

(3.38) lim Y(-)= yO(.)
e$0

for the "boundary layer" defined by (2.11)-(2.12);

(3.39) Y (z)= y (e’)-)7 (e’).
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Evidently,

=dY(7.) A4(e7.)Y(7.)+-j(7./s ,+A3(s7.)z (s7.)
d7. s

(3.40)
Y(0) yo-(-A-l(O)A3(O)xo), 0<=7"<= T1.

We may identify X (7") z (sT") x (e7")-2 (sT") as the "boundary layer" associated
with x (t). From (1.10a) and (3.4)

dX(7")= eA I(eT")X (7")+ eA2(sT")A-,’ (eT")A3(eT") (87")
dT"

(3.41) +sA2(sT")y(sT")+eAz(sT")Y(7")

+A;l(eT")h(7"/e)+g(7"/e2), Xe(0)= 0,

and it is a simple matter to show that

(3.42) lim X(7.) 0,
$0

provided Y (7") is well behaved in e. It is a simple matter to check that Y (7") is indeed
well behaved and satisfies (3.38).

This concludes the proof of the theorem. Q.E.D.
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A SATURATION THEOREM FOR
MODIFIED BERNSTEIN POLYNOMIALS IN Lt,-SPACES*

C. P. MAY

Abstract. A global saturation theorem for the modified Bernstein polynomials P.(f, t) is achieved,
where

(k+l)/(n+l)

P,(f, t)=p,k(t)(n+ 1) / f(u)du, fL,[O, 1], p->l.
"k/(n

1. Introduction. The Bernstein polynomials Bn(f, t) as approximation operators
on C[0, 1] have been studied extensively. In particular, the local saturation theorem
for Bernstein polynomials was first proved by K. de Leeuw [2]. He proved that Bn(f, t)
converges to f(t) at the rate O(1/n) if and only if [" Lo locally. This result was later
refined by G. G. Lorentz [9] who showed that

[f(t)-B(f,t)[<-Mt(1-t)/(2n), 0<_-t<_-l, n=l,2,...,

is equivalent to f’ Lipt 1. Note that the rate of convergence of B,(f, t)-f(t) is faster
near the endpoints 0 and 1.

In order to generalize the Bernstein polynomial to be an approximation operator
for L,[0, 1] functions, a modification was made by Kantorovitch ([6], see also [8, p.
30]). The modified operator is defined as

(1.1) P(f,t)=
k=0 (n)tk(x--t)-k(n+X)Jt,/(n+l)k f(u) du.

In the paper [3], Ditzian and the author obtained a local saturation result for
P,(f,t)onLp[O, 1], 1-<_p <+oo

THEOREM 1.1. ForfLp[O, 1], l_--<p<oo and O<a<ax<bx<b<l"
(i) [[P,(f, t)--f(t)l[t.pta,bl O(1/n), n -oo, implies f’ A.C.[a, b] and f" Lo[a, b]

for 1 < p < oo, or f A.C.[a, b] and f’ B. V.[a, b] for p 1. The converse implication
holds if the norm is Lo[a 1, bx].

(ii) ][P,(f, t)--f(t)[lLpta,bl=O(1/n) implies t(1-t)f’(t) is constant in [a,b]. Con-
versely, if t(1-t)f’(t) is constant in [a,b], then [[P,(f,t)-f(t)llLp,,l=O(1/n) as
n --- oo.In order to extend Theorem 1.1 to the entire interval [0, 1], we will make
appropriate modifications near the endpoints as in the case with Bernstein poly-
nomials. Let

((U t)2 t) p(t) 1
(1.2) tp,(t) P" 2 2(n + 1)- (riP(t))2+1 /

6(n /1)---, p(t) t(1 t).

Following Lorentz, it would be desirable to prove a global saturation theorem for
P,(f, t) on [0, 1] with the saturation order ff,,(t). This can be done if we allow a
correction term. If

n+l
(1.3) b (t) Pn(u-t, t)-(1-2t)/(2n)

n

then we have the following saturation result.

* Received by the editors December 9, 1975, and in final revised form October 10, 1977.
f Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada. This research was

supported in part by the National Research Council of Canada under Grant A4048.
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THEOREM 1.2. Let f Lp[O, 1], 1 <= p < +oo. Then
1) II,U (t)[e,(f, t)-f(t)-ck,,(t)P’,,(f, t)]ll---o(1) if and only if f’ A.C.[O, 1] and

f" Lp[O, 1]for 1 <p <oo, or f A.C.[O, 1] and f’ B. V.[O, 1] for p 1.
2) I1 (t)[P.(f, t)-f(t)-ck,,(t)P’,,(f, t)]llo- o(1) if and only iff is linear.
Here, and in the sequel, [[. denotes the L,[0, 1] norm.
We remark that the above result agrees with the result of Lorentz [9] for the case

of Bernstein polynomialsmin this case, B,(u t, t)= 0 and B,,((u t)2, t)= t(1 t)n -1.
We are indebted to the referee for calling our attention to the recent result of V.

Maier [10] and its consequent extension to p > 1 by S. Riemenschneider [11]. Maier
shows that Ile.f-fll O(n-’)if and only if

h(u)
f(x)= c + du, h B.V. h(0)= h(1)= 0.

u(1-u)

Maier’s result is interesting since the correction factor is excluded from it, which is a
saturation theorem in the classical sense. On the other hand, his saturation order is
slower than ours, and avoiding the correction factor leads to a less natural saturation
class. In order to achieve the approximation order g,,(t), one has to consider the
correction factor 4,,P’,,, which comprises the most difficult part in our estimation.

The proof of the indirect part of Theorem 1.2 is given in 3. The proof of the
direct part is divided into two sections. In 4 we prove the L case and in 5 the L1
case. Hence, by the Riesz-Thorin theorem, the direct part holds for all p. In 2, we prove
some lemmas.

2. Some lemmas. Let B,(f, t)= k=oPnk(tff(k/n) be the Bernstein polynomial
operator where

n) k )n-k(2.1) p,,,(t)=
k

(1-t

The following relation between P, and B, and recursion relation for P,, will be useful
throughout the paper.

LEMMA 2.1. For any m >--O, the following relations hold:

(2.2) P,,((u- t)", t)=
n + 1

B+x((U- t)"+2, t)
(m + l)p(t)

and

(2.3) P,,((u t)’, t)=
(m-l)
(n + 1)

p(t)P,((u -t)"-, t)

rn d
+(m + 1)(n + 1) d--{p(t)Pn((u-t)"-l’ t)}.

Further,

(2.4)

and

(2.5) IIP,(lu t[’, t)[[o O(n-), n --> c,

Proof. Let W(n, t, u) be the kernel of B,(., t), i.e.

[[n-l(t)Pn((u-t)4, t)[[oo O(1), as n -->,

form >=2.

(2.6) B,(]’, t)= Io W(n, t, u)f(u) du, f C[0, 11,
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where the kernel W(n, t, u) is given in terms of the point measure 6 by

(2.7) W(n, t, u)= p,(t)6 u-
k=O

It is well known that

0
(2.8) W(n, t, u) [n/p(t)] W(n, t, u )(u t).

Ot

If F(u)=f(x)dx,/ LI[0, 1], following [8, p. 30], we have

(2.9 (,= w(n + , , ul (u) u .(,

Using the linearity of P and F, we set (x)= (x t) in (2.9) and combine with (2.8) to
obtain (2.2).

The relation (2.3) follows from (2.2) and the recursion relation

(2.10) B((u-t)+, t)= mn_lp(t)B((u_t)_, t)+p(t)n_ B((u_t),

Equation (2.4)follows. from (2.3). 11
Next we give a technical lemma useful in the proof of the direct theorem when

p CX3o
LEMMA 2.2. Let W(n, t, u) be defined by (2.7). We have

(2.11) -W(n,t,u) (u-t)du =O(/p(t)/n+l/n), asn-oe.

Proof. By direct calculation, we have- W(n, t, u) (u t)4 du
12p 14

+--5 (1 6p) +-- (36p 7)

where p=p(t)= t(1-t). Now (2.11)follows immediately. !-1
Our last lemma will be useful in the proof of the direct theorem when p 1.
LEMMA 2.3. Let m and r be nonnegative integers. Then

(2.12) tr(1-t)’dt <- (r+2)vr+l(1-v)’+1

(r + 1)Jr + 2-v(m + r + 2)]

holds ]:or any v (0, (r + 2)/(m + r + 2)).
Proof. The following simple proof is due to A. Meir. Let

L t(1-t)*-dt;

then by partial integration

)s-r+lv (1-v s-r+ 1

r r

The inequality (2.12) is trivial when r s m + r. Assume that

(2.13) L=<
r+l )s--r+1v (1-v r+2

r + 1 r + 2- v(s + 2)
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and that v < (r + 1)/[r + 1 -v(s + 2)]; note that

and so by (2.12),

r+2 r+l

r+2-v(s+2) r + l -v(s + 2)

Vr(1--V)s-r+2 r+l

r r+l-v(s+2)"

Therefore, by reverse induction, (2.13) is proved for r<=s provided that r+2>
v (s + 2). Set s rn + r and the lemma follows. I-I

3. The indirect theorem. The method of proof for the inverse theorem is essen-
tially the method used by Lorentz [9] for Bernstein polynomials. We note that a slight
modification of these arguments proves the inverse part of the aforementioned
theorem of Maier for all p, 1 -< p < co.

We begin with two lemmas.
LEMMA 3.1. Let

(3.1) K(n, t, u)= ’. p,k(t)(n +’l)XIk/(n+l),(k+l)/(n+l)](U )
k=0

be the kernel of the operator Pn and let

F,,,(u)= (n + 1) g(n, t, u)(t-u dr.

Then, for feLl[O, 1],

(3.2)

and

(f, Fo,,)= (n + 1) Io f(u) du

lirn (f, F,,,)= (f, p),
m--l,

p =--p(t).

(n)tk(1-t)"-k 1/(n + 1), (3 2)Proof. Since
k

dt= follows.

For rn-> 1, it is sufficient to show that the sequence of functionals is uniformly
bounded, and that the lemma holds for C functions.

For k(n + 1)=< u < (k + 1)/(n + 1), let

F(n, k, m, u)= tk (1-- t)"-k (t U dt;

then

(3.3)

For any n -> k,

F(n, k, rn + 1, u)= F(n + 1, k + 1, m, u)-u F(n, k, m, u).

I(n + l)-(nk)F(n, k, l, u)[ (n + l)[k + l

n+2
u _-<1.
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Hence, by (2.18), for any m >0 and n >_-k,

](n+ 1)2(n)F(n’k k, m+l, u)l<= M(m + 1),

and

k=O

Now assume that f C. Using Taylor’s formula and Fubini’s theorem we find.

{f, F,,,,,}- (n + 1) f(t)P,,((t-u)’,t)dt+(n+l) f’(t)P,((t-u ,t)dt

(n + l’)’lf"]’oo<- P.(lt- ul t) dr.
2

The result follows directly from (1.2), (1.3) and Lemma 2.1.
For simplicity, let
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(3.8)

(3.6)
lim (,2’ (t)Sn(f, t), g(t)} (f, g"}.

Proof. Let q(t)= g(t)/p(t) for e (0, 1) and q(0)=q(1)= 0. Then q(t) C and
has the same support as g.

We next replace 4,21 (t) by its dominant term:

(3.7) (I//"1 (t)S.(f, t), g(t)) (S,,(f, t), 2nq(t)) + o(1)

since h,(t)= ffl (t)-2n/p(t) is bounded in n and on the support of g and S(f, t)
converges to zero in Lo[0, 1] by (3.5).

In order to estimate the remaining term in (3.7), we use (3.4) and linearity.
First, use integration by parts,

(-ck,(t)P’(f, t), 2nq(t)) (Pn(f, t), [(1 2t)q(t)]’).

Since P, (f, t) converges to f in Lo[0, 1] and q e C, this yields

(-c. (t)P’. (f, t), 2nq(t)) (f(t), (p’(t)q(t))’) + o(1).

Second, apply Taylor’s expansion to q(t), Fubini’s theorem and Lemma 3.1, to
obtain

3 1
2(n + 1)(P.(f, t), q(t))= 2 E ._-N,(f(u)q(’)(u), F,,,.(u))

in=0 m:

iO iO )q (4)(:) )4+2(n+l) f(u) K(n, t, u 4! (t- u dt du

(fq’, p’)+(fq", p)+ 2(n + 1)(f, q)+ o(1).

(3.4) S,(f, t)= P,(f, t)-f(t)-ck,(t)P’(f, t).

The previous lemma can be used to show that if O (t)S,(f, t) is a bounded sequence
in Lp, then it converges weakly to the differential operator D2= d2/dt-.

LEMMA 3.2. Let f Lp[0, 1], 1 =< p < +, and g C, i.e., g has compact support
in (0, 1). If
(3.5) [[1 (t)S,,(f,/)ll, O(1),

then
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Combining the above estimates, we have

(gl (t)Sn([, t), g(t)) ([, q’p’) + ([, pq") + ([, (p’q)’) + o(1)

(3.9) =(f, (pq)")+o(1)

(f, g") + o(1).

Now we turn to the proof of the indirect part of Theorem 1.2. Hence, let
fLp[O, 1], l=<p< +, and assume that {gl(t)S,,(/, t)} is a bounded sequence in
Lp[0, 1]. For p > 1, using w*-compactness, there exists an h L,[0, 1] and a subnet

-l(t)S,,(f, t) converges to hx(t) in the w*-topology. In particular, for{ni} such that
g C, supp g c (0, 1),

(3.10) (I//i (t)S,,, (f, t), g(t))-(hl, g).

Identifying e,ach f LI[0, 1] with f’(t)= f(u)du, and an element in B.V.[0, 1] with
II ll, ,to.1,- again by w*-compactness, we have

(3.11) ([,1 (t)S,(f, t)]’, g’(t)) _(,1 (t)S,,(f, t), g(t))-.(hg_, g’)

for some subnet {hi} and some h B.V.[0, 1].
By Lemma 3.2, we can conclude that.for every g C, (f, g")= (hi, g) holds in

the case 1 < p < +o, and (f, g") --(hE, g’) holds for p 1. Hence f" Lp for 1 < p <
+c, and f’ B.V.[0, 1] for p 1.

Under the condition that (t)S,(f, t) is o(1) in Lp[O, 1], 1 _<-p < +, we have

(3.12) lim I( (t)Sn(f, t), g(t))l <= lim IlgllllX (t)S,(f, t)l[o 0.

Therefore, f’= 0 and f is linear.

4. The direct theorem for p oo. It is easy to check that the operator Pn(f, t)-
ckn(t)P’,(f, t) preserves linear functions. Thus we only need to prove the first part of
Theorem 2.1.

Let P* (f, t) be the integral operator

(4.1) P,* (f, t)= Io K*(n, t, uff(u)du,

where

(4.2) K*(n, t, u)= (n)(k--nt)tk-(1--t)n-k-l(n + l)Xtk/(n+l),(k+l)/(,,+l)](U).
k=O k

Observe that when f is independent of t, P*(f, t)= P’,,(/, t)= B+I(F, t) for F(u)=
f(s)ds. We introduce P,* (f, t) so there is no confusion as to what is being differen-

tiated in what follows. For brevity, let

L,,(f, t) P,,(f, t)- ,(t)P* (f, t).

Suppose that f"L[O, 1], then by Taylor’s formula f(u)=f(O)+uf’(O)+
(u-s)+f’(s) ds. Since L,(/, t) preserves linear terms, we may write

(4.3) L,(f, t)-f(t) Io L,(ck(’, s, t), t)f’(s) ds
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where

&(u, s, t)= (u s)+ -(t- s)+ -(t- s)+(u t)

(4.4) _-{(u-s)+’ t<s,

(s-u)+, >=s.

From (4.3)it follows that

Now P (’, t) is a positive operator. Consequently,

(4.6)

((" -t)2 t)<= -1 (t)P,
2

1.

On the other hand P,* (]’, t) is not a positive operator, but it does inherit some
properties from B,+I(F, t). Because of the monotonicity preserving properties of
B,+I(F, t), R*(L t)>=O if 1’ => 0. Therefore, for fixed to, from (4.4)we derive

io io
’o

i[P* ((" s, to), t)l ds P*. ((s )+, t) ds + P*. ((" s)+, t) ds

2 2

The linear operators A,(/, t) defined for )e C[0, 1] by A,(f, t)= (dZ/dt2)B,+l(F2, t)
where Fz(x)= ](s)ds du is a positive operator by the monotonicity properties of
Bn+ . Hence,

e.*(I.ils-/ol as, Ao I"-  ol, t,= [A.(a, t)]l/2[A.((.-to)2, t)] /2

O(d2 to)4,
1/2

B,,+ (( t)l
By Lemma 2.2, this last expression is O(/p(to)/n+ 1/n) when to. Thus, it follows
that

I01 (/0(1- to)1)6.(t0) le.* (4(’, s, to),/o)l ds 0 n3/2 /-
(4.7) 0(6. (to)).

The theorem follows from (4.3), (4.6)and (4.7).

5. The direct theorem for p 1. In order to complete the proof for the direct
theorem, by the Riesz-Thorin theorem, it remains to prove that if f L[0, 1] and
f’ B.V.[0, 1], then {qSS. (f, t)} isa bounded sequence in LI[0, 1]. In this case, we write

(u) =(0)+’(0)u + | (u-s)+ ’(s).
.o
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We may proceed as in 4 through (4.3) while the estimates analogous to (4.6) and
(4.7) require a different method. Hence, we have

(5.1) L,(f, t)-f(t)= Io L,(qb(" s, t), t) df’(s)

where b(., s, t) is given in (4.4). First, we have

Using Fubini’s theorem, we have

K(n, t, u)qb(u, s, t) du[df(s)l

Io K(n, t, u)(u, s, t) duldf(s)[

K (n, t, u )(s u du Idf’(s)[

+ I Is K (n, t, u )(u s du ld[’ (s )l.

<--IO {Is, tl (t)fo g(n, t, u)(s u) du dtj Idf’(s)[

4- if0 /I0 l(t)fs g(n, t, u)(u-s)dudt}[d[’(s)[

Io [F(s)+ G(s)lldf(s)l.

By the symmetry of the various quantities, G(s)=F(1-s). Thus, it is sufficient to
show that G(s) is bounded.

Recall the definition of K (n, t, u), e.g., (3.1). Let k (s) be the unique integer such
that k(s)/(n + 1)<s<-(k(s)+ 1)/(n + 1). Hence,

lloS -1 (n)tk(S)(l_t),-k(s)(k(s)+l S) 2

G(s)<-- (n + 1)/ (t)
k(s) n 4- 1

dt

1 " (n) IoS k ),-k- 2k+l-2s(n+a)
(5.2) + k=k(s)+l k

(1 (t) dt
n + 1

+ t"O-(t)dt(1-s).

Throughout the rest of the paper we require the estimate

(5.3)
6(n + 1)2, n _-> 1,

(t) <
3(n + 1)/p(t), n >-5.
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In the last two terms of (5.2), we use i (t) < 3(n + 1)/p(t). Clearly, the last term is
bounded. The middle term on the right in (5.2) is bounded by a constant multiple of

E tk-’(1 t)"-k-1 at[k + 1-s(n + 1)]
k=k(s)+l

(5.4> "-’ (nk)(k+l)s’(l-s>"-k<= Y [k+l-s(n+l)]=O(1)
k=k(s)+l k[k + 1-sn]

by Lemma 2.3. If k(s)> 0, then the first term on the right in (5.2)may also be included
in (5.4) (with an additional factor [k(s)+ 1-s(n + 1)] which is bounded by one).

If k(s)= 0, then we take 21 (t)<= 6(n + 1)2 and the first term in (5.2)is majorized
by

(n+l) (1-t)dt=O(1).

The boundedness of G(s) follows, and consequently, so does the estimate cor-
responding to (4.6).

It remains to estimate

Let K*(n, t, u) be as in (4.2) and IK*l(n, t, u) be the kernel formed from K*(n, t, u) by
replacing (k- nt) with Ik- ntl. Proceeding as before, (5.5) is majorized by

10 If, l(t)lb"(t)l Io ’K*l(n’ t’ u)(s-u) du dt} ldl’(s)]

+ Io {Io ,1 (t>lb,,(t>, I, ’K*l(n’ t, u)(u-s> du dt}ld]r’(s>.

Jo {F*(s)+ G*(s)}ldf’(s)l.

Again, F*(1-s)=G*(s). Defining k(s)as before and noticing that k-nt>-O for
k _-> k (s) + 1, we have that G* (s) is bounded by

(n)) I (s)k(s
ik(s)_ntltk()_(l_t),_k()_O_(t)16(t)ldt(n+l ) k(s)+l_n+l 2

+(k(s)+n I) (k(s)+ l--nt)tk(S>(l--t)"-k(sl-21o-l(t)dp.(t)l dt
n +----3

(5.6) -Fn
,-i

(n/io (E tk_l(1 t)._k_ k

k=k(s)+2 k n -t)lg,; (t)cb,(t))at
2k + 1-2S(nn+l + 1)

+n t"-1102 (t)b, (t)l dt(1-s)

4

2 GT(s).
/’=1

Using 02 (t) -< 3(n + 1)/p(t), we find the bound for G4* is immediate.
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Using the equality [O-21(t),,(t)l=O(1)/p(t), observing that (k/n-t)/(1-t) is
decreasing, and then applying Lemma 2.3, we can estimate G as

n-1

G(s)=O()
k =k(s)+2

n-1

=o() I;
k =k(s)+2

n l’sk_l(1 S),,_k
2k + 1-2s(n + 1)

k 1] k-s(n-1)

Note that [2k+l-2s(n+l)l/[k-s(n-1)]<-2+ll-4s]/[k-s(n-1)] and [k-
s(n- 1)]-1 _-<1 for s<-[k(s)+l]/(n+ 1). Hence, G’(s)=O(1).

In estimating GI* and G*, we use Ib-l(t),(t)[=O(1)(n+l). Since (k-
nt)tk-l(l-t)"-k-1 is the derivative of tk(1-t)"-k, we have

n ) k(/+1(1 -k(s)-IO(s)=O(1)
k(s)+l

s -s)" =O(1).

Similarly, for G’(s), break the integration over (O,k(s)/n) and (k(s)/n,s),, since
((k(s)+ 1)/(n + 1)-s)a=o((n + 1)-2), as for G’(s), we obtain

GI* (s)= 0(1)
k(s)

1

=o(1).

Consequently, O*(s) and F*(s) are bounded. The boundedness of 1102 (s)S,(f, t)[
follows and the proof of Theorem 1.2 is complete.

Acknowledgment. The author would like to express his sincere thanks to Pro-
fessor S. Riemenschneider for his valuable comments, and to the referee who pointed
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ERROR BOUNDS IN THE METHOD OF AVERAGING
BASED ON PROPERTIES OF AVERAGE MOTION*

M. VITINSt

Abstract. In applying asymptotic methods such as the averaging method, upper bounds for the
deviation of the approximate solution from the exact solution can be derived. In this paper the dependence
of such bounds on properties of the average system is discussed. A simple example illustrates the usefulness
of the resulting bounds.

1. Introduction. We consider the initial value problem for the vector differential
equation

(1) eX(/, x), x(0) Xo,

where the dot denotes differentiation with respect to the independent variable t, e > 0
is a small parameter, Xo, x, X are n-dimensional vectors and Xo, x lie in a convex
domain D of the n-dimensional Euclidean space R,,.

Let X be periodic in with period T. The corresponding average system is given
by the autonomous differential equation

(2) k e(), (0) Xo,

where

(3) X(i) - X(t, ) dt.

The solution (t) of (2) is a first approximation for the solution x(t) of (1).
In this paper we investigate the behavior of upper bounds for the deviation

Ix(t)-(t)l. Bounds have been presented in [1] for more general systems than (1), the
right-hand sides of which need not be periodic in t. As is pointed out in [3], [5] the
assumption of periodicity with respect to enables us to obtain simple and more useful
estimates for the deviation. In this paper we go one step further and adopt general
assumptions concerning the average system and its solution. In particular, an estima-
tion for the deviation is found which varies linearly in at a rate which is intimately
connected with the stability of average motion. If the average motion is stable, the rate
of growth of the upper bound will be small. Otherwise, in the case of unstable average
motion, it will be comparatively large.

2. Dependence ot error estimate on constants ot the dillerential equations.
THEOREM 1. Assumptions"
(i) The functions X(t, x), X(x) satisfy the basic assumption

(4.1)
(k=l,...,n)

* Received by the editors August 29, 1977, and in revised form December 5, 1977.
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where Ixl denotes the norm IXll + Ix=l +,,, + Ix l and where x D (D convex) and
[0, T]. The function X(t, x) is continuous and T-periodic in and X(x) is defined by

(3), with replaced by x.
(ii) The solutions of

(4.2) eX(t, x), : eX(),

with the initial conditions x(0)= i(0)= Xo D exist and are unique in a time interval
[0, L/e ], L being a given constant. (This assumption is a consequence of assumption

(i)/]" L < d/M, where d is the distance of Xo to the boundary of D.)
(iii) The solution (t) and its neighborhood of radius to is assumed to lie in the

domain D. We require that p satisfy the inequality

(4.3) p ;> eo’r/I(L),

where eo is some sufficiently small positive number and where

rlx(L)= px + o2(L),

p= r. (M+M),

(4.4) /[eaL

pz(L) -1] forffO,

IcL for ff O,
c T. {&(M +M)+M(a + ci)}.

Conclusion" The following inequality is valid for [0, L./ e and for 0<

(5) Ix(t)--:(t)[--< er/I(L).

Comment 1. For a given domain D and value L, the size of the estimate (5)
depends to a great extent on the value of the Lipschitz constant & of the average
system. Since a => ci we expect classical estimates, such as [1], [3], [5], which are based
on the Lipschitz constant a of the original system, to be somewhat weaker than (5). in
particular, if 6 vanishes altogether the bound (5) is linear in L, that is to say in time.
Note that the solution is, in this case, given by

(6) R(t) Y. + x0,

where Y is a constant n-vector, independent of the initial conditions. This solution is
stable in the sense of Lyapunov.

Comment 2. If L is large, the bound (5) may be expected to be unsatisfactory in
certain applications where it is known that the solutions x(t) and i(t) remain bounded
for all times, in the next section we derive a bound which takes the stability of the
average solution R(t) into account in order to obtain a sharper bound than (5),
especially for large L.

Proof of Theorem 1. Let us define the auxiliary variable z(t)

(7)

where

(8)

z(t) x(t)- eu(t, x(t)),

U(t, x)= [X(O., x)-X(x)] do’.
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For 0 the functions z(t) and x(t) lie in D, since z(0)= x(0)= Xo D. For reasons of
continuity these functions will remain in the domain D at least for times smaller than
some time t*, t*<= Lie.

After differentiating (7) and subtracting (2) we obtain

(9) ,- t e [((z)-())+ ((x)- (z))] + e 2ux(/, x)X(/, x),

where the compensative terms +X(z) have been inserted for later convenience and
where ux(t, x) denotes the Jacobian of the map x--> u(t, x). By applying the assumptions
(i), (ii) and (iii) and elementary properties of vector calculus we obtain the differential
inequality

2(10) I.- l _-< ea Iz(t)- (t)l / e c,

from which follows that

(11) Iz(t)-:(t)l <---- ep_(et)

for [0, t*], where the quantities c and pE(el) are defined in (4.4).
The norm we are aiming at can be written as follows

(12) Ix(t)-(t)l <-Iz(t)-(t)l / e lu(t, x(t))l.

Due to (11), (8) and the basic assumption (i) we obtain

(13) Ix(t)- (t)l <_- e(p2(et)+pl) en(et)

for t[0, t*], where pl and r/1 are defined in (4.4). The upper bound (13) is a
monotonically increasing function of et and remains less than p for all values of
which do not exceed t*= Lie by virtue of assumption (iii), provided that 0< e < e0.
Hence, for [0, L/e], the functions x(t) and z(t) remain in the p-neighborhood of
(t) and thus in the domain D.

3. Dependence ot error on stability ot average motion. In this section we assume
that the average system (2) can be solved analytically or at least that the stability of its
solution can be discussed. This situation occurs very often in the applications. It is
therefore of interest to study the behavior of the error bounds in terms of properties of
the average motion such as its stability with the goal to obtain sharper bounds.

THEOREM 2. Assumptions"
(i) The assumptions (i), (ii) o]" Theorem 1 are to hold true.
(ii) Denote the solution of the average system (2) which satisfies the initial condi-

tion (0)= Xo by

(14) (t) S(z, Xo), z et.

We require that the derivative of S(’, y) with respect to each component Yk Of y satisfies
the inequality

(15)
---h, (k=l,2,...,n) .for y D and z [-L, L].

(iii) The average solution (t) and its p-neighborhood are assumed to lie in D,
where

(16.1) p > eo max (rl(L), p3(L)),
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where eo is some sufficiently small positive number and where

r/2(L) T(M +M)[ 1 / yL],

(16.2)
03(L) T(M +)I)yL

A

and

(16.3) y __/2(O/)[/ M ]a+c7 M+fi

Conclusion" For [0, L/e] and ]:or O< e < eo the inequality

(17) Ix(t)- (t)l--< er/2(L)

is valid.
Comment 1. In contrast to the foregoing estimate (5) the formula (17) varies

linearly in L for given values of M, M, a, ff and A.
Comment 2. The size of A plays an important role in the estimate (17). Accord-

ing to (15) A is a measure for the sensitivity of the solution S(z, x0) for varying initial
conditions throughout the time interval z e f-L, L]. Thus A indicates the degree of
stability of average motion. For unstable solutions we expect A to be large, whereas
for stable solutions the value of A may be comparatively small. Due to this meaning of
A, we need not necessarily know the solution S(z, x0) explicitly. It is sufficient to
determine the factor A of instability in order to evaluate the bound (17). The existence
of the constant A, such that assumption (15) is valid for some L, is a consequence of
the basic assumption (4.1) (cf. [4]).

Comment 3. It is of interest to write (15) in the form of a Lipschitz condition

(18) IS(7., ,y2)- S(7., yl)l --< A ly2- Yll, yl, y2 D, 7.[-L,L].

Let S(z, yl) be a reference solution with the initial condition yl and let S(r, y2) be a
neighboring solution with initial condition y2..The reference solution is said to be
Lyapunov stable if a constant A, satisfying (18), exists for z s [0, ). It must be pointed
out that a reference solution which is not Lyapunov stable may still satisfy (18) for
finite intervals of time r. In general the size of A will indicate the degree of instability,
as previously mentioned.

Comment 4. There exists a connection between this theorem and the work of
Kirchgraber [2].

Proof of Theorem 2. Before proceeding to the main part of the proof, we recall
that the average system (2) is autonomous; hence the "group"-property

S(zz, S(z, y))= S(7.x + r2, y)

holds true. In particular, for 7.1 "/’, 7"2 :--7"

y)) S(0, y) y.

Differentiating this relation by the chain rule we find

S,.(-7", z)Sy(7", y)= E,

where z S(7", y), E denotes the n n unit matrix and where Sy is the Jacobian matrix
of the map y--> S(7", y). Hence the inverse of the Jacobian matrix is given by

(19) [S,(7", y)]- Sz(-7", z).
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Thus by virtue of assumption (15) the kth column vector sk (k 1,..., n) of the
inverse Jacobian matrix (19)satisfies the inequality

(20)

provided z D, r I-L, L].
We now proceed with the proof of Theorem 2. As in the previous theorem we

introduce the auxiliary variable (t), defined in (7).
Let us now define a second auxiliary variable y(t) by the relation

(21) S(r, y(t)) z(t).

It satisfies the differential system

(22) e X(S(r, y))+ S,(r, y) *.

Thus we have

(23) jl [S,(r, y)]-{e [Y(x)- Y(z)] e2u=(t, x)X(t, x)}.

Provided x(t) and z(t) are in the domain D, we obtain the estimates

]:(x)- :(z)] _-< eft ]u(t, x)l

<= edT(M +M),
(24) lu=(t, x)X(/, x)[ <_- MT(a + a),

and hence the differential inequality

(25) Il_-<Cl,

where

(26) c1 e2a T[ge(M +)+M(a + ff)].

Equation (25)yields the estimate

(27) ly(t)-Xol <-- ct ep3(r),

where p3 is defined in (16.2).
The desired norm may be written as follows

(28) Ix(t)- (t)l <= Iz(t)- (t)l + e [u(t, x)l.

According to (15), (21), (27) we have

Iz(t)- (t)] _<-IS(r, y(t))- S(r, Xo)]

(29) <= A ly(t)-Xol

<=Aep3(r).

Thus (28)yields the final estimate

Ix(t)- (t)l -< eZT(M + ffl)3,t + eT(M +)
(30)

=< er/2(r)

provided x(t), z(t) and y(t) are still in the domain D.
Since x(0), z(0) and y(0) coincide with 2(0)= Xo and thus lie in D, these functions

can only leave D after some time has elapsed. They will certainly still be in the
0-neighborhood of (t) as long as the deviations Ix(t)-(t)l, Iz(t)-(t)l and
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remain less than p. A comparison of the bounds (30), (29), (27) with assumption (iii),
Eq. (16.1), shows that the bounds are valid for any less than L/e, which proves the
theorem.

4. Example. Consider for illustration the following linear differential equation
for the scalar function v(t)

(31) i)’(t)+v(t)= ev(t), v(0)=0, t(0)= 1.

The transformation

/)(t X1, X2) X1 COS + X2 sin t,
(32)

t(t, Xl, x2) -Xl sin + x2 cos t,

carries this equation over to the standard form

.fl -e[xl cos sin + x2 sin2 t], x(O) O,
(33) . e [Xl cos2 + x2 cos sin t], xz(0) 1.

Let us assume that L 6rr and e ]0-6. Theorem 1 typically gives the estimate
ertl(L) 2.07, while Theorem 2 yields the improved estimate er/2(L) 1.33 10-3. The
second estimate comes significantly closer to the actual deviation 4.04 10-6 between
the averaged solution $(t) and the original solution x(t).
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NONLINEAR ACCRETIVE MAPPINGS IN BANACH SPACES:
THE SOLVABILITY AND A SOLUTION ALGORITHM*

YUZO OHTAf

Abstract. This paper deals with a nonlinear equation Fx u, where F is a mapping of a Banach space X
into itself, and is not necessarily differentiable, and u is a given arbitrary point in X. The A-functional is
introduced for the concrete and practical characterization of accretive mappings in Banach spaces. In terms
of the A-functional, conditions on F which guarantee the solvability of Fx u are derived. These results are
applied to investigate the solvability of an equation 4,(x, v)= u. An iterative method to solve Fx u is also
proposed and a detailed study of the convergence of this method is given.

1. Introduction. The analyses of a wide class of nonlinear networks and feed-
back systems amount to the investigation of a nonlinear equation Fx u, where F is a
continuous mapping of a Banach space X into itself, and u is an arbitrary point in X.

With respect to this equation, we first study the solvability. This problem has been
extensively investigated. These results are classified as follows: (i) F is continuously
differentiable [7], [10]-[12], [16], [17], [19], and (ii) F is not necessarily differentiable
[2], [3], [13], [18]. It is noted that the works, except [10], [11], [17] in (i), are based on
the accretive mapping theory.

In the first part of this paper, we introduce the A-functional for the concrete and
practical characterization of accretive mappings in Banach spaces. And, in terms of
the A-functional, we derive conditions on F which guarantee the solvability of Fx u.
Moreover, we apply these results to investigate the solvability of 4,(x, v)= u, where
is a continuous mapping of a Banach space X X’ into X, and u X and v X’ are
arbitrary points.

Next, we are concerned with solution methods of Fx u. Sandberg [22] presen-
ted one such method, which globally converges to the unique solution of Fx u in a
Hilbert space if F is Lipschitzian and uniformly monotone. But it is not applicable in
Banach spaces. So we propose an iterative method which is a modification of Sand-
berg’s method, and investigate the behavior of it.

The format of this paper is the following" In 2 we introduce the A-functional.
Several properties of it are given. The relation between the A-functional and the
duality map [14], [15] is clarified. The main results of this paper are 3 and 4, where
the problem of the solvability of Fx u is treated and a detailed study of the
convergence of an iterative method is given.

2. Preliminaries.
2.1. Notation. In this paper we denote the field of real (complex) numbers by

R (C), the set of all nonnegative real numbers by R/, the set of all nonnegative
integers by Z/, the d-dimensional real (complex)space by Re (Ca), a Banach space by
X, the dual space of X by X*, the norm on X by [, the induced norm on X* by
the inner product on a Hilbert space H by (.,.), the open ball in X with the center
z X and the radius r >0 by B[z; r], the closure of a set A c X by A, the identity
mapping by/, and the zero element in X by 0.

2.2. The ,-functional. In this section, we introduce the A-functional and list its
useful properties. The A-functional is a modification of the/x-functional [5]-[7], [11]
and the local tx-functional [13], and is closely related to the concept of the duality map
[141, [151.
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DEFINITION 1. Given x, y e X, x # y, the A-functional for a mapping F" X-> X is
defined by

y(I + cF; x, y)- 1
(1) A(F; x, y)= lim

a0

where y(. ;.,. is given by

(2) ,(F; x, y)= [ex-eyl/lx-y].

Remark 1. Since the function f(a) y(I + aF; x, y), c > 0, is a convex function,
the function a (f(c)-f(O))/a is nondecreasing [9, p. 1621. Moreover f(a), a > 0, is
bounded from below by -y(F; x, y). So

f(c)-f(O) y(I+F;x, y)-I
(3) A (F; x, y) lim inf

o0 x>0

exists, and, hence, the A-functional is well defined.
LEMMA 1. Let F, G" X-> X. The A-functional possesses the following properties.
(a) h(I; x, y)= 1, h(-I; x, y)= 1;

(b) -7(F; x, y)_-< -A(-F;x, y)_-<A (F; x, y)_-< 7(F; x, y);

(c) h (flF; x, y) fix (F; x, y) for all fl >= 0;

(d) A(flI+F;x, y)=fl+A(F;x, y) forallflR;

(e) A(F; x, y)-A(-G; x, y)<- A (F + G; x, y)-<_ A (F; x, y)+A (G; x, y);

(f) [fx fyle A (f; x, y)lx Y l.
Proof. The properties, except (f), are of the same form as those of the

functional [5]-[7]. Since these properties can be shown similarly, we omit them and we
shall only establish (f). By (3), for each c > 0, we have

]Fx-Fy] ]x-y+a(Fx-Fy)-(x-y)[
Ix-y] alx-y

y(I + cF; x, y)- 1
_-> >_-A(F; x, y).

This implies (f).
DEFINITION 2. Given F" X--> X,
(i) F is accretive if A (F; x, y) => 0 for all x, y X, x # y
(ii) F is strongly accretive if A (- F; x, y) >_- 0 for all x, y s X, x #: y.
Remark 2. In view of the property (c) of Lemma 1, F is accretive if F is strongly

accretive.
DEFINITION 3 [14], [15]. For each u X, we define the duality map FD(u) ofu by

FD(u) {f X*] ]7[[2= [ul2-- if,
LEMMA 2. Given F:X-> X, x, y 6 X, x # y,
(i) them exists f* F,(x y) such that

A (V; x, y)]x y]2 max {Re (Fx -Fy, f)]f Fo(x y)}= Re (Fx -Fy, f*),
and

(ii) there exists f. Fo(x y) such that

A (- F; x, y)lx y 12 miD {Re (Fx Fy, f)]f Fo (x y )} Re (Fx Fy, f,).
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Proof. Let M {m ce (x y)la s R}. If Fx Fy M, i.e., Fx Fy k (x y) for
some k s R, then the assertion is a direct consequence of the Hahn-Banach theorem
[23, p. 102] and Definition 1. So we shall assume Fx-Fy:M in the following. By the
Hahn-Banach theorem, there exists f Fo (x y) such that f(/3 (x y)+ a (Fx Fy))
/3Ix- y l2+ ac, where c is given by

c--inf

inf
1(1 + aF)x (I + aF)yl-Ix y Ilx y 12 A (F; x, y)lx y ]2.

On the other hand, for any a > 0 and f Fo(x-y) we have

I(I + F)x (t + F)y Ix y >- Re ((I + aF)x (I + aF)y, f)
Ix-yl2+a Re (Fx-Fy, f).

This implies

A (F; x, y)lx y 12 >- Re (Fx Fy, f) for all f Fo (x y).

So we have (i). From (i), we have (ii).
Remark 3. In view of Lemma 2, F is accretive if and only if, for each x, y

X, x y, there exists fFo(x -y) such that Re (Fx -Fy, f)>=O.
COROLLARY 1. Let X be a Hilbert space H. Then we have

-h(-F;x, y)=h(F;x, y)=Re(Fx-Fy, x-y)/(x-y,x-y) forallxy.

LEMMA 3 [15]. If X* is strictly convex, then the duality map Fo(" is a single-
valued mapping from X into X*.

From Lemmas 2 and 3, we have the following corollary.
COROILAR 2. If X* is strictly convex, then A (F; x, y) A (- F; x, y) ]:or all

x,yX, xCy.
Remark 4. If X* is strictly convex, then F is strongly accretive if and only if F is

accretive.

3. The solvability. In this section, we shall study the solvability of a nonlinear
equation"

(4) Fx u,

where F is a continuous mapping of X into itself, and u is an arbitrary point in X.
Our problem is to find conditions on F such that for any input u X the equation

(4) has a unique solution x*(u) X and that u--x* is continuous.

3.1. The homeomorphism of a mapping. In this section, we shall derive a condi-
tion for F to be a homeomorphism of X onto itself under the assumption that F is a
local homeomorphism. The local homeomorphism is defined as follows: For each
z sX there exist open neighborhoods U(z) of z and V(Fz) of Fz, respectively, such
that the restriction of F to U, Fu: U-> V, is a homeomorphism of U onto V.

We begin with the following definition.
DEFINITION 4. A mapping F: X--> X has the continuation property for a given

continuous function q: [0, 1]-> X if the existence of a continuous function p: [0, a)-->
X,a(0, 1], such that F[p(t)]=q(t)for all t[0, a)implies that limtp(t)=p(a)
exists with F[p(a)] q(a).
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LEMMA 4 [20, p. 135]. Let F: XX be a local homeomorphism. Then F is a
homeomorphism of X onto itself if and only if F has the continuation property for each
linear]unction q(t)= (1 t)y + ty 1, [0, 1], where y0, yl 6X are arbitrary.

The continuation property is an operational condition that may be difficult to
verify in concrete situations. Therefore, we give a specific condition which implies the
continuation property.

DEFINITION 5. We define Po by Pooa--{m: R+-->R+Im(. is continuous and
m (s) > 0 for all s >= 0, and : m (s) ds oo}.

LEMMA 5. Let F: X--> X be a local homeomorphism. Suppose that there exists
m Poo such that the following condition holds: For each z X, there is r(z)> 0 such
that ]’or each x, y B[z r],

IFx -Fyl m(max (Ixl, ly I)lx Yl.
Then F is a homeomorphism of X onto itself.

Proof. By means of Lemma 4, it suffices to show that F has the continuation
property for any linear function:

(6) q(t)= (1 t)y + ty 1, [0, 1]’, yO, yl X.

Suppose that for some continuous function p" [0, a) - X, a (0, 1], we have

(7) F[p(t)] q(t) for all 6 [0, a).

Claim 1. Ip(t)l is bounded on [0, a).
Given tl G f0, a). Since p(. )is continuous, there exist t2(tx, a)and r(p(tl))>0

so that p(t) B[p(t); r(p(tl))] for all t It1, tz], where r(p(tl))is a constant such that
(5) holds for z p(tl).

By means of (5)-(7), for any + s, [tl, t2],

I:(y- y)l ]q(t + )- q(t)]
(8)

-]f[p(t + :)]- F[p(t)]I >-_ m (max {Ip(t + :)[, [p(t)l})lp(t + )-p (/)1.
So we have

Set

Ip(t)l; limh,O (0,h)SUp [Ip(t + )1- IP (t)l]

-< lim sup
hO et0.h m(max (Ip(t + :)1,

m(ip(t)l)
for all [0, a).

v(t)= [p(t)[, b(t)= ly-yl[, and M(a)= m(s)ds.
(o)

Then using Redheffer’s differential inequality (see the Appendix) we get

(9) Ip(t)l<-_M-l(ly-yllt)<-_M-l(ly-yla) for all e [0, a).

Claim 2. Let {tk} be an arbitrary monotone increasing sequence such that
limk-,o tk a. Then limk-,oo p(tk) X SO that Fx q(a).
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Let rk be a positive constant such that (5) holds for z p(tk). Clearly there exists
K Z/ such that p(ti)B[p(tk); rk] for all i, k ->K. By (8) and (9), for some e >0, we
have

[p(ti)--p(tk)l<=(lyO--yll/e)[ti--tk for all i, k_->g.

This implies that {p(tk)} is a Cauchy sequence, and, hence, it converges to some x X.
If limk-, p(tk) X, then, by the continuity of F, Fx q(a).

Claim 3. If limk_ p(tk) X and if Fx q(a), then lim,.a p(t) x.
Let U and V be open neighborhoods of x and Fx, respectively, such that the

restriction of F to U is a homeomorphism of U.onto V. Clearly, there exists t’ [0, a)
so that p(tk)6 U for tk [t’, a) and q(t)6 V for [t’, a). Therefore, the continuous
function/(t) Fr [q(t)], [t’, a), satisfies/(tk) p(tk) for all tk It’, a). Then the set
j _a {t It’, a)l/(s) p(s) for all s [t’, t]} is not empty, and, hence, = sup {tit J} is
well defined. Now, if < a, there exists a sequence {-1} (t, a) with lim_. ’l such
that

(10) P(Zl)(rl) forall rl(t, a).

Since p(t)=/(t) U for all It’, t) and p(. is continuous, there is a -’ (t, a) so that
p(-)U for all 7-[t,-’). This leads that (10)contradicts (7), because Ftr is a
homeomorphism of U onto V. So we have = a, and, hence, p(t)= Fb [q(t)] for all
t It’, a). Then we have

x lim Fb [q(tk)] lim Fr [q(t)] lim p(t).
k- t t

Remark 5. Browder [3, p. 61] shows, in a different approach, that F" XX is a
homeomorphism of X onto itself if (5) holds for some nonincreasing function m P,
and if F is a local homeomorphism.

3.2. Sufficient conditions for solvability. Lemma 5 in the previous section is
highly useful to investigate properties of F. However, it is not much of practical value
in determining whether or not a given mapping has such properties. In this respect, it
is important to have various sufficient conditions under which the homeomorphism of
F is guaranteed.

DEFINITION 6. A mapping F of a Banach space X into a Banach space X’ is said
to be locally Lipschitzian if for each z sX there exist 8(z)>0 and l(z)>-O such that
for each r s (0, ),

(11) IFx-FYl<=llx-Yl forallx, y;[z; r].

The local Lipschitz seminorm IIF; z, rll of f on B[z; r] is defined to be the least
constant in (11).

In the following, we consider the condition for F to be a local homeomorphism.
LEMMA 6 [20, p. 122]. Let F" X X be continuous. If, ]:or some z X, there exist

positive numbers k, 1o, ro > 0 such that

IFx Fy k (x y)l <- lolx y for all x, y B [z r0],

where lo < k, then the restriction of F to B B[z; r0] is a homeomorphi.sm o] B onto

F(B). Moreover, F(B) contains the open ball B[Fz tr], where cr (k lo)ro.
LEMMA 7. Let F: X X be locally Lipschitzian. If, for each z X, there exist

r(z) > 0 and m (z)> 0 such that

(12) A(F;x,y)>-m>O forallx, y6B[z;r],xy,

then F: X X is a local homeomorphism.
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Proof. We shall show that for each z X there exist open neighborhoods U(z) of
z and V(Fz) of Fz, respectively, such that the restriction of F to U is a homeomor-
phism of U onto V. Fix an arbitrary point z X, and set ro min {r(z), 8(z)}, where

fi(z) is given in Definition 6.
Claim 1. If F(B[z; ro])contains an open ball V, then the restriction of F to

U=F-I(V)fq[z; ro] is a homeomorphism of U onto V. Moreover, U is an open
set.

Using (f) of Lemma 1 and (22) we have

IFx Fyl >-- m Ix Y for all x, y /o =/[z ro].

This implies that the restriction of F to Bo is a homeomorphism of Bo onto F(Bo).
Hence, if we set U F-(V)f-lo, then U is an open set and the restriction of F to U
is a homeomorphism of U onto itself.

Claim 2. Let l0 liE; z, r011> 0. Given/3 > 1, and set k lo +/3. Then F(/[z ro])
contains the open ball V B[Fz; rl], where ra [m/(m + k)]ro.

From Definition 6, we have

I(kI + f)x -(kI +F)y k(x y)l IFx -Fyl <- lolx y] for all x, y /[z; r0].

By Lemma 6, this implies that the restriction of (kI + F) to Bo is a homeomorphism of
B0 onto (k! + F)(Bo), and that (kI + F)(Bo) contains the open ball B[(kI + F)z /3ro].
Fix an arbitrary point yl V=B[Fz; rl]. Let re=ro/(k +m)<ro. Then for each
X 92 e[z; r2], we have,

[kx + y (kI + F)zl< kre + rx ro.

This implies that kx + yX B[(kI + F)z ro] c B[(kI + F)z /3ro] c (kI + F)(/o) for all
x /2 c/o, and, hence the mapping H:B--,Bo, Hx =(kI+F)o(kx +yl), is well
defined. Using (f) and (d) of Lemma 1, and (12) we get

Ik(x- y)[ I(kx + ya)-(ky + Ya)l I[(kI +F)aonx]-[(kI + F)aony][
>- (k + m)lHx Hyl for all x, y 6/2.

Hence we have

(13)

Similarly, we have

IHx-Hyl<=[k/(k +m)]lx-yl forallx, yB2.

]Hx z] <- ]Hx Hz[+ I(kI + F)o(kz + y l)_ (kI + F)o(kz + Fz)l

(14) <=[k/(k + m)]Ix-zl+[1/(k + m)]lyl-Fzl

<-[k/(k +m)]r2+[1/(k + m)]rl

=r2 for allx 6Be.

Equations (13) and (14) imply, respectively, that H is strictly contractive on B2, and
that H maps Be into itself, and, hence there exists a fixed point x B2 Bo such that
x Hx (kI + F)ao(kx + yl), i.e., Fx yl. This implies ya F(/2) F(/o). Since y e
V is arbitrary, F(Bo) contains the open ball V.

Remark 6. Browderr [3, p. 32] proved an analogous result with a different
approach.

Now we are in position to give the main results of our paper using the A-
functional.
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THEOREM 1. Let F: X X be locally Lipschitzian. Suppose that there exists m
P such that the following condition holds" For each z X, there exists r(z > 0 such that

(15) h (F; x, y)->_ m(max {Ix[, [Yl}) for all x, y /[z; r], x : y.

Then F is a homeomorphism of X onto itself.
Proof. By Lemma 7 and (15), F is a local homeomorphism. On the other hand,

(15) implies (5) by (f) of Lemma 1. The conclusion follows from Lemma 5.
Remark 7. With a different approach Browder [3, p. 62] shows a similar result: if F

is a homeomorphism of X onto itself, F is locally Lipschitzian, and if there exist a
nonincreasing function m P and c (0, 1] such that each point z X has a neigh-
borhood B[z; r(z)], r(z)> 0, such that for each a,/3 >-0, and x, y B[z; r(z)],

la (x y) + (Fx Fy)]->_ [ac +m(max {Ix [, [y I})]]x y I.
By (f), (d), and (c) of Lemma 1, (15) implies the above inequality for c 1. So
Theorem 1 is an oblique generalization of Bowder’s result in the sense that m P is
not necessarily nonincreasing.

Applying Theorem 1 to the solvability of the equation O(x, v)= u, we have the
following result.

THEOREM 2. Let :X x X’- X be locally Lipschitzian, where the norm I" l* of the
Banach space X X’ is given by ](x, v)l* [xl + Ivl’. Suppose that there exist m P and
k >-0 such that for each v X’,

(16) A(O(.,v);x,y)>-m(max{Ixl, lyl}+k}vl’) forallx, y:[z;r], xCy.

Then there exists a unique continuous mapping 49" X X’ X such that

9(b(u, v), v)= u ]:or all (u, v) X X’.

Proof. Define a mapping " X X’ X X’ by

(17) (x, v)= (0(x, v), v).

Claim 1. " X X’ X X’ is bijective, and, hence, -1. X X’ X X’ is well
defined.

Consider a equation

( 8) (x, v): (u, w),

where (u, w)eXxX’ is an arbitrary point. Clearly, v w, and, hence, we have an
equation

(19) O(x, w)= u.

Define a mapping Fw:XX by Fw(x)= O(x, w). By the assumption, Fw is locally
Lipschitzian, and fit(a)= m(a + kiwi’)is in class P. So (19) has a unique solution
x* =F (u) by Theorem 1. Hence for each (u, w)eX xX’, (18) has a unique solution
(F (u), w), and, hence, is bijective.

Claim 2. -1 is continuous.
Given arbitrary point (z,v)eXxX’, and let ro=min{r(z),6((z,v))}, where

6((z, v))is given in Definition 6. Let/3 > 2/0, where /o=11; (z, v), r011, and define a
linear mapping A:XxX’XxX’ by A(x,v)=(x,v). By (16) and (f) and (b) of
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Lemma 1, we have for each (x, w), ( 5)e B[(z, v); r0], x x,

, (A; (x, w), (,

Ix + a4(x, w)- [ + a4(Y, ff)ll+ (1 /)lw-l’-(lx-l/lw-l’)
lim

(23)

+o (Ix-l+lw- 1’)

Ix-l+lw-l’
_-> (g,(., w); x, )+ (t- 2o)lw- l’/(Ix-l+lw
>_- ((., w); x, )
->_ m (max {Ix [, [1} + k lw [’).

Similarly we have for each (x, w), (, ) B[(z, v); ro], x , w if,

h(a; (x, w), (, ))>=.

Consequently, for some mo > 0, we have

h(A; (x, w), (, ff))=>mo>0 for all (x, w), (, )B[z; ro], (x, w)(, if).

From (f)of Lemma 1, this implies

(20)
I(A)(x, w)- (A)(, ff )1" ->_ mol(X, w)- (,_ )[*

forall(x, w), (, )6B[z;ro], (x, w)(, ).

On the other hand, we have

(21) lAy A37[* -< (1 +/3)ly 371 * for all y, 37 X x X’.

By (20) and (21), we get

I(x, w)-(, )[*>=[mo/(l+)]l(x, w)-(, if)l* for all (x, w), (, ff)/[z; ro].

Hence -1 is continuous at (z, v).
Claim 3. There exists a continuous mapping b" X X’X such that

(22) O(4(u,v),v)=u for all (u, v) X X’.

Define a mapping P" X X’- X by P(x, v)= x. Clearly P is continuous. From
above arguments, the mapping b" X X’X defined by b p-i is continuous and
satisfies (22).

Remark 8. Theorem 2 is an oblique generalization of the implicit function
theorem.

For finite dimensional spaces, we have stronger results from Lemma 5 and the
domain-invariance theorem (see the Appendix).

COROLLARY 3. Let F" RdRd be continuous. Suppose that there exists m Poo
such that one of the following conditions holds"

(i) For each z Ra, there exists r(z)> 0 such that

[Fx-Fy[>-m(max {Ixl, [yl})lx-yl forallx, y B[z; r].

(ii) For each z Ra, there exists r(z) > 0 such that

(24) h(F;x, y)>-m(max{[x[,ly[}) forallx, yB[z;r], xy.

Then F is a homeomorphism of Rd onto itself.
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COROLLARY 4. Let /" Ra R - Ra be continuous. Suppose that there exist m P
and k >- 0 satisfying the following condition" For each z Ra, there exists r(z > 0 such
that for each v R,
(25) A((.,v);x,y)>-m(max{[x[,ly[}+k[vl’) forallx, y[z;r], xy.

Then there exists a unique continuous mapping b" R Rr- R such that

(b(u, v), v)= u for all (u, v) Rd R.
4. Solution method. In this section, we investigate the behavior of iterative

methods to solve (4): Fx- u. Sandberg [22] has presented an iterative method which
globally converges to the unique solution x* of (4) if F is Lipschitzian in a Hilbert
space It and if it is uniformly monotone, i.e., for some m O, F-mI is monotone
(accretive).

Sandberg’s method is given by

(26) xi*l--Gx i, i-0, 1 Gx-x+ao(u-Fx).

Suppose that F: X-X is Lipschitzian in X and there exists m > 0 such that

(27) lim
1 -III- aF; O, r,,>=ll m > 0 for all r > 0.

a0 t

Then, by (27) and the continuity of a [1-llI-cef; 0, rill/a, a >o, there exist a0>0
and mo>0 such that ](I-ooF)x-(I-aoF)yl<-(1-aomo)lx-yl for all x, y eX. This
implies that the mapping G, which is given in (26), is strictly contractive on X. This is
the crucial point of Sandberg’s method. And Sandberg has shown that if X-H, we
can choose a0 m/lo, where lo is a Lipschitz constant of F on X. However, in general
Banach spaces, it is not easy to find such an a0. So in the following we consider a
modification of Sandberg’s method.

Now we consider an iterative method:

(28)
where H is given by

(29)

i+1 0 0x =Hx, i=0,1,..., x =z

Hx T-(u + kx), Tx (kI + F)x.

As shown in the proof of Lemma 7, the mapping H is strictly contractive on X if there
exists m > 0 such that A (F; x, y) >_- m > 0 for all x, y X, x : y. Note that, at each step
of the iteration (28), we have to solve the equation Tx i+1 u + kx for x i+1. Suppose
we apply Sandberg’s iteration, and we have

(30) y{+ Giyi o, ]=0,1,’’’; y =x, iZ+,

where G is given by

(31) Ggy y + (1/k)(u + kx- Ty)= (1/k)(u + kx-Fy).

In practice, we have to truncate the iteration (30). That is, instead of solving Tx/=
u + kx exactly and thus obtaining the sequence {x}, we truncate the procedure: this
will give us a sequence {}. More specifically, during the ith step we consider solving
the equation

(32) T)7* u +

for 37* by the iteration method"
~j ~0 ~i(33) 7{+ G,y, j 0, 1,... y =x,
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where Gi is given by

(34) (iy y + (1/k )(u +ki- Ty)= (1/k )(u + kY Fy ).

We terminate the iteration when we have an iteration, say 37/(i), such that for some
e>0,

(35) I * <-- e for all j >- N(i),

where 37* is the exact solution of (32). In Theorem 3 (below) we shall consider the
behavior of the iteration:

~i+1 ~N(i) _-.j+l ~jx =y y =Gy, j=0,1,...,N(i)-I;
(36) ~o ~i ~o oy =x, i=0,1,...;x =z

DiZFINITION 7. A mapping F" X-> X is in class (X, X) if F is Lipschitzian in
each bounded closed ball; i.e., for each z X and r > 0, there exists l(z;r) such that
[Fx-Fyl<=llx-yl for all x, y /[z; r].

Remark 9. If F -(X, X), then F is locally Lipschitzian, and the local Lipschitz
seminorm liE; z, rll is we defined for each bounded closed ball/[z; r].

Now we set the following assumption.
Assumption 1. The mapping F" X X is in class (X, X), and there exists m > 0

such that

(37) A(F;x, y)>-m>O forallx, yX,x#y.

LEMMA 8. Let Assumption 1 be satisfied. Then ]’or any positive constant k, the
mapping T, which is given by (29), is a homeomorphism of X onto itself. Moreover for
any z X, the sequence {x}, which is generated by the iteration (28), converges to the
unique solution x* of (4).

Proof. By (37) and (d) of Lemma 1, we have

(38) A(T;x,y)=k+A(F;x,y)>=k+m>O forallx, yX, x#-y.

Therefore, T is a homeomorphism of X onto itself by Theorem 1.
By (f)of Lemma 1 and (38), we get

(39) ]Tx-Ty[>-(k+m)lx-yl forallx, yX.

So we have

(40) IHx-Hyl<=[k/(k+rn)][x-y for all x, y X.

By the principle of contraction-mapping, (40) implies that H has the unique fixed
point x*, x* Hx*, i.e., x* is the unique solution of (4), and that for any z X, {x }
converges to x*.

LEMMA 9. Let Assumption 1 be satisfied. Set

(41) r* [u Fzl/rn

(42) l0--liE; z,

(43) k=lo+B, /3>0;

(44) 3, lo/k < 1.

Let {x i} be the sequence generated by the iteration (28); then ]’or each e Z/, the
sequence {y{}, which is generated by the iteration (30), converges to the unique fixed
point x i+1 of Gi, and is contained in/ =/[xi+l; otir*] c/* =/[z; 2r*], where a and
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6 are given by

(45) a m/(m + k );

(46) 6 k/(m + k ).

Proof. Since T is a homeomorphism of X onto itself (see Lemma 8), for each
6 Z/, x i/1 is the unique fixed point of Gi.

Claim 1. i c B* for all Z+.
By (28), (46), and (40), we get

(47) for all Z+.
From (28)and (29),

(48) Tx- Tx= u-Fz.
By (48), (39), (41)and (45), we have

(49) Ix 1- x] -<-lu Fzl/(k + m)= ar*.

From (47)and (49), we get

(50) Ixi+-xil<=a6ir* foralliZ+.

From (50), (45), and (46), we have

Ix i/1 zl __< Ix i+a xil / Ix i- x i-a] /... + Ix 1- x[
(a)

<=o(6i+...+l)r*<--[a/(1-6)]r*=r* for all 6 Z+.
This implies that for each Z+,/i is contained in/*.

Claim 2. For each s Z+, {y[} converges to x i+a and is contained in/i.
Given s Z+. Since B C B:, we have

IFx-Fxi+ll<=lolx-xi+l for allx Bi.

Hence, from (30), (31), (43), and (44), we get

[Gix X
i+I IGix Gixi+l

(52)
i+1=(1/k)lFx-Fxi+[<=V[x-x forallxBi.

On the other hand, (50) implies x /i. Hence, (52) implies that {y{} converges to x i/a,
and that it is contained in Bi.

Finally we investigate the behavior of the sequence {Yi} which is generated by the
iteration (36). Note that we have three sequences in mind" {xi}, {37}, and {}, where
{x i} and {)7/* } are the sequences generated by the iterations (28) and (32), respectively.

THEOREM 3. Let Assumption 1 be satisfied. Let r*, lo, k, y, a, and 3 be positive
constants which are defined by (41)--(46), and let e be a positive constant such that

(53) e <= mr*/(3k + m).

For each Z+, choose N(i)s Z+ sufficiently large and
N(i)(54) y ([u F.ilm/) <- e.

Let {i} be the sequence generated by the iteration (36); then we have an estimate"

(55) Ii-x*l<=(/)/, r

where x* is the unique solution of (4).
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Proof. Since T is a homeomorphism of X onto itself, for each Z+, (32) has the
unique solution )7/* which is the unique fixed point of (i. From (28), (29), (32), and
(50), we have

(k + m)lx*+- *i <= lTx*+- T*i
[(u + kxi)-(u + ki)l-- klxi-il for all Z+.

This implies

(56) xi/ <= 8IX i- i for all Z+.
Claim 1. For each s Z+,/[)7/* ri] *, where ri ] 2i].
The proof of Claim 1 is done by induction. If 0, then the assertion is obvious,

since /[)7o* ro] =/[x; [x- xl] /o/* (see Lemma 9). Suppose that for some
n Z+,J[)7/*;ri]/* for all inn. Since )7/* is the unique fixed point of i, the
assumption of the induction implies (see (52))

(57) 137/* iYl < T[)7/* yl for all y /[37* ri].

Hence, by (36)and (54), we have
N(i)

(58)
1)7/* -i/11 <= V I;/*-

N(i)-<- 3’ (lu F I/m)-< e for all <- n.

From (56)and (58)we get

(59) Ixi/l-i/l[<-lxi/a-*il/l*i-i/ll<=lxi-il/e for all =< n.

So we obtain by (59) and (58)

[x ’+l ’+al _-< (1 /,s/....--si-1)E /’1x1-11
(60) (1 / 8 /... / 8i-x)e / 8il)7 -11 -<_ e/(1 8)

=e/a for alli=<n.

By (50), (56)and (60)we have

rn+l ~ ~n+l
Yn+l--X

(61) <1 ~* n+2 n+2 n/l 1__2Yn+l--X I+[x --X [/IX n+ n+l[
<--(1 +8)[xn+X__x~n+X[ +asn+lr*<(l= +8)(8/a)+a8n+r*.

From (50), (56), and (60)we get

[~, 0 ~: n+21 n+l[ 0-ly n+l X / Ix "/= xYn+l--Z < -x / /tX
(62) ~n+x n+2)/=<Slx"+l-x I/ar*(1-8 (1-8)

<- 8e/a + [a/(1 8)Jr*(1 6"+2).
By (61), (62), (45), (46), and (53)we obtain

Yn+l- Z~* 01 / rn+l __< (1 + 28 )e/a + 1 (k m )8 +/(k + rn )]r*
(63)

<- r* + (1 + 28)e/a <- 2r*.

This implies that B[37,*+1; r,,+x] c/*.
Claim 2. Equation (55) holds for all 6 Z/.
From Claim 1, we have (see (60))

(64) Ixi-’]<=/.
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From (40)and (46)we get

(65) Ix i- x*l-<- 6lx- x*l for all Z+.
Since x* is the solution of (4), we have

(66) Fx * Fx o u Fz o

By (f) if Lemma 1, (37), and (60) we have

(67) Ix-x*l-< [u -Fzl/m r*.

From (64), (65), and (67)we obtain

[i__ Xg[ [i__ X i] _. Ixi__ X*[ <= (e/a)/ ir* for all Z+.

5. Applications. In this section we shall present some applications of the results
of the preceding sections. In 5.1, we shall consider a nonlinear feedback system _S
shown in Fig. 1, and give a condition for the continuity of _S. In 5.2, we shall consider
a nonlinear resistive network _N shown in Fig. 2, and give conditions such that for each
u Ra, _N has a unique dc operating point.

FIG. 1. The feedback system S_.

5.1. Continuity of a feedback system. Consider a feedback system _S shown in
Fig. 1. Let G1 and G2 denote operators (mappings) of X into itself, and let ul, u2 X
be given. It is convenient to introduce the product space XX, with I(xl, xe)l
[xl]+lx[. G denotes the operator from XX into itself defined by Gx=
(Gexe, Gx) for (Xl, xe) X X. The element u (Ul, u) X X will be referred to
as the input of system _S.

DEFINITION 8. The feedback system _S is continuous if i) for any u X X, there
exists a solution x X X of the equation (I + G)x u, and (ii) there exists C _-> 0 such
that [x-x’l <-C[u-u’l for all u, u’XX, where x and x’ are the solutions of
(I + G)x u and (I + G)x’= u’, respectively.

THEOREM 4. Let G and G be locally Lipschitzian. Assume that there exist real
numbers m, e, and such that

(68)

(69)

(70)

and

(71)

A(G2;x, y)>-m>O forallx, y6X, x#y,

-A(Gl(-I);x, y)>=e forallx, ysX, x#y,

A(G1; x, y)_-->6 forallx, y 6X, x y,

e+6>O,

where GI denotes the inverse operator of G2. Then S_ is continuous.
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Proof. From Fig. 1, we have

(72) x Ul--Y2,

(73) x2= u2+Yl,

(74) y GlXl,

(75) y2 G2x2.

By Theorem 1 and (68), the operator G2 is invertible, so we obtain the following
equation by (72)-(75):

(76) G] (-I)(xa- ua)- Gaxa u2.

Define operators dz, G" X-X by

(77) d2x G (- I)(x Ux),

(78) G’x= -2X+GlX.
Then we have by (69)-(71), (77), (78), and (e)of Lemma 1,

(79) -h(2;x,y)=-h(Gl(-I);X-Ul, y-ul)>-e for all x, y X, x y,

(80) h(G’;x,y)>--h(E;x,y)+h(G1;x,y)>-e+6>O forallx, y6X, xCy.

By (68) and (f) of Lemma 1, G is Lipschitzian, and, hence, G’ is locally Lipschitzian.
So Theorem 1 and (80) imply that for any u X X, (76) has the unique solution Xl,

and, hence, there exists a unique solution x X X of the equation (I / G)x u. Let
x (Xl, x2) and x’- (x, x) be, respectively, the solutions of (! / G)x u and (I /
G)x’= u’ u (ua, u2), u’= (u’a, u)eX x X. By (76)-(78) we have

(81) a’x’ -1U2 +G] (Ul-Xl)-a (U’l -Xl).t

By (f) of Lemma 1, (76)-(78), (80), and (81) we get

(82) [Xx-Xl[<=[1/(E+6)]([u2-u2[+la-X(ux-xl)-al(ul-Xl)]).
By (f) of Lemma 1 and (68) we have

(83) ]a-l(ul-x)-al(ul -x)[<=(1/m)[ux-u’l[.
From (82)and (83)we get

(84) ]Xx--Xtll[l/(E +)][lu2-u’]+(1/m)[ua-u’l]].
By (72), (75), (83), and (84)we obtain

Ix2-x (Ul-Xl)-a (U’l -X’l)l

(85) <= (1/m )([U Ul + lx xl l)
_<-- (l/m)[1 + 1/m(e +)]lu-ul+[1/m( + )]lu=- u I.

Set C=max {(l/m)[1 + 1/m(e +6)], [1/m(e +6)]}. Then we have from (84) and (85)

Ix x’l <__ flu u’l,
COROLLARY 5 (Passivity theorem [8, p. 184]). Let X I-I be a real Hilbert space.

Assume that 01 is locally Lipschitzian, and that Gz is Lipschitzian in I-I. Further,
assume that G1 is monotone (accretive), i.e.,

(86) A(G1; x, y)>-O forallx, y ell, x y,
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and that there exists rn > 0 such that

(87) h(G2;x, y)>=m>O forallx, yH, x#y.

Then S is continuous.

Proof. By Theorem 1 and (87), G2 is invertible. Set x -G2v, y -G2w. From
Corollary 1 and (87)we have

-h(Gl(-I);x, y)= -(Gl(-x)-G]l(-y),x-y)/(x-y,x-y)

--(V W, G2v + GzW)/(G2v G2w, Gzv G2w) >- (m/l2)
>0,

where is a Lipschitz constant of G2. Hence (86) and (87) imply (68)-(71). The
conclusion follows from Theorem 4.

Remark 10. The condition (86) can be replaced by the following weaker condi-
tion" There exists 6 such that 6 + (m/12)> O.

im

/’(ira

linear time-

invariant

(m +n)-port

FIG. 2. Resultant network N.

5.2. Nonlinear resistive networks. Consider a network consisting of voltage-
controlled nonlinear resistors, current-controlled nonlinear resistors, independent
sources, linear dependent sources, and linear resistors. We assume that the network
has a unique dc operating point if we replace all the voltage-controlled and current-
controlled nonlinear resistors by arbitrary independent voltage and current-sources,
respectively. Then by the Th6venin-Norton equivalent transformation, we have a

network _N as shown in Fig. 2. _N has a linear time invariant (m + n)-port with a hybrid
matrix H, i.e.,

(88) (") -/-/( i, )’
m numbers of independent current sources i, e R’, and rn numbers of voltage-
controlled nonlinear resistors (which may be coupled) =/’(v), where /’" R" R" is
continuous, are connected to the m-port terminal in parallel" and n numbers of
independent voltage sources v, R" and n numbers of current-controlled nonlinear
resistors (which may be coupled) v=3(i), where ’R"-+R" is continuous, are
connected to the n-port terminal in series.

Applying Kirchoff’s laws to _N, we have

(89) t(v.,)= is + i,,,

(90) 3(i,,)

From (88)-(90), the dc equation of ._N is given by

(91, H(?) +(()
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For related discussion to obtain dc equations Of the form (91) the reader is referred to
[4].

THEOREM 5. Let " R" --> R" and " R" --> R" be continuous. Define G" R"+" -->

R"+" by

Gx=((i)]’
where x (v.,, i.)e R’’+’.

If one of the following three conditions is satisfied, then ]:or any given independent
sources (is, vs) R’+’, _N has a unique dc operating point (v* "*t, ) R" Furthermore,
(is, Vs)-’>.(v* "*t, ) is continuous.

(I) A (G; x, y) => 0 [or all x, y _.I ’’+", x y, and for some m > O, tx (- H) >
m > O, where Ix (.) denotes the measure of a matrix which is defined by

Ix (H) lim IlI + aH[I- 1

(II) For some m P, (G; x, y)>= m(max {Ix[, lyl}) for all x, y 6 R"+", x # y, and
IX(-H)=> 0.

(III) For some m P, A (G + H; x, y)>= m(max {[xl, [y]}) for all x, y R"+,xCy.
Proof. By the definitions of the A-functional and the measure of a matrix we have

(92) -A(-H;x,y)>=-Ix(-H) forallx, yR"+", xCy.

From (92) and (e) of Lemma 1, both (I) and (II) imply (III). The conclusion follows
from Corollary 3.

6. Conclusion. In this paper we have first introduced the A-functional, and
showed several useful properties. We clarified the relation between the A-functional
and the duality map. We have given sufficient conditions for the solvability of Fx u
where F is not necessarily differentiable. We have also shown sufficient conditions for
the solvability of 4,(x, v)= u. Moreover we have proposed an iterative method to solve
Fx u, which globally converges to the unique solution under the accretive property
of F. It should be stressed that the results not only generalize a number of previous
results but also strengthen them in a single framework of the A-functional.

Acknowledgments. The author would like to thank the reviewers for their con-
structive comments which are reflected in Remarks 1, 5, 6, and 7 in this paper. The
author also wishes to thank Professor S. Kodama, Osaka University, Associate Pro-
fessor H. Haneda, Kobe University, Dr. H. Maeda, and Dr. S. Kumagai, Osaka
University, for their helpful suggestions and fruitful discussions.

Appendix.
DOMAIN-INVARIANCE THEOREM 1]. Let F: Rd

--> Rd be continuous and injective.
Then for each open subset D c Rd, F(D) is also open.

REDHEFFER’S DIFFERENTIAL INEQUALITY [12], [21]. Let b,m’R+-->R be
continuous. Consider the following differential inequality"

v_ <- b(t)/m(v); v(O) <- c.

Let B(t)= b(s) ds and M(a)= ’o re(s) ds. If M(c)+ B(t)s Domain (M-), and for
any >= v (0), m ()> O, then v (t) <= M-I[M(c) + B (t)] for all R/.
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OPTIMAL LINEARIZATION OF EQUATIONS INVOLVING
MONOTONE OPERATORS*

VACLAV DOLEZAL

Abstract. In this paper we consider linearizations of a nonlinear equation in a Hilbert space which are
close, in a certain sense, to an optimal linearization. We focus our attention on equations involving
monotone operators, particularly on those with Hammerstein-type operators. Finally, we discuss a con-
struction of a linearizing operator in the case when a Nemytskii operator is involved.

Introduction. Let T be a nonlinear operator with TO 0 and suppose that we
wish to solve the equation Tx =y for many different elements y which satisfy the
inequality Ilyll--< r. Since solving a nonlinear equation is usually a difficult task, we may
attempt to replace T by a linear operator To, and take the solution x0 of Toxo y for
an approximation to the exact solution x of Tx y. Naturally, we would like to choose
To so that the over-all relative error, i.e., the supremum of all relative errors [[x-
x0[l" Ily[I- taken over all y’s with Ilyll -< r, is made as small as possible.

An ideal situation would occur if there exists a linear operator T. which would
minimize the over-all relative error. Unfortunately, such an optimal operator T, need
not exist. Also, even if T, exists, it would be hard to construct it.

On the other hand, looking at the problem from a practical point of view, we may
satisfy ourselves with a partial solution" we can try to find a linear operator To which is
sufficiently close to T in a certain sense, and hope that the over-all relative error
corresponding to To will be small. It turns out that this is true for monotone and
Hammerstein-type operators. As we shall see below, quite reasonable estimates can
be given for [IT-ly T-dayll Ilyll-. Moreover, in particular cases it is usually not
difficult to find such a To, and consequently, to replace the equation Tx y by a linear
equation Toxo =y without committing an unacceptable error.

Results. In order to formulate the ideas indicated above precisely, let us intro-
duce some notations and concepts.

Let L be a Banach space; if r > 0, let

(1) Br {x: x L, IIx II--< r}.

Let (L) be the collection of all nonempty subsets of L. Let D c L, D ; if
T’D - ,(L), let R (T)= LIxo Tx. If, in particular, Tx is a singleton for each x D, T
will be called an operator.

If T" D - (L), we define the mapping T-1" R (T) ,(D) by

T-ly ={x’x D, y Tx}.

A mapping T" D (L) will be called simple on D, if

Xl, X2D, Xl X2(Tx1)f(Tx2)-"

It is easy to see that"
T is simple on D <=> T-a is an operator on R (T).
Finally, let 52 be the set of all linear, bounded operators which are 1-to-1 from L

onto L. (Note that, by the open mapping theorem, A 52 =b A-1 52.)

* Received by the editors April 19, 1977, and in revised form September 19, 1977.

f Department of Applied Mathematics and Statistics, State University of New York at Stony Brook,
Stony Brook, New York 11794. This research was supported by the National Science Foundation under
Grant MPS7505268.
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DEFINITION. Let Dc L, D # , 0D, let T:D-(L) be simple on D, and let
r>0. If

(a) R(T) Br,
(b) there exists K>0 such that the operator T-I:R(T)D satisfies the

inequality

(2) T-ly K[]y

for all y e Br, we let

(3) A,(T)= inf sup [[T-ly- TZ’yI].
T, Y6B’r

where B’ B {0}.
Observe that this definition of the "minimal over-all relative error" A(T) is

meaningful. Indeed, for any T e52 and y e B’r we have I[T-ly- T2yll ]]y[[- <-

K +lIT2 [I. Hence, A(T)-<_ K + 1. Also, A(T)is a certain measure of nonlinearity of T
with respect to B, since A(T)= 0 whenever T is linear.

For our purposes, the meaning of At(T) is clarified by the following obvious
proposition"

PROPOSITION. (i) Let e > 0; then there exists To i3 such that, for any y B and x,
Xo L with y Tx, y Toxo, we have

(4)

(ii) Let To 52; then for any e > 0 there exists y’ B such that

(5)

]’or x, Xo6 L satisfying y’ Tx, y’= Toxo.
(iii) If, for some To 52 and a > O, we have IlT-ly Tdlyll_-< allyll for all y Br,

then At(T)-< a.
As mentioned in the Introduction, an ideal case occurs if the’re exists T, 52 such

that

(6) sup [[T-ay Tlyll Ily[[-- A(T).

The question whether T, exists or not can be reduced to a standard problem of
approximation theory. Indeed, to see this, consider the following:

Let c L be nonempty, arrd let o(fl) be the set of all operators A:-L such
that ]lAx[] <- CA]IX]] for all x fl with some CA >0. Note that if A:L- L is a linear
bounded operator, then the restriction of A to D. is in o(D.). Clearly, if we define the
sum and scalar multiple in o() pointwise and put

(7) IlAllo sup IIAxll" Ilxll-,
x0

then Co(f) becomes a Banach space.
Referring to (3) and (6) we see easily that an ideal case occurs iff there exists an

F, 52 such that, in c(B), we have

(8) lIT-1 F,I[o inf lIT-1- F,[[o,
F,

i.e., F, is a best approximation to T-1G ((Br) in 52, [1]. In this case, T, --F1.
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With this degree of generality we are unable to guarantee the existence of F,.
(Note that, in general, o(Br) is not reflexive, and 52 is neither convex nor closed in
Co(Br).) A partial answer to the existence problem can be given for the rather
uninteresting case in which L is finite dimensional. Indeed, here the subspace 5’ of all
linear (and consequently, bounded)operators F,,:L--> L is finite dimensional. Thus,
there exists (see [1, p. 20])F, 52’ such that lIT-I-F, [[o infF,,e, IIT-1-F,IIo. Now, if

F is invertible, it is the operator F, we seek. (This would happen, if, for example, L
is a Hilbert space, T- is strongly monotone and liT-x- F, IIo is sufficiently small.)

Due to these facts, let us now turn to the alternative approach indicated in
Introduction, i.e., examine operators To 52, for which lIT-1- T I[o is close to

Our first step in this direction is the following, rather trivial proposition.
THEOREM 1. Let D cL, D (g, O6D, let T:D->(L) be simple on D and

satisfy conditions (a), (b) in the Definition, and let r > O. Moreover, assume that there
exists To , and a > 0 such that

(9) IIz Toxll <-

for all x D (q Br and z Tx, where R Kr. Then

(10) [[T-lY Tly[[ <-- aK[[T- 111" Ilyll

for all y Br, i.e., At(T)<_- agllT
Proof. Choose y B, and put x T-ly. Then y e Tx, and by (2), Ilx[I IIz-lyll-<-

Kr R, i.e., x D f3 BR. Thus, we have by (9),

IIT-y ZYll IIT (Tox r)ll--< IIT I1" IlZox YlI--< IIZ Ila Ilxll--< agllZ
The inequality for At(T) follows from proposition (iii).

Much more efficient results can be obtained for monotone operators. Thus, from
now on, let L H with H being a real Hilbert space.

THEOREM 2. Let D c H, D # Q 0 D, and let r > O. Let T: D --> (H) be such
that

(i) R(T) Br,
(ii) with some b > 0,

(11) (y l- Y2, X X2) : b[[Xl xell2

for all xl, x2 D and y TXl, y Tx2. Furthermore, assume that
(iii) D BR is dense in BR with R b-lr,
(iv) there exists a linear bounded operator To:H->H and a constant a with

0 < a < b such that

(12) Ilz Tox <--

for all x D (3 BR and z Tx.
Then T is simple on D, To 52 and

(13) I[Z-ly- Tlyll__< Ml[y[[

for all y Br, where M ab-(b a)-l, i.e., hr(T)-<_ M.
Proof. Simplicity of T follows immediately from (11). Thus, T-: R (T)--> D is an

operator, and (11)implies that

(14) I[T-Xxx T-lx2ll-<
for all x,x2R(T).
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Next, the fact that 0eD and (12)show that TO= {0}. Thus, T-10 0, and by
(14),

(15) [[T-IF[[
for all y R (T). Due to (i), (15) holds for every y B,. Also, (15) shows that

(16) T-aBr = D f-I B.
On the other hand, if x e D and y Tx, we have by (11)

(17) (y,x)>-bl[x[[-.
Now, if x 6 D Yl BR, then for any y 6 Tx,

(18)

also, by (12),

Hence, (17), (18)yield

(19)

<Tox, x)= (y, x)-(y Tox, x>;

(y Tox, x) <= ]]y Tox ]Ix <= a fix 2.

Tox, x) >- (b a)[[x [[.

However, by (iii) and continuity of To it follows that (19) holds in Br, and
consequently, by linearity of To, everywhere in H. Since b-a > 0, (19)shows that To
is a maximal monotone, coercive operator, so that Toll H (see [2]). Hence, To 6 52.
Furthermore, (19) gives, by the Schwarz inequality, IIToxll >-- (b a)llxll; thus,

(20) IIT 11[ <_- (b a)-l.
Applying now Theorem i to our To and using (20), (15), we find inequality (13) follows.

Remark 1. If T satisfies condition (ii) and is m.ximal monotone, then (i) is
automatically met. Indeed, for each x D, let Tx be the point in Tx having minimal
norm. (Such point always exists, see [3, p. 104]). Then, by (17), Ilrxll>-bllxll for each
x D. Consequently, by Theorem 5 in [3], R (T)-H.

Condition (iii) in Theorem 2 can be modified so that we can drop the assumption
on boundedness of To. Actually, we have:

THEOREM 2a. The Theorem 2 remains true, if conditions (iii)and (iv)are replaced
by the following assumptions:

(iii)* BR c D with R b-lr,
(iv)* there exists a linear operator To: H --> H and a constant a with 0 < a < b such

that (12) holds for all x Br and z Tx.
Proof. If x B, we conclude as before that (19) holds. Thus, by linearity of To,

(19) holds on the entire space H. Since To, being a linear operator, is hemicontinuous
on H, it is maximal monotone and coercive by (19). Hence, Toll H, [2], i.e., To is
1-to-1 onto. Moreover, by (19) the inverse T is bounded, and we have (20). Finally,
by the open mapping theorem, To itself is bounded, and consequently, To 6 52. The rest
of the proof is the same as before.

Let us now turn our attention to Hammerstein-type operators. To simplify the
formulation of further results, let us introduce the following notation"

If a is a real number, let (a) be the set of all operators T: H H such that

(21) (rxl- rx2, XI--X2)OClIxx--X2[[2

for all x l, x2 H. Similarly, if a->0, let Lip (a) be the set of all operators T:H-->H
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such that

(22)

for all x 1, x2 t H.
If T Lip (a), we put

(23) ]]r[[*-- sup [[rxx-rx2[l.[[Xx-X2[[-1.
Xl,X2H
Xl X2

Clearly, if Tl, Tz Lip (a), then

[IT1 + T2II* --< TII* + [IT2[I*, IIT Tzll* -<-IITII[*II T211*.
If, in particular, T is linear and bounded, then [ITII--IITII*.
LEMMA 1. Let T (a) with a > 0 and let T e Lip (/3) with > O. Then T is

1-to-1 onto H, and we have

(24) T-1 e dd (c-2), T-le Lip

Proof. Our assumptions show that T is maximal monotone and coercive. Hence,
TH H. Since T dd(a) implies that T is 1-to-l, T-1 exists. Relations (24) follows
readily from our assumptions by using Schwarz inequality.

THEOREM 3. Let A (0) be linear and bounded, and let B 6Al(b), b >0,
B Lip (c). If T I + AB, then T is 1-to-1 onto H and

(25) IIT-1[I* <- b-2c 2.
Furthermore, let r > 0 and assume that there exists a linear operator Bo: H H and a
constant a with 0 < a < b such that

(26) IIBx BoXll _-< a Ilx[I

for atl x B with R b-2c2r. Then Bo is bounded, IIBoll-< a +c, and the operator
To I + ABo has the following properties:

(i) To is 1-to-1 onto H and

(27) IlZ <-- (b a)-2ilBoll2;
(ii) For every y B,

[[T-ly TIyll <-- g[lyll(28)
with

acZl]A IIBoll(29) K= b2(b_a)2
i.e., A(T) <- K.

Proof. The conditions B e (b), b > 0, B Lip (c) imply by Lemma 1 that B is
invertible, and B- e(bc-), B- cLip (b-a). Since A e if//(0), it follows that B-+
A (bc-z) and B-a +A e Lip (b- + [JAil). Consequently, again by Lemma 1, B- +
A is invertible and (B-a+A)-aeLip(b-acz). Next, T=(B-+A)B, and
consequently, T is invertible. Since T-= B-(B-a+ A)-a, we have

(30) liT-all* =< IIB-II*II(B -1 /A )-11[* b-2c 2.
Now, assume that (26) holds. Then, first of all, B0=0. Also, (26) implies by

condition B e Lip (c) that Ilnox[[ _<- (a / c)[Ixll for all x e Bu hence, due to linearity, Bo
is bounded and [Inoll -< a + c.
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Using the same argument as in the proof of Theorem 2 we conclude that
<BOX, x>>-(b a)llxll2 for all x BR. Hence, by linearity, Bo6(b -a), Bo Lip (llnoll).
Applying the above results concerning T to To, we see readily that To is invertible,
and by (30),

(31) IIT II* IIT I[--< (b a)-ZllBollz.
Finally, let y B,; then I[T-lyll<-llT-1li*llyll<-_b-2c2r-R, and we have by (26),

IIT-y- TlyII [[T (To- T)T-Xytl
[]T-A(Bo- B)r-lyl[ <- (b

which confirms (28), (29). Hence, the proof.
THeOReM 4. Let B (0) be linear and bounded, and let A Al(b), b > 0,

A Lip (c). If T I + AB, then T is 1-to-1 onto H and

(32) lIT-Ill* =< b-2c 2.
Furthermore, let r > 0 and assume that there exists a linear operator Ao: H H and a
constant a with 0 < a < b such that

(33 ) IIAx AoX -< a IIx
for all x Bg with R IlBiib-2c2r. Then Ao is bounded, IlAo[[ <= a + c, and the operator
To I +AoB has the following properties"

(i) To is 1-to-1 onto H and

(34) IlZ 11[ _-< (b a)-211mollZ.
(ii) For every y Br,

I[T-’y Tly[I-<- g[[yll(35)

with

acZllAollZllBll(36) K= b2(b-a)2
i.e., Ar(T) <= K.

Proof. Using the same argument as in the proof of Theorem 3 we confirm easily
that all claims up to (i) are true. As for (ii), note that if y e Br, then by (32) IIBr-lyll <--

[IB[lb-2c2r=e. Thus, we have by (35), IIT-ly-TyI[=IIT-(Ao-A)BT-yII<-
(b- a)-Zllmoll2allBllb-2cZllyll which concludes the proof.

In order to prove certain "duals" of Theorems 3 and 4, we will need the following
result:

LEMMA 2. Let A:HH be a linear operator with A e(b), b >O, and let
B: H H be a hemicontinuous operator with B All (-ix), Ix >= O. If b tx llA 2 > o, then
T I +AB is 1-to-1 onto H, and

(37) lIT-111* --< IIA II(b z IIA ll2)-1.

Proof. First observe that A is bounded. Indeed, since A is linear, it is hemicon-
tinuous, and consequently, by assumption A J//(b), b > 0, A is maximal monotone
and coercive. Hence, A is 1-to-1 onto H, and IIA-all-< b -1. Thus, by the open mapping
theorem, A itself is bounded.

Next, consider the operator C TA* A*+ABA*, where A* signifies
the adjoint of A. Clearly, C is hemicontinuous. Indeed, A* is continuous,
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and for any Xo, wH and number sequence tn-->0 we have BA*(xo+tnw)=
B(A*xo + tnA* w) BA*xo, so that, by boundedness of A, ABA*(xo + t,w)
ABA*xo. Moreover, for any xi, x2 H,

Cx1 Cx2, X x2) (A *(X1 X2), X X2) "[- (ABA *X1 ABA*x2, x x2)
(38)

(A(xI-x2), xI-X2)q-(BA*x -BA*x2, A*x -A’x2).

However,

(BA*xl-BA*x2, A*xx-A*x2)>=-tzllA*x-A*x2ll2= -zllA*(xa-xz)[[2,
and Ilm*(xx-x2)[l<-llA*[I Ilxa-x2ll IIAII I[xa-x21l. Hence, by (38)and since A (b),

(39) (Cxx-fx2, xx-x2)(b-ld, llmll2)[lXl-X2[[2.

Thus, if b-[IAII2> 0, (39) and hemicontinuity of C show that C is a 1-to-l, maximal
monotone and coercive operator. Hence, C-1 exists, and by (39),

[Ic-1ll* -<_ (b t IIA lira)-1.

Now, since A* is invertible and [[A *-ill <- b -1, the relation T CA,-1 implies that
T is also invertible. Thus, due to T-l= A*C-1,

liT-ill* --< IIA*[I IIc-1[I* --< IIAll0- tt [[A II)-1.

This completes the proof.
THEOREM 5. Let A: H->H be a linear operator with A dd(b), b > 0, and let

B: H -> H be a hemicontinuous operator with B dd (0). Let r > 0 and assume that there
exist a linear operator Bo: H -> H and a > 0 such that

(40) IlBx Box[[ =< a Ilxll
for all x BR with R-[IAIIb-lr. Let T=I+AB and To=I+ABo; if b-allAll2>O,
then both T and To are 1-to-1 onto H, and

IIT-y Tly[I <-- K[IyII
for all y Br with

(41) K ab-lllAll3(b a IIA II))-1,
i.e., AT(T) <- K.

Proof. By Lemma 2, T is invertible and IIT-II* <-IIA[lb- Moreover, from (40)
and because B s (0)it follows as before that (Box, x)>=-allxll for all x BR. Due to
the linearity of Bo, this inequality is satisfied for each x s H, i.e., Bo e (-a). Also,
since Bo is linear, it is hemicontinuous. Thus, if b-allA[12> 0, Lemma 2 shows that To
is invertible and IIT I1"_-< IIAIl(b- aliA[J2)-1.

Next, if y B, then [[T-ly[[ =< IIT-111*lly[l_-< IIAIIb-r- R (note that (40) yields B0
0:ff TO 0:ff T-10 0), and we have

]]T-ay TlyII [[T-IA (Bo- B)T-lyll <_-IIA II(b allAll2)-lallAll2b-l[ly[I

which is what we wanted to show.
LEMMA 3. Let B H --> H be a linear operator with B J/l (b ), b > O, and let A: H -->

H be a hemicontinuous operator with A J/l(-tx), pt >-0. If b-llBIl=>0, then T=
I +AB is 1-to-1 onto H, and

(42) T-l[[* --< lIB [l(b ix lIB [12)-1.
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Proof. As in the proof of Lemma 2 it follows that B is an invertible bounded
operator and IlB-l[l<-b -1. Moreover, letting C=B*T=B*+B*AB, we confirm
easily as before that C is hemicontinuous and satisfies the condition

(CXl Cx2, Xl x2) (b -/z ]]BI[Z)[[x1- x2112
for all x l, x2 6 H. Thus, C is invertible and

(43) IIc-111* _-< (b -/x lIB [[2)-1.

Now, since B* is invertible and [IB*-lll<-b -1, we have T= B*-Ic. Consequently,
T-1= C-1B *, so that fIT-l[]* _-< [IC-III*IIB*II, from which (42) follows immediately.

THEOREM 6. Let B H-H be a linear operator with B l(b), b > O, and let
A:H -H be a hemicontinuous operator with A J/t (0). Let r > 0 and assume that them
exist a linear operator Ao: H H and a > 0 such that

(44) Ilax aoX II--< a IIx
for all x Br with R =]]Bll2b-lr. Let T=I+AB and To=I+AoB; if b-allBll2>O,
then both T and To are 1-to-1 onto H, and

(45) IIT-ly Tly[[-< gllYll

]:or all y Br with

(46) K ab-llBll3(b al}Bll)-,
i.e., ,,.(T)<- K.

ero4 By Lemma 3, T is invertible and IIT-II* -< IIBllb -. From (44) and A d//(0)
it follows that Ao(-a). Since Ao is hemicontinuous, Lemma 3 shows that T
exists and IITII*<-IIBII(b-ailBIIZ)-. Now, if yBr, then [[BT-lyll<=
IlnllZb-lr R, and we have IIT-ly TaYII I[T (mo-A)BZ-yl[ <
IIBIl(b- allBllZ)-XallBll IIBIIb-llYll which proves (45) and (46).

In Theorems 2a and 3-6 we assumed existence of a linear operator To:H --> H (or
Ao, Bo) such that the norm lIT-To[Io in Co(BR) is sufficiently small. Thus, from a
practical point of view it is important to know how to construct such To for a given T.
A quite simple construction of To can be divsed if H L(a, b), (n-tuple Cartesian
product of L2(a, b) with itself having the obvious inner product) and T has the form
T T1 + T2F, where Tt, T2 are linear and F is a Nemytskii operator. We will look for
To in the form To TI+ T2Fo, where Fo is generated by a matrix and liE-Folio is
sufficiently small. In order to discuss the construction of Fo, we will need the following
proposition"

LZMMA 4. Let f e qo(R") be continuous and let the operator F be defined on
L(a, b) by (Fx)(t)=](x(t)), (a, b). Then F qo(L(a, b)) and Ilftto: ttFIIo.

Proof. For any : R we have lf()l--< I111o11, (Here, l" ]signifies the Euclidean
norm in R".) Thus, if x L’(a, b), Fx is measurable and

b b

IlFx[I2- f [f(x(t3)l2 dt

i.e., F Co(L(a, b)) and [[F[[o =<
On the other hand, for each e > 0 there exists sCo R", :o 0 such that [[f[[o- e _-<

1/(:o)[" [sCo1-1. Choose a, /3 with a </3 so that [a,/3]c (a, b) and define Xo(t) by
Xo(t)- :o on [a,/3,], Xo(t)= 0 elsewhere in (a, b). Then Xo L(a, b), Xo O, and the
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above inequality yields

(llfllo- )211xoll (llfl[o- ):1ol dt <= If(o)l dt [Ifxoll,
i.e., Ilfl[o- -<-IIFxol[. [IXol[---< IlF[[o. Hence, Ilfllo [IFIIo.

To state the theorem, let us introduce the following notation:
Let G be the space of all n xn matrices with constant entries. If u G, let

m, o(R") be defined by m v. , and F Co(L(a, b)) by (Fx)(t) u. x(t).
THEOREM 7. Let f 6 ego(R") be continuous; then there exists uo G such that in

ego(R") we have

(47) Ill- mollo- inf Ill- m[Io A.

Furthermore, if F Co(L(a, b)) is defined by (Fx)(t)=f(x(t)), then in o(L(a, b)) we
have

(48) [[F F,.,o[IO inf ]IF F,,llo A.

Proof. Since G is finite dimensional, a Vo G satisfying (47) exists [1]. However,
Lemma 4 shows that, for any v G, Ill- m,llo--[IF-F,[Io. Hence, (48) follows.

A minimizing matrix Vo can easily be found, provided f is "diagonal". Actually,
we have the following, fairly obvious result:

THEOREM 8. Let f6 CO(R") have the form f(’)= [f1(1), f2(2),""", fn(n)] T,
where f Co(R 1), 1, 2,. , n. Then there exists a unique vo G that satisfies (47).
Moreover, Vo diag (d l, d2,"’, d,), where

d, 1/2(& + Ii), Si SUp -lj(),
RO

Ii inf -lfi (), Ro R 1-{0},

i=l,2,...,n, and a=max(Si-L).

In conclusion, let us consider two simple examples dealing with vector integral
equations.

Example 1. Let L2 and tl be the real space L2(-oo, oo) and tl(-Oo, oo), respec-
tively, and let us make the following assumptions:

(i) Let k (t) be an n n matrix each element of which is in L2 f"l L1, let K (iw) be
the Fourier transform of k(t), and let M(iw)=1/2(K(iw)+K(iw)r) be positive
semidefinite for every w eR a, i.e., ’rM(iw)>=O for each complex sc.

(ii) Let f: R" -+ R" be such that f(0)= 0 and

(49) (f(’l)-f(:2))T(1- 2) " b I:l- ’212, If(&)- f(g2)l <= Cll
for all 1, 2 R" and some b > 0 and c > 0.

(iii) Let C be a constant n x n matrix such that

(50) f(:)- C:I <- a I :1

for all " e R" and some a > 0 with a < b.
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We are going to show that, for any g L,
(a) the equation

(51) x(t)+ k(t-’ff(xO’))d’=g(t), tR

possesses a unique solution x in L and x depends continuously on g,
(b) the equation

(52) xo(t)+ k(t-r)Cxo(’)dr=g(t), teR

possesses a unique solution xo in L., and

(5 3) [[x xoll a}ClZc2b -z(b a )-=llgll,

Iki[l, and [CI is the norm of the matrix C associated with thewhere iil 2 )1/2
Euclidean vector norm.

Indeed, let the operators A, B be defined on L by

(54) (Ax)(t)= k(t-r)x(r) dr, (Bx)(t)= f(x(t)).

It is well known [4] that if koLzL and (Aoz)(t)= ko(t-r)z(r)dr, z L2, then
Ao is a linear bounded operator from L2 into itself, and IIAoll Ilkoll. Consequently,
our A is linear and bounded, because for any x L we have

2
< k

Hence, llA[l .
Next, choose x 6 L, and let and () be the Fourier-Plancherel transform of x

and Ax, respectively [4]. Then (A)= K, and Paraseval’s equality yields

(Ax, x)= ((1, )= (1dw (21-1 ]rg dw.

Since (Ax, x) is real, we also have

hence, (Ax, x)=(2)- IrM2dw eO by (i), i.e., A e (0).
On the other hand, from assumption (ii) it follows easily that B maps L into

itself, and that B e (b), B e Lip (c). Thus, by Theorem 3, equation (51) possesses a
unique solution x in L, and x depends continuously on g.

Moreover, (50) shows that I1- cllo a in o(e; thus, by Lemma 4, lib Clo
a in o(, i,e,, IIx-Cxllallll for all x eL. Also, Ilcll=lcl, Invoking again
Theorem 3 we see that equation (52) has a unique solution xo in L, and that estimate
(53) holds.

Example 2. Let now L and L be the real space L(0, T) and L(0, T), respec-
tively, and let k(t) be an n x n matrix each element of which is in L L. Define
matrix k(t) by k(t)= k(t) for re[0, T], k(t)=0 elsewhere, and assume that k(t)
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satisfies the condition (i)in Example 1. (Note that now K(iw)=Ik(t)eiW’dt.)
Moreover, let ]" and C satisfy the assumptions (ii) and (iii).

OnWe are going to prove that, for any g e L2 the equations

(55) x(t)+ k(t-’)f(x(’)) dr g(t), [0, T],

and

(56) Xo(t)+ k(t-z)Cxo(") dr g(t), [0, T],

L respectively, and that inequality (53) ispossess a unique solution x and Xo in
true.

To do this, we can use results established in Example 1. Indeed, if xL, let
xL2 be defined by x(t)=x(t) on [0, T], x(t)=0 elsewhere. Similarly, if m
L (3 L, construct m L2 (] L 1.

Defining operators fio.L -->L and "L L2 by

(57) (Ax)(t) m(t-)x()

we confirm easily that, for any x6L and the corresponding x G L2, we have
(x)(t)= (x)(t) for every t [0, T]. Consequently, [l xll ll xll llm l  llxll
IImll  , [Ixll. From this it follows as in Example 1 that the operator (Ax)(t)
k(t-)x()d is bounded on L

Moreover, for any xL we clearly have (x,x)=(x,x). Consequently,
under the assumptions made, (Az, z) 0 for each z L", i.e., A o (0).

Defining B on L" by (54), we have as before B 6 (b) and B 6 Lip (c). Hence,
operators A, B meet the assumptions of Theorem 3 and our claim follows.

Note that the bound for fix-Xo] given by (53) is sharper than that obtained by
applying the Bellman-Gronwall lemma.
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ABSTRACT LINEAR AND NONLINEAR VOLTERRA EQUATIONS
PRESERVING POSITIVITY*

PH. CLMENTt AND J. A. NOHEL

(v)

Abstract. Let X be a real or complex Banach space. We study the Volterra equation

u(t)+ a(t-s)Au(s)ds =f(t) (0<-t- T, T>0),

where a is a given kernel, A is a bounded or unbounded linear operator from X to X, and f is a given
function with values in X. (Of particular importance is the case f u0 + a * g, Uo X, g LI(0, T; X), where
denotes the convolution). We establish existence, uniqueness, continuity results and sufficient conditions

involving a, A, f which insure that solutions of (v) are positive by using certain representation formulas for
solutions of (v). We also discuss the positivity of solutions of (v) when A is a nonlinear (m-accretive)
operator and we discuss several examples when A is a partial differential operator.

1. Introduction and principal results. Let X be a real or complex Banach space.
We study the linear Volterra equation

(1.1) u(t)+a * Au(t)=f(t) (0<=t<= T; T>0)

where a .Au(t)=[a(t-s)Au(s)ds, a is a given real kernel, A is a bounded or
unbounded linear operator from X to X and f is a given function with values in X.

An important and perhaps the most useful special case of (1.1) for certain
applications is the linear equation

(1.1a) u(t)+a Au(t)= uo+a * g(t) (0_-<t_-< T; T>0)

where u0 X and the given function g s L1(0, T;X). We will establish conditions on
the kernel a and the operator A which insure that the respective solutions operators
for (1.1) and (1.1a) preserve a convex cone in X (see Theorems 3 and 4). One
motivation for studying this property of solutions of (1.1) is that if in (1.1) a 1 and
Au =-V2u in a bounded region

_
R with Dirichlet boundary conditions on the

smooth boundary F of lq, (1.1) is equivalent to the heat equation; thus our theory for
(1.1) is a natural extension of classical results on the positivity of solutions of the heat
equation. We then consider in 3 the same question for a nonlinear problem of the
form (1.1) in which A is an m-accretive operator. Finally, in 4 we discuss three
examples to illustrate the theory.

We will suppose throughout that the following assumptions are satisfied"

(HI) A :D(A)_XX and -A generates a linear continuous contraction semi-
group on X, which we shall denote by e -’A (to >= 0),

(H2) a GLI(0, T; R), and

(H3) f L1(0, T; X).
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DEFINITION 1. We say that u" [0, T]-X is a strong solution of (1.1) if u
LI(O, T; X), u(t)D(A)a.e, on [0, T], Au LI(0, T; X), and u satisfies (1.1)a.e. on
[0, 7"1.

We denote the norm in X by [[. II. If B is a linear unbounded operator on X, we
use the notation X =D(B); if u X, its graph norm is denoted by ][U]lx,
][u + ]]Bu [[. Of particular interest are the spaces XA and XA where A satisfies (HI).
Recall that the space XA is dense in X and XA is dense in XA; see [20, Thm 2.9, p. 8].
If u is a strong solution of (1.1), Definition 1 states that u L1 (0, T; XA).

TO discuss solutions of (1.1) and (1.1a) we make use of the operators R and S
defined respectively by the equations

(R) u(t)+a . Au(t)=a(t)x (X XA" O<--t<-- T),

(S) u(t)+a * au(t)=x (x 6XA; O<--t<= T).

It follows that under the assumptions of Theorem 1 below, equations (R) and (S) each
have a unique strong solution which we write respectively as R(t)x and S(t)x. While
the operators R and S are so defined for x XA, Theorem 1 together with a density
argument shows that R and $ can be extended uniquely as bounded operators in
L1(0, T; X) and L(0, T; X) respectively.

Much of the analysis will rest on properties of solutions of the two scalar
equations corresponding to the abstract equations (R), (S) respectively. The first is the
(resolvent) equation associated with the kernel a"

(rx) r(t)+ha * r(t)=a(t) (O<-t <- T; >=0).

It is well known [19] that if a satisfies assumption (H), then for every -> 0 equation
(rx) has a unique solution r(t,h)Ll(O, T; [). We shall make use of the assumption
(see also Proposition l(i) below):

(H4) For every h ->_ 0 the solution r(t, X) of (r) satisfies r(t, h) >- 0 a.e. on [0, T].

The scalar equation corresponding to (S) is

(sx) s(t)+ha s(t)= 1 (0<_- t_<- T; h _-> 0).

If a satisfies assumption (H2) it is clear that (sx) has a unique solution s(t,h)6
LI(0, T" ). But as is readily verified,

s(t, 1 r(o’, do" (0 <- <-_ T)

(recall [19] that x +la x =f and feLl(O, T; )imply x =f-lr(., 1).f; here take
x s, f-- 1). Thus the unique solution s(t, ) of (s) is absolutely continuous on [0, T].
We shall also use the assumption (see Proposition l(ii) below):

(Hs) For every A _-> 0 the solution s(t, A of (s) satisfies s(t, A )>- 0 on [0, T].

Remark 1.1. It should be observed that assumption (H4) implies that a(t) >- O, so
that I r(o’, I ) do" _-< a (o’) do-, 0 _-< _-< T. If both (He) and (Hs) are satisfied on [0, T]
for every T>0, then O<-r(t,)dt <-1/I (, >0); in particular, r(t,A)e
LI(0, x3), A

Our main result for the linear case is:
TI-IEOREM 1. (i) Let the assumptions (HI), (H2), (H4) be satisfied. Then for every

x XA, the equation (R) has a unique strong solution which we denote by R (t)x, 0 _-< _-<
T. Moreover, for almost every [0, T], there exists a positive measure t, on +,
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depending only on the kernel a, such that

R ()x [ e-’x dtz,(w ),
(1.2) 6 [0, T] a.e.

a(t)=

and the following estimates are satisfied:

where Y X or Xa or Xa2 and

(1-<_p -<_ ).

(ii) In addition, let assumption (Hs) be satisfied. Then ]or every x XA the equation
(S) has a unique strong solution which we denote by S(t)x, 0 <= <= T. Moreover, ]:or every

[0, T], there exists a probability measure u, on / depending only on the kernel a,
such that

(1.5) S(t)x e-’Ax dt’t(w) (t [0, TI),

and the following estimates hold:

(1.6) IIs(t)xll. <-IlxllY,

(1.7)

where Y X or XA or Xa
Remark 1.2. If a 1, then R (t) S(t) e -’a and tz, u, the Dirac measure at t.
Assumptions (H4) and (Hs) require some clarification.
PROPOSITION 1. (i) Let (H2) be satisfied and let a C(O, T) and a(t)>0. I]

log a (t) is convex on (0, T) then (H4) is satisfied on [0, T].
(ii) Let (H2) be satisfied and let a(t) be nonnegative and nonincreasing on (0, T).

Then (Hs) is satisfied on [0, T].
While the content of Proposition 1 is implicitly contained in the literature (see [8],

[9], [15] and [17]), we give the proof in Appendix A. In the literature the results are
for on the infinite interval and under slightly stronger assumptions.

Remark 1.3. If a(t) satisfies (H2) and is completely monotonic on (0, T) (i.e.
(--1)kak)(t)>=O(O<t< T; k=0, 1,"" )), then a satisfies (H4) and (Hs); see [8], [17],
[22].

Remark 1.4. We also note that, if a(t)= e’, then (H4)is satisfied but not (Hs).
However, (Hs) does not imply (n4). To see this, take

1 if0<_-t<-l,
a(t)=

0 ift>l.

Then by Proposition 1 (ii), (Hs) is satisfied. But for I 1, as shown by Levin [15,
example following Thin 1.4], r(t, 1) < 0 for some 1 < < 2.

Theorem 1 is used to deduce the following results about solutions of equations
(1.1) and (1.1a).

THEOREM 2. (i) Let the assumptions (H), (H2), (H4) and geLs(O, T;Xa) be

satisfied. Then the equation

(1.a) uq)+a , Au(t)=a , g(t) (O<-t<- r)
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has a unique strong solution u given by

(1.9) u R g,

where R is the solution of equation (R ) given by (1.2), and (by (1.3))

(it) Let the assumptions (Hx), (H2), (H4), (Hs) and

f-fl +(H6) w "1(0, T; XA),

where W’ is the usual Sobolev space, be satisfied. Then equation (1.1) has a unique
strong solution u Ul q" U2 where

(1.11) Ua(t)=f(t)-R * All(t) a.e. on [0, T],

and

(1.12) u2(t) S(t)f2(O)+ S * f’e(t), [0, T],

where S is the solution of equation (S) given by (1.5); moreover, them is a constant
c c(T)> 0, depending only on T and a but not A, such that

(1.13) Ilull, ,<O,T;X) <

Remark 2.1. If A is any bounded linear operator, then X XA XA and the
existence and uniqueness of solutions of (1.1), with only a eLl(0, T; JR),
L(0, T;X) is well-known. In the case when A is not bounded, existence and
uniqueness results for solutions of (1.1)have been obtained by Friedman and Shinbrot
[10], even for the case A(t), where A(t) generates an analytic semi-group, under
different conditions both for the kernel and the function f with, however, different
objectives than ours. Miller [18] has studied abstract Volterra integrodifferential
equations.

Remark 2.2. Formula (1.11) is well-known when A is a bounded operator;
formula (1.12) has also been employed in [9], [10], where S is called a fundamental
solution of (1.1).

Remark 2.3. In the unbounded case we may define a weak solution of (1.1) as
follows" there exist sequences {u,}, {f,} where each f,, eL(0, T; X) and each u, is a
strong solution of (1.1) with f f, such that f, -+f and u, - u in L1(0, T;X). From
(1.13) it follows that if f e L (0, T; XA) t- W 1,1 (0, T; X), then equation (1.1) possesses
a unique weak solution. (Note that LI(0, T; XA=) is dense in LI(0, T; Xa) with respect
to the norm in L(0, T; X); similarly for W’1 (0, T; Xa) in W1’ (0, T; X)). A similar
remark applies to (1.8).

Remark 2.4. If fl 0, then conclusion (1.13)can be strengthened to:

(1.14)

by using (1.6), (1.7), (1.12). Moreover, S(t)x e WI’(O, T; X) if x XA (for the proof
see the end of 2); thus, if fl 0, it follows that

Ilu T; c Ibedk,o, T;

Remark 2.5. Since the kernel is real, the. case when X is a real Banach space can
be treated as a special case of the complex case: If [ X + iX, the operator fi.(x +
iy) Ax + iAy satisfies (H1) whenever A satisfies (H1). Therefore, we can restrict
ourselves to the complex case.
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Remark 2.6. If a(t)= 6(t) where 6(t) is the Dirae measure, then (1.1) reduces to
u(t)+au(t)=l(t), and

(1.15) S(t)= (I + A)-a Jo e-’a e-’ dw [26; 240].p.

The kernel a(t)= 6(t) does not satisfy (H2). However, 6(t) can be approximated by
kernels a(t)=(1/cr)e-’/ (o’-->0+); each a, satisfies (H2), (H4), (Hs)so that a(t)=
6(t) is a limiting case of our theory and the corresponding measures u) approach the
measures ut in (1.15) of density e -’, independent of t, as r --> 0+.

Remark 2.7. Grimmer and Miller [12] obtain continuity results, as well as
existence and uniqueness, in different spaces for the abstract Volterra equation

x(t)=f(t)+ B(t-s)x(s)ds (t -> 0),

where the kernel B is operator valued and possibly unbounded, via semigroup theory
by different methods and with different objectives.

By (1.2) and (1.5), R (t) and $(t) are respectively positive and convex "combina-
tions" of contraction semigroups e -’a. From this observation we obtain the following
applications of Theorems 1 and 2 which we state as Theorems 3 and 4.

THEOREM 3. Let (H), (H2), (n4) be satisfied. Let P be a closed convex cone in X,
such that

(1.16) (I+AA)-IPP foreveryA >-0.

Then

(1.17) R(t)ee a.e. on [0, T].

Moreover, if in equation (1.8) g(t) P a.e., then the solution u of (1.8) lies in P a.e. on
[0, T]. If in (1.1)fLa(0, T; Xa) and Af(t)e a.e. on [0, T], then

(1.18) ]’(t) u(t)+P a.e. on [0, T],

where u is the (weak) solution of (1.1); in particular, i]’P is a positive cone in X (i.e. P is
a closed convex cone with P 71 -P {0}; this induces the natural ordering: x <_- y , y
x P), the last statement is equivalent to the "maximum principle""

(1.19) u(t)<-[(t) a.e. on [0, T].

The proof of (1.17) in Theorem 3 is an immediate consequence of formula (1.2)
for the operator R, together with the standard fact that assumption (1.16) implies that
-oA, R-t-e maps P into P for every we With (1.17)established, the remaining

concluSions of Theorem 3 follow from the representation formula (1.11).
Remark 3.1. If one studies equation (1.8) in the scalar case, one takes A , ->- 0

to satisfy (Ha). If (H2) is satisfied and if P R+, then the condition (H4) is necessary
and sufficient in order to guarantee that the solution u of (1.8) satisfies u(t)>-O for
every g -> 0. Thus one cannot hope to improve on condition (H4) in the abstract case.

THEOREM 4. Let (Ha), (H), (H4), (H5) be satisfied. Let P be a closed convex cone
in X satisfying (1.16). Then

(1.20) S(t)P P for 0 <- <= T.

(i) Moreover, if uoP and if g(t)P a.e. in equation (1.1a), then the solution u of
(1.1a) lies in Pfor almost every [0, T].
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(1.21)

then

(1.22)

(ii) If in (1.1), f e W1’1(0, T;X) where f(O)eP and f’(t)sP a.e. on [0, T], then
the (weak) solution u of (1.1) lies in P for every [0, T]. (The last assertion
holds for any closed convex set P in X).

(iii) Moreover, if X is a real Hilbert space, and if the function q: X--> [0, m] is
convex, lower semicontinuous, proper and satisfies

q9 (I + AA)-Ix) <- # (x .for every h >= 0 and every x X,

q(S(t)x),<= q(x) for every [0, T] and every x X.

The proof of (1.20) in Theorem 4 follows from formula (1.5) for the operator $,
together with the observation that assumption (1.16) implies that e -’a maps P into P
for every to s /. Then conclusion (i) of Theorem 4 follows from (1.9), (1.12) with
f(t)=Uo, and the fact that the operators R and 5’ each map P into P. Similarly,
conclusion (ii) follows from (1.12). To establish (iii) recall that assumption (1.21)
implies that

p (e-’ax)<- p (x) for every to _-> 0, h > 0, x X,

where px is the Yosida approximation of q [3, Prop. 2.11]. Then (1.22) follows from
(1.5), Jensen’s inequality and supx>o x(x)= q(x) [3, Prop. 2.11].

Remark 4.1. Conclusion (ii) of Theorem 4 is an abstraction of a result of Levin
[15; Lemma 1.3] in [R+. His result is

Let a Loc(O, ), a(t) nonnegative nonincreasing on (0, ). Let f C[0, ] be
nonnegative and nondecreasing on [0, m). Then the solution x of the equation

x(t) + a x(t) f(t) (0-< <m)

satisfies 0 -< x(t) <-f(t).
This result is also an immediate consequence of Proposition 1 (ii) and of the formula

x(t)= S(tff(O)+ S(t-tr) df(tr).

Levin’s proof in [15] is different; he improves his result by a smoothing argument
which permits him to remove the assumption [ s C[0, ). This is also evident from the
preceding formula. We also note that Levin’s result can be obtained by approximating
a and f by smooth functions and by applying a general result for functional differential
equations due to Seifert [23, Cor. 1 and Thm. 3].

In Theorem 4(ii) both assumptions (H4) and (Hs) are used. It is of interest to note
that in the abstract case the assumption (Hs) (which is satisfied when a is positive and
nonincreasing) is not sufficient to insure that S maps P into P when condition (1.16) is
satisfied. To see this we consider the following example in 2.

Let

1 if0_-<t<l,
(1.23) a(t)=

0 ift>-l,

and consider for a > 0 the operator A, defined by

(1.24) A,.,=UTA,,,U, where A=(lg2 0 ), U=2( 1 1).\ 0 c+log2 -1 1

For every c > 0, the real matrix A, is symmetric and positive definite. Thus -A
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generates a contraction semigroup on R2, with the usual Euclidean norm If P is the
cone I+ {(x, y) R2" x =>0, y =>0}, then it is easily checked that (I +AA,)-IP c__p for
every a > 0, A > 0, so that (1.16) is satisfied.

Corresponding to the kernel a defined by (1.23), the function s(t, A) of (Hs) is

--Ate if0_-<t<l,
(1.25) s(t,A)= e_+(t_l)e_(_) ifl_<_t__<2,

and clearly (H5) is satisfied on the interval 0 _-< _-< 2.
We next compute the operator S,, corresponding to A. Consider equation

(1.26) u + a Au x, x 2.

By setting v Uu, y Ux equation (1.26) is transformed to the equivalent diagonal
form

(1.27) v + a Av y,

which by the definition of s (t, ) in (Hs) gives the solution

v(t)= (/)l(t) ( S(t, log 2)yl

\v2(t)/ \s(t, a +log 2)y2/ s(t, a + log 2)[-Xl + x2]

Thus the solution of (1.26) is

l(s(t, log 2)[Xl + x2]-s(t, a + log 2)[-Xx + x2]’u(t)= -\s(t, log 2)[x1 + x2] + s[t, a + log 2)[-xx + x2]]

and the operator S(t) is

l(s(t, log2)+s(t, +log2) s(t, log2)-s(t,a /log21)S,(t)= s(t, log2)-s(t,a+log2) s(t, log2)+s(t,a+log2

To show that (H5) is not sufficient to prove that $ maps P into P, it is sufficient
to have s (t, log 2)- s (t, a + log 2) < 0 for some > 0 and for some a > 0. Observe that
from (1.25)

Ost -x (t-1) [A (t 1)2 (t 1)+te -x](1.28) ---(, h)= -e

for 1 -< <- 2, A > 0. Thus (Os/OA)(2, log 2)> 0, so that there exists a > 0 such that
s (2, log 2) s (2, a + log 2) < 0, which establishes the claim.

We note the above argument also shows that (H5) does not imply that s(t, ) is
completely monotonic in . (See remarks following Lemma 2.1 below.)

2. Proof of Theorems 1 and 2. We will prove Theorems 1 and 2 in two main
steps. We first consider the case when A is a bounded operator. In this case, by
Remarks 2.1 and 2.2, it suffices to prove the representation formulas (1.2) and (1.5);.
for, having these, one immediately has the estimates (1.3), (1.4), (1.6), (1.7) as well as
the conclusions of Theorem 2. We then consider the case when A is an unbounded
operator as a limiting situation of the bounded case using the Yosida approximation of
A. The case where A is bounded is further divided into two parts:

(i) Scalar case. We require the following preliminary result.
LEMMA 2.1. Ira(t) satisfies assumptions (Hz), (H4), then r(t, ), defined in (H4), is

completely monotonic in h for O=<A <oo for t[O, T] a.e. If, moreover, a(t) satisfies
(Hs), then s(t, A ) is completely monotonic in A for O=<A < oe for every [0, T].
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Proof of Lemma 2.1. We consider the equations

(2.1)

(2.2)

r(t, h )+ ha r(t, h)= a(t),

s(t,h)+ha s(t, h)= 1

of assumptions (H4) and (H5) respectively with h complex rather than h => 0. Let E
denote the space L1(0, T; C) or C(0, T; C). Define the operator K" E + E by Kx(t)
a x(t) (x E). K is a bounded linear operator with spectrum o-(K)= {0}. Thus for
u e E, the function v defined by v(h)= (I +hK)-lu, h C, is an entire function of h
with values in E. By differentiation and induction one has the formula"

dn
(2.3) (-1) --d--yv(h)=n!Kxv(h), n =0, 1, 2,.

where the operator Ka is defined by

(2.4) Ka K(I + hK)-1.

We claim that

(2.5) Kax(t)= r(t- s, h )x(s) ds (x E).

To prove (2.5) take the convolution product of both sides of (2.1) by x e LI(0, T; C),
obtaining

r(t, h) x(t)+ ha r(t, h) * x(t)= a x(t).

Thus ux (t)= r(t, h * x(t) satisfies the equation

ux (t)+ ha ux (t)= a x(t);

by uniqueness of solutions of this scalar equation and by the definition of Ka in (2.4)
this shows that ux (t)= Kax(t) and proves (2.5).

For h => 0, assumption (Ha) implies that the operators Ka map the set of nonne-
gative real functions in E into itself. To prove the first assertion of Lemma 2.1,
consider v,,(h)=(I+AK)-la; then va(h)(t)=r(t,A) a.e. in [0, T], r(t, A)>_-0 by (H4),
and by (2.3) and (2.5), (-1)"(O"/Oh")r(t,h)>=O a.e. in [0, T] for 0<h <oo. To prove
the second assertion of Lemma 2.1, take v(h (I + hA)-a 1; then v(h )(t) s(t, h >- 0
by (Hs), and complete the proof as above. This completes the proof of Lemma 2.1.

It should be noted that the second assertion of Lemma 2.1 is stated by Friedman
[9, Lemma 2.7] under only the hypothesis that a -> 0 and nonincreasing. However, his
proof also uses (H4). (He should also require (H4) for his Theorem 5.2, p. 144.) To see
that (H5) is not sufficient for the complete monotonicity of s(t, h) with respect to h, we
consider again the kernel a defined in (1.23). The corresponding function s(t, h) is
given by (1.25) and s(t, h)->0, for 0_-< t_-<2. However, as seen from (1.28),

-(2, log 2)> 0.

We shall next obtain representations of the entire functions r(t, h), s(t, h) for
ReA >=0.
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By Lemma 2.1 and Bernstein’s theorem [25, pp. 175-176], there exists a positive
finite measure tz, on R+ ((fixed hereafter)such that

(2.6)
r(t, Io e-’ dtx,(w) (Re A > 0; [0, T]a.e.),

a (t) Io dtxt(w) (t [0, T]a.e.).

Similarly, using s(0, A)= 1, there exists a unique probability measure u, on R+
such that

(2.7)
s(t,a)= fo e-’a dv,(w) (Re , -> 0; [0, T]).

Thus (2.6) and (2.7) correspond to formulas (1.2) and (1.5) in the scalar case.
(ii) A Bounded Operator Satisfying (Ha). By a standard argument equations (R)

and (S) possess for every x X a unique solution which we denote by R (t)x and $(t)x
respectively. We first prove the representation formulas (1.2) and (1.5) for the opera-
tors A defined by

(2.8) A el +A (1 > e > 0).

Define the operators R and S by the formulas

(2.9) R(t)x= r(t,a)(aI-A)-lxda (O<=t<= T),

&(t)x - s(t,a)(a.-A)-xda(2.10) (0 _-< =< T),

where x X, r(t, a.), s(t, ,) are defined by (2.1) and (2.2) respectively for , C. C is a
closed contour in the complex plane, oriented counterclockwise, consisting of a

finite number of rectifiable Jordan arcs and such that C OU, where U is an open
set containing the spectrum of A. The integrals in (2.9), (2.10) are the usual Dunford
integrals [26, p. 225]. It is shown by Friedman [9, Thm. 3.1] that &(t)x defined by
(2.10) is the unique solution of equation (S) with A replaced by A. An entirely
analogous argument shows that R(t)x defined by (2.9) is the unique solution of
equation (R)with A replaced by A.

We next observe that the spectrum o,(A) is contained in the half plane Re A ->-e,
and, if e < 1, in the ball of radius 1 + IIAII. Thus we may choose C to be the rectangle
bounded by the segments joining the points (e/2-i(2 + IIAII)), ((2 + [[AI[)(i- i)), ((2 +
IIAII)(1 / i)), (e/2 / i(2 /IIAII)) oriented counterclockwise. Using the representation
(2.6) in (2.9) under assumption (H4) and the representation (2.7) in (2.10) under
assumptions (H4), (Hs)we obtain

(2.11) R (t)x e-’Ax dlz,(to)(x X) a.e. on [0, T],

(2.12) &(t)x e-aex dye(w) (x eX).

The proofs of (2.11), (2.12) follow from a theorem on the Dunford integral [26, p.
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226], together with Fubini’s theorem and the definition of the operator e-’a by

_,oax=
1 f -,oh )-1Jc e (AI-A xdh (xX).e

Thus formulas (2.11), (2.12)establish (1.2) and (1.5) respectively with A =A.
We next let e --> 0/. We first show that

(2.13) R(t)x --> z(t)= J0 e-’ax dl,(w) in LI(0, T; X).

We then show that z(t) is the unique solution of equation (R). Substituting (2.8) in
(2.11) we have

R(t)x-o e-Ax dt(w)[l= I]o (e--l)e-A

Therefore, by a simple application of Lebesgue’s dominated convergence theorem

lio+[IR(t)X-fo e-axd(w)[]=O a.e. on[0, T].
eO

Moreover, since e-A is a contraction semigroup, we have

(2.14) IIe(t)xl[ fo [[e-e-axll d,()llxlla(t) a.e.

Since a s LI(0, T), another application of Lebesgue’s theorem establishes (2.13).
We next show that the function z defined in (2.13) is the unique solution of

equation (R). We know that R(t)x is the unique solution of the equation

(R) u(t)+ a Au(t)+ ea * u(/)= a(t) a.e.

Observe that by (2.14)
T

Ilulk<o,;)llxll Jo a(t) dt.

Consequently ea * u0 in LI(0, T;X) as e 0+. Since uz in Lx(0, T;X) as
e 0+, one has that z(t) satisfies equation (R) a.e. on [0, T]. By uniqueness, z(t)=
R(t)x, establishing (1.2). An entirely similar argument with LI(0, T; X) replaced by
C(0, T; X) and assuming (Hs) establishes (1.5).

A an unbounded operator satisfying (Hz). Define

y ( +XA)- ( 0)

and the Yosida approximation Ax of A by

Ax (I-Jx (A > 0);

recall that by (H) J is a contraction on X for every A 0 and that [26, Cor. 2, p. 241]

(2.15) Axx JAxx AJxx (x XA).

From linear semigroup theory we also need the fact that [26]

(2.16) lim Ile-ax e-Axll-- 0 (x X),
x 0
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uniformly in o on compact subsets of [/. Consider the equations

(Rx) u(t)+a Axu(t)=a(t)x (x X; O<=t<= T),

(S) u(t)+a Axu(t)=x (x 6X; O<=t<= T),

obtained from equations (R) and (S) respectively by replacing A by the bounded
operator A, h > 0. By standard results the equations (Rx) and (Sx) have for each
h > 0 unique solutions which we denote by ux (t)= Rx (t)x, va (t)= Sx (t)x respectively
and Rx(. )x E LI(0, T; X), Sx(’)x C([0, T]; X). Applying the result of the bounded
case (ii) above (formulas (1.2), (1.5) with A replaced by the bounded operator Aa) we
have for x e X

(2.17) Ra (t)x Io e-ax dtx,(w) (A > 0; [0, T] a.e.),

(2.18) Sx(t)x= e-’Axdu,(to.) (A >0; t [0, T]).

Our first objective is to show that Ra (t)x and $ (t)x converge to R (t)x and S(t)x
of Theorem 1 as ,[, 0+, respectively. We carry out the proof in detail for R(. )x;
followed by the proofs of all conclusions of Theorems 1 and 2 pertaining to R(. )x.
We then sketch the proofs of the remaining conclusions pertaining to S.

We first consider Rx(t)x. Let A > tz >0; from (2.6), (2.17) we have

IIRx(t)x -R,(t)x[[<= Io [[e-’AXx --e-’A"x[[ dtx,(w)
(2.19)

--< 211xlla (t) (x x; [0, T] a.e.).

Thus by assumption (H2)IIR (t)x -R, (t)xll is bounded by a L function on [0, T]. We
next show that

(2.20) lim liRa (t)x R. (t)xll o
h,V,-O

(x s X; [0, T] a.e.).

By (2.19) it suffices to show that

(2.21) limo+ Io Ile-Ax e-’A"xll dtxt(w 0 (x 6 X; [0, T] a.e.).

Since the measure t(w) is finite for almost all [0, T], it suffices to show that
I[e-’Ax--e-’A"xll is bounded uniformly in w 0+ and tends to zero a.e. in R+ as
A, tx --> 0+; this enables us to apply Lebesgue’s theorem in LI(R+, zt). But Ile-o’Ax
e "xll<=2[Ixll uniformly in w +, and the second statement is immediate from
(2.16).

Using (2.19) and (2.20), together with Lebesgue’s theorem in LI(0, T; X), we
have that Rx (.)x is a Cauchy sequence in L1(0, T; X). For x X define

R(t)x= lim Rx(t)x inLl(0, T;X),
x$0

and by the above argument we conclude that

(2.22) R (t)x Io e-O’Ax dtz,(w (x X; [0, T] a.e.).
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Our next objective is to show that u(t)= R(t)x is a strong solution of equation
(R) for x XA. By the preceding argument we know that u R (.)x L1(0, T; X),
and we must verify the remaining properties of a strong solution of equation (R) on
[0, T] (See Definition 1). Thus we consider (2.22) with x XA and show first that
u(t)=R(t)xeD(A) a.e. on [0, T] and that AR(. )xLI(0, T;X). The mapping
to e-Ax is continuous for to e R+ with the values in XA and is bounded in XA. Since
the measure/t is finite, R (t)x a.=. e_,,Ax dl.t(to) is the usual Bochner integral with
values in XA D(A). For the same reason and because A is a bounded operator in
XA, we have

Thus

AR (t)x A e x dt(to A e dz,(to

e-AAx dlx,(to) R (t)Ax,

where we have used Ae-Ax e-’AAx for x XA, as well as (2.22) with x replaced by
Ax. Since Ax X, R (.)Ax L1(0, T; X) by the definition of R (.)x. It remains to
show that u R (.)x satisfies equation (R). Since ua Rx (.)x satisfies equation (Rx),
and since ux u R (.)x in L 1(0, T;X) as A ,I, 0/, it suffices, by assumption (H2), to
show that Axux Au in LI(0, T;X) as ,I, 0+. But since AaRx(. )x =R(. )Axx and
AR(. )x =R(. )Ax, this is true if we show that Rx(. )Axx R(. )Ax in LI(0, T;X)
as A ,I, 0/; the latter follows from conclusion (2.23) of the following lemma with
wx Axx and w Ax. This completes the proof that R (.)x is a strong solution of
equation (R).

LEMMA 2.2. Let (H1), (H2), (H4) be satisfied. Let Rx (.)x be the unique solution of
equation (Rx). As above let R (.)x lima , o Rx (.)x in LI(o, T; X). Let wx, w X
and wx w in X as A , 0/; let zx, z LI(0, T; X) and zx z in LI(0, T; X) as Z , 0/.
Then

(2.23) lim lIRa(" )w-R(. )wlko,;x)--0 and [IRw[[.lo,;x)llalk,o,
AS0

(2.24) [oralmostallt6[O, T],R(t-s)z(s)6La(O, T;X),

’R(t-s)z(s)ds=R * z(t)6L(O, T;X) and
(2.25)

(2.26) lim IIR * z-R zllclo, at;x): o.
x $0

Proo[. To prove the first statement in (2.23) we use Lebesgue’s theorem in
LI(0, T; X). From (2.17) with x replaced by wx we obtain the estimate

IIg (t)wl[ <- IIw.[[ Jo dt’(to)<=Ka(t) on [0, T] a.e.,

where K > 0 is a constant independent of 1; thus by (H2)[[Rx (’)wx[[ is bounded by a
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L function on [0, T]. To complete this part of the proof it suffices to show

(2.27) IIR (t)w R (t)wll- 0 a.e. on [0, T] (A ,I, 0+).

To do this we again use (2.17), (2.22), and Lebesgue’s theorem in LI([+;/xt). We have

so that the finiteness of the measure tzt implies that Ile-’awx[[ is bounded by a LI(I+,
tx,) function. Moreover, by (2.16)

--< IIw wll / o(1) ( 0/),
This together with Lebesgue’s theorem, proves (2.27) and the first statement in
(2.23). To prove the second statement in (2.23) we estimate using (2.22)"

T

<- e

which completes the proof.

-tAw dl.(w )l dt

T

To prove (2.24), (2.25) we observe that they both hold when R is replaced by Rx;
for, Rx(. )x e L 1(0, T; X), which implies that Rx(t-s)x is measurable in (t, s) for
0-< s-< =< T with values in X. In particular, for almost all [0, T], Rx (t-s)z(s) is
measurable in s on 0-<s_<-t. Letting A 0/ and using the definition it follows that
R (t s)z (s), z e L1 (0, T; X), is measurable in (t, s) on 0 -< s -< =< T with values in X,
as well as that R(t-s)z(s) is measurable in s on 0=<s -< t, e [0, T] a.e. The validity of
(2.24) and of the first statement in (2.25) is implied by the second statement of (2.25).
To prove the latter we estimate using (2.22) and the L convolution inequality"

T, TIo llfo R(t-s)z(s)ds]] dt <- Io Io fo Ile-’Az(s)lld-s(t)ds dt

T<=Io Iolo ]]z(s)lldl,_s(w)dsdt

TIo Io [[z(s)[ia(t-s)ds dt<=IIO[[LI(O’T;)[IZIILI(OT;X)’

which is the desired result. We omit the proof of (2.26) since it is similar to the proof
of the first assertion in (2.23). This completes the proof of Lemma 2.2.

We next establish the uniqueness of strong solutions of equation (R) as a
particular case of uniqueness of strong solutions of (1.1).

LEMMA 2.3. Let (H1), (H2), (H4) be satisfied and let u LI(0, T; Xa) be a strong
solution of the equation

u +a Au =0.

Then u O.
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Proof o] Lemma 2.3. For any A > 0 we have from the given equation and from
(2.15) that-

or equivalently

Jau + a Axu O,

u + a Axu u-Jxu.
By using the fact that Aa is a bounded operator, together with the representation
formula (1.11)where A is replaced by the bounded operator Ax, fl is replaced by
u-Jxu, and R is replaced by Rx, and the uniqueness of solutions of (1.1) in the
bounded case, we obtain

(2.28) u u-Jxu-Rx * Aa(u -Ju).

We wish to show that u-Jxu and Ax(u-Jxu) each tend to zero as 0+ in
L (0, T; X) for u L (0, T; XA). We have

T T T

Io ]]U-Ju’l(t)dt= Io A]]Au]l(t)dt<-A

which tends to zero as ,-0/, where (2.15)is used to estimate IIAulIIIAuI[, u
LI(0, T; Xa). Also

[[Ax (u Jxu )[[(t) [[AxAAxu [[(t) IIAAxJxv [[(t),

where v Au; thus by the contraction property of Jx

[[Ax (u Jxu )ll(t) [[Jav Jx (Jxv )ll(t) <- [Iv Jxvll(t).
But

moreover,

IIv Jvll(t) 21lv[l(t)- 21lAull(t) L(O, T);

Ilv-J.v[l(t)-O a.e. on [0, T],

and therefore, by Lebesgue’s theorem, Ax(u-Jxu)-O as , -0+ in LI(0, T; X) for
U LI(O, T;XA). Letting 0/ in (2.28) and using the above.facts together with
(2.26) of Lemma 2.2, we obtain u 0. This completes the proof of Lemma 2.3.

Up to this point we have established Theorem l(i) with the estimate (1.3) for
Y=X (done in proving (2.23)), and the estimate (1.4) for Y=X, p 1 (done in
proving (2.25)). To prove (1.3) with Y=XA we use RAx =ARx (x XA) (see
paragraph following (2.22)), so that by definition of norm in XA and by two appli-
cations of (1.3)with Y X, we have

IIRXlILIo,T;X,, IIRxll’o,;x / IlAUx]lL’O,T;X
-IIRX[IL’(O.T;X) + IIRAXIIL’(O.T;X) <- [[a [IL’(O.T;.[IIXI[ + IlJxll]

IlalIL(O.T;)IIxlIx.
which is the desired result. The proofs of (1.3) with Y X,2 and of (1.4) for p 1 and
Y XA or XA are similar and we omit them.

For (1.4) we indicate the proof of the case Y and 1 < p < oo (the case p oo is
immediate). Let q be the conjugate exponent of p; let h e Lq(0, T; R), and consider
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the following calculation"

T

-< Io Ih(t)] I0 IIR(s)z(t-s)ll ds dt

= Ih(t)l e-O’Az(t-s)dtxs(to)lldsdt
T T T

-< Io Ih(t)l Ioa(S)llz(t-s)[I ds dt.<= fo a(s) fo
=< Ior a (s)( Ior Ih (t)l q dr)x/q( ior IIz (t-s)ll dt) /

T

Ih(t)lllz(t-s)ll dt ds

ds

where we used (2.22), (H1), Fubini’s theorem, and HSlder’s inequality. By a standard
argument (see [14, p. 398]), this implies the result. The proof for the case Y XA or
XA is similar. This completes the proof of Theorem l(i).

We next prove Theorem 2(i). We first show that u =R g ELl(0, T; XA) we use
ARx RAx (x XA) proved in Theorem 1 to conclude that Au AR g RA g
R .AgeLI(O, T;X). To show that u=R .g, geL(O, T;XA), satisfies (1.8) we
substitute and use equation (R):

R g+a * AR g=(R +a AR). g=a * g.

The uniqueness of strong solutions of (1.8) on [0, T] follows from Lemma 2.3. The
estimate (1.10) is a particular case of (1.4). This completes the proof of Theorem 2(i).

We next prove assertion (1.11) of Theorem 2(ii). We define Ul by (1.11) and we
show that U is a strong solution of (1.11) on [0, T] with /=fl. Since
Lo(O, T; XA2), All Lo(O, T; XA), and from (1.4), R All Lo(O, T; XA). Thus
L(O, T; XA) (hence in LI(0, T: XA)). To see that Ul satisfies (1.1), substitute and use
equation (R):

ul+a * AUl(t)=f,(t)-R * Af,(t)+a A(fl(t)-R * All(t))

=fl(t)+[aI-R-a AR] . Afl(t)=fl(t), t[0, T] a.e.,

where I is the identity operator in X. The uniqueness of strong solutions of (1.1) with

f=f follows from Lemma 2.3, and the estimate (1.3) with f2=0 follows from (1.4).
We next sketch the proof Theorem l(ii). Returning to the approximating equa-

tion (&) and its unique solution vx Sx(. )x, one shows as before but for every
e [0, T], that Sx (t)x is a Cauchy sequence in X for x X. We define

S(t)x lim Sx(t)x
,X ,l, O

(t E [0, T]; x e X).

From (2.18), II&(t)xlllixll (0<--t-<T; a >0), and therefore, in particular S(. )x
L(0, T" X). As was done for R(. )x, one then proves (1.5),

(2.29) AS(t)x S(t)Ax (x XA, 0 <-- <-- T),

and one shows that S(. )x is a strong solution of equation (S) on [0, T] for x XA.
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To complete the proof of Theorem l(ii) it remains to prove (1.6), (1.7). The
estimate (1.6) is immediate from (1.5) when Y =X; to prove it for Y =XA or XA2 one
uses (2.29). By using (2.29) it is sufficient to prove the estimate (1.7) for Y X. To do
this we estimate using (1.5), (H1):

[IS* vllo.;x=esssup S(t-r)v(t)d =esssup e-’av(t)dt,,_d
O<=t<=T O<_t<=T

ess sup Ile-Av(t)ld,_dr
OtT

T

/ II ( )tl
o

This completes the proof of Theorem l(ii).
To prove assertion (1.12) of Theorem 2(ii), we define U2 by (1.12) and we show

that u2 is a strong solution of (1.1) on [0, T] with f=f2. To show that u2 e LI(0, T; XA)
is immediate from (2.29), (1.6), (1.7) and f2 e W1’1(0, T; XA). TO see that u2 satisfies
(1.1) substitute and use equation (S):

u.(t)+a Au2(t)=S(tff2(O)+S , f(t)+a A(S(tff2(O)+S , f(t))
(S(t) + a AS(t))f2(O) + (S + a AS) f’ (t)

re(0)+ I * f; (t)= f2(0)+ fl (r) dr f2(t), [0, TI.

The uniqueness of strong solutions of (1.1) with f2 follows from Lemma 2.3, and
the estimate (1.13)with fl=0 follows from (1.6), (1.7), (1.12). This completes the
proof of Theorem 2(ii).

Finally, we prove that S(t)x W1’1(0, T; X) if x XA. To see this we start from
the relation

(2.30) Sx (t)x x A Io Rx (’)x dr x Rx (’)Axx dr,

for xX and 0-<_t <-T, where S(.)x, Rx(.)x are the unique solutions of the
approximating equations (Sx), (R) respectively; (2.30) is proved by direct substitu-
tion into equation (Sx), and by using equation (Rx) with x replaced by Axx, as well as

AaRx (.)x Rx (.)Axx, and Fubini’s theorem. Letting A ,1, 0 in (2.30), using Lemma
2.2 and the definitions of S(. )x, R (.)x we obtain

(2.31) S(t)x x R (-)Ax d-, x e XA, e [0, T].

Since R (.)Ax L (O, T; X),
immediate from (2.31).

the conclusion S(t)xW’l(O,T;X), XXA, is

3. A a nonlinear operator. In this section we give a nonlinear analogue of
Theorems 3 and 4. Let X be a real Banach space and let P___ X be a closed convex
cone. Let A" D(A)_X 2x be a given, possibly multivalued, m-accretive operator
[6, p. 139] satisfying the condition

(3.1) (I+AA)-IP_P (A >0).
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Let a satisfy (H2) and (H4) and let f satisfy (H3). Consider the equation

(3.2) u(t)+a .Au(t)f(t), t[0, T],

where T>0. We say that u LI(0, T; X) is a solution of (3.2) on [0, T] if there exists
wLl(0, T;X), where w(t)Au(t) a.e., such that u(t)+a w(t)=f(t) a.e. for t
[o, TI.

THEOREM 5. Let (H2), (H), (H) be satisfied. Then ]:or every > 0 the approxi-
mating equation

(3.3) ux (t)+ a * Aux (t) f(t), [0, r] a.e.,

where Ax is the Yosida approximation of A, has a unique strong solution on [0, T]. In
addition, let f be such that

(H7) for every A > O, the unique solution v of the linear equation

(3.4) v(t)+ Aa v(t)= f(t), [0, T] a.e.

satisfies v(t)P a.e. on [0, T].

Then if (3.1) is satisfied ux(t)P a.e. on [0, T]. Consequently, if u is a solution of
equation (3.2)such that u weak limx_,0 ux in LI(O, T; X), then u(t) P a.e. on [0, T].

Remark 5.1. Under the assumptions of Theorem 5 it follows from Theorems 3
and 4 with A AI that if f(t)= a * g(t), g L1(0, T; X), then (H7) is satisfied if g(t) P
a.e. on [0, T]. If /(t)= uo+a * g(t), where uoP and g is as above, then (Hv) is
satisfied provided that (Hs) holds. If f6 W1’1(0, T; X), then (H7) is satisfied provided
that (Hs) holds and that/(0) P and/’(t) P a.e. on [0, T].

Remark 5.2. If A is linear and satisfies (H1), equation (3.2) is (1.1); it was shown
in 2 that the unique solution ux of (3.4)converges to u, the unique solution of (1.1),
under the assumptions of Theorem 2.

Remark 5.3. Crandall and Nobel have recently shown [7, Thm. 4] that equation
(3.2) has a unique solution u on [0, T], and u is the limit of solutions u of the
approximating equation (3.3) as A ,1, 0 under the conditions that A is m-accretive, a is
absolutely continuous on [0, T], a’ BV[O, T], a[0]> 0, [ wl’l(0, T;X), and f(0)
D(A). If in addition f’ BV([0, T]; X) and f(0) D(A), then u is Lipschitz continu-
ous; and if X is reflexive u is a strong solution on [0, T]. Thus Theorem 5 is applicable
if, e.g., a is positive decreasing, log a is convex on [0, T], and a (0)> 0. The results of
[7] generalize and simplify considerably the known existence and uniqueness theory
for equation (3.2) when X H is a real Hilbert space and A is a subdifferential of a
convex function on H obtained by Barbu [1, Thm. 1] and Londen [16], and for a
maximal monotone A on H as obtained by Gripenberg [13]. It should be noted that in
[1, Thin. 1], [16], [13], [7] the assumption 0< a(0)< is needed, while in [1, Thm. 3]
as well as in Theorem 5 above a(0/) is permitted.

Remark 5.4. If one is interested in applying Theorem 5 to the limiting equation
(3.2), rather than the approximating equation (3.3), it is clear from the proof of
Theorem 5 that it suffices to require conditions (3.1) and (H7) to hold only for small
A>0.

Proof of Theorem 5. Consider the equation (3.3) written in the equivalent form

1 1__ Jxux.(3.5) ux +-a ux =f+ a

Define fx LI(0, T; X) to be the unique solution of (3.4) with A replaced by 1/A. By
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(H7) fx (t) P a.e. on [0, T]. It is easily checked by use of

r() llo’ r() llo’r( h1-)t, +- a(t-tr) tr, dtr=a(t) and fx(t)=f(t)- t-tr, f(cr) do"

that equation (3.5) is equivalent to the equation

vx Fx (va), vx ux(3.6)

where

(3.7) Fx (z)(t) - tr, Jx (z + fx )(or) dtr.

Observe that Fx maps L1(0, T; X) into itself. We prove that some iterate of Fx is a
strict contraction in LI(0, T; X). Indeed, from (3.7), (H2) and the contraction pro-
perty of Jx (recall A is m-accretive)one has

(3.8) Ilfx(u)(t)-f(v)(t)ll Ilu(s)-v(s)ll as.

Define ba (t)= (1/A)r(t, l/A)and b(t)= ba * bx *"" * bx (t), where the convolution is
taken n times. Iterating (3.8) n times, we obtain

(3.9) IIF2 (u)(t)- FZ (v)(/)ll b 2 * Ilu vii(t).
For any fixed A choose n, so large that I b" ()d Kx < 1; then integrating (3.9) we
obtain

(3.10) IlFT(u)-F(v)lll(o,T;gllu-vll,(O,T;X.

Thus (3.6) has a unique solution vx L(0, T;X) given by

vx lim F (Uo), for any Uo LI(0, T; X),

and (3.3) has the unique solution ux vx +]’. In particular if Uo(t)P a.e. on [0, T]
and if assumptions (H4) and (HT) are satisfied, then by (3.1) and (3.7) Fx (Uo)(t) P a.e.
on [0, T] and the same holds for F(uo)(t) for every n. Consequently the unique
solution of (3.3) ux (t) P a.e. on [0, T]. This completes the proof of Theorem 5.

Remark 5.5. From the proof of Theorem 5 it is clear that Theorem 5 provides an
alternative, and in fact simpler, treatment of Theorems 3 and 4 in the linear case.
However, in the linear case Theorems 1 and 2 provide explicit representations for the
operators R and S and hence more information about the solution. Moreover, the
method of proof of Theorem 5 can be used to analyze more general situations. For
example, let X be the product of n Banach spaces X1, X2,"’, X,,, and interpret
equation (3.2) as a system of n equations with u(t), [(t)X for [0, T] and the
kernel a being an n n matrix satisfying (H2) componentwise, and such that the
associated matrix resolvent r(t, A)=> 0 componentwise (analogue of (H4)). Let P be a
closed convex cone in X and let A be an m-accretive operator on X for a suitable
norm satisfying (3.1). If ]" satisfies (H3) and (HT), then the conclusions of Theorem 5
hold.

Remark 5.6. The proof of Theorem 5 is in the same spirit as the proof of
Theorem 1 of Weis [24] for the equation

x(t)= f(t)+ | a(t-s)g(s, x(s)) ds
o
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where x, f, g have values in Nn and a is an n x n matrix Loc(0, co) and where g has
"separated structure" in the sense that g(t, x)=col(gi(t, xi)), i- 1,..., n, where each
gi is locally Lipschitz with respect to xi uniformly for bounded. Weis gives a
condition which corresponds to (H4)and (H7)which insures that the solution x(t)>=O
for as long as it exists.

4. Examples.
Example 1. This example is an application of Theorem 5. Consider the equation

(4.1) u(t,x)+a (-V2u(t,x)+fl(u(t,x)))f(t,x),

0 < < m, x e f, a bounded open set in N" with smooth boundary F with u satisfying
Dirichlet boundary conditions on F. /3 is a maximal monotone graph on x with
0e/3(0). For simplicity we assume that the kernel a is completely monotonic on

[0, c); thus (see Remark 1.3) assumptions (H2), (H4), (Hs) are satisfied on [0, T] for
every T>0. We assume fe Wl,;c2 (0, c; X), X= L2(). To see that equation (4.1)is a
particular case of (3.2)define

(4.2) Au =-VZu +/3(u); D(A)={u Wa’2(l)) W01’2 (f):/3(u)6 LZ(f)}.

As is known (see Br6zis [4, Cor. 13]) where/3(u) in (4.2)is u +y(u)in [4] and/3(u) in
[4] is b if u 0 and N if u =0, A is the subdifferential of the convex, lower
semicontinuous (l.s.c.) proper function o: L2(f) (-oe, +oe] defined by

q(u)=
1/2 [.a grad ul2 dx + [.ai(u) dx ifu Wlo’2(12), j(u)tl(D),
+oo otherwise,

where is the unique, convex, 1.s.c., proper function mapping N into (-o, +oe] such
that j(0)= 0 and/3 Oj. Thus A is maximal monotone on the Hilbert space L2(f) and
hence A is m-accretive. Thus (4.1) with the boundary condition u 0 on F is a
particular case of (3.2). Let f Wllcc2 (0, oo; X); in particular, f C([0, oo); X) and f(0)
is well defined as an element of L2(l)). We assume that f(0) W’2(12) and

](f(0)) dx < c. These assumptions on f imply that (H3), (H6) are satisfied. It is now
easily checked that all the assumptions Londen [16, Thm. 1] or Barbu [1, Thm. 1] are
satisfied and therefore, (4.1) possesses a unique solution u on [0, T] for every T > 0 in
the sense of the definition given following equation (3.2) above. Moreover, u
lim_,o+ ux in LI(0, T;X) (even in L2(0, T;X)) for every T>0, where ux is the
unique solution of the approximating equation (3.3). We shall apply Theorem 5 with
P= L2+(I)). It is well known that the operator A defined by (4.2)satisfies condition
(3.1). Therefore, if we require that condition (H7) is satisfiedmthis will be the case.
For example, if f(0) P and f’(t) P a.e. on [0, oe) (see Remark 5.1), then the solution
u (t) of (4.1) is nonnegative a.e. on (0,

Example 2. This example is an application of Theorem 4(iii). Let l) be a bounded
open set in N" with smooth boundary F. On lI we consider the linear second order
differential operator

au E
O Ou

ai + aiu)+ Cu
i,] i,]

where aij, ai C(fi), C L(f),

Oai
C=>0, C+_->O a.e.,

OXi
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and for some positive constant a

a.e., I’.
i,j=l

We define D(A)= W2’2(Iq)fq W’2 (f). It is known (see [5]) that A satisfies (H1) with
X L2(f). Consider the equation

(4.3) u(t)+ a ,.Au(t)= Uo, [0, T],

where Uo L2() and where a satisfies assumptions (H2), (H4), (Hs) on [0, T]. Equa-
tion (4.3) has a unique weak solution u (see Remark 2.3); moreover, if Uo D(A),
then the solution u is strong. Let j be a convex, 1.s.c., proper function" R [0, m] with
0 Of(O), and we fix j(0) 0. Define q: X -> [0, oe] by

J]’aj(v) dx if j(v)Ll(a),
(v)=
+ otherwise.

Then by [5, Lcmma 2] wc have (A,x, y)->0 for every Ix, y]e0p and for all A >0.
Moreover, by [3, Thm. 4.4], (1.21) is satisfied. Consequently, by Theorem 4(iii), if
j(Uo)LI(f), one has

fnj(u(t))(x)dx<-Inj(uo)(x)dx, t6[0, T].

In particular, if j(u)= lu , 1 _-< p < oe, one obtains

(4.4) Ilu IluolIL"( )

if uoLO(f). Note that the case p =c can be obtained by passing to the limit.
Inequality (4.4) can be obtained directly from Theorem 1, inequality (1.6), if one uses
the known fact that A satisfies (H1) with X LP(D,), 1 _-<p<; see [5, Thm. 8 and
remarks preceding].

Example 3. This example is an application of the linear theory developed in
Theorems 1-4 to a nonlinear problem. Let f be a bounded open set in 1" with

smooth boundary F. Let 3’: N N, 3,(0)= 0, 3’ continuous and nondecreasing. Assume
that the nonlinear elliptic equation

(4.5) -V2u V(u), ulr 0

has a nontrivial, positive solution u e L(I)). Let a satisfy (H2), (H4), (Hs) for every
T > 0, and consider the nonlinear integral equation

u(t)+a ,(-V2u-v(u))(t)=Uo (0< < ),
(4.6)

Uo L(f), u 0 on F.

Let au=-VZu with o(a)={ue Wo’Z(f)f-I wZ’Z(f)}. Let X=LZ(f). Then a
satisfies (Ha). If u is a solution of (4.6) in the sense that g y(u)e L(0, oe; X) and u
is a weak solution (in the sense of Remark 2.3)of the equation

u(t)+a,Au(t)=uo+a,g(t), t6[O,T] a.e., VT>0,

then by Theorem 2 it is easily shown that u satisfies the nonlinear functional equation

(4.7) u(t)=F,o(U)(t (0-< < c),
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where

(4.8) F,o(U)(t)= S(t)uo+R * y(u)(t).

We prove the following result about solutions of (4.7), (4.8).
THEOREM 6. Let (H2), (H4), (Hs) be satisfied ]’or every T> O. For every Uo6 X

satisfying 0 <- Uo <- u, the equation (4.7), (4.8) has a positive maximal solution ut
L(0, ;M) and a positive minimal solution Um L(O, ;X), such that if u
L(O, oo; X) is any solution of (4.7), (4.8), then

(4.9) 0 <- u,,(t) <- u(t)<-_ uM(t) <- U a.e. on (0, oo).

Remark 6.1. If u L(0, az;X)is a solution of (4.7), (4.8), then it is easily
checked that u is a solution of (4.6) in the sense defined above. Note that if the
solution u L(0, ; X)satisfies the estimate (4.9), then u L(0, ; L(D,)), and
thus y(u)6L(O, ;X), as well as y(u)La(O, T;X)for every T>0. These obser-
vations are needed for the definition of weak solution.

Remark 6.2. Theorem 6 also holds if the requirement y nondecreasing is
replaced by pu +y(u) nondecreasing for some p >0. To see this replace -72u by
-TZu + pu and replace y(u) by Ou + y(u) in (4.5), (4.6) and apply the above analysis.

Remark 6.3. Comparing equations (4.1) of Example 1 and (4.6) and taking
2 (.)) we note that if /3 is single valued and continuous,f(t) Uo in (4.1), Uo L+

equations (4.1) and (4.6) differ only by the sign of the nonlinearity. For equation (4.1)
one has existence and uniqueness of solutions of (0, ) for every uoeL2+(’l). By
contrast, for equation (4.6) it is known that if equation (4.5) has u 0 as the only
nonnegative solution, then equation (4.6)can have a positive solution only on a finite
interval (0, T). From example, if n 3 and y(u)= u s, it follows from [21, Remark 3.2]
that if ) is star shaped, then (4.5) has u 0 as the only nonnegative solution. Taking
a(t)=- 1, applying [11, Thin. 2.6 and Remark 2.7], and assuming that Uo>_-0 and that

Ir Uo(X dx >-_ A ]4,)o(X )

where Ao is the smallest eigenvalue and the corresponding unique eigenfunction
4o > 0 in D.:

-V24o Ao4o in , 4olr 0,

then the unique nonnegative solution u of (4.6) exists only on a finite interval.
Proof of Theorem 6. Let E L(0, ; X) with the usual ordering (i.e., u, v

E, u _-<v iT(t, x) <- t;(t, x) a.e. in (t, x) (0,), where t and t; are elements of the
equivalence classes u and v respectively). In E let I denote the interval [0, u] in the
sense of order in E. It can be shown that I is a complete lattice with respect to this
ordering. For every Uo I we define the function ff’,,o by

where

ff’uo(U)(t) S(t)uo + R * "(u)(t)

r(u) if u <=
otherwise,

in place of the function Fu defined by (4.8). Then/-o satisfies

(4.10) ,o: I- I
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and

(4.11) /o is monotone (u, v I and u _-< v z: uo(U) <= ,o(V)).
Let u I. Then, by Theorems 3 and 4, F,,o(U)>= O. Moreover, by the fact that

uoo=Suoo+R * ,(uoo),
we have

P.o(u)=Suo+R (u)-<-Suo+R (u)=S(uo-u)+uoo<-u,

which proves (4.10). Clearly, (4.11) is evident from Theorem 3. By [2, Thm. 11, p.
115], the operator o has a least and a greatest fixed point in/, which correspond
respectively to the solutions u,, and uvt, since u,, _<-uM-< u and therefore,
y(u,,,), (ut) T(uM), and so l,,o(U,,,)=F,,o(U,, ), ff’uo(UM)--’Fuo(UM). This completes
the proof of Theorem 6.

Appendix A. An assumption which has been used frequently in the literature
concerning the kernel a is

(A1) a(t) C(O, r), a(t)>0, s (0, T),
a(t)

and nonincreasing as a function of for each o- > 0, 0 < + o- < T;
a (t + r)

see Friedman [8], Levin [15], Miller [17], [19]. We shall prove that condition (A1) is
equivalent to the condition

(A2) a(t)s C(O, T), a(t)>0, s (0, T), and log a(t) convex on (0, T).

Moreover, we first prove a preliminary result.
LZMMA 1. Let assumption (A2) be satisfied. Then for every , > O, there exists a

function a satisfying (A2) and a C1[0, T], and a(t) q(t) as u ,[, 0+ ]’or (0, T).
Proof. Define b’R--> (-oo, +oo] by

log a (t)

li log a (t)
t0

b(t)

if (0, T),

if t=0,

loga(t) ift=T,

if t [0, T].

Observe that a(t)> 0 on (0, T) and the definition of convexity of log a(t) on (0, T)
excludes a(0/)=0 and a(T-)=0. Thus b is convex, l.s.c, and proper on R. Define
b, u > 0, to be the Yosida approximation of b; then (see [3, Prop. 2.11])

b"(t)= min {-u]Y tl2 +

and b c l([]), b’, satisfies a Lipschitz condition on I with constant l/u; moreover
b(t) b(t) as v ,[, 0+, 6 . Define a, e b" and the result follows. This completes the
proof of Lemma 1. Using Lemma 1 we shall prove

LEMMA 2. The conditions (A1) and (A2) are equivalent.
Proof. That (A1)z (A2)follows from

a(t) > a(t+’)
a(t +r)-a(t +r +r)

(0< < t+o’, t+r<t+r+r<T);
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using a(t)> 0 and putting o-= - we obtain

a (t)a (t + 2-) _-> a2(t + -).

Thus putting tl t, t2 + 2- we have

log a(tl+t2)<1/21oga(tx)+1/21og2 a (t2).

We note that in [15, calculation following Theorem 1.3] it is only shown that (A1)=),
a (t) convex, with the additional assumption that a is nonincreasing, which is not used.
Of course, log a (t) convex implies a (t) convex.

To prove that (A2)=> (A1), it is sufficient by Lemma 1 to prove (A2)=), (A1) with
the additional assumption a C’[0, T]. Then log a (t) convex implies

a’(t)
< a’(t + r)

(O<t <t +tr < T).
a (t) a (t + cr)

Using a(t)> 0 we then have

d a(t) _a(t+tr)a’(t)-a’(t+cr)a(t)<o,
dt a(t+tr) aE(t + tr)

which completes the proof of Lemma 2.
Proof of Proposition 1. By Lemma 2 it is sufficient to prove Proposition 1(i) under

assumptions (A1) and (H2). If, in addition, a <C[0, T], Proposition 10) follows
directly from [17, Thm. 1] with h f a and g(x, t)= x.

Let a satisfy assumptions (A) and (H2). Consider the functions a of Lemma 1.
Then by the above remark, the functions r(t, A)>- O, [0, T], for every 3, > 0, v > 0,
where r(t, A) is the resolvent kernel associated with Aa(t). The functions a converge
to a in L(0, T) as v ,I, 0/, since a(t) a(t) as v ,[, 0/ and a LI(0, T). Therefore, it is
easily checked that the functions r(., A converge to r(., A in LI(0, T), where r(t, A )
is the resolvent kernel corresponding to Aa(t), and r(t, A)_->0 on [0, T] ae. This
completes the proof of part (i).

Part (ii) is proved in [9, Lemma 2.5] with h -Aa (see also [15, Lemma 1.3] with

f-- 1), where the proof is carried out on (0, oo); this can be applied by extending a (t) as
a constant on IT, oo]. This completes the proof of Proposition 1.
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NONLINEAR BUCKLING AND STABILITY OF CYLINDRICAL PANELS*

GEORGE H. KNIGHTLY]" AND D. SATHER$

Abstract. The problem of the buckling of a simply supported thin, elastic, cylindrical panel subjected
to a uniform axial compression is studied by constructive methods. In the case of "narrow" panels we obtain
near the classical buckling load A1 a description of all stable and unstable buckled states which branch from
the unbuckled state at A 1. The method also yields useful information on the asymptotic form of the buckled
states near A1, the exchange of stabilities at A1, and whether the buckling at the ends of a narrow panel is
"inward or outward".

1. Introduction. A typical situation in buckling problems for thin, elastic shells
subjected to some sort of conservative uniform load 0- is that the shell possesses an
"unbuckled" equilibrium state U for all o-> 0. The state U is usually stable for small
values of 0-; however, as o- increases beyond some critical value 0-c, the shell may
suddenly deform with "large" displacements into a new "buckled" equilibrium state;
the unbuckled state U may or may not be stable for 0- > 0-c. Even though the value of
0-c may be significantly less than the classical buckling load 0-1 of the problem (i.e., the
smallest (positive)eigenvalue of the appropriate linearized problem), a description of
the possible stable and unstable buckled states of the shell for 0- near 0-1 is often useful
because it sheds some light on the triggering of the buckling phenomenon; for
example, if there are no stable buckled states near U for 0- < 0-1, such a result is widely
accepted as a theoretical explanation of the occurrence of snap-buckling for thin,
elastic shells. Since the initial behavior of the buckled states at o’1 also provides in
some cases a theoretical explanation of the imperfection sensitivity of a shell (e.g., see
[6-1, [7]), a complete buckling and stability analysis near the classical buckling load O’1
may be of considerable theoretical interest for shell buckling problems even though, in
practice, the shell undergoes snap-buckling for loads 0- significantly less than 0-1.

In the present paper we study the buckling of a thin, elastic cylindrical panel
which is subjected to a uniform axial compression and is simply supported at its edges.
Although the approach used is a constructive one and may be used to study panels of
any width (and even circular cylindrical shells under general boundary conditions), we
deal principally here with "narrow" panels (see Definition 3 in 2) for which the
results are more complete. In the case of narrow panels, we obtain near the classical
buckling load A1 a description of all stable and unstable buckled states which branch
from the unbuckled state at A 1; in particular, for A 1- </ < 1, we show rigorously
that there are no stable buckled states whicfi branch from the unbuckled state at A1
and depend continuously on the load parameter A. In addition, our approach yields
useful information on the asymptotic form of the buckled states near A1, the exchange
of stabilities at A1, and whether the buckling at the ends of the panel is "inward" or
"outward."

The model used here for a simply supported cylindrical panel is obtained from the
classical von Kfirmfin-Donnell equations and consists of a coupled pair of nonlinear
fourth-order partial differential equations together with simply supported boundary
conditions. By making use of generalized (or weak) solutions of the problem, we
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reformulate the problem in an appropriate real Hilbert space so that the problem of
determining the buckled states of the axially-compressed panel is equivalent to one of
finding the nontrivial solutions of a single operator equation of the form

w- ,Aw + aZAZw + aO(w)+ C(w)= O, w .
Here A: - is a linear, selfadjoint, positive, compact operator, Q: - Yg and
C: Y( 9 are continuous, homogeneous, polynomial operators of degree two and
three, respectively, Q is the gradient of the functional -(w)= 1/2(Q(w), w), and C is the
gradient of tr(w)= 1/4(C(w), w); the function w is a measure of the radial deflection of
the panel from its unbuckled state, the parameter A is a measure of the uniform
compressive load, and the (fixed) geometrical parameter a is proportional to (Rh)-1,
where R denotes the radius of the undeformed cylindrical panel and h denotes the
(uniform) thickness of the panel.

The approach used to study equation (*) is based upon the Lyapunov-Schmidt
method rather than topological methods (e.g., see the variational approaches in [1],
[9]) because we are interested here not only in the existence of nontrivial solution
branches of (*), but also in the form of the solution branches near A1 and the stability
properties of the various solution branches. The concept of stability alluded to here
(and throughout the paper) is that of "linearized stability", i.e., a solution w of (*) is
stable at A if the Fr6chet derivative of the left hand side of (*) at (w, A) has only
positive eigenvalues whereas w is unstable at A if some eigenvalue is negative.

The nonlinear buckling of cylindrical panels was first studied by Koiter [6] under
boundary conditions different from those considered here. Koiter obtained a number
of interesting results for cylindrical panels and, in particular, he showed for the first
time that a certain class of "narrow" panels exhibits the stable behavior of a flat plate
while yet another class has the unstable behavior of a shell. On the other hand, for
simply supported narrow cylindrical panels, we show rigorously that an even more
complicated situation exists, depending on whether the smallest eigenvalue A1 Of the
linearized problem has multiplicity k 1 or k 2 (the only possible multiplicities for
the buckling load of a narrow panel).

For example, if k 1 and the load is near A1, the panel in some cases exhibits
throughout the entire range of narrow panels the stable behavior of a fiat plate with
an exchange of stabilities at A1, while in other cases the panel exhibits in part of the
range of narrow panels the unstable behavior of a cylinder (see Theorem 3 and
Remark 1).

On the other hand, if k 2 and the load A is near A1, we show that there are no
stable states near w 0 for A < A but there always exists a unique stable buckled state
near w 0 for A > A1. More precisely, if k 2, we show that there exists a positive
constant 6 such that, for 0 < IA- A 11 < t, there are exactly three buckled states which
branch from the unbuckled state at A1 and depend continuously on the load parameter
A. All three of these buckled states are unstable for A < A1 while the unbuckled state is
stable for A < A1. As A crosses A1 the unbuckled state loses its stability to one of the
buckled states so that, for A I< A <A1 +6, there is one stable buckled state, two
unstable buckled states, and one unstable unbuckled state; thus, under the assumption
that the model being used here adequately describes the buckling of a cylindrical
panel, the theoretical possibility of an exchange of stabilities at A1 always exists for
narrow panels when k 2. Furthermore, when the length of the panel greatly exceeds
its width and A1 < A < A + 6, the three buckled states have the qualitative shapes
shown in Fig. 1 (in each case the x axis is the cylindrical axis, the broken line
represents a generator of the unbuckled cylindrical panel, and the solid curve indicates
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stable buckled state

r.
a/2 a x

unstable buckled state #

0 a x

unstable buckled state # 2

.
0 a x

FIG.

the shape of a generator (y constant)of the buckled panel). Note that in each case
the panel buckles outward at both ends x 0 and x a. The indicated buckling
pattern is symmetric about x a/2 for the stable state, whereas the unstable buckled
states are distinguished by a concentration of the dimpling at one of the ends and
relatively little buckling at the other end.

Since the classical buckling load/1 has only multiplicity k 1 or k 2 for narrow
panels (see 2), the indicated results provide an essentially complete branching and
stability analysis near/1 for narrow panels.

The main results of the present paper were announced in [11]. Other related
branching and stability results for flat plates and spherical shells are described in [5]
and [11]. The reader is also referred to a recent paper of Mallet-Paret [8] in which a
different approach is used to study the existence of buckled states of cylindrical panels.

2. Formulation of the problem. The model used here for the problem of an
axially compressed cylindrical panel of (circumferential)width b is that of the von
Kfirmfin-Donnell equations (e.g., see [7, pp. 268-269]). If x denotes the axial coor-
dinate and y denotes the circumferential coordinate of the panel, and if a uniform
compressive load is applied normal to the edges of the panel at x 0 and x a, then
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the governing equations may be written as

(2. la) A2f -1/2[w, w] + aWxx,

(2.1b) A2w [w, f]- ,W,,x afxx, in f,

where f {(x, y): 0 < x < a, 0 < y < b}, A2 denotes the biharmonic operator and

(2.2) u, v] UxxVyy + uyyVxx 2 Uxyl.)xy.

Here, after appropriate scaling, w represents the radial component of deflection of the
panel, f is an "excess" stress function, and A measures the compressive axial load on
the panel, while the (fixed) geometrical parameter a =[12(1-u2)]l/2(Rh)-1 is pro-
portional to the curvature R -1, R is the (constant) radius of the undeformed panel, h
its thickness and , is Poisson’s ratio. In addition we shall impose the "simply support-
ed" conditions on the boundary 0f,

(2.3) w f Aw Af 0 on 0D.

DEFINITION 1. A classical solution of Problem CP is a pair of functions w, f that
belong to C4(f) f-I C2(() and satisfy (2.1) and (2.3) pointwise.

Next we shall obtain a Hilbert space formulation of a generalized solution of
Problem CP. To do this we make use of the Hilbert space 7//" defined in [3] as the
closure, in the norm I1" 112,2 of the Sobolev space W2,2(f), of the set of smooth
functions defined on I and vanishing on 0. From the Sobolev embedding theorem it
follows that the functions in W are continuous on and zero on 0. In this paper we
use an equivalent inner product on W given by

(u, v)= Ia Au Av,

with corresponding norm denoted by II" I[.
Let q, p be smooth functions on W. Multiplying equation (2.1a) by q and (2.1b)

by p and integrating by parts over 1) yields

(f, q)=-1/2b(w, w; q)-ac(w; o),(2.4a)

(2.4b)

where

(2.5)

and

(w, if)= b(w, f; )+ Ac(w; b)+ oc(f; ),

b(u, v; q)= In [(UxyVy- uyyv,,)q,, + (U,yV,,- uxxvy)or]

(2.6) c(u; )= In UxOx.

DEFINITION 2. A generalized solution of Problem CP is a pair of functions w, f in
74/" satisfying (2.4)for all (0, ff in 7K.

As in [3] we observe that, for fixed u, v W, b(u, v; o) and c(u; (0) are, in (0,

bounded linear functionals on 7K. Invoking the Riesz representation theorem we may
recast equations (2.4) as the following pair of uncoupled operator equations on /2

(note that (2.8) is the basic equation (*) discussed in the Introduction):

(2.7) f=--B(w, w)-aAw,

(2.8) L,w + oQ(w)+ C(w)= O.
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Here B: Wx W- W is a bounded bilinear operator such that, for all q W,

(2.9) (B(u, v), p)= b(u, v; p), u, v W,

(2.10) (au, q)= c(u; q), u 74/’.

Then L, O and C are mappings of W to itself, defined by

Lxw w hAw + ceZA2W,
Q(W)= B(w, aw)+1/2aB(w, w)

(2.11)

(2.12)

and

(2.13) C(w)  n(w, n(w, w)).

The preceeding steps reveal that solving (2.7), (2.8) is equivalent to finding a
generalized solution of Problem CP. A slight modification of the proof of Theorem
B. 1 in [3] shows that the following theorem is valid (see also [2]).

THEOREM 1. Every classical solution of Problem CP is a generalized solution.
Every generalized solution is a classical solution in and up to 0’, where 0’1) denotes
the boundary of with its corners deleted.

In view of the above observations we have reduced Problem CP to a study of
equation (*).

The following two lemmas are used below in the discussion of the linear eigen-
value problem associated with equation (*).

LEMMA 1. A is a bounded, linear, compact, selfadjoint, positive operator. Its
characteristic values [.ll,pq are given by

(2.14) /zq r/a p +
pb2 p, q 1, 2, 3,

and the normalized eigenfunction corresponding to/zpq is

7rZ(bZP2 + aZq2)
wpq Cpq sin pTrXa sin where Cp (2(ab)3/2)

The sequence {wpq} is complete in 74/.

Proof. The listed properties of A follow readily from the definitions (2.10) and
(2.6) (for the compactness, see [2]). The completeness of the sequence {Wpq} in W
follows from its completeness in 2(D,); if f W and 0e, Wpq)= 0, p, q 1, 2,. ., then

Wpq)-- Idl,pq(f, aWpq)-- Id,pqC(f; Wpq)-" --[Ul,pq II) f(Wpq)xx0 (f,

[Jbpq (p77"/a)2 In fWpq,

for p, q 1, 2,..., which implies that f 0.
As in Lemma 4 of [4], the selfadjoint property of A together with the factoriza-

tions

Lx (I-/Z+A)(I-/z_A) (I-/z_A)(I-/z+A),

imply the next lemma.
LEMMA 2. (i) Lx is selfadjoint.
(ii) For fixed a > 0, h0 is an eigenvalue of Lx if and only if at least one of the two

numbers tz+ 1/2[0+ (X-4a:)/:] or tz_ 1/2[o-(Xo-4a)1/] is a characteristic value
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of A, i.e. if and only if

(2.15) A0 /d,0 -[- O 2L/,1

holds for some characteristic value,/Xo, of A.
(iii) If A0 is an eigenvalue ofL, then the corresponding eigenfunctions ofA (i.e. at

tz+, tz- or both) are also eigenfunctions of Lx and span the null space (Lxo) ofLo.
As a consequence of part (ii) of Lemma 2 we see that an eigenvalue A0 of Lx may

have multiplicity k > 1 in either of two ways: (i) if (2.15) holds for some characteristic
value/z0 of A having multiplicity exceeding one, or (ii) if a 2 equals the product of two
distinct characteristic values of A. The first of these is the only way to achieve
multiplicity k > 1 if the panel is required to be "narrow" in the following sense.

DEFINITION 3. For fixed a > 0, the cylindrical panel is narrow if

(2.16) b x/--da/(27r) __< 1.

We note that the condition (2.16) is equivalent to the one given by Koiter [6] in
his discussion of a narrow panel. From (2.14)one easily obtains a lower bound for the
characteristic values of A: t.t,pqld,pl>=(27r/b)2. Thus, if the panel is narrow, no
characteristic value of A is smaller than a and a 2 cannot equal the product of distinct
characteristic values of A. For a narrow panel we also see that the relation (2.15)
generates the eigenvalues of Lx from the characteristic values of A with ordering by
magnitude preserved. Since it follows from (2.14) that the smallest characteristic value
of A is either simple or, if the ratio a2/b2 is the product of successive integers, double,
and since Lx reduces to I- AA when a 0, which is actually the case of a rectangular
plate [3], we see that the multiplicity of the buckling load for a narrow panel is the
same (either one or two) as that for a rectangular plate having the same dimensions.

The following lemma, which lists some useful properties of the nonlinear opera-
tors B, Q and C, is easily proved by combining Lemma 1 of [3] with the definitions
(2.5), (2.9), (2.12) and (2.13) of the present paper.

LEMMA 3. (i) If U, I), W lie in W, then the form (B(u, v), w) is symmetric in u, v, w.
(ii) Q is a continuous, homogeneous polynomial operator of degree two and the

gradient of the real-valued functional
(2.17) ’(w) (O(w), w), w

For each w 74/" the operator O has a differential O’(w), which satisfies
(2.18) Q’(w)u B(w, au)+ B(u, aw)+ aB(w, u),

for all u 74/’, and is Lipschitz continuous in w.
(iii) C is a continuous, homogeneous, polynomial operator of degree three and the

gradient of the functional
(2.19) or(w) 1/4(C(w), w), w

For each w 7,U the operator C has a differential C’(w), which satisfies
(2.20) C’(w)u B(u, B(w, w))+ B(w, B(u, w)),

for all u 7g’, and is Lipschitz continuous in w.
As a final preliminary remark, we state the following lemma which will be useful

in evaluating the coefficients of the branching equations derived in 3.
LEMMA 4. (i) Let {Wpq} be the eigenfunctions of A given in Lemma 1 and set

um (tXpq)l/wpq, for p, q 1, 2, . Then {Upq} is orthonormal with respect to A in the
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sense that

(2.21) (Aum, Urn,,) 6em6q,, p, q, m, n 1, 2,....

(ii) In addition, (O(upq), Urn,,) 0 unless rn and n are both odd, in which case it
equals

64 1 1

/xeq 2/m,, m

Proof. (i) is an immediate consequence of Lemma 1, since Ilwt,q[I 1. To establish
(ii), note that (2.12), Lemma 3 and Lemma 1 imply that

(O(u.), u.)= [-’.. + (2.)-’](U(u., u..), u.).
From (2.9), (2.5) and an integration by parts, we find that

(U(.., u..), .)= [., ..]u.,

and (ii)follows by direct computation.

3. The branching und slabi resnlls. Let A0 be any eigenvalue of L of multi-
plicity k so that the null space W(Lxo) of L is k-dimensional. As in [4], [11] we
use the Lyapunov-Schmidt technique to reduce the problem of finding solutions of
equation (*) in to a problem in (Euclidean k-space). If S denotes the orthogonal
projection of onto W, and denotes the orthogonal complement of W in , then
the elements w of
and V (I-S)w in W. Moreover, if a basis {v,..., v} for W is introduced such
that

(6q is the Kronecker delta), then an element v 6 W can be represented as v = v
for suitable = (,..., ) in . Equation (*) can then be decomposed into its
projections onto W and and, for sufficiently small (fixed) and =a-(A-h0),
say < po and V < V0, the resulting equation on W can be solved for U by means of
the contraction mapping principle. The solution V V(, ) is analytic in and and
satisfies, for some constant K > 0,

0.2) U(,

The projection of (*)onto W then becomes

(i=1,..., k),

where V V(, ) is determined as in the above.
If we now set

0.4) =(, ,)n (, ,), n= (a-ao)e0,
in (3.3) and cancel a factor , the resulting system is

-1 -1 -1(.) 0 -+

(i= 1,..., k).
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Formally setting r/=0 in (3.5) and using (3.2) we obtain the so-called reduced
branching system (in

(3.6) 0 -/3i + /3v v, F(3) (i 1,. , k)

which plays a major role in the subsequent analysis.
Suppose that /3*#0 is a solution of (3.6) at which the Jacobian J=

c3(F1,..., F)/9(/31, ,/3) is different from zero. Then we conclude from the impli-
cit function theorem that, for suciently small, the system (3.5) has a nontrivial
solution ()=*+(), where is analytic in and satisfies lim.0 ()= 0. Then
()=() satisfies (3.3) and, in turn, generates a solution w* of (*) of the form

 0)v* + v*,

where v* V*i= Bv, and is analytic in A and satisfies limx.x (A-A0)-1 V* =0.
Thus, the problem of determining nontrivial solutions of equation (*) near w 0 is
closely related to finding nontrivial solutions of the reduced branching system (3.6).

By relating solutions of (3.6) to extreme values of the functional in (2.17) on the
ellipse $ {u e: (Au, u)= 1}, the following general results can be established for
cylindrical panels (for a proof see [12, Thm. 4 and Thm. 5]).

THZOM 2. Suppose that (Lx,) is k-dimensional (k 2) where, for fixed
a > 0, A A(a) denotes the smal&st ositive) eigenvalue of Lx. If the functional
restricted to has a positive relative minimum at u* then equation (*) has a nontrivial
solution branch w*(A) of the form
(3.7) w*(A)=(aa)-(A-A)u*+ U*, 0<[A-A[<8,
where a (O(u*), u*) and U* is analytic in A and satisfies limx.x, (A A)- U* 0;
for such a minimum the resultant solution w*(A) is stable for A < A < A + and
unstable for A1-8 < A < A . If the functional r restricted to has a positive relative
maximum at u*, and if, in addition, a (O(u*), u*) is not an eigenvalue of SO’(u*),
then equation (*) has a nontrivial solution branch w*(A) of the form (3.7) which is
unsmb& for 0 < IA A

Let us remark that for a relative maximum the condition in Theorem 2 on the
eigenvalues of SO’(u*) implies that the relevant Jacobian J in the above is different
from zero. On the other hand, for a positive relative minimum the condition J # 0 (at
the nontrivial solution * of (3.6) generated by u*) necessarily holds (see [12]). Thus,
whatever the dimension of the null space , the theoretical possibility of an exchange
of stabilities at A =A exists whenever the functional r[ has a positive relative
minimum on $.

From this point on we restrict our attention to panels which are "narrow" in the
sense of Definition 3 (see, however, Remark 3 below).

Before stating the results for narrow panels, let us note that in each case consi-
dered in Theorem 3 and Theorem 4 below, the reduced branching system (3.6) is
solved completely and its Jacobian is shown to be different from zero at each of its
solutions. Since in each case the system (3.6) has only a finite number of solutions, one
can then show, using an argument involving a Newton polygon, as in the proof of
Theorem 4.3 in [10], that there exist positive numbers p and such that, if A denotes
the smallest ositive) eigenvalue of L, the only nontrivial .solutions (w, A) of (*) in the
set
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lie on the branches obtained by the implicit function theorem from the nontrivial
solutions of the reduced branching system.

THZOREM 3. Suppose that A 1, the smallest eigenvalue of Lx ]:or a narrow panel is
simple with eigenfunction up up 1.

(i) Ifp is odd then there are positive numbers 6 and p such that the set of nontrivial
solutions of (*) in 6(A 1, p, 6) consists of a single buckled state (w*(A), A) that exists for
0 < A A 11 < 6 and has the form
(3.8) w*(A)=(aap)-l(A-Al)Up+,
where ap=(O(up), Up) and cb is an analytic function of satisfying limx__,; (A-
1)- cb(A) O. Moreover, w*(a) is stable ]:or A < < + 6 and unstable for A 6 <

A(A1.
(ii) Suppose that p is even and that the number "y defined in (3.17) below is

negative. Then there are positive numbers 6 and p such that the set of nontrivial solutions
of (*) in 6e(A , p, 6) consists of exactly two branches of buckled states, (w/(A), A) and
(w-(A), A), given by

(3.9) w "+’l’/tl- 1/21/ 111/2up - lff)+, 6 1 1,

where the cb are analytic functions of ]A A 111/2 satisfying limx-xl IA A 11-1/2 0.
Both states w are unstable for A1 6 < A < A1. If y > O, again there exist positive
numbers 6 and p such that the solutions of (*) in 6e(A 1, P, 6) consist of a pair of buckled
states of the form (3.9), except that in this case the branches (w+(A), A) are defined for
A < A < A + 6 and are stable.

Remark 1. It is shown in the Appendix that for p even and for ratios a/b > (2)1/,
there are numbers 01 and 0e, 0< 0 < 01< 1, such that if the curvature parameter
0 bx/-/(2 7r) satisfies 191 19 1 then /< 0 whereas if 0 < 0 =< 0e then 3’ > 0. Hence all
of the cases described in Theorem 3 actually occur within the range of narrow panels.
For example, if a/b 4 then 01 <_- 0.72 and 0 >_- 0.27 so that , < 0 when 0.72 _-< 0 <= 1
and , > 0 when 0 < 0 -< 0.27.

Proof of Theorem 2. (i) If p is odd the branching analysis proceeds along standard
lines as described at the beginning of this section and the stability analysis is also
obtained from known results (e.g., see [13]). In fact, the reduced branching system
(3.6) is now a single equation

(3.1 O) F() - +2ap O,

where according to Lemma 4, apO when p is odd. Therefore, /3*=a is a
nontrivial solution of (3.10) with F’(/3")= 0 and the result follows. (ii) on the other
hand, ap 0 when p is even so that "higher order" terms must be retained in carrying
out the branching analysis. For the case being considered the branching system (3.3)
reduces to a single equation

(3.11) O=-ri+(O(Up+ V(sc, n))+a-lC(up+ V(, ri)), up),

where sc and VaV+/- satisfies the inequality (3.2) and the equation (T= I-S
denotes the orthogonal projection of 74/" onto -)

(3.12) LxI V- ariA V + T[aO(Up + V)+ C(up + V)] 0.

Since Lx, has a bounded inverse on aV-, V has the form

(3.13) V=u+U
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with.u and U in X+/- satisfying U O([sc;3 + Ir/I Iscl 2) and

(3.14) Lxlu -aTO(u,) -ceO(u,),

where in the last equality we have used TO(up) O(up), a consequence of the
condition (O(up), up) O. Using (3.13)and the identity

(3.15) O(w + h)= O(w)+ O’(h)w + O(h), w, h ,
we find that the branching equation (3.11) becomes

(3.16) 0 --+3+ S(, ),

where

(3.17)

and

,y (Ot(Up)U -.Jr- o1-1C(up), Up)

s(. n)= (O’(u.)U + O(v). u.)+- (C(u + v)- C(u). u.)

satisfies

(3.18)
lim sC-3s(sc, r/)= O(r/) for It/l< r/0.
:--,0

Instead of (3.4) the form of (3.16) suggests, for r/< 0, the substitution

(3.19) sc --Ir/ll/2, for/3 [a.

Using (3.19) and dividing by I,/I 3/2 in (3.16) yields

(3.20) 0 fl + yfl3 + ir/i-3/Zs(ir/i,/2fl, q).

Now letting r/0- in (3.20) and using (3.18) we obtain as the reduced branching
equation the simple cubic equation

(3.21) 0 -1- 3’ 3

If < 0, equation (3.21) has two nontrivial solutions/3 +/-11-/2 yielding two distinct
solutions of (3.20) for -r/0< r/<0. These solutions, in turn, generate the desired
branches (3.9); that these solutions are unstable again follows from standard
arguments as in case (i). If > 0 then equation (3.21) has no nontrivial real solutions
so that no branching takes place "to the left" in this situation. In an analogous way
one sees when 0< r/< r/0 that the substitution (3.19) leads to a reduced branching
equation

(3.22) 0 -/3 + 3,/33
so that no branching "to the right" occurs when 3’ < 0 while two stable, branches are
obtained, corresponding to/3 + 3’- /2, when 3’ > 0.

Theorem 3 deals with the case in which the smallest eigenvalue of the narrow
panel is simple. Now we discuss the only remaining possibility for narrow panels,
namely, that A has multiplicity two; since a2/b2 then is necessarily a product of
sucessive integers, we assume that a2/b2-- re(m+ 1)so that A has eigenfunctions
Um= Um and Um+l.

THEOREM 4. If the panel is narrow and aZ/b2= m(m + 1) ]:or some positive integer
m, then there exist positive numbers 6 and p such that the set of nontrivial solutions of (*)
in 0(A , p, 6) consists of exactly three buckled states which exist ]’or 0 < IA- A a[ < 6.



NONLINEAR BUCKLING AND STABILITY 399

and

When m is odd the solutions have the form
q a rlu + dO

-(,q9 bm’q U -+- C U + ) + ) "r/--ce ),

where the constants a,,, b,,, c,, are defined below and ,+ are analytic functions oforder
O(r/2) as n - O.

When m is even the solutions have the form
d.u./l +

and

@ e -I U + -l- f U ) -t- xIt+/-

where the constants dm, em, fm are defined below and , q+/- are analytic [unctions of
order O(r/2) as q O.

Moreover, the solutions q and are stable for A,< < ,+ 6 and unstable ]:or
A 6 < A < A, whereas all of the solutions q9 are unstable for 0 < IA All < (.

Remark 2. If m is odd and large (i.e., if a/b is large) in the context of Theorem 4,
then from the equality in (3.28) below we see that c/e is close to unity, hence so is the
coefficient Cm =- (2 (c/e ))1/. It follows that for r/ small the initial shapes of q+/- are
approximately those of u,,, +/- u,,+, i.e., of sin (Try/b)[sin (mTrx/a)+sin ((m + 1)Trx/a)].
Similarly, if m is even and large, the shapes of q+/- are approximately those of
sin (Try/b)[sin((m + 1)Trx/a)+sin (mTrx/a)]. Thus, for fixed y in 0< y <b and for fixed
A in A, < A < A1 q- t, the buckled states q+ and + have approximately the form shown
in Fig. 1 as unstable state #1 while q- and - correspond to unstable state #2;
the stable state q (or O) has approximately the form sin (Try/b) sin (mTrx/a) (m odd)
which is shown in Fig. 1 as the stable buckled state.

Proof of Theorem 3. Setting/xo =/Xol for p 1, 2, ..., we see from (2.14) that
/Xm =/X,,+ [(2m+ 1)Tr/a]- is the smallest characteristic value of A and has multi-
plicity two. Then the smallest eigenvalue of Lx is A1 /Zm + ce 2 n’/z and the null space
W-= oV(Lx,) is spanned by the eigenfunctions vl u,, and v2 u,,/l, which satisfy
(3.1). In this case, the system (3.6) becomes

0 -/3, + cfl2 + 2dfllfl2 + efl,
(3.23)

0--" --2 -- dfl + 2eflfl2 + ffl2,
where c (O(Vl), Vl), d (O(va), v2) =1/2(O’(vl)v2, va), e (O(v2), Vl) and f=
(Q(v2), v2). From Lemma 4, we see that d f= 0 when m is odd and c e 0 when m
is even, so that (3.23) reduces to

(3.24)

or

0 --1 + 2dfllfl2,
(3.25)

0

If the inequality

(3.26) 0<c<2e

(m odd),

(m even).
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holds, then (3.24) has exactly three distinct nontrivial solutions, (a,,, 0), b,,(1,+c,,),
where am c -1, b,, (2e)-1 and c,, (2-(c/e)) 1/2. The condition (3.26) also ensures
that the Jacobian, J, of (3.24)satisfies J 0 at each of these solutions. Thus, when rn is
odd, the existence of the three specified nontrivial solutions (q and o+) and no others
in a suitable set (,tl, p, 6), follows as in the discussion just before Theorem 3. To
obtain the stability results when m is odd, we consider the functional which is the
restriction of r to g {101 q-2/.)2" 12 -+-22 1}, namely, t(/, 2)-" 1/2[C13 q- 3e/31/22
for /3+/32= 1. When normalized to /3+/3= 1 the nontrivial solutions of (3.24)
become (1, 0), (1, +c,,)/(1 + c2m)1/2 and are the points at which t(/31,/32) has positive
extrema. A calculation using (3.26) shows that has a positive minimum at (1, 0) and
positive maxima at the two remaining points. Since the solution corresponds to the
minimum point its stability properties are a consequence of Theorem 4 in [12], while
the instability of the solutions q+ are obtained using Theorem 5 in [12] (the condition
required in Theorem 5 of [12], that (O(w), w) not be an eigenvalue of SO’(w) when w
maximizes t, is equivalent here to J 0). The results for the case rn even are obtained
in a similar way if

(3.27) 0<f<2d
holds and the three nontrivial solutions of (3.25) are denoted by (0, dm), em(’+’fm, 1)
where d,, [-1, e,, (2d)-1 and f,, (2- (17 d))1/2. We complete the proof of Theorem
4 by verifying (3.26); similar steps will yield (3.27) when m is even. Since c
(Q(um), Um) and e (Q(Um/l), Urn), when rn is odd and a2/b:2= m(m + 1), Lemma 4
yields

C
32(a/b)/2

7rb2tzmm
32(a/b)’/2(3m 2 +4m + 2)

e rrb2t.,,,m2(3m2+8m +4)

so that, for m => 1,

(3.28) 2e/c=2(3m2+4m+2)/(3m2+8m+4)
from which it follows that 2e/c > 1.

Remark 3. Similar methods to those used in the proof of Theorem 4 may apply at
other eigenvalues of a narrow panel (and even at some eigenvalues of a panel which is
not narrow) to give the existence of unstable buckled states. For example, if, for some
A0, L,o has a two-dimensional null space spanned by blpq and Igmn where at least one of
the products mn or pq is an odd number, then the methods of [12] yield the existence
of at least one buckled state which branches from the trivial solution at A a0 and is
unstable for A on both sides of A0.

Appendix. We establish in this appendix the properties stated in Remark 1 for
the coefficient y defined by (3.17). Using the symmetry properties of the operator B
(see Lemma 3) and the Euler identity O’(w)w 20(w) (see (2.18) with u-- w), we
may rewrite (3.17) as

(A.1) y= 2(O(Up), u)+ a-’(C(up), Up).

Expanding u 2,n=l I-’mnWmn and O(up) 2,n=l Omnwmn in terms of the eigen-
functions of A (see Lemma 1), we see that F,,,,, (u, Win,), Qm, (Q(up), Wm,,) and,
since u and Q(u,) belong to- in the case being considered, Fol QI 0; in fact, by
Lemma 4 we have Qm,, 0 unless both m and n are odd. A simple calculation gives

Amnwmn,(A.2) L,lU , F,,,, -
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where

(A.3) Amn (1 -A1+---- for (m,n)C:(p, 1).
[d, d,

Substituting these expansions into (3.14) and equating coefficients yields

(A.4) I’mn =-oOmnAmn, for (m, n): (p, 1),

so that

ogQmnAmn,(A.5) (O(up), u)= Y O,,,,,Fm,, 2 2

m, odd m, odd

where the sums are extended over the set of pairs (m, n)of odd positive integers.
Similarly, if we expand B(up, Up) as B(U,,Up)=,.,.oddB,,,,,W,,,,,, where
(B(up, Up), Wm.), we see that

(A.6) (C(u.), Up) IlB(ut. Up)ll2 - 2 2

m,n odd

and, from (2.12),

(A.7) Q.,. (O(Up), w.)= (B(ut. Aup)+AB(ut. Up), Wm.)

+ 2/fm, Bmn.

Using (A.5), (A.6) and (A.7), we can now express the constant y in (A.1) as the sum

(A.8) 3’ (2a)-1 Y. B (1 --cr,,),
m,nodd

where

(A.9) O.m, 4Cr2( 1 1 )2+ A,,,n.

If we let s denote the constant a/x and define

(r+2s)2

r>--O, rs, rs(A.10) h(r)=
(1 rs)[1 -(r/s)]’

-1

2 imply that O’mn h (oqx- ). Fromthen (A.3), (A.9)and the relation A1 tXp+ tXp
(A.8) we see that 3’ < 0 if h(r)> 1 whenever r a/x -mn and we seek first to ensure this
condition by suitably restricting the parameter 0 b/-/(2 7r).

Since we are assuming that/Xp is the characteristic value of A which minimizes

(/d,) /d, "[- a 2 --1
/z and since ,(/Xp)=A(a 2 -), no characteristic value of A lies

/xp 1. Furthermore, the restriction to a narrow panel implies that allbetween/Xp and a 2

other characteristic values of A exceed /Xp. Consequently, r <min (s, s -1) when r
-1 On the interval 0 < r < min (s, s-), h(r) increases from 4s2 at r 0 to a vertical

asymptote at r=min (s, s -1) so that h(r)> 1 if 4s-> 1, i.e., if/zp_-<2a. In terms of 0
these conditions become 01 =< 0 =< 1, where

(A.11) O=01(p)b[l’t’P/(87r2)]l/2=2,/ a
p+

Since p here is thepositive integer minimizing 01(q), p lies in the unit interval (t, + 1),
where 1/2(-1 +/1 +4(a2/b2))is such that 0a(t) 01(t+ 1). Note that, since p is even,
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we must have t> 1 so that a/b >(2)1/2 in this appendix. An elementary calculation
then yields

2-1/2 =< 01(p) 01(0 2-1/211 + b2/(na2)] 1/2,
so that 01(p)<3/4 when (a/b)>(2)1/2. Thus, the condition 01(p)=< 0-< 1 is not void
for the class of narrow panels. For example, if a/b =4 then 01(0-<0.72 so that 3,<0
when 0.72 _-< 0 =< 1.

Next we observe that y>0 if h(r)=<l whenever r=atz -lm. with (m, n)(p, 1).
Again we may restrict r to the interval 0 _-< r < min (s, s-l), on which h is increasing, so
that h(r) <- h(Sl), where Sl a//z,,,l and/x,,1, is the second (in order of increasing
magnitude) characteristic value of A. An elementary analysis of the quantity (m +
a2nZ/(b2m)), for a/b => 1 and positive integer values of rn and n, reveals that nl 1
and (by comparing the values of (rn+a-/(bZrn))at m=p+l and m=p-1) ml
p+l [resp., ml=p-1] when t<p<=(l+aZ/b2)1/2 [resp., (l+aZ/b2)l/Z<=p<t+l]
with defined as in the above. The remainder of the discussion is given only for the
case rnl P + 1, since the case rnl P 1 is similar. First of all, from (A. 10), it is easy
to show that the condition h(r)-< 1 is equivalent to

(A.12) 5rs + 4s2 <= l r/s.

If we set r Sl a/lZp+l, s a/tZp and introduce the parameter 0, then (A.12) may be
expressed as 04 =< 0, where

(A.13)
4 -2 -2aO={1-(tZp/tZp+l)}{ 16ff(p + ba-p) 4(p + ba-p)

+5 (p+ 1)+b2(p + 1-------
-1

Since /Zp is a simple characteristic value of A, /Xp </Zp+l so that 02 >0 and the
condition 0<0-<02 is not void; for example, if a/b=4 then p=4, m1=5 and
02 > 0.27, so that y > 0 when 0_-< 0 -< 0.27. Finally, let us note that, if 01 is defined as in
(A.11), the condition 02< 01 is also satisfied so that 0< 02< 01 < 1 for all p being
considered. It is possible that a more refined analysis would yield a positive constant
0* such that 3’ > 0 when 0 < 0 < 0* and 3’ < 0 when 0* < 0 -< 1.
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SOLVABILITY OF A CLASS OF I-IILBERT NETWORKS*

VACLAV DOLEZAL’

Abstract. In this paper we give sufficient conditions for solvability of a Hilbert network some elements
of which are described by monotone operators defined only on subsets of the underlying Hilbert space. As a
special case we consider a finite nonlinear LRC-network, whose inductors are linear, time-varying.

1. Introduction. A Hilbert network is called solvable, if for any excitation by
EMF and/or current sources there exists in a current distribution obeying Kirchhoff
laws. The question, whether a given is solvable or not, is of crucial importance.
Known effective results concerning solvability [1, Thms. 4, 5] make the assumption
that the operators describing network elements are defined on the entire underlying
Hilbert space Y(. Consequently, these results cannot be applied, if the network
contains inductors, because in this case the definition domain of operators describing
inductors has to be restricted to the space of absolutely continuous functions or the
like.

This paper attempts to fill this gap. It turns out that, if monotone operators are
involved, a surprisingly simple, yet powerful, theorem can be proved. This result has
the following interesting interpretation" If all elements in a network which are
described by operators defined on the entire space are removed and a unit resistor is
inserted in every branch, and if the network d thus obtained is solvable, then is
also solvable.

Based on this, we then give solvability conditions for an L-proper LT-networkma
concept slightly more general than a finite nonlinear LRC-network whose inductors
are linear, time-varying.

2. Results. To avoid unnecessary repetition of definitions and restatement of
basic theorems, we refer the reader to the survey paper [1]. We will consistently use
the notation introduced there.

THEOREM 1. Let H be a real Hilbert space, let G be a locally finite oriental graph
having c2 <= No branches, and let D cHc2, Nn (] D # . Assume that

(i) 1" D-H is a monotone operator,
(ii) 2: H H2 is a hemicontinuous operator such that

(1) 22Xl- 22X2, Xl--X2)CIIXI--X2I]p

for all x 1, X2 E Hc with some fixed c > 0 and p > 1,
(iii) the Hilbert network (1 + L G) possesses a solution for any e H (I is the

identity operator on Hc).
Then, for any e H-, the network = (1 + z2, G) possesses a unique solution in D
corresponding to e. Moreover, the admittance A" H D ofaf# satisfies the inequality

(2)

for all e 1, e2 G Hc2.
Proof. Let the subset F cH be defined by F=,*(NafqD), and define the

operator WI" F H by W1 X’*IX’. Clearly, W1 is monotone on F, since for any
Zl, z2 F we have

(3) (WlZ1-- WlZ2, z1-z2) (Z1Xz1-ZIXz2, Xzl-XZ2)O.
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Moreover, the assumption (iii) implies by Theorem 2 in [1] that

’*(1 +I)F Hc, i.e., (W1 + I)F H.
Consequently, Theorem 2 in [2] shows that Wl is maximal monotone.

Next, let W2" H-->H be defined by W2=*2. Then (1) yields for any
Z 1, Z2 E nc,
(4) W2z W2z2 z1- z2 22z1-22z,z2 z,Z .Cz2

(See [1, Prop. 1].) Thus, W2 is monotone on H. Since .’*, " are linear bounded
operators, it follows that W2 is hemicontinuous on H. Hence, W2 is maximal
monotone.

On the other hand, since F f-) Int Hc F and both W1 and W2 are maximal
monotone, it follows by Theorem 1 in [3] that W (W1 + W2): F--> H is also maxi-
mal monotone.

Moreover, (3) and (4) imply that

WZ1 Wz2, z1 z2) c IIz1 z2llp

for all 2’1, Z2 E F. Thus, for any z F we have by the Schwartz inequality

(6) Wz >- c IIz ]]p-1 w011.
Hence, if z,,eF and IIz, ll- as n->, we have IlWz,ll-. Consequently, by
Theorem 5 in [2], W is surjective, i.e., WF Hc. However, this means (Theorem 2 in
[1]) that, for any e e H2, f/" possesses a solution corresponding to e.

Finally, (5)shows that W is 1-to-l, and that the inverse W-1" H-->F satisfies
the condition

(7) Ilw-lx -1/(p-l)w-ix211 c IlXl x

for all Xl, X2EHc. Since the admittance A"HD of is given by A W-*
and is a norm-preserving isomorphism [1 Prop. 1], inequality (2) follows and,
hence, the proof.

Remark 1. The above proof suggests that (i), (ii) can be replaced by the following,
weaker assumptions:

(i)* W1 is monotone,
(ii)* W2 is hemicontinuous and satisfies (4) for all Zl, z2 H.
Let us now consider the generalization of an LRC-network we mentioned in the

introduction.
From now on, let H be the real space L2[0, y], 0 < y <, (we will also write L2

for brevity), and let

(8) K {x "x absolutely continuous on [0, r], x’ Le}.

If a is a real number, let K {x "x K, x(0)= a}.
Let G be a finite oriented graph having c < R0 branches, let 1 k c and let d

be the incidence matrix of G, [1].
A vector f [fl, f2, , f] R will be called admissible, if there exist numbers

jk+l, jk+2, Jc2 such that the c2-vector j0 [jl, j2," Jcz] satisfies the equation

(9) d’o 0.

Let (, t): R x [0, r] R be such that, for any x Kk xL-k L we have
(x(t),t)6K.
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If ]6R k is admissible, let Di=KilxKi2x xKjkxL2-k and let the
(inductance) operator i" Di--> L be defined by

(10) (ix)(t) {/(x (t), t)}’.

Finally, let " L ->L be an operator. Then the network (i + , G) will be
called an LT-network having initial condition ].

Observe that a general LRC-network is a special case of an LT-network. Indeed,
let/ (, t), (, t): R 2 [0, -] - R be functions such that k (x(t), t), ( x(tr) do-, t)
L whenever x 6 L.

If we define by

(11) (’x)(t)= k(x(t), t)+ g( x() d,

then clearly (/. + ’, G) will be a model of a nonlinear LRC-network. Observe that if
C2Di is a solution of (. + T, G) corresponding to some e L2 then each component

i,,, rn 1, 2,. , k of is absolutely continuous and satisfies the condition ira(0)= j,,.
In order to define an L-proper LT-network, let us introduce the following

concepts"
A nonzero vector s= [so,] R C2 will be called a loop, if dTs=0 and each element

sen attains one of the values -1, 0, 1. We will say that a loop s [sen] contains (does not
contain) a branch b,, of G, if so,, 0, (,, 0).

DEFINITION. Let G be a finite oriented graph having c2 branches, let 1 _-< k <_-c2,
and let the following conditions be satisfied:

(i) there exist loops s1, s2, sk such that, for each rn 1, 2, k, the loop
s’’ contains bm and does not contain any other branch in the set {bl, b2," ", bk}.

(ii) there exists a k k matrix l(t) having a continuous derivative l’(t) on [0, ]
with l(t) and l’(t) being positive definite and positive semidefinite for each [0, ’],
respectively, such that

(12) (:, t)= L(t)tj,

where the (?2 2 matrix L(t) is given by

(13)
L(t)= I- 0

If/i" Di L is given by (10), then the LT-network = (/i + ’, G) will be called
L-proper.

Clearly, " being L-proper means that all inductors in (and possible mutual
couplings) are passive, linear, time-varying and nondecreasing, and are confined only
to the branches b l, b2,’’’, bk.

Also, observe that if is L-proper, then any j 6 R is admissible. Indeed, let
a, 2, 3,... Ck be the loops existing by (i). Select vectors k+1, k+2,... o6 R:
so that {1, 2,..., Co} is a basis in the solution space Na of dry=0 (obviously,
k6co=dimN), and let y=[1]23... o]. Then Y has the form

(14) Y [Y2 Y3J’
where matrices L Y, Y2, Y3 are of type k x k, k x (c0-k), (c2-k)x k and (c2-k)x
(co-k), respectively. Now, a vector R: satisfies d 0, iff Yw for some
wR. Thus, if iR is given, we can put w =[jr0, 0,..., 0]rR and let
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]o Yw. Then d /’o 0, and the first k components of/’o coincide with those of ], i.e.,
is admissible.

We will need the following result [4], [5]"
LEMMA 1. Assume that
(i) A(t) is a symmetric n x n matrix having a continuous derivative A’(t) on [0,

such that rank A (t) r for each [0, ’] with a fixed r <- n
(ii) H(t,r) is a symmetric nn matrix defined and continuous on

{(t, o’): 0 <= cr <-t <= z} which has a continuous derivative O/OtH(t, r) on f;
(iii) A(t)+ H(t, t) is positive definite for every [0, ’];
(iv)
(v) there exists R" such that A(0) f(O).

Then them exists a unique x L’ such that

(15) A(t)x(t)+ g(t, o’)x(cr) do" =’(t), [0, z].

(Note that in [4] and [5] this result is stated for L’ rather than for L. However,
retracing the proof given in [5] we can easily confirm that the assertion holds for L,
too.)

THEOREM 2. Let G be a finite oriented graph having c2 branches, let 1 <-k
and let ] R k. Let f’" L_2 __> L? be a hemicontinuous operator such that, for some c > 0
and p > 1, we have

(16) (X1-- x2, Xl-X2)>-cllxl-x2l["
]’or all x 1, x2 L?.

Furthermore, let= ([. + , G) be an L-proper LT-network, where Ii" Di- L? is

defined by (9), (10), (12) and (13).
Then ]’or any e L[, possesses a unique solution Di corresponding to e, i.e., if

[i,,], i,, is absolutely continuous, i’,, L2, i,,(O)= ],, for m 1, 2, , k, and i,, L2
]’or m k+ 1, k +2,..., c2.

Moreover, the admittance A o]’ satisfies the inequality

(17) ]lAel Ae2][ <= c -1/(p--l) 11":,1 (el e2)[[ a/(p-l)

]’or all el, e2 L.
Also, (16) can be replaced by the weaker condition

Wz , >-_ c IIz z ll
(16)*

for all z, zz L, where W" L --> L is defined by W

Proof. Referring to Theorem 1, it suffices to show that (I) . is monotone on Di, (II)
the network (i + I, G) has a solution for any e eL.

As for (I), observe this fact: if x e D. and 2 is a k-vector containing the first k
components of x, then 2 eKk and we have by (13), x’{Lx}’=YT{12}’. Thus, choosing
Xx, x2e Di, we have by (10), (12),

J (iiXl-iix2, Xl-X2) (xI-x2)T{L(xI-x2)} do"
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On the other hand,

J (1 2)Tl’(-’l- .2) dcr + (Ya- y2)TI(yl .)dm

Since 1(0)= Y2(0)= j and is symmetric, it follows that

J=(I--2)T(T)I()(XI--X2)(T)+ (1 2)TI’(l 2) d.

Hence, by (ii) in the Definition, J 0, i.e., i is monotone on Di.

To prove (II), choose a c2 c0 matrix X whose columns constitute an orthonormal
basis in the solution space of dr 0, 6 R. First, we are going to show that

(18) rankXL(t)X=k
for each t[0, ]. Indeed, if Y is the matrix defined by (14), then there exists a
nonsingular c0 Co matrix Q such that X YQ. Thus, XrLX QrYrLYQ, so that
rank XLX rank YrL Y. On the other hand, an easy calculation shows that

YrLY Yl YIY,
Since is nonsingular for each e [0, r], it follows that rank YrLY k. Also, since
rank Y Co g k, we have rank YrLY min [Co, k, Co] k, which proves our claim.

Next, choose a j R k, construct joe R with d’o 0 and find Woe R such that
jo Xwo. (See the paragraph preceding Lemma 1.) Also, pick e e L and consider the
equation

(19)

It is clear that the right hand side (t) of (19) is in Kc. Also, putting A(t)= XrL(t)X,
H(t, )=I, we see easily that the assumptions (i) through (iv) in Lemma 1 are
satisfied. Moreover, (0)= XrL(0)]0 XrL(O)Xwo, so that (v) is satisfied for
too. Hence, there exists a unique w L satisfying (19) in [0, ].

Now, put Xw eL. Since XrX I, (19)can be written as

(20) XrL(t)i +Xr
j
i() d xTkL(O)Io+ e() d

Multiplying (20) by a nonsingular CoX Co matrix O’ such that Q’XT= yr with Y
being defined by (14), we obtain an equation like (20), where Xw is replaced by yr.
Define il6t and i2et- by i=[i[i] and el6L., e26t- by e=[e[ef] w.
Since

and

[. lix ]YL(t)i (liTJ’
[. il+Yi2 3-:.[ Yi 11 q- Y312J’

[ l(O)] .]yTL(O)jo [
our equation can be split into the following two equations:

(21) lia + (i + Yi) do" l(O)] + (e + Ye) do’,

(22) Yli + (Yia + Yi) do- Yl(O)] + (Ye + Yea) do’.
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However, because l(t) is nonsingular and continuously differentiable on [0, ’], (21)
shows that ilKk. Moreover, setting t=0 in (21), we get/(0)i1(0) l(O)j, i.e., i1(0) j.
Hence, we have shown that Dj.

Furthermore, since L(t)i /_t,l., we see that L(t)i is differentiable almost every-

where. Thus, (20)yields

(23)

i.e.,

(24)

Xr{L(t)i}’ + Xri Xre(t),

f(*(i + I)i f(*e.

These results show that is the solution of d --(j-+-L G) corresponding to
172e s L2. Indeed since J* is the orthogonal projection from L onto Na (see [1]),

(24) implies that JJ*{(/2j + I)i e} 0, i.e.,

(25) (i + I)i e N-.
Moreover, since Xw Na, we have

(26) N (3 Di.

However, relations (25) and (26) define a solution; thus, ’1 is solvable for any e L2,
and our proof is completed. The last assertion follows from Remark 1.

Remark 2. The solvability of 1 may also be proved by using the state variable
technique. Actually, it can be easily seen that condition (i) in the Definition means that
1 does not contain any "inductor-only cut-sets" [6, p. 199], and consequently, the
current distribution in f/’l can be described by a canonic system of differential equa-
tions.

b3

e3 R3(’

b

FIG.

To illustrate the application of Theorem 2, let us present a simple example.
Consider the LRC-network given in Fig. 1. Assume that

(i) the inductors in branches b and b2 are linear, time-varying, described by
functions L(t)and Lz(t), respectively, which are continuously differentiable, positive
and nondecreasing on the interval [0, ’], (" < ),



410 VACLAV DOLEZAL

(ii) the resistors in branches bl, b2, b3 are nonlinear, time-invariant, described by
continuous functions R,,: R1R 1, m 1, 2, 3 such that

(27) [R.()-R (T)](% T/) - C (" )2
and

(28) IR, (sc)]-< a + bl =l
for all :, r/ R and some c > 0, a, b => 0,

(iii) the capacitors in branches b4 and b5 are linear, time-varying, described by
functions C4(t) and Cs(t), respectively, which are continuously differentiable, positive
and nondecreasing on [0, ’].

Using the notation introduced above, (refer to (13), (12)and (11)), we have for f;,
(29) / (:,/)= R (.)’, (:, t)= S(t),

where

(30)

(31)

and

R(. diag (RI(.), Re(" ), R3(" ), 0, 0),

S(t)= diag (0, 0, 0, C-’ (t), C’ (t)),

(32) L(t)= diag (Ll(t), L2(t), O, O, 0).
From Fig. 1 and (32) it is immediately apparent that our network is L-proper.
Moreover, continuity of R,, and (28) show that, for rn 1, 2, 3, R,,,(.) is a

continuous operator from L2 into itself. Thus, R (.): L L is continuous.
Next, recalling the construction of the matrix Y (see (14)), we see readily that

(33)

1 0 0

0.Y= u 0

100-111
Thus, if w-[wl, W2, w3]TER 3, a simple calculation confirms that YTR(.)Yw=
[gl(wx), g2(w2), g3(w3)] T. From this it follows by (27) that, for any u, v E R 3,
(34) (u -v)r(YrR( )Yu YrR(" )Yv)eclu -vl2.
(Here, I" signifies the Euclidean norm in R3.) Now, if X is any 5 x 3 matrix whose
columns constitute an orthonormal basis in the column space of Y, and if WR
.,’*R (’)’, we can easily verify by using (34) that

(35) WRZ WRZ2, Z Z2 C’IIZ Z 2112
for all z l, z2 L3 and some c’> 0. (Note that X YQ with Q nonsingular.)

Finally, letting (dx)(t)= S(t)oX(ff)dr, we see by (iii) that is continuous from
L into itself. Moreover, if Wc P*S, it follows that Wc is monotone on L.

Summarizing these results we conclude that the operator W WR + Wc *(with if" being defined by (11)) fulfils the condition (16)*.
Hence, by Theorem 2, for any el,’’’, e5 L2 and numbers jl, j2 there exists a

unique current distribution il,’" ’, i5 in our network such that il, i2 are absolutely
continuous on [0,’], il(0)=jl, i2(0)=j2 and i, i., i3, i4, isL2. Moreover, the i,,’s
depend continuously on the en’s.
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AN ABSTRACT SECOND ORDER SEMILINEAR
VOLTERRA INTEGRODIFFERENTIAL EQUATION*

C. C. TRAVIS" AND G. F. WEBB?

Abstract. The theory of strongly continuous cosine families is used to obtain existence results for
semilinear second order Volterra integrodifferential equations in Banach spaces. The results are applied to
examples of integro-partial differential equations which have nonlinearities involving the highest order
spatial derivatives.

1. Introduction. We treat the existence question for the abstract semilinear
second order Volterra integrodifferential initial value problem,

iou"(t) Au(t)+ g(t, s, u(s), u’(s)) ds + f(t), R,

(1.1) u(0)= x 6 X, u’(0) y X.

In (1.1) A is the infinitesimal generator of a strongly continuous cosine family C(t),
R, of bounded linear operators in the Banach space X, g is a nonlinear unbounded

operator from R R X X to X, and f is a function from R to X.
The approach we take is to extend the methods of [16] from the first order to the

second order case by employing the theory of strongly continuous cosine families in
Banach spaces. In many cases it is advantageous to treat second order abstract
differential equations directly rather than to convert them to first order systems. A
usefu| machinery for the study of abstract second order equations is the theory of
strongly continuous cosine families. We will make use of some of the basic ideas from
cosine family theory and we refer the reader to [14] for a discussion of the results we
will use.

In 2 we treat the case that g is continuous (but not Lipschitz continuous) and
A -1 is compact, in 3 we treat the case that g is Lipschitz continuous, in 4 we give
some simple examples to illustrate our results, and in 5 we compare our results to
those of earlier researchers.

2. Existence of solutions in the non-Lipschitz case. We make the following
assumptions on the linear operator A:

(2.1) A is the infinitesimal generator of a strongly continuous cosine family
C(t), R, of bounded linear operators in the Banach space X.

We define the associated sine family S(t), R, by S(t)x o C(s)x ds, x X, R. It
is known (see (2.11) and (2.12) of [14]) that (2.1) implies

(2.2) there exist constants M => 1 and w >- 0 such that

<= Me11, R and IS(t)- S(f)] <M e’lsl ds t, R.

For a strongly continuous cosine family we define E {x X: C(t)x is once continu-
ously diIterentiable on R}. We remark that S(t)X E for R, S(t)E D(A) for

R, d/dt C(t)x AS(t)x for x E and 6 R, and d2/dt2C(t)x AC(t)x C(t)Ax
for x D(A) and tR (see (2.17), (2.18), and (2.19)of [14]).

* Received by the editors June 7, 1977, and in revised form December 7, 1977.
? Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37235.
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It is proved in [7, 6] that for 0-<_a _-< 1 the fractional powers (-A) exist as
closed linear operators in X, D((-A))cD((-A)n) for O<- B <-a <- l, and
(-A)’ (-A)n (-A)/s for 0 <_- a + B _-< 1 (at least after a suitable translation A cI
of A). We assume in addition

(2.3) for 0<a_-<l, (-A) maps onto X and is 1-1, so that D((-A)) is a
Banach space when endowed with the norm Ilxil=il(-A)xil,
x 6D((-A)). We denote this Banach space by X. We further assume
that A -1 is compact.

We require the following lemmas:
LEMMA 2.1. Let C(t), R, be a strongly continuous cosine family in X satisfying

(2.3). The following are true:

(2.4) For 0 < a < 1, (-A)- is compact if and only ifA -1 is compact,

(2.5) for 0<a <1 and tR, (-A)-C(t)=C(t)(-A)
and (-A)-aS(t) S(t)(-A)-.

Proof. If (-A)- is compact for some a, 0 < a < 1, then A-1-- -(-A)- (-A)a-1
is compact being the composition of a compact operator with a bounded operator.
Conversely, if A -1 is compact, it follows from the resolvent identity that (hi- A)-I is
compact for every h in the resolvent set of A. In [7], it is established that for 0 < a < 1,

(2.6) (_A)-
sin ra Io )-1s (sI A ds

exists in the uniform operator topology. Considering the integral as a limit of Riemann
sums, we notice that (-A)- is the limit in norm of compact operators and therefore
compact. (2.5) follows from (2.6) and the fact that C(t) and S(t) commute with
(sI-A)-1.

LEMMA 2.2. Let (2.1) hold, let v: R X such that v is continuously differentiable,
and let q(t)= S(t- s)v(s) ds. Then

(2.7) q is twice continuously differentiable and ]:or tR, q(t)6D(A), q’(t)=
o C(t- s)v(s) ds, and q"(t) C(t- s)v’(s) ds + C(t)v(O)= Aq(t)+ v(t);

(2.8) for 0 <= a <- 1 and R, (-A)-lq’(t) E.

Proof. Statement (2.7) is established by Proposition 2.4 of-[14]. To prove (2.8),
observe that

C(r)(-A)’-lq’(t)=2-1 C(r+t-s)(-A)-lv(s)ds+ C(r-t+s)(-A)-lv(s)ds

r+t

+ C(s)(-A)-Iv(s-r+t)ds
--t
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Thus

d c(r)(-m)’-lq’(t)
dr

2-1[C(r + t)(-A)"-lv(O)-C(r t)(-A)’-lv(O)]

+2- C(r+t-s)(-A)-v’(s)ds C(r-t-s)(-A)-v’(s)ds

is a continuous function of r.
We make the following assumptions on the functions g and f:

(2.9) g" R x R x D X is continuous, whereD is an open subset of X,, for some
e [0, 1);

(2.10) gl" R x R x D -+ X is continuous, where gl denotes the derivative of g with
respect to its first variable;

(2.11) f: R X is continuously differentiable.

PRor’osi’rIoN 2.1. Let (2.1), (2.3), (2.9), (2.10), and (2.11) hold. Let x D and
(-A)-ly E. There exists T > 0 and a continuous function u" [- T, T] -+ X,, satisfying

u(t)= C(t)x + S(t)y + S(t- s) g(s, r, u(r)) dr ds

(2.12)
+ S(t s)]’(s ds. [- T, T].

If, in addition, x D(A) and y E, then the solution u of (2.12) is twice continuously

differentiable, u(t)e D(A) for [-T, T], and u satisfies

| g(t, s, u(s)) ds +f(t), I-T, T],u"(/) Au(t)+
(2.13) ao

u(0)=x, u’(0)= y.

(We remark that a solution of (2.12) is called a mild solution of (2.13)).
def

Proof. For ,>0 let N(x)-{XlX’llx-xlll<}. Let &(t)=C(t)x+S(t)y+
$(t- s)f(s) ds and observe that 4" R -+ X,, is continuous by virtue of Lemma 2.1. Now

choose y > 0 and T > 0 such that

(2.14) N,(x)c D;

for r, s e [- T, T] and x e Nv(x),

(2.15) IIg(r, s, x)ll -< 1 and Ilgx(r, s, x x)ll <- 1;

for [-T, T],
(2.16) II(t)- xl[ < ,/2;

for e I-T, T] and Xl, x2, x3 e Nv(x),

I](-A )’-l[- Io’ C(t-s)(g(s, S, XI)

(2.a7)

If r) Io;+ gl(s,r, x2) d ds+ g(t,s, x3) ds < y--
2"



A VOLTERRA INTEGRODIFFERENTIAL EQUATION 415

def
Let K be the closed bounded convex subset of C C([-T, T];X,), with norm II, lie,
defined by

K { C" I1 llc 3,/2}.

Notice that for r/ K and [-T, T], r/(t) D, since

Iln-llc /ll(t)-xll <_-,/2 /v/2. Define the transformation G on K by
Iln(t)-x[l

(Grl)(t)=ck(t)+ S(t-s) g(s,r, rt(r))drds, t[-7, 7q.

Using (2.3) and (2.17) we see that for [-T, T]

Io’ ([[(Gn)(t)-b(t)[[,, ]](-A)a-l[ C(t-s) g(s, s, rl(s))

-+" gl(S, r, n(r))d ds + g(t, s, rl(s)) ds <2"
Further, Gr/is continuous as a function from [- T, T] to X, and thus G maps K into K.

We next show that G is continuous. By (2.9) and (2.10), given e > 0 there exists > 0
such that for rtl, r/2 K, lift1 n=llc < , and s [- T, T], we have

sup IIg(s, r, "r/l(r))- g(s, r, n=(r))ll < ,
-TrT

sup [Igl(s, r, rll(r))-gl(s, r,

Thus, for r/1, ’02 K, [-T, T],

II(Grt 1)(t)- (Grtz)(t)ll,,

+ gl(S, r, r/x(r)) dr- gl(s, r, 12(r)) d ds

+ (g(t, s, r/l(S))-g(t, s, r/2(s))) ds

<=l(-A)-ll[llo’MeO’l’-sl(e + Ij e drl) dsl + [Iote ds]]
and the continuity of G follows immediately.

Wenextshowthattheset{Gr/" rt K}isequicontinuousasacollectionoffunctionsin
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Now notice that

g(s,s, r(s))+ gl(s,r, r(r))dr ds

as It- ?1-’ 0 uniformly for r K

by virtue of (2.15), the fact that (-A)- is compact from X to X, and the fact that C(t)
is uniformly continuous in finite t-intervals on compact subsets of X. Further,

O(t-’l)

by virtue of (2.15). Finally,

uniformly for r/ K

(2.21)

-0 as It-?]O uniformly forr/K,
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by virtue of (2.11)and the uniform continuity of C(t)in finite t-intervals on compact
subsets of X. The claimed equicontinuity of {Gr/" r/ K} now follows.

Lastly, we show that for each fixed [-T, T] the set {(Gr/)(t): rt 6 K} is pre-
compact in X. Since (-A)-" X X is compact where a </3, it suffices to show that
{(-A)((Grl)(t)-qb(t)): rt K} is bounded in X for a </3 <- 1. By (2.3)

II(-A)O (Gw )(t)[[

-< (-A)-1 C(t-s) g(s, s, rt(s))+ gl(s, r, rt(r)) dr ds

+ (-A)t-I g(t, s, rl(s)) ds

and the boundedness claim then follows from (2.15).
By Schauder’s fixed point theorem, G has a fixed point in K, which is a solution of

(2.12). If x D(A) and yE, then the solution of (2.12) is a solution of (2.13) by
Proposition 2.4 of [14].

PROPOSITION 2.2. Let (2.1), (2.3), (2.9), (2.10), and (2.11) hold and in addition let
g and g map closed, bounded sets in R R D into bounded sets in X. If x D(A),
(-A)-ly E, and u is a solution of (2.12) noncontinuable to the right on [0, d), then
either d + or given any closed, bounded set U in D, there is a sequence tk --> d- such
that u (tk) U. An analogous result holds for a solution noncontinuable to the left.

Proof. Assume that d < c and the conclusion of the proposition is false. Then
there is a closed bounded set U in D such that u (t) U for t -<_ < d, where 0 =< t < d.
Arguing as in (2.18), (2.19), (2.20), and (2.21)we see that for tl < t<’<d,

Ilu (t)- u

<-]](c (t) c(’))(-A)’x + IIm (S (t) S(’))(-m)’-ly

+ (C(t-s)-C(-s))(-A)"-1 g(s,s,u(s))+ ga(s,r,u(r))d ds

C(t-s)[g(s, S, U(S))q- gl(S, r, u(r)) dr ds

+[I(C(t)- C(’))f(0)[I + f(t)- f(’)ll]
Since g and g are bounded on [0, d][0, d] U, (-A)-1 is compact, and C(t) is
uniformly continuous in finite t-intervals on compact subsets of X, we see that
lim,-,a-Ilu(t)-l[=O, where =C(d)x +S(d)y+do S(d-s)g(s,r, u(r))dr+
S(d s)f(s) ds. Since u’(t) S(t)Ax + C(t)y + C(t- s) g(s, r, u(r)) dr ds +

[ C(t- s)f(s) ds, 0 <= < d, we see that limx-,a-Ilu’(t)- [1 0, where 93
S(d)Ax + C(d)y +od C(d s) g(s, r, u(r)) dr ds +do C(d s)f(s) ds. By (2.8) we have
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(-A)-I E. Thus, we can apply Proposition 2.1 to find a solution for 0 =< =< dl to the
equation

(2.22)
v(t) C(t) + S(t) + Io S(t- s) g(s + d, r + d, v(r)) dr ds

0

+ fo S(t--s)[I-d g(s+d,r+d, u(r+d))dr+[(s+d)] ds.

Extend u to [0, d +dl] by defining u(t)= v(t- d) for d -< -< d +dl. Then, for d -< -<

d+dl,
t-d

u(t)=c(t-a)2+s(t-a)+Io S(t-d-s) I,, g(s+a,r+a,u(r+a))dras
(2.23) t-d 0

+ fo S(t--d--s)[f_d g(s+d,r+d,u(r+d))ds+f(s+d)] ds.

Using (2.19) (2.20), and the identities (2.9) and (2.23) of [14] one sees that u (t) satisfies
(2.12), for 0 -<_ -< d +dl. But this contradicts the noncontinuability assumption and the
proof is complete.

COROLLARY 2.1. Let the hypothesis of Proposition 2.2 hold and, in addition, let
D D((-A)). Ifx D(A), (-A)"-ly E, and u is a solution of (2.12) noncontinuable
to the right on [0, d), then either d +oo or lim,_.a-[[u (t)[l +oo. An analogous result
holds for a solution noncontinuable to the left.

3. Existence of solutions in the Lipschitz case. For an operator A as in (2.1), we let
Xg denote the Banach space which is o(a) with graph norm IIX[[A=IIxlI+IIAxlI,
x D(A). We make the following assumptions on g:

(3.1) g: R R x D1 De--> X is continuous and continuously differentiable
with respect to its first variable, where D1 is an open subset of XA and De
is an open subset of X;

(3.2) g and gl are locally Lipschitz continuous in the following sense" for each
(x, y)DID2 there exist a neighborhood Dx, of (x, y)such that
Dx,yDID2 and constants a and b such that for s,rR and
(X1, Yl), (X2, y) D,,,y,

[[g(s, r, Xx, yl)-g(s, r, X2, y2)ll<=a(llXx--X2llA + [lYl-- Y211),

I[gl(S, r, x1, ya)--gl(s, r, X2, yZ)il<=b(l[Xl--X211a

PROPOSITION 3.1. Let (2.1), (2.11), (3.1), and (3.2)hold. Foreach (x, y)eD1 D2
such that y E there exists T > 0 and a unique function u: [- T, T] -X such that u is
continuous from I-T, T] to XA, U is twice continuously differentiable from [-T, T] to X,
and u satisfies

u"(t)= Au(t)+ g(t, s, u(s), u’(s)) as + f(t), e I-r,

(3 3) u(0)=x, u’(0)=y.

Proof. Let (x, y)e D1 D2, let Dx.y be a neighborhood about (x, y) as in (3.2), and
let N be a neighborhood about (x, y) such that N c Dx.. Let T > 0 (we will specify T
later) and let C1 be the complete metric space of continuous functions u from [- T, T] to
Xa, which are continuously differentiable from [-T, T] to X, which satisfy (u(t), u’(t))e
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for T < < T, and which have metric p(u, v)
def

sup-<=,<=(llu(t)-v(t)lla+llu’(t)-
v’(t)[]). Define the transformation K on C1 by

(3.4)
(Ku)(t)= C(t)x + S(t)y + S(t- s) g(s, r, u(r), u’(r)) dr ds

Io+ S(t s)f(s) ds, u E C1, [- T, T].

def
By virtue of the hypothesis we have placed on g, the function v(s)= g(s, r, u(r),
u’(r)) dr, -T <- s <- T is continuously ditterentiable from [-T, T] to X and v’(s)=
g(s,s,u(s),u’(s))+gl(s,r,u(r),u’(r))dr. By (2.7), for uC1, t[-T, T], we have
that (Ku)(t) D(A) and

(aKu)(t) C(t)ax +as(t)y+ Io C(t-s)[g(s, s, u(s), u’(s))

]+ gl(s, r, u(r), u’(r)) dr ds- g(t, s, u(s), u’(s)) ds

+ fo C(t- s)f’(s) ds + C(t)f(O)-f(t).

Thus, for u C1, Ku is continuous from [-T, T] to Xa. Further,

(Ku)’(t)= S(t)Ax + C(t)y + [ C(t- s) L g(s, r, u(r), u’(r)) dr ds

(3.6)
+ C(t-s)(s)ds, u C, te I-T, r].

Thus, for u C1, gu is continuously ditterentiable from [-T, T] to X. If T is chosen
suciently small, then K maps C into C. Further if T is chosen suciently small, then
K is a contraction on C, since

[[(Ku )(t)- (Kv)(t

Yo IXo’-= I YoM etl d a([lu(r)-v(r)[[ +llu’(r)-v’(r)[I) dr ds,

[[(Agu )(t) (AKv)( t)[[

Melt-sl a (llu (s) v (s)IIA + [[u’(s)- v’ (s

(3.8) + b(llu(t)-v(t)lla+[lu’(r)-v’(r)ll)dr ds

+ I/a (llu (s,-(s,ll + Ilu’(s’-’(s,’l, sl,.
Id0

and

(3.9) [l(Ku)’(t)-(Kv)’(t)[l<= Me’l’-sl a(llu(r)-v(r)ll +[lu’(r)-v’(r)l[) dr ds
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By the contraction mapping theorem there exists a unique u C1 such that Ku u.
From (2.7) and (3.4) we see that u: [- T, T] + XA is continuous, u: [-- T, T] -+X is twice
continuously dilterentiable, and u satisfies (3.3)uniquely.

PROPOSITION 3.2. Let (2.1), (2.8), (3.1) hold and, in addition, let g satify the
following:

(3.10) .g and gl are uniformly continuous on bounded sets of R x R xD x 02;

(3.11) for every bounded set W in R x R x Da x D2 there exists a constant L such
that if (s, r, Xl, Yl), (S, r, X2, Y2)G W, then

IIg(s, r, x, y,)-g(s, r, X2, y2)ll<-t(llx-x21la +llyl-yzll),

Ilgl(s, r, Xl, yl)-gx(s, r, X2, y2)[[<=L(IlXl--X2IIA

If (X, y)G D1 D2, y E, and u is a solution of (3.3) noncontinuable to the righton [0, d),
then either d +oo or given any closed bounded set U in DI D2 there is a sequence
tk -+ d- such that (u(tk), u’(tk)) U. An analogous result holds for a solution noncon-
tinuable to the left.

Proof. Assume d < oo and the conclusion of the proposition is false. Then there is a
closed bounded set U in D D2 such that (u(t), u’(t))e U for tl<=t<d, where
0 =< ta < d. By Proposition 2.4 of [14] u(t) must satisfy

Io Iou(t) C(t)x + S(t)y + S(t- s) g(s, r, u(r), u’(r)) dr ds

+ S(t-s)f(s)ds, O<_t<d.

Thus, for tx < < + h < d,

Ilu (t + h)- u

(3.12)

=< [[(C(t + h )-C(t))xl[ + II(S(t + h )-S(t))y
0 s+h

+l]I_h S(t--S) Io g(s+h’r’u(r)’u’(r))drdsl]
s+h

+ I[I0 S(t-S)[foo g(s+h, r, u(r), u’(r))dr- Yo g<s, r, u(r), u’(r))dr] dslt
+ S(t- s)f(s + h) ds + S(t- s)[/(s + h)-/(s)] ds

There exists a constant L as in (3.11) such that

[f:+h ioIllo S(t S)l_Jo g(s + h, r, u (r), u’(r)) dr g(s, r, u (r), u’(r)) d ds

0

=lifo S(t--s)[f_h g(s+h,r+h, u(r+h), u’(r+h)) dr

+ [g(s+h,r+h,u(r+h),u’(r+h))-g(s,r,u(r+h),u’(r+h))]dr

(3.13) + [g(s,r,u(r+h),u’(r+h))-g(s,r,u(r),u’(r))]dr ds
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0

<-Io IS(t-s)[ I_h ]]g(s+h,r+h,u(r+h), u’(r+h))lldrds
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+ IS(t-s)l Ilg(s+h,r+h,u(r+h),u’(r+h))

g (s, r, u (r + h), u’(r + h))II dr ds

+ IS(t-s)lZ(llu(r+h)-u(r)lla+llu’(r+h)-u’(r)ll)dsdr.

Using (3.10), (3.11), (3.12), (3.13), and the fact that g is bounded on [0, d] x [0, d] x U,
we see that there exists a constant M1 and a continuous function NI" R / R /

satisfying
NI(0) 0 such that

(3.14)

Ilu(t+h)-u(t)llN(h)+Ma (l[u(s+h)-u(s)]lA

/llu’ (s / h )- u’ (s)ll) as, tx<t<t+h<d.,

In a similar fashion one shows that there exists a constant M2 and a continuous
function N2: R+- R + satisfying N2(0)= 0 such that

(3.15)
IlAu(t + h )- mu(t)]l

<=N2(h)+M2 Io (Ilu(s + h)- u(s)llA +llu’(s + h)- u’(s)ll) ds,

ta<t<t+h <d,

and a continuous function N3" R/- R /
satisfying N3(0) 0 such that

(3.16)
Ilu’(t + h)- u’(t)ll

<-N3(h)+M (llu(s+h)-u(s)lla+llu’(s+h)-u’(s)ll)ds,

tl <t<t+h <d.

Using (3.14), (3.15), (3.16), and Gronwall’s lemma we have that there exists a constant

M4 and a continuous function N4: R
/ R / satisfying N4(0) 0 such that for ta < <

t+h<d,

Ilu(t + h )- u(t)[IA + Ilu’(t + h )- u’(t)ll Na(h ) exp (Mat).

Thus, lim,_,a- (u (t), u’(t)) exists in U U c D1 x D2 and using Proposition 3.1 and the
argument of Proposition 2.2 u can be continued past d, contradicting the noncon-
tinuability hypothesis.

COROLLARY 3.1. Let the hypothesis of Proposition 3.2 hold and, in addition, let
01 xD2=XA xX. Ifx 6D(A), y E, and u is a solution of (3.3) noncontinuable to the
right on [0, d), then either d = +o or li--,_,,-(IIu(t)[[A +llu’(t)[[)= +. An analogous
result holds for a solution noncontinuable to the’ teft.
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4. Examples. We first consider the following integro-partial differential equation"
Example 4.1.

w,,(x, t)= wxx(x, t)+ (t, s, w(x, s)) ds + h(x, t),

(4.1) w(0, t)= w(Tr, t)= 0, t6R,

W(X, 0) Wo(X), Wt(X, 0)-- WI(X), 0<X < 77".

0<x<7"r, tR,

Let o-: R R R --> R be continuous, and also continuously differentiable with respect
to its first variable. Let h" R R --> R be continuous, and continuously differentiable
with respect to its second variable. We shall demonstrate that equation (4.1) satisfies the
hypothesis of Proposition 2.1, and hence establish the local existence of a solution to
this integro-partial differential equation.

Let X L2[0, -n’] and let A: X X be defined by

(4.2)
Az=z D(A) {z X" z, z’ are absolutely continuous,

z"X,z(O)=z()=o}.

Then

Az E --rl2(Z, Zn)Zn, Z eD(A),
n=l

where z, (s) -/r sin ns, n 1, 2, , is the orthonormal set of eigenvalues of A. It is
easily shown that A is the infinitesimal generator of a strongly continuous cosine family
C(t), R, in X given by

zeX.

z D((-A)/)

C(t)z E cos nt(z, Zn)Zn,
n=l

and that the associated sine family is given by

S(t)z 2 (sin nt/n)(z, Zn)Zn,
n=l

If we choose a , then A satisfies (2.3) since

(-A)1/2Z E n(z, Zn)Zn,
n=l

and

(-A)-1/2z E (1/n)(z, Zn)Zn, Z
n=l

The compactness of A -1 follows from Lemma 2.1, and the fact that the eigenvalues of
(-A)-1/2 are An l/n, n 1, 2,....

Let g" RxRXx/2X be defined by (g(t,s,z))(x)=o’(t,s,z(x)), zX1/2, xe
[0, 7r], and let f: R X be defined by (f(t))(x)= h(x, t), x [0, 7r]. With this choice of
A, g and f, (2.13) is the abstract formulation of (4.1).

We claim that g and f satisfy the hypothesis of Proposition 2.1. We will show that
(2.9) is satisfied. First note that z D((-A)X/z) if and only if z is absolutely continuous,
z’X, and z(0)=z(Tr)=0. We also have that [IZlll/Z=llz’[I. Now, let (tl, Sx, Zl)
R R X1/2 and let e > 0. There exists 6 > 0 such that if t, s R, x [0, 7r], p R, and
Itl--tl<6, [sx--sl<6, ]zx(x)--pl<6, then [r(tl, Sx, Zl(X))-cr(t,s,p)]<e. Let z X1/2
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such that !lZl -[1/2 < /4. Then, for x [0, r], IZl(X)- z(x)[ . Ix1 (z)- z
4[z-zll=4lz1-z[11/a. Thus, for [t,’tl<& ISl--S[<, and
Ilg(tl, s1, Zl)-g(t, s, z)ll2= ff I(tl, s1, Zl(X))-(t, S, Z(X))l2 dx e 2. This establishes
the continuity of g. Conditions (2.10)and (2.11)can be established analogously.

Example 4.2. Consider the integro-partial differential equation

w,(x, t)= Wxx(X, t)+ o’(t, s, Wxx(X, s), wr(x, s)) ds + h(x, t),

(4.3) w(0, t)= w(zr, t)= 0, R,

W (X, 0) W0(X ), W (X, 0) W1 (X), 0,< x < "rr.

O<x < 7r,

Let or: R R x R x R R such that cr is uniformly continuous on bounded sets, cr is
differentiable with respect to its first variable, tY is uniformly continuous on bounded
sets, and tr is Lipschitz continuous in the following sense: there exists a constant L such
that for t, s, PI, qx, P2, q2 R, [tr(t, s, Pl, qx)-- or(t, s, P2, q2)[ -< L([pI- P2[ + ]ql- qa]). Let
h, X, A, and f be as in Example 4.1 and let g: R R XA X-X be defined by
(g(t, s, Zx, z2))(x) or(t, s, z(x), z2(x)). Then, (3.3) is the abstract formulation of (4.2).
It is readily verified that the hypothesis of Proposition 3.2 is satisfied.

5. Comparison with earlier results. In recent years there has been considerable
effort in the investigation of abstract Volterra integrodifferential equations. Much of
this effort was inspired by hereditary partial integrodifferential equations which serve
as models for various problems in continuum mechanics. Most of the results obtained
thus far have been for equations of parabolic type, that is, equation (2.13) with u"
replaced by u’. In addition, most of the results in the literature are restricted to
equations of convolution type, that is, equation (2.13) with g(t, s, u(s)) having the form
a(t-s)Au(s)where A is a mapping from X to X. We remark that in the results of 2
and 3 the nonlinear term g need not have this special form.

In our references we have listed some of the contributions to the theory of abstract
integrodifferential equations. The results of [1], [2], [3], [4], [8], [9] and [1-7] treat
nonlinear parabolic equations of convolution type. In [5] and [13] hyperbolic linear
equations are treated, that is, equation (2.13)with g linear. In [10] a one-dimensional
nonlinear hyperbolic equation of convolution type is considered and in [11] a hyper-
bolic equation of convolution type which is nonlinear in the partial differential equation
part and linear in the hereditary part is treated. In [12] a linear parabolic equation is
studied using techniques related to [16]. Lastly, in [18] hyperbolic linear equations are
treated using the theory of strongly continuous cosine families.
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ADDITION FORMULAS FOR JACOBI, GEGENBAUER, LAGUERRE,
AND HYPERBOLIC BESSEL FUNCTIONS OF THE SECOND KIND*

LOYAL DURANDt

Abstract. We present a set of addition formulas for the Jacobi, Laguerre, Gegenbauer, and hyperbolic
Bessel functions of the second kind, O(fl’), N, D, and K. These addition formulas are analogues of
Koornwinder’s addition formulas for p,,0) and L, and of Gegenbauer’s addition formulas for C and J,.
The addition formulas are derived from a set of product formulas for the functions of the second kind derived
previously by the author, and, conversely, can be integrated to give the product formulas.

1. Introduction. A number of addition formulas are known for the classical
orthogonal functions (see, for example, [1]-[3]). The most important of these are
probably the symmetrical addition formulas for the Bessel functions [4, 11.4, 11.41]
and the Gegenbauer polynomials (or Legendre functions) [5, 3.15.1 (9)], and the
recently-discovered addition formulas for the Jacobi [6]-[8] and Laguerre [9] poly-
nomials,

Jr(ix 2 + y2 _[_ 2xy cos ]1/2)
2r() 2 ( + m)(1)

(x 2 + y2 + 2xy cos )v/2 m=0

J+,.(x) J+. (y) c ;, (cos 4,),
x y

C: (cos 01 cos 02 -[-- sin 01 sin 02 cos )

F(2a 1) 41 (2/+ 2a 1)
F(n + 1)[F(a +/)]2

(2) [r()] =0 r(n +2 + t)
,lwa+l a+ --1/2(sin 01 sin ,2),--n-t (cos O1)Cn- (COS 02)C (cos ),

k

P(na’t3)(cos 20)-- Ck,l(n, c, fl)(sin 01 sin 02)k+/
k =0 /=0

,h ig(a +k +l,B +k-Ik-lo(++l,B+-l)(cos (201))1n- )(COS (202})(3a) (cos 01 cos ’2) --n-k

(COS o)k-lp’-3-1’t3/k-l(cos (24))C-/(cos ),
cos (2(R))= cos (201) cos (202)+sin (201) sin (202) cos t cos

(3b)
-2 sin2 01 sin2 02 sin2 ,

C,l(n, a, fl (a + k + l)(B + k -/)F(/3)

(3c) r(n k + 1)r(n + a + fl + k + 1)F(a + k)r(n + fl + 1)
r(n + a + fl + 1)F(n + a + + 1)F(fl + k + 1)r(n + fl + 1)’

and

exp (-4yy cos 4’ e-i’t’)L(x + Y + 2x/xy cos 4, cos 4’)

E ( + k + )
r( + k)r(n + 1) 1)+

=o l=O F(k + 1)F(n + a + k + 1

(xy)(1/2)(k+t)L:+I(x)L:+’(y )p}a-l,k-l)(COS (2&))(COS &)-te-(k

(4)

* Received by the editors March 18, 1976, and in revised form August 31, 1977.
t Theoretical Division, Los Alamos Scientific Laboratory, University of California, Los Alamos, New

Mexico. Permanent address: Department of Physics, University of Wisconsin--Madison, Madison, Wiscon-
sin 53706. This work was supported in part by the University of Wisconsin Research Committee with funds
granted by the Wisconsin Alumni Research Foundation, and in part by the U.S. Energy Research and
Development Administration.

425



426 LOYAL DURAND

These addition formulas have played an important role in the theory of the
corresponding functions. For example, Koornwinder [6] integrated (3) to obtain a
product formula for the Jacobi polynomials, and then obtained a Laplace-type integral
representation for those functions by considering an appropriate limit of the product
formula. The product formula itself can be used to establish the positivity of the
convolution structure for Jacobi series and expansions in Jacobi functions [10]. The
author has modified the product formulas corresponding to (1)-(3) to obtain product
formulas for functions of the second kind. These lead immediately to generalizations of
Nicholson’s formula for Bessel functions [4, 13.73, 13.74], and to Nicholson-type
integrals for sums of squares of Jacobi, Gegenbauer, Laguerre, and Hermite functions
of the first and second kind [11], [12]. Moreover, the relations in (1), (2), and (4) appear
frequently as given, or in various limits, in problems in physics and applied mathema-
tics.

The addition formulas (1)-(4) have a deep connection with theory of Lie groups,
and can be interpreted for special values of the indices as the addition formalas for
spherical functions on appropriate homogeneous spaces. For example, Gegenbauer’s
addition formula (2) can be derived for n and 21 integers by noting that Gegenbauer
polynomials are the spherical functions on the sphere S2+1 which are invariant under
the subgroup SO(2a + 1) of SO(2a +2) [5, Chap. 11], [1, Chap. 9]. Gegenbauer’s
addition formula for Bessel functions, (2), can be derived for , c- 1/2 by considering
the Euclidean group in 21 + 1 dimensions, E(2t + 1) 1, Chap. 11], or equivalently, as a
limit of (2) by considering the contraction of SO(2a + 2) to E(2a + 1). The addition
formula (3) for the Jacobi polynomials can be derived for 21, 2/3, and n integers by
considering the Jacobi polynomials as intertwining functions on SO(2a + 2/3 / 4) with
respect to the subgroups SO(2a + 2fl + 3)and SO(2a + 2) SO(2 + 2) [7]. Finally, the
addition formula (4) for the Laguerre polynomials is a limiting case of the addition
formula for the spherical functions (the so-called disk polynomials)on the homo-
geneous space U(a+2)/U(o+l)[9]. It can also be interpreted for a=0 as the
addition formula for the Heisenberg group 1, Chap. 8, 5], [2, 4.11-4.16], 13 ], 14,
Chap. 13].

The situation is rather different for the Jacobi, Gegenbauer, and Laguerre
functions of the second kind, Qff’t)(z), D(z), and N(z), and the modified or
hyperbolic Bessel function of the second kind (MacDonald function), K(z) These
functions cannot be interpreted directly as spherical functions on the homogeneous
spaces noted above. However, the Lie algebras of the underlying groups can be realized
in terms of differential operators acting on these functions. One might expect, then,
that the group structure would persist, and that the functions of the second kind would
satisfy addition formulas similar in structure to (1)-(4), but with functions of the second
kind appearing throughout. These addition formulas would presumably lead to product
formulas for the functions of the second kind, e.g., for Qff’t)(x)Q’’t)(y).,, As noted
above, product formulas of this type have recently been discovered for general Jacobi,
Gegenbauer, Laguerre, and Bessel functions [11], [12]. Some addition formulas are
known for the functions of the second kind [1, Chap. 5, 5.6; Chap. 7, 6.4], [3, eqs.
(63), (83), (89)], [4, 11.41 (8)], [15, eqs. (8.6), (9.5), (10.6)], [16], [17], but with the
exception of some special cases, are not of the form sought.

For example, the Lie algebra of SO(3) can be implemented by differential operators on either the
familiar set of functions e i"’P’[’(cos 0), or on the set of Legendre functions of the second kind,
ei"’Q’ (cos 0). The differential recurrence relations satisfied by the Legendre functions reflect the action of
the Lie algebra [1, Chap. 3, 4.4]. These relations are the same for the P’s and Q’s.
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We wish to point out here that the product formulas of [11] and [12] can be
inverted to give addition formulas for the Jacobi, Gegenbauer, Laguerre, and hyper-
bolic Bessel functions of the second kind. These addition formulas are similar in
structure to (1)-(4). We intend to give a group-theoretical derivation of these results
elsewhere, but will use purely analytical methods in the present paper.

In the next section, we summarize some results on pairs of integral transforms
which we need in our derivations. The product formulas and the corresponding addition
formulas for the functions of the second kind are presented in the third section, and
some comments on the results are given in the final section.

2. Transformation formulas.
2.1. Generalized Mehler transformation. The generalized Mehler transform [1,

Chap. 10, 4.5] of a function f(t) may be written in terms of Gegenbauer functions

C (z)[5, 3.151 as

CiaA-cx
f(t)(sinh dt, <=(cosh t)(5) h) t) o <, >o.

sin [r(iA a)]

The function Ci_o(z)/sin[rr(iA-a)] is a symmetric function of A. Thus, [ is also
symmetric, (-A )=)(A ).

The inverse Mehler transform is given by

(6) /(t)= f? CiaA-a (cosh t)
sin [zr(ih a)]/(A )r(A, a) dA, 0 _< < oo, a > O,

(7) r(a, a) 22-1
A sinh (rra)[F(a)l2

r(ia + )r(-ia +)

The pair of generalized Mehler transforms (5) and (6) gives a bijection of the spaces
of L2 functions defined relative to the weights (sinh t)2a and r(A, a). These transforms
may be considered also as special cases of the Fourier-Jacobi transforms studied
recently by Flensted-Jensen [18], Flensted-Jensen and Koornwinder [10], and
Koornwinder [19]. See also Braaksma and Meulenbeld [20].

It is convenient to express the function C_ (z) in (6) in terms of Gegenbauer
functions of the second kind,

(8)
Ci (z)

e --irra 1

sin [rr (iA a )1 sinh (rra)
[D_,(z)-D’ia_o,(z)],

where 11]

(9) D(z)=e
r(h + 2a) (2z)--2 2F1 (1/2a q-- , 1/2A + -+- 1/2" A q- a: q-- 1" z-2).

F(a)F(h + a + 1

If we make this substitution and use the symmetry of (), we find that (6) can be
rewritten as

(10) f(t)= -i e -i=’ I_ ]v(A )Di’_, (cosh t)r(h, a)[sinh (rrA)]- dA,

0-<_ <oo, a>O.



428 LOYAL DURAND

2.2. Fourier-Jacobi transformation. The general Fourier-Jacobi transform of a
function f(t) considered in [10], [18], and [19] will be defined in terms of the standard
Jacobi functions P’t)(z) [5, 10.8 (16)] as2

(11)

F(iA/2- a/2-/3/2 + 1/2)
F(ih/2 a/2 -/3/2 + 1/2)

f(t’’(’’t) (cosh (2t))(sinh t)2+(cosh t)2t+1 dt,)1"- ih/2-0/2-13/2-1/2

O=<h <

It follows from the symmetry relation

a_>-/3>-.

(12)
F(iA/2-a/2-/2+ 1/2) (,,.) (z)PiA/2-o/2-13/2-1/2F(iA/2 + a/2 -/3/2 + 1/2)

r(-iA/2 a/2 -/3/2 + 1/2)
F(iA/2 + a/2 -/3/2 + 1/2)

that IV(h) is a symmetric function of , )r(-h)=/r(h ).
The inverse Fourier-Jacobi transform is given by

P(-ik)2_/2_t/2_ /2 (z

(13)

1 f5 A sinh 0rA)
f(t) ](h )-riA/2-a/2-13/2-’D(t’13)

1/2 (cosh (2t))
sin [r(/h/2- a/2-/3/2-1/2)]

F ++ 0<__ <ee, a _>-/3 >-5.

We can re-express this transform in terms of Jacobi functions of the second kind,
O[’’)(z) [5, 10.8 (18)], by using the relation

(A a /3 1) ( A a /3 1)sinh(-A)
F i+-+-+ F -i-+---+sin[rr(iA/2-/2-B/2-1/2)] 2 2 2 2

(14) -2i
F(-iA/2 + a/2 +/3/2 + 1/2)

o,) (z)riA/2-ot/2--13/2-1/2

F(-iA/2 a/2 +/3/2 + 1/2)

+2i

0(’) (z)--iA/2--/2--13/2-- 1/2

F(ia/2 + a/2 +/3/2 + 1/2)
F(ia/2- a/2 +/3/2 + 1/2)

0(’) (z).ih/2-a/2-[3/2--1/2

This gives the symmetrical expression

/ f F(iA/2 + a/2 +/3/2 + 1/2)(15) f(t)
rr J_ r(ia/2 a/2 +/3/2 + 1/2)

O(’) (cosh (2t))g(A)a dAiA/2--/2-3/2-- 1/2

0<- <ee, a >_-/3 >-5.

The pair of Fourier-Jacobi transforms (11) and (13) or (15) gives a bijection of the
spaces of functions which are L2 with respect to the indicated weights.

A somewhat different definition, with the F-functions distributed differently between )r(A) and f(t), is
used by Flensted-Jensen and Koornwinder 10]. The definition used here appears to be the most symmetrical
possible. Compare, for example, (11) and (15).
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3. Addition formulas for functions of the second kind.
3.1. Hyperbolic Bessel functions. A product formula for the hyperbolic Bessel

functions K(z)was given in [11] and [12],

(16)
K+.,(x) Kv+m(y)= 2v_1 r(lr(m + 1) y? )2

x y F(m + 2v)
co -Kv (co )C (cosh t)(sinh dr,

1 vr
(17) co=[xa+y2+2xycosht] 1/2 Rev>- ]arg co <--
This product formula can be regarded for v real as a generalized Mehler transform of
the function co K(co), (5). Thus, for m iA v, A real, u >-3,

(18)

co -Kv (co) C_i (cosh t)
sn [7r(iA v)]

(sinh t)2 dt

2-’+1 Kix(x) Kix (y)
-r(ia + .)r(-ia +
rF(.) x y

The inverse of (18) follows from (6) or (10).

2 I?Kix!x) gix!y)Cix_v(cosht)(19a) co-K(co)= ---F(u)
r x y sin [r(ih u)]

sinh (rh)h dh

(19b) =---r(,,) e
irr

1 "/7"

v>-, largxl<,

Ka (x) K,a!y D (cosh t)a dA,

largy[<, [argxl+largyl+lImtl<

This result can be extended at once by analytic continuation to complex u with
Re u>-1/2. The convergence of the integrals in (18), (19a), and (19b), and the L2

property of the Bessel functions, can be checked using the asymptotic estimates of the
Bessel and Gegenbauer functions given in the Appendix in equations (A.1) to (A.4).

Equation (19) gives an addition formula for the hyperbolic Bessel functions of the
second kind. The similarity of this result to (1)can be made more apparent by rewriting
(19b) as

2 [
ieo--u

(20) co-K(co)=--F(v)e-i’ Kv+.,(x__) K+.(y__) D,(cosh t)(v+m) dm.
17T x y

The sum in (1) has been replaced by an integral in (20), and the ordinary Bessel
functions and Gegenbauer polynomials have been replaced by functions of the second
kind.

If we let u -+ 0 in (19b) and use the limit
iAte

(21) lim F(v)D’_(cosh t)=

we find that

(22) K0(co _1 Kix (x)Kia (y) e ’a’ dA.



430 LOYAL DURAND

This is just the Fourier transform of Nicholson’s integral for the product of two K’s
[4, 13.72 (1)1,

(23) K,(x)K, (y) Ko(w cosh (ixt) dt, tx iA.

It appears also as a special case of a formula of Vilenkin [1, Chap. 5, 5.6 (2)].

3.2. Gegenbauer functions of the second kind. The product formula for the
Gegenbauer functions of the second kind was given in [11] and [12],

(24) (X 2 1)m/2(y2 1)’/29"+"x), (y)

C-(p, a, m) D(Z)C-/ (cosh t)(sinh t)- dr,

Rea>O, Re (v m + l)> O, Re(m+a-)=>O,
larg (x + 1)1 < rr, larg (y +

Here

(25)
and

Z xy + /x: lx/y 2- 1 cosh t,

(26) C(v, a, m) e-ir(a+2")22+2m-1 [F(cg + m)]2F(2a + m 1)F(v m + 1)
F(2a 1)F(m + 1)F(v + 2a + m)

The substitution rn ia-a +1/2, a and cr real, a > 0, brings (24) into the form of a
generalized Mehler transform, (5),

I?D(Zt’c- 1/2
),ix-+/2 (cosh t)[sin (7r(iA -a +))]-a(sinh t)2-’ dt

(27)
C(u, a, ih a + 1/2) 2 /2)(ih-a+l/2)

sin [zr(iA a + 1/2)] [(x2- 1)(y 1)1(

/-ih+l/2 ,/- iX + 1/2.-,+-,/2(x (y).]u-ih +a 1/2

The inverse Mehler transform of (27) gives the addition formula,

D(Z) F-Q)ei? F(ih + )F(u ih + a + ) 2

a F(-ih + )F(u + ia a +) e tanh (a)

(28a)

(28b)

22ix [(X2 1)(y 2 1)](1/2)(ix-a+l/2)Di’X+l/2 (x)DiX+l/2u-ih+a--1/2 u-iX+-l/2(Y)
[-a- 1/2 (cosh t)i-+/2 dh
sin [(i - +)1

4 r(a ) yf r(i + )r(u iA + a +) ea’x

r(a) F(-ih + )r(u + ih + a +) cosh ()

22 [(x 2 1)(y z 1)](1/2)(i-+/)Di+/2-i+-1/2 (x)
D+I/Z -/2 (cosh t)a da,-i+-1/2 (y ia-+

> o, Re ( + +)> 0, larg (x a)l < , Irg (y 1) < ,

11 1] (y+l)arg X-i +arg y_l, +[Imt[<.
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This result extends by analytic continuation to complex a with Re a > 0, Re (u + a +
)>0. The convergence of the integrals in (24), (27), and (28), and the L2 convergence
of the functions involved in the Mehler transforms can be checked by using the
asymptotic estimates of the Gegenbauer functions given in the Appendix, (A.4)-(A.6).

The similarity of this addition formula to the standard addition formula for the
Gegenbauer functions, (2), can be made more apparent by replacing a in (28) by
l= i& -a + 1/2, and rewriting (28b) as

F(Za- 1) fioo-+l/2 dl(Zl+Za-- 1)4’F(v- 1+ 1)[F(a +1)]2
n:(z)= [r()] ,_,o_+/ r(v+2+)

(29) -t I,x j,_., -t (y)D (cosh t),

Re a >0, Re (v+a +1/2)>0.
In the special case a 1/2, (29) reduces to a formula of Vilenkin [16, eq. 2]. The addition
formula (20) for the hyperbolic Bessel functions K(z) can be obtained immediately
from (29) by using the confluent limit of the D’s [11],

( Z2) 1(22)-+1/2K,_1/2(z)"(30) -oolim/--2a+1 e-i.D 1 +-- vF(a
3.3. ]ebi [unefins the second kind. The product formula for the Jacobi

functions of the second kind was given in [12],
(a+2l+m,O+m)+-’+’+m(x)O (y)[(x 1)(y 1)]l+(1/2)rn[(x + 1)(y + 1)](1/2)rnlDu_l_ u--l-m

N,,,. du dt O{’). (Z)P--’t+m)(cosh (2u))

C (cosh t)(sinh u)2’-2t-l(cosh u)2o+m+l(sinh t)2,
where the argument of O(Z) is

(32) Z xy +v/x- lv/y 2- 1 cosh cosh u +1/2(x- 1)(y- 1) sinh2 u,

and the normalization factor N.,l,., is

a,B 22+2/+2m F()F(v +/3 + 1)F(u + a + + 1)N,t,m
F(v-l-m + 1)F(v +/3 + 1)F(v + c +/3 +l+m + 1)

(33)
F(v + a +/3 + 1)F(m + 1)F(I + 1)

r(m + 2/)r(t + t)

The product formula (31) holds for general complex values of u, l, m, a,/3 for which
Rea>Re/3>-1/2, Re (m +/3)=>0, Re(l+a/2+m/2)>=O, Re(v-l-m+l)>O, and
Re (v + a -/3 m + 1) > 0, and for complex values of x and y with }arg (x + 1)] < rr,
]arg (y + 1
exists, and gives the product formula stated earlier for Gegenbauer functions.)

It is convenient as the first step in the derivation of an addition formula from (31) to
let m m’-/3 and 1/2(ia m’- c +/3), a real, and rewrite (31) as

[(x 1)(y 1)](/*-’)/2[(X v-(iX +m’-a-[3)/2 14 v-(iX +m’-a-13)/2 (y

.,x,,,, du dt Q(a,13) (Z3O(a-/3-1,m’) (cosh (2u)))-l-(iA-m’-a+13)/2

C,_o (cosh t)(sinh u)a’-aO-l(cosh u)m’+o+X(sinh t)
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For a./3. and m’ real with a-/3- 1 => m’>- 21-, (34)can be regarded as the Fourier-
Jacobi transform of the function

(cosh u)O-’’ dt 0(2"(Z)C,_o (cosh t)(sinh t).
The transform can be inverted by using (15), with the result

O (Z)C,_o (cosh t)(sinh t)2o

_i da a r(1/2(ia m_ a + + 1 )r(1/2(ia + m’ + c )) ,,
r6(ia m’ + -1/2- 7; +)+ 1)t.....,.’ ]-

(35
[(x- 1)(y 1)](i"-/[(x + 1)(y + 1)](’-/O(i"’ (x)u--(iA +m’-oe-13 )/2

{ia,,’) (cosh (2u))(cosh uO,-(ix+m’-o,-13)12 (y)O(a-t-l,m,) )m’--O(iX +13)/2

The convergence of the integrals and the behavior of the transforms for a --> +oo can be
checked by using the asymptotic estimates (A.4) and (A.7)-(A.10).

It can be shown that the result in (35), derived for m’ real, m’ => 0, can be extended
by analytic continuation to complex m’ with Re m’ ->_ 0. The substitution m’ itx,/x real,
then brings the left hand side of (35) into the form of a generalized Mehler transform.
This can be inverted by using (10). The result is a remarkable addition formula for the
Jacobi functions of the second kind,

t"

O’(Z) J_ d/z J_ da W(A./.)[(x- 1)(y- 1)l(ia-)/2[(x + 1)(y + 1)](i*-t)/2

(iA,iu) (x)Q(iA,#*)(36) Qv-(iA+it-ot-13)/2 v-(iA+itx-a-B)/2(Y)

O(iA-iu.-a+13)/2(-B-l’it*) (cosh (2u))D/,_, (cosh t)(cosh u)i’*-,

where the weight function W(A,/z) is

W(a,/x)
1 _i. 2_ix_i.+ +0_1 a/z F(/3)F(, + fl + 1

_m7 e
rr F(v+a+fl+l)

(37) F(1/2(ih+il+a-))F(1/2(-ia-i>+a+)+v+l)F(1/2(iA+i>+a+)+v+l)
F(1/2(iA + i/x a +/3)+ 1)F(1/2(-ia +it, +a +/3)+ v+ 1)F(1/2(ia i/x +a +8)+ v+ 1)"

This result holds for larg (x + 1)[ < 7r, larg (y + 1)1 < 7r, [arg 4X 2_ i/y 2 11< , larg (x
1)(y-1)l< rr, Re (v+a+l)>0, Re(v+a/2+/2+l)>O, and a >/3>-1/2. The last
condition can be relaxed by analytic continuation in a and/3 to Re a > Re/3 >-.

Finally, if we let k =1/2(ia +itz-a-), l=1/2(iA-ilx-a+fl), x =cosh (201), y=
cosh (202), 4, and u 4, we can write (36) in a form analogous to (3),

O(fl’)(cosh (201)cosh (202)+ sinh (201)sinh (202)cosh 4) cosh O
+ 2 sinh2 01 sinh2 02 sinh2 )

(38)

1 io-(a +/3)/2

f
ioo-(a-/3)/2

dk dl Ck,l(l, Og, fl)(sinh O1 sinh 02)k+l
a-ioo-(t+)/2 a--ioo--(ct--O)/2

(cosh 01 cosh 02)k-l[-(+k+l’13+k-l)(cosh.zv-k (201))O(+k+l’t3+k-l)(cosh,,-t (202))

QIa--l"+k-l) (cosh (24,))D-/(cosh &),

where Ck,l(P, Ol, ) is defined in (3).
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3.4. Laguerre functions of the second kind. The Laguerre functions of the second
kind will be defined as in [12],

(39) N(z)=F(u+a + 1)eZ(v+a + 1, a + 1,-z),

0<arg z <2r, -z e-i=z, where (a, c, z) is the usual confluent hypergeometric
function of the second kind [5, 6.7]. A product formula for these functions can be
derived starting with Koornwinder’s addition formula for the Laguerre polynomials [9].
The result is as follows [21],

(xy)+/++(x++

(40) =c....,, 4 ex[-(cosh4)e-(-)]

N (x + y + 2 cosh 4 cos )P-"-)(cosh (24))

(sinh )2-(cosh )-+,
where

F(I + 1)F(v + a + k + 1) i,(k +t)(41) C.,,.k,t
F(u + 1)F(a + l)

e

This product formula holds for Re a > 0, Re (a + k + l)_-> 0, Re (u a k + 1) > 0,
and Re (u+a+k-/+l)>0, and for 0<argx <2r, 0<argy <2r, and r/2<arg<
/y< 3r/2. A special case corresponding to k l- 0 was given in [12].

The derivation of the addition formula which corresponds to the product formula
(40) is similar to the derivation used in the case of the Jacobi functions. Let k- m
and 1/2(i, rn a). Then for A, a, and rn real, a 1 >_- rn > 1/2, (40) has the form of a
Fourier-Jacobi transform,

(42)

(sinh 4))2a-l(cosh q0)m+l.

The convergence of the integrals and the properties of the functions for , - +oo can be
checked by using (A.7), (A.11), and (A.12). The transform can be inverted by using
(15), with the result

I) d6 exp b) -me,lN (x + y + cosh 4’ cosh[-v/y(cosh e,/, 2,/yy

F(1/2(iA-a-m)+l)F(1/2(i, +a+m)) 1rri da a
F(1/2(iA +a m))F(1/2(ia a + m)+ 1) c ....

(43) (xy)(i’-’)/2Ni’ (X ix)N,,-(ia )/2 (Y)v--(i,-m--a)/2

/"l(a-l’m) (cosh (2b))(cosh &)m.’g(iA-rn-a)/2

The convergence of the integrals can be checked by using the asymptotic estimates
(A.9), (A. ), and (A.12).
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Although (43) was derived for m real, it can be continued to complex m with
Re m _-> 0. The substitution m i/x,/x real, then brings (43) into the form of a Fourier
transform. This can be inverted to give the addition formula

exp (-4y(cosh &) e+)N (x + y + 2vxy cosh & cosh 6)

f(44) =, dm dA q(A ,--(iA--itx--ot )/2 --(iA--i--o)/2 (Y)tx )(xy )OX-)/2Nia (x)Ni’

d_

Oi;,-i-,/’-’i) (cosh (2))(cosh )i e i’,

a>, Re(u+l)>0, 0<argx<2zr, 0<argy<2zr,

r/2 < arg 4--y < 3/2.

The weight function q(A,/x) is given by

iA C(u 1/2(iA i/x a + 1)C(1/2(iA + i/x + a ))
(45) q(A,/x) 2r2 F(u+1/2(iA+ilx+o)+l)F(1/2(iA+ilx_a)+l)e

Finally, if we let k 1/2(iA + ix a) and 1/2(iA ix a), we can put (44) in a form
similar to (4),

exp (-4y(cosh ) e’)Nd (x + y +24 cosh O cosh 6)

(XY)(k+l)/2’’r+k+l,-I (x)N+-+l (y)lo- ,k-l) (cosh (2&))(cosh O ),-t e (,- t),.

4. Remarks.
1. Equations (19b), (28b), (36) and (44) give the addition theorems for the

functions Kv, D, O(’o),v and N in their natural form. The close connection of these
formulas with the addition formulas for the functions of the first kind, (1)-(4), is evident
from a comparison of the latter with the alternative forms of the addition formulas for
the functions of the second kind given in (20), (29), (38), and (46).

2. The replacement of ordinary angles and sums over integer-valued indices in
(1)-(4) by hyperbolic angles and integrals over complex indices in (20), (29), (38), and
(46) corresponds to a change from the compact to noncompact forms of the underlying
groups. The new addition formulas can in fact be interpreted in terms of the represen-
tation of noncompact groups by integral transforms. This will be discussed in detail
elsewhere. For some group-theoretical background for the noncompact cases, see, for
example, [1, Chaps. 5, 9], [22], [23], [24], [25], [26]. We note here only that the special
case of the addition formula (20) for the hyperbolic Bessel functions given in (23) was
obtained by Vilenkin 1, Chap. 5, 5.6 (2), A 0] from the representation of the group
of motions of the pseudo-Euclidean plane by integral transforms.

3. The product formulas (16), (24), (31), and (40), although originally derived
analytically [11], [12], [21], can be regarded on a deeper level as direct consequences of
the addition formulas for the functions of the second kind. As noted in [11], [12], and
[21], the product formulas lead immediately to Nicholson-type integrals for the sum of
squares of the functions of the first and second kind, which may in turn be used to derive
a number of useful bounds, asymptotic expansions, and monotonicity properties for the
corresponding functions 11].
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Appendix. In this section, we will collect a number of asymptotic formulas for the
Bessel, Gegenbauer, Jacobi, and Laguerre functions which are useful in checking the
regions of validity of our product and addition formulas. We give references to known
results, and indicate the method of derivation of other results.

a. Hyperbolic Bessel functions.

K, (x)--- (2rr/la [)1/2 e-(/2)lal (cos lalln (21al/x)-Ial-
h -> :m, x fixed.

(Derived from the integral representation [4, 6.22 (11)] for Ki (x) using the method of
steepest descents.)

(A.2) Kia(x) (X) 1/2 3rr
[4, 7.23 (1)].e -x, Ix I-) c, ]arg x [<--,

b. Gegenbauer functions.
Di_(cosh t)’---i exp (3rriu/2)2-"[F(u)]-l(sinh t)-"a u-1 e-iXt,

(A.3) 37"/" 7"/"
-<arga< Ret>0, Ilmtl<r. [15, eq 6.3]

2 ’
(A.4)

(A.5)

Ci_ (cosh t)--- -[rrr(v)]-1 sin [rr(ia v)] e -’

[F(iA + v)F(-iA) e -ixt + F(-iA + ,)V(ia) eiat],
Re t->m, ]Im tl< r. [15, eq. 2.6].

D(Z)--- e i’
r(v + 2a) (2z)_._2

r(a)r(v + a + 1)

IzI- oo, larg (Z + 1)l < ’n’. (From (9)or [15, eq. 2.3].)

Da+iAv_iA (X) (la 1)-1/22-ia--1/2 e irr(+/A

(A.6) [(x- 1)-ix-a+l/2+e+ir(u+a+l/2)(x t- 1)-iX-a+l/2],
a +oo, ]arg (x- 1)[ < r/2.

(Derived from the integral representation [15, eq. 1.5] for D(z) by the method of
steepest descents.)

(A.7)

(cosh (2t)) 2.+t+ -(c+O+l)t
iA/2-o/2-13/2-1/2 e

r F(ia
L r(/a/2 /2 /2 + 1/2)r(/a/2 + /2 + t/2 + 1/2)

iAt

+-- sin r
r 2 2 2 ))F(-iA )F(iA/2 +a/2-fl/2 + 1/2) --iAt]F(-iA/2 + a12 -/3/2 + 1/2)

e

Re --> c, IIm tl < r. [5, 10.8 (16) and 2.10 (11)].

(A.8)

O(,t)(Z)...2++tF(u+a + 1)F(v +fl + 1)Z__,__
F(2u+a +/3 +2)

Izl-+ oo, larg (Z + 1)1< r. [5, 10.8 (18)1.
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(A.9)

(A.IO)

O(’,) (cosh (2 t)) (2---.A) 1/2

iA/2--o/2--[3/2-- 1/2 (sinh t)-"-l/2(cosh t)-t3-1/2 e -ixt,

37T 7/"
< arg h < Re > 0,

2 ’ IIm tl < r. [5, 2.3.2 (16)1.

O-ix/2+u(x)---,
m/2--1/4

+e
2

-1 A - +/-c, larg (x + 1)[ <

(Derived by the method of steepest descents from the integral representation for
O"") (x),-ih/2+

(X)__(xq-i)
-ih/2-’-m-I

-ia/2+,
2

[1 e "x+2i(+m)]-I

I ( 2 )-iX/2-u-m-1dt i/2--1 (t- 1)-ix/2++" t-
oo,l-) x + 1

Reu>-l, Re(u+m)>-l, ]arg(x-1)l<r.)

N (Z)--- 1/2F(u + a + 1) eZZ--’-1
(A.11)

]Z] ee, 0<arg Z <27r. (Equation (38) and [5, 6.13.1 (1)].)
+iTr(u-1/4)-’lAI/2 eX/2,N-,/2 (x [1/2F(i,X e =x -i;’ 2-i;- /2 (7r/lA I)1/2 e

(A.12)
A - +/-co, 0<arg x <2r.

(Derived by the method of steepest descents from the integral representation for
’ (x),N,-ix/2

lex-i+x/2 [ ( i)]iA (x)--N,-ix/2 csc 77" /,’ +

f(oe i*,O-)
eXtt +ix/2 (t + 1)-’+i/2-1 dt,

-< b +arg x < Ib]< 0< arg x < 2rr.)
2 -, 7r,
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AN ELEMENTARY PROOF OF DUNKL’S ADDITION THEOREM
FOR KRAWTCHOUK POLYNOMIALS*

MIZAN RAHMAN-

Abstract. A product formula for the Krawtchouk polynomials is obtained by using a formula due to
Gasper. Hypergeometric series techniques are then applied to obtain an addition theorem for these
polynomials which was previously obtained by Dunkl by group-theoretic methods.

1. Introduction. The Krawtchouk polynomials Kn(x; p, N) are orthogonal with

respect to the binomial distribution b (x N, p ) (xN)px(1 N-x--p) 0<p < 1, on the

discrete set x 0, 1, , N, and have a hypergeometric series representation [3], [4]"

(1.1) K,,(x; p,N)=2Fl(-n,-x; -N; p-l), n,x=O, 1,... ,N.

For p k/(k + 1), k 1, 2,. , they also have a geometrical interpretation as spheri-
cal functions on the N-fold product of the k-simplex. It is this second interpretation
that led Dunkl [2] to derive an addition theorem for the Krawtchouk polynomials by
using group theoretic techniques. The approach of considering certain types of ortho-
gonal polynomials as spherical functions on homogeneous spaces seems to be a
natural one when one is trying to find an addition theorem. Koornwinder found his
addition theorem for Jacobi polynomials [7]-[9] by applying group theoretic methods.
But he also found an alternative proof of the same theorem by using only analytic
methods. One would like to see if Dunkl’s theorem could likewise be proved by using
hypergeometric series methods alone. The present paper provides just such a proof.

Our starting point is Gasper’s formula for the product of two Krawtchouk
polynomials [4, eq. (4.4)]:

(1.2)

In 2 we use this formula to obtain a product formula for the Krawtchouk poly-
nomials and in 3 we derive the full addition theorem by considering a certain set of
discrete orthogonal polynomials in two variables.

2. A product formula. For the sake of definiteness let us suppose 0 <= x =< y <-N.
Then we observe that

(2.1)
(--X)k (--Y)k (X N)l(y N)I/(--N)k+l

(-Y). L (-X)s(y-N)s
z,

x+ ),s=0 y
(S X)k (Y + S N)l,

This follows as a consequence of Chu-Vandermonde’s theorem [1]"

(2.2) 2Fl(-n,b; c; 1)=(c-b),,/(c),.

* Received by the editors August 26, 1977, and in revised form September 28, 1977.

" Department of Mathematics, Carleton University, Ottawa, Ontario, Canada K1S 5B6. This work was
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Combining (1.2) and (2.1) we have

(2.3) K,,(x" p, N)K,(y; p, N)= (1 _p-1)n (--Y)x (--X)s(y -N)s
(-N),,s=os!(1-x+y)s

where
n-k (--n)k+l(S--X)k(y -t-s--N)l -kW(n,s;x,y)= z. Z p (1-p

k=O l=O k l! (--N)k+l
(2.4)

W(n, s; x, y),

min(n,x-s)z (__p(S--X)k )-k y,, (--n),(1 _p)k-I
k=O k! l=k l!(-N)l

(y + s

If x-s<-n and s<-min(x,N-y), then, since (--/)k=0 for O<-l<-_k-1 and
(y + s N)l-k (-- 1)k-/(N + 1 y S )k- we may write

’ (s x)p-
(2.5) W(n, s; x, y)=/.. .. (-n)/(y +s-N)l (1-p)-’

k=O k! l=o l!(-N)l (N + 1 y s

On the other hand if x-s _-> n the k-series in (2.4) terminates at k n; however,
the terms in the/-series vanish if k is allowed to assume values between n + 1 and x-s
because of the factor (--n)l(--l)k. Thus, (2.5) is a representation of W(n, s; x, y) in
either case.

Using (2.2) for the last factor on the right of (2.5) and then replacing k by
x s k we obtain

But

(l-P)-/ s (s-x)(p_l_ 1)_
k=O k!W(n, s; x, y): (l _p-1)x-s

(-n),(y + s-N)t
l=O I! (--N)l

x-s-k (S + k-x),(N + 1-y --S)my
m=O m!(N+ 1-y-s-l)m

N)/(1=(l_p_l)x_ (-n)/(y+s- _p)-i y,, (s-X)m(N+l-y-S)m
=o I! (--N)l m=o m! (N + 1 y s 1).

Z (s + rn -x)k(p_l_ 1
k=O k!

and

x-2-,, (s+m _X)k( pp)k (2p_ l]
k=0 k! 1- p-1 ]

(y + S N)I(N + 1 y S )m
=(y+s-N-m)l.

(N+ 1-y-s-l)m
Hence

W(n,s; x, Y)= (22-1)x-s m=0s (S--X)m(p--lm! 2p "1) " l! (-N)l

(2.6)

(1 _p)-I

(2pp- 1) s (S--X)m(p-1)’ ( lp),.=o m 2p 1
2F1 -n, y + s N- m -N;

1

(1-p)x-s s (s-X)r(2p- l) Fl(_n, 2s + y +r_ x
p r=0 r! \1 2

-N;-N; (l-p)-1)

_(1--p)X-S( p ),, s(s_X)r 2p--1)p p 1
( K,,(2s+y x+r, p,N).

,=o r! \ p-1



440 MIZAN RAHMAN

In deriving the second-to-last line above we have replaced the summation
variable m by r x-s- m. The last line follows from the transformation property of
the hypergeometric function

( x)(2.7) eFl(a,b" c’, x)=(1-x)-aeVl a,c-b" c;
x-1

Using (2.6) in (2.3) we finally obtain the product formula in the form

(2.8) =o s (-N)x r=o r

K,, (2s + y -x + r; p, N).
P

A more suggestive form of this formula is

K,,(x; p,N)K,,(y; p,N)= p(s; y-N-1,-y-l,x)b r; x-s,
s=0 r=0

K,(2s+y-x +r; p,N)
(2.9)

where

2p- 1)P

1)(fl +
(2.10) p(s; a, ,8, M)= -;-) (a +/3 + 2)M

is the hypergeometric distribution.

3. The addition theorem. For 0 k x, 0 s rain (x, N y), 0 r x s,
consider the bivariate polynomials

y-N,l-x F -l,-r; s-x;
2p-1

Obviously

(3.

3f2[l-k,k-g-l,-s]=lO-/(s; ,-g-l,l-,-l,x-l)
[ ]/y-N,l-x O-(s; l-x-l,x-N-1, N-y) ifN-y<x-l.

Let us first suppose x- NN-y NN-x. The two hypergeometric functions on
the right of (3.1) satisfy the orthogonality relations [4], [5]

b r; x-s, F -l,-r; s-x;
2p 1 2p 1r=0 p

(3.

xl

(3.4) p(s; y-N-l,l-y-l,x-l)Om(S; y-N-1, l-y-l,x-l)
s=0

--IO,(s; y-N-1, l-y-l,x-l)=6.,,

where

x-l)(y-N)m(l-N-1)m
2re+l-N-1

’T]’rn
m (x-N)m(l-y) l-N-l<
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Hence
x-!., p(s; y-N-l,l-y-l,x-l)b r; x-s,
s=O r--O

2p- 1)P

(3.6)

Rk,l(r, S; X, y)Rk,,r(r, s; x, y)

2p-1 r-t’r-’’-r"

Let us now seek an expansion in the form

(3.7) K,,(2s+r+y+x" p,N)=Y,Y, Ak,,I(X, y)(X-S)1’
Rk’,r(r, S; X, y).

k’ l’

The range of the summation variables k’, l’ will be determined shortly. We now
multiply both sides of (3.7) by p(s; y -N- 1, l- y 1, x l)b(r; x
s, (2p 1)/p)Rk,t(r, s; x, y) and sum over r and s, 0 r =< x s, 0 =< s -< x I. Using
(3.6) we obtain

(3.8)

1-p(2p l) "tr-llek,l(X, Y)

x-l

p(s; y-N-l,l-y-l,x-l)b r; x-s,
s=O r=O

K,(2s+r+y-x; p,N).

2p
}Rk,t(r, s; x, y)

P /

Applying the transformation formula (2.7) to the Krawtchouk polynomial above
we get

(3.9)

1--p )l -1)-nT]" (X,)2p’ i (1-p -ltAk, y

20(s; y-N-l,l-y-l,x-l)F
l-k,k-N-l,-s

s=o y-N, l-x

( 2p-l) ( 2p-1Y’, b r; x-s, K r;
r=o p P

, x -s)zFl(-n, 2s + r + y -x -N;

-N; (1 -p)-l).

The summation over r can be carried out by using the Rodrigues’ formula for
Krawtchouk polynomials [3, p. 224]:

(3.10)
(2p-1) ( 2p-1 s)b r; x-s, K r;, x-

P P

:(x-s-I)I((1-p)/P)"-sAI’[ (2p-1\1-p )r-t (r-l),(x- s-r)!],
where Ar is the difference-operator defined by

Arf(r) =-f(r + 1)-f(r), and Atr/(r) Ar(At,.-’f(r)).
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Hence, for =< q <= n, we get, on summing by parts times,

b r; x-s, Kt r; ,x- (2s+y-x-N+r)
,=o p p

x-s-t (2s + y -x -N+ r + l)q-l(2p , 1)=(-q),(x-s-l)!((1-p)/p) Y
r=o r! (x -----’. \ 1-p/"

Replacing r by x s r, applying (2.7) once again and simplifying we obtain

1 p ) 7r-tmk, y
2p- 1

(1-p-1)-"-t (x,)

n--l (_n)q+t(l_p)-q-t ,-t

E E p(s; y-N-l,l-y-l,x-l)
q=0 q! (-N)q+l s=o

(3.11) 3F2[l-k,k-N-1,-s]y-N,l-x

(s+y-N)qzFl(s+l-x,-q; N+l-s-y-q; p-a-l).

In order to perform the partial summation over the s variable we need to use the
Rodrigues’ formula for Hahn polynomials [3], [5]"

p(s; y-N-1, l-y-1, x-l)3F2[l-k’ k-N-1,-s]y-N,l-x

y k y 1

Summing by parts k-l times and expressing the binomial coefficients in terms of

n) (_n)(_l)/r)) wePochhammer products (e.g.
r

have

( l--p)l(l_p-1)-n-lTr-l_lAkl(X,y2p-1

(-N)(-y)x - (-n)q+(1 P)-q-I
(3 12) (_Nl.,,: (_y ).,

(-11
k=O q! (-N)q+t

A-*[(s+y-N),2Fl(s+l-x,-q; N+l-s-y-q; p-a
Now

(3.13)

k(k-x)(k-l+y-N)
.=o s!(l+y-x)

A-’[(s+y-N)q 2Fl(s+l-x,-q; N+l-s-y-q; p-l--l)]

(q)(p-l-1)mAs-t[(S+y-N),-m(s-bl-x)m]
O FFt

(q)(p-l_l>,,, ’ (k-As(S+y-N)q_mAs-t-’(s+r+l-x)m
m=0 m r=O r

l(k-q’(s-Frq-y-N)q-m-r(s+k-x)m-k+t+r (p
,,=o r=o r (q m r)! (m k + + r)!

provided k r -< rn -< q r; otherwise it is zero
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Note that we may write (3.12)in the form

(3.14)
(l-Y)g-(x-N)g-’igp(s; y-k-N+2k-l-l,k-y-l,x-k)

(l-N)2g-2t s--O

Wk,l(n,s; x,y)

where

(-n)q+t(1-P)-q-’ -l[gk,l(n, S X, y) As (s + y N)q 2Fl(S + x, -q" N + 1 s y
a=o q! (--N)q+l

-1-q; p 11].

With the aid of (3.13) and transforming the variables q, m to q + k and m + k l- r
respectively we find

Vg,t(n, s; x, y)= (p -1 nk kl( )1llg_ (-nlq+g(1-p)-q- k-1
(p_ l)_r

q=O iCV- r=o r

(3.15) (s+r+y-N)q2F(s+k-x,-q; N+l-s-y-q; p--l).

g (_n)q+g(l_p)-q-g t (k_l)(p__l)_(p-- 1)-(2_p-)x-g-
q=O q! (--N)q+k r=0 r

p-l)2F1 s+k-x,N+l-s-y-r;N+l-s-y-r-q; 2p’1

In deriving the last line we have again used (2.7).
Expanding this last hypergeometric function and using the identity

(N + 1-s- y-r),(s + r+ y-N)q
(N+ 1-s-y-r-q)

(s + r + y -N- m)q

we obtain, after some simplification,

Wk,l(rt, S; X, y)

(-n) x-" (s + k-x),,,(/_!l)’n=(P-l-1)g-l(2-p-1)--(1-P)-g(-N)g ,,,=o m!

(3.16) (1 __p-1)s+y-N-m

’(k-l)(-1)r2Fl(n-N,s+r+y N-m, k N p-l).
r=0 r



444 MIZAN RAHMAN

But

kl (k_l)(_l)r2Fl(H_Nsnt_r..y_Nq_lTl; p-l)

N-n(n-N)q(s+y-N-m)qp l(l-k)r(S+y-N-m+q)r
q=o q!(k-N)q r=0 r!(s+y-N-m)r

iv-,, (n N)q(s + y N m)q(-q)_l -,(3.17) Y p
q=o q!(k-N)q(s+y-N-m)k-i

by (2.2)

(_p )l-k (n N)k-l
(k_N)k_12Fl(n-N+k-l,s+y-N-m+k-l; 2k-N-l; p-

(__p )l-k (n N)k-l
(1 p-1)N-y+l-s+m-n2F (k rt, k s y d- m

(k --N)k-I

2k-N-l; p-).

The last line follows as a consequence of another transformation formula for the
hypergeometric function:

2Fl(a,b; c; z)=(1-z)C-a-b2Fl(C-a,c-b; c; z).

Substituting (3.17) in (3.16) and replacing the summation variable m by x- k-
s-m we finally obtain

Vk,l(rt, S; X, y)

(--n)k(n--N)k-l )k p- ,,p,-2k
x-k-s ( 2p-- 1’(3.18)

(--N)2k-I
(- 1 (1 )- , b\m x k s,

]

K,-k(2s+y--x +m; p,N-2k +l).

Using this in (3.14) we have
2k

P
)l 77"-llAk,l(x, Y)

(2p-1

(--t’l )k (l y )k-l(X N)k-l(n N)k-i
(_ 1)+l

x-k

Y. p(s; y-k-N+2k-l-l,k
(--N)2k-l(l--N)2k-21 s=O

-y-l,x-k)-- ( 2p-1)b r; x-k-s, K,,_k(2s+y--x+r; p,N-2k+l)
r=0 p

(-n)k (l y )k-l(X N)k-l(n N)k-,
(_ 1)k+’K.-k (X k; p, N 2k + l)

(--N)zk-l(l--N)zk-21

K,-k(y-k; p,N-2k +1)

by (2.9).
Finally (3.5) and some simplification yield

(x--l) (--n)k(y--N)k-l(l--N-- l)k-i )k+lAk,l(X, y )=
k ----/2-i(:) 1)2k-21

(- 1

(3.19) .K,,_k(X-k; p,N-2k +l)K,_k(y-k; p,N-2k +l).
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The factor (y N)k-l on the right-hand side implies that -> k + y N if k + y N
happens to be negative. Thus we have the addition formula

K(2s + r + y x p, N)
min(n,x) k

(X l) (X S) (--__.!k_.(Y .._N_!... l(l g l )k-I k+lZ Z (-)
k=O l=max(O,k+y-N) k (-N)2-g(l--l)2-2

(3.20)
K,,_k(x-k; p,N-2k +l)K,,_k(y-k; p,N-2k +/)(2p- 1)p-

( p ) [l-k,k-N-1 -s]:F -l, -r; s-x;
2p 1 3F2 y-N,l-x’

where 0<_-x <_-y <-N, 0-<s_-<min (x,N-y), O<-r<-x-s and 0_-<n-<N.
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ON ELLIPTIC SINGULAR PERTURBATION PROBLEMS
WITH TURNING POINTS*

S. KAMINf

Abstract. The boundary value problem for the elliptic equation eAu +, biu, 0 is considered in the
case that the characteristic curves of the reduced equation enter the domain and have a singular point inside
(turning point). Assume that there exists a potential function (x) such that bi if,, (i 1, 2, n). It is
proved that if e-0 then the solutions ue(x) converge to a constant, a formula for which was derived by
Matkowsky and Schuss using formal asymptotic expansion.

1. In this paper we consider solutions of the first boundary-value problem for the
equation

(1.1) Lu eAu + Y. bi(x 0, X (XI," Xn)e R"
OXi

in a compact domain D c R" with smooth boundary F. On F we prscribe

(1.2) ulv =(x)
where (x) is a smooth bounded unction. We study the asymptotic behavior o the
solutions u o (1.1), (1.2)as e 0.

It is known (see Levinson [4], Vishik and Lyusternik [10], Eckhaus [1]) that the
behavior o the characteristics o the reduced equation

(.) 6(x)= 0
i= Oxi

is o decisive importance in this connection.
Let the positive direction along the characteristics coincide with the direction o

the vector b (ba,..., b,). In this paper we consider the case in which the vector b
points into the domain and x 0 D is a singular point o the field o characteristic
curves (Fig. 1). The point 0 is a turning point.

FIG.

Problems of this type were studied using probabilistic methods by Ventcel and
Freidlin [9] and Friedman [2], who obtained some partial results. In recent papers of
Grasman and Matkowsky [3], Matkowsky and Schuss [6], [7], a method was proposed
to obtain the leading term in the asymptotic expansion of the solution of (1.1), (1.2).
We shall prove their basic formula for the case of potential fields.

* Received by the Editors June 7, 1977, and in revised form November 14, 1977.
Department of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel.
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We shall make the following assumptions.
1) The functions bi(x) are smooth in x and the field of directions defined by the

vector b -(bl,’’’, bn) is a potential field, i.e., there exists a function q(x) such that

(1.4) bi l <- <= n.
Ox

2) Everywhere in D

(1.5) bixi <- 0
i=1

while

2 b(O)= 0(1.6)

and in some neighborhood D of the boundary

(1.7) bixi _-<-A x2, A const. >0.
i--1 i=1

3) Let (t’l, ", t’,,) be the exterior normal to F. We assume that

(1.8) (b29)= . bit’,<O ont.
i=1

In particular, ff we consider the equation

Ou
(1.9) eAu xi 0

OXi

then conditions (I.4(1.7) are satisfied with (x)= -r2/2 (r2= Z x).
Note that if the direction of the characteristics is opposite to that shown in Fig. 1,

the Vishik-Lyusternik (V.-L.) method is applicable, u(x) V(x), Vx 0, where
V(x) is constant along the characteristics and takes the values (x) on F.

The main result of the present paper is a proof of the following theorem.
THEOREM. Assume that conditions (1.4)-(1.8) hold, and let u (x) be a solution of

the boundary-value problem (1.1), (1.2). Then u(x)Co uniformly on any compact
subset ofD and

r (, ) exp (e-’) ds
(1 c0

The proof is based on several lemmas, to be proved below. Formula (1.10) was
first derived by Matkowsky and Schuss [6], [7] using formal methods.

Examples of the application of formula (1.10) may be found in [3] and [8]. As
indicated in these papers, the integrals in (1.10) are Laplace-type integrals and thus
the major contributions come from the points at which 6(x) achieves its maximum
onF.

For example, for equation (1.9) with n 2, 6(x) achieves its maximum on F at the
points of contact of F with the largest circle centered at the origin and inscribed in D.
If contact occurs along an arc (or a union of arcs) S of F, then

c0 =’Is (x(s)) ds

s ds
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If contact occurs at distinct points (x 1, x2 ) (i 1,. ., rn) on the boundary, only the
points of highest contact are considered. In that case,

The coefficients di are computed explicitly in [3] and [7].
In all formulations and proofs in the sequel, we shall use the following functions

of the "boundary-layer" type, constructed by the V.-L. method. Let rn be a fixed
integer. Applying the iterative process described in 10], we see that there is a smooth
function v(x), different from zero only in some strip D around F, and having the
form

(1.11)

where

(1.12)

(1.13)

Moreover,

(1.14)

v,(x)=h(x)e-u(x)/

h(x)lr=(x), h(x)= 0

Og] =(b-, ),g(x)l 0, 7,

outside D

g(x)>0 inD a.

Lv e mp(x, e), [Pl -< B,

(.5) _-< c,

B and C depend only on the smoothness of the boundary and the coefficients of the
equation. Similarly, there is a function v)(x)of the form

v’ h’)(x)(1.16)

where

(1.17)

(.8)

h’)(x)lr 1, h()(x) 0 outside D

(1.19) -Or N

2. LEMMA 1. Let u be a solution of the equation

b Ou

i= Oxi

in D and assume that (1.6) is true.
Then for Ix N,

where M depends on n, M and the coecients of the equation.

Pro@ Let us introduce new variables

Xi(2.3) y,=, (i=,2,...,,).
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From (2.1), we have

u )0u=0(2.4)

where/3i(y, e)= b(y/)//. It is clear that the ball is stretched into the ball
I 1<= 1. Let Sa {Y’lYl <- 1}, $2 ={y’[yl-<-2}. From the smoothness assumptions
concerning b(x) and from (1.6) it follows that Ib(y,/)l--< t,/ly for some/3 > 0 and so

(2.5) [/3, (y, e)[-</3[y I.
The inequality (2.5) means that in S2 the coefficients fl(y, e) are bounded uniformly
with respect to e. The same is also true for the derivatives of /3. Now, applying
Schauder estimates to the solution of (2.4) in $2, we get

]ouy/ --<M1 ,for yGS1

and hence

(2.6) 0___u M
Oxi <-----e for Ix -< x/e.

From (2.6)follows (2.2).
(1)LEMMA 2. Assume that conditions (1.4)-(1.8) hold, v(x) h e-/ and v (x)

h (a) e -/ are functions of the "boundary-layer" type satisfying conditions (1 .11)-(1 .15)
and (1.16)-(1.19) for m n. Then the solution u(x) ofproblem (1.1), (1.2) admits the
following asymptotic expansion in D"

(2.7) u,(x) ue(O)--)e(X)--ue(O)l.)(el)(x)ql-O(1) (f, -->0)

where o(1) is uniform in D as e -’, O.
Proof. By Lemma 1, for Ix[---e,

(2.8) lu (x)- ue(0) M1E 1/2,

i.e., expansion (2.7) is valid in the ball Ixl _-< e. Consequently, it will suffice to verify the
validity of (2.7) in the domain

D:{xD,[xI>e}.

Note that by the maximum principle

lu (x)t-_<M max ]q(x)l.
xl

Set

(2.9)

(2.10) _In r]w(x, e) =e(1 In el

for n _--> 3,

for n 2,
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where r Ix[, x D. Clearly,

(2.11) w(x,e)l==O,

(2.12)

By (2.9) and (2.10),

(2.13)

(2.14)

w(x, e O(e (e O)

Ow 1 dw
L,w eAw +Z bi--= Z bixi.dr

dw_ (n 2
e"-I

dr
for n > 3

dw e 1
n=2.

dr In e r’

Using conditions (1.5) and (1.7), we obtain from (2.12)-(2.14)

(2.15) Lw <-0 in D,, n >-2,

while in DO (cf. (1.7))

(2.16) Lw<-Ir21(n-2) e
n- -e I (n 2)r2-" for n >- 3,

(2.17) <
,e

forn=2.Lw =In e

(2.22)

and in Do

Lz+<=-,e"-(n-2)r2-" + O(e"),

Lz+<--+ O(e), n=2.
In e

n--3,

Now let v(x) and v)(x) be the functions indicated in the statement of the
lemma. We may assume here that condition (1.7) is satisfied in D, i.e., D c D. Then

(2.18) v(x)= v(x)=0 in D\D

and by (1.14)and (1.18)

(2.19) Lv O(e"), Lv (1) O(e") (e - 0) in DO

Denote

z+(x) w(x,

By virtue of (2.9), (2.10) and (2.18),

(2.20) z+(X)[r= =0.

In addition, by (1.12) and (1.17),

z+(x)[v- , (x)- u(0)+ w(x,

whence, in view of (2.11),

(2.21) z+(X)lr=(x)-u(O)+O(e), (e -0).

Next, it follows from (2.15)-(2.19) that, in D\D,
Lz+<=O
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From the last two inequalities we see that, if eo is sufficiently small,

(2.23) Lez+ <- 0 in D, Ve_-< eo.

Combining (2.22) and (2.23), we find that

<0, Ve < inDe(2.24) Lez+= =e0

hence

(2.25) Le[ue(x)-ue(O)-z+(x, e)]=>0
in De. It follows from (2.20), (2.21) and (2.8) that for Ixl e,

1/2(2.26) Ue(X)--ue(O)--Z+(X, e)<--Mle

and for x F,

(2.27) Ue(X)--ue(O)--Z+(X, e) O(e) (e ->0).

By the maximum principle, see [8], it follows from (2.25)-(2.27) that in De
u(x)- u(O)- z+(x, e)<- O(e /)

that is,

(2.28) ue(x)- ue(O)--lge(X)-k- Ue (0)/)(el) (X) < O(/ 1/2).
Applying similar reasoning to the function

z_(x) (x)- u(x)- (0)l(x) w(x, )

instead of z+, we obtain

(2.29) u(x)- ue(O)--Ve(X)+ ue(O)v(X) >- O(e’/2).
The conclusion of Lemma 2 now follows from (2.28) and (2.29).

LEMMA 3. Let

in D, where K and K2 are constants independent of e. Then

OU <K3o(2.30)
r e

The proof of this lemma is quite simple" one chooses a suitable barrier function
and applies the maximum principle. For example, a good choice for the barrier
function is

/(x) W(x)+(K2 + to)[1- h(’)(x) e-Zg/e],

where h)(x) and g(x) are functions with properties (1.13), (1.17), (1.18), constructed
by the V.-L. method, W(x) a function satisfying the equation

OW
bi=-K- 1,

Oxi

and the condition W[F 0, t maxo, W(x)[. It is readily seen that in the strip D ,
if e is sufficiently small,

L(a+u)<-O
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and on the boundary of D 1,
ti+u=>0.

It follows from the last two inequalities by the maximum principle [8] that

fi+u>0 inD

and so

(2.31 )
0(/ + u =< 0,

0,

OU 0fi

Inequality (2.30) now follows from (2.31) with the help of (1.13) and (1.19).

3. Proof ot the theorem. Let

(3.1) Z,(x) u(x)- u,(O)-(x)- u.(o)v’(x)

where v(x) and v((x) are the functions defined in the conditions of Lemma 2. By
Lemma 2 and (2.19),

In addition,

Z(x)O, L,Z O(e") as e 0.

Set a(e)=maxo {IZI, ILZI}. Applying Lemma 3 to the function Z(x)/,(e), we
obtain

(3.2) e <=Ka(e)O

Using (1.4), we readily check that

as e-0.

(3.3) L* e 4"/ 0

where L*f eAf-- (Ob.,f)/(Oxi) (cf. [7] and [5]).
Integrating by parts in (3.3), we obtain

(3.4)
(e 4’/’L u, uL* e ’t’/‘) dx

I( /Ou Oe/)e e u. ds

+I,u, e4’/(, if) ds 0.

It follows from (3.1), (3.2), (1.15) and (1.19) that

Ou e(Oh Oh()e u(O) e(h u(O)h()) 10g

+ =(-h+u(O)h(

0, -- + o(1).
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Hence, by (3.4), we have

eV4[Og(u(O)h(l h)- u + u(, tT)+ o(1) ds O,
LOu

and so, in view of the fact that , g
hit q0(x), h(1)[r 1, uu (/, ), --u (b, tS),

(3.5) e’/ (/, ff)(u,(O)-q:,(x))ds o(1)I- e4"/ ds

Dividing both sides of (3.5) by I e/ ds, we see that as e - 0,

u(O)’
e+/(, ) ds_I oe+/(, ) ds

e’/ ds e’/ ds

u(O) I q e/(, ) ds
-0

e/(, ,) ds

and consequently,

(e -0).

completing the proof of the theorem.
Remark. Assume that
i) conditions (1.6) and (1.8) hold,

ii) condition (1.7) is satisfied in some neighborhood Do of the origin and every
characteristic of (1.3) enters Do. Then by some slight modifications in the proof given
above Lemma 2 can be generalized to the equation

(3.6) e((a,iu,)+, a,

But in order to proceed to the proof of the Theorem for equation (3.6), one needs
some additional considerations. We shall present that in the next paper. Nevertheless
the proof of formula (1.10) follows in the same way as above if a 0 in (3.6) and if
there exists a function O(x) such that b aqq%.
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CRITERIA OF LIMIT CIRCLE TYPE FOR
NONLINEAR DIFFERENTIAL EQUATIONS*

PAUL W. SPIKES’

Abstract. Criteria which ensure that all solutions of a perturbed second order differential equation

satisfy certain integrability properties are obtained. For special cases of the equation these criteria reduce to

sufficient conditions for all solutions to be LP-bounded, p > 0. In particular, we obtain limit circle criteria for
the perturbed linear equation. Examples are included to illustrate the results.

1. Introduction. In this paper we are concerned with establishing criteria which
guarantee that all solutions of the nonlinear differential equation

(*) (a(t)x’)’ + q(t)f(x)= r(t, x)

satisfy the integrability condition

(**) J x (v)f(x (V)) dv <

provided xf(x)> 0 for x # 0.
Since such criteria reduce to sufficient conditions for LZn-boundedness of all

solutions of (,) when f(x)= x 2"-1, n a positive integer, results of this type are known
for various special cases of (,). In particular, the problem of finding sufficient condi-
tions for LZ-boundedness of solutions of (*) for the case fix)= x has been investigated
extensively. For example see [2], [4]-[7], [9]-[12], [16]-[21] and the references
contained therein. Our Theorem 4 gives a new result for this case.

When f(x)x much less is known regarding integrability properties of the
solutions of (*). Furthermore, such results are mostly of the limit-point type--
sufficient conditions for (,) to have one or more solutions that are not LP-bounded.
We cite as examples the work of Atkinson [1], Burlak [3], Hallam [8], and Suyemoto
and Waltman [15]. Exept for the result indicated by Atkinson [1, p. 311] for the
equation

X" + tVx 2n-1 0

(, a constant), the author knows of no criteria other than those in [14] which imply
(**) when f(x)x. In addition to other differences, the criteria established in this
paper do not require the strong monotonicity condition imposed on the product aq in
[14].

We also obtain, as a corollary to our main result, sufficient conditions to ensure
that all solutions of () tend to zero as t-> oo.

2. Integrability and asymptotic properties. Consider the equation

(1) (a(t)x’)’ + q(t)f(x)= r(t, x)

where a,q:[t0, c)R, f:RR, and r:[t0, c)RR are continuous, a’,q’
ACoc[to, c), a", L2oc[t0, ), a(t)>0, q(t)>0 and xf(x)>O for x #0.

We define F(x)= f(s) ds, and for any function g we let g(t)+ max {g(t), 0} and
g(t)_ max {-g(t), 0}. The following conditions will also be utilized as needed.

* Received by the editors June 7, 1977.
Department of Mathematics, Mississippi State University, Mississippi State, Mississippi 39762. This

work was supported by the Mississippi State University Biological and Physical Sciences Research Institute.
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(2)

(3)

(4)

(5)

and

(6)

Let

Assume that there exist positive constants A, B, C, and b <_-2, a nonnegative
function h C[to, o), and a positive function H C’[to, oe) such that

H’(t)+/H(t) <= (2 b )(a (t)q (t))’+/ (2a (t)q (t)),

H’(t)+/H(t)<= bB(a(t)q(t))’+/(4a(t)q(t)),

BF(x ) <- xf(x <= CF(x ),

Ir(t, x)l <- h(t)(F(x))a/z,

and assume that

(7)

(8)

(9)

(10)

and

2x -< 2F(x)+ 2A.

O(t) (2 b)[(a (t)q (t))’12/(4a3/a(t)qS/2(t))
+ [(a (t)q(t))’/(al/2(t)q3/2(t))]

[(a(v)q(v))’_/(a(v)q(v))] dv <

[h(v)/(a(v)q(v))a/2] dv <

(11) [1/H(v)ldv<oo.

We note that since condition (5) will be required in the hypothesis of all our
results, it follows from [13, Thm. 1] that all solutions of (1) exist on [to, oo). We now
give our principal result--sufficient conditions for every solution x(t) of (1) to satisfy

(I) x(v)f(x(v)) dv <

THEOREM 1. If conditions (2)-(11) hold, then every solution x(t) o[ (1) satisfies (I).
Proof. Proceeding by techniques similar to those used by Burton and Patula in [4,

Thm. 1], let y(s)= x(t) where s ,t [q (v )/a (v )] a/2 dr. Define

R(t)= (a(t)q(t))’/(4aa/Z(t)q3/Z(t))
and let ."= d/ds. Then (1) becomes

j + 2R (t) +f(y) r(t, y)/q(t).

Now consider the equivalent system

z bR (t)y

-(b-2)R(t)z +b[(2-b)RZ(t)+l(t)]y-f(y)+r(t, y)/q(t),
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and define V and W by

and

Then

V(s) zZ(s)/2 + F(y(s))

W(s)= V(s)N(t).

f’(s) z(s)e(s)+ (s)f(y (s))

(b -2)R (t)z2(s)+ b[(2-b)RZ(t)+ t (t)]y(s)z(s)

-z(s)f(y(s))+ z(s)r(t, y(s))/q(t)

(b 2)R (t)zZ(s) bR (t)y(sff(y(s))+ b[(2- b)R 2(t)+/ (t)]y(s)z(s)

+ z(s)r(t, y(s))/q(t)

and hence

lJ/(s) [(b 2)R (t)H(t)+ I:-I(t)/2]zZ(s)
bR (t)y (s)f(y (s))H(t) +/-:/(t)F(y (s))

+ G(t)y(s)z(s)+ H(t)z(s)r(t, y(s))/q(t)

where G(t)= b[(2-b)RZ(t)+t(t)]H(t). From (2)we have

(b 2)R (t)H(t)+ B(t)/2
(b 2)H(t)R (t)+- (b 2)H(t)R (t)_

+ [H’(t)+ H’(t)_]a 1/2(t)/(2ql/Z(t))
<- a /2(t)H(t)[H’(t)+/H(t)-(2- b)(a(t)q(t))’+/(Za(t)q(t))l/(Zqa/Z(t))
+(2-b)H(t)R(t)_

_-< (2 b )H(t)R (t)_.

Also it follows from (3) and (4) that

I(t)F(y (s )) bR (t y (s)f(y (s))H(t)

<= F(y (s ))a l/Z(t)H’ (t)+/ql/Z(t) by (s )f(y (s ))H(t)R (t)+

+ by(s)f(y(s))H(t)R (t)_
<_ a /2(t)H(t)y (s )f(y (s ))[H’(t)+/H(t)- bB (a (t)q (t))’+/(4a (t)q (t))] / (Bq /(t))
+ bCH(t)F(y(s))R (t)_

<= bCH(t)F(y (s ))R (t )_,

and therefore

W(s) <- (2- b)H(t)z2(s)R (t)_ + bCH(t)F(y(s))R (t)_

+ G(t)y(s)z(s)+ H(t)z(s)r(t, y(s))/q(t).

Putting D -max {2(2- b), bC} and using (5) we obtain

W(s <= DW(s)R (t)_ + G (t)l lY (s)z (s)[ + H(t)lz (s )lh (t)(F(y (s )))1/Z/q (t).
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Then (6), together with the inequalities

[z(s)y(s)[ <-[z2(s)+ y2(s)]/2

implies

and [z(s)l(F(y(s)))1/2 <-_ V(s),

lie(s)<- DW(s)R (t)_ + IG(t)l W(s)/H(t)+ h(t) W(s)/q(t)+ A]G(t)[
alG(t)[ + P(t)W(s)

where P(t)= DR(t)_+[G(t)]/H(t)+ h(t)/q(t). Integrating we have

W(s)<= W(so)+n ]G(k(u))]du+ P(k(u))W(u)du.

Now

I [G(k(u))[ du (b/4) ]O(v)[H(v) dr,

so (7) implies that there exists a constant L1 > 0 such that

W(s)<=L1 + P(k(u))W(u) du.

It then follows from Gronwall’s inequality that

W(s)<--Ll exp ( P(k(u)) du

Since

Is P(k(u)) du (D/4) [(a(v)q(v))’_/(a(v)q(v))] dv

+(b/4) f IO(v)l dv + [h(v)/(a(v)q(v))1/2] dr,

then (8)-(10)imply that W(s)is bounded. Hence there exists a constant M>0 such
that F(x(t))H(t)<-M for t>-to. To complete the proof, we use (4)and (11)to obtain

I x(v)f(x(v))dv<-CM I [l/H(v)]dv

Remark. Sufficient conditions for all solutions of (1) to satisfy (I) have also been
obtained in [14, Thms. 5-7], but the hypotheses of these theorems differ in several
respects from those of Theorem 1. In particular all the results in [14] require
(a(t)q(t))’ >= O, H C2[to, oo), H’(t)>_O, and H(t)oe as toe which are considerably
more restrictive than the requirements imposed on these quantities in Theorem 1. For
example, Theorem 1 shows that every solution of the equation

x" + q(t)x r(t, x), > 2,

where q(t)= t2{1 +(4/5)[sin (In t)-cos (ln t)/2]+ 1/t3} and r(t, x) =xZ(ln t). [tanh (t2x)]/
[t(l+sinZx)] is L4(2, oo). This can be verified by taking b=2/3, A=I, B=C=4,
h(t)=(2 In t)/t, and H(t)=qZ/3(t) in Theorem 1. Notice that none of Theorems 5-7 in
[14] apply to this example since q’(t)=2t[l+sin (ln t)]-l/t2 is negative for arbitrarily
large values of t.



460 PAUL W. SPIKES

The next result has simpler hypotheses than Theorem 1, but stronger conditions
are placed on the product aq.

COROLLARY 2. Let Q(t) be defined as in Theorem 1, and let conditions (4)-(6)
and (8)-(9) hold. If them is a constant 0 < p < 1 such that

(12) [1/(a(v)q(v))p] dv <co,

(13) 2p <- 2 b and 4p <-- bB,

and

(14) [Q(v)[(a(v)q(v))dv <

then every solution of (1) satisfies (I).
Proof. Let H(t)= (a(t)q(t))p. Then (13) implies (2) and (3), (14) is equivalent to

(7), (14) and (8) together imply (10), and (12) is equivalent to (11). Thus all the
hypotheses of Theorem 1 are satisfied and the conclusion follows.

As an example to which Corollary 2 applies, consider the equation

(15) x"+tVx2"-l=O, t_>to>0,

where n is a positive integer and y is a constant satisfying 3’ > 1+ 1/n. By taking
A n, B C 2n, p [ny + n 1]/(2ny) and b [ny + 1 n]/(ny), it is easy to see
that Corollary 2 implies that every solution of (15) is in LZ"(t0, co). This example is of
particular interest in view of the fact that Atkinson [1, p. 311] has pointed out that
solutions of (15) are in LZ"(t0, co) only if y > 1 + 1/n.

By replacing condition (11) in the hypotheses of Theorem 1 by

(11’) H(t)co as

we obtain the following partial asymptotic stability result for (1).
COROLLARY 3. If (2)--(10) and (11’) are satisfied, then every solution x(t) of (1)

satisfies x(t) 0 as - co.
Proof. Let x(t) be a solution of (1). From the proof of Theorem 1 we have

F(x(t))<-M/H(t) for some constant M>0. Hence (11’)implies that F(x(t))O as
co, which in turn implies that x(t) 0 as co.
For the special case

(1’) (a(t)x’)’ + q(t)x r(t, x)

of (1), notice that F(x)= x2/2. Thus if (5)holds, then [r(t,x)[<-_[xlh(t). Moreover, it is
not difficult to show that if (5) holds and x(t)is a nontrivial solution of (1’), then x(t)
and x’(t) are not zero simultaneously. These observations enable us to use (with
simple modifications) the proof of Burton and Patula [4, Thm. 1] to obtain Theorem 4
below for solutions of (1’). For this purpose we define

2S(t)= I[(a(t)q(t)) /(4a/(t)qS/:(t))+[(a(t)q(t))’/(a/:(t)q/:(t))]’l
+ 4h(t)/(a(t)q(t))1/2.

THEOREM 4. If in addition to (5),

(16) [1/(a(v)q(v))1/2] exp (S(u)/4) du dv < co

holds, then (I) holds for every solution of (1’).
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Proof. Let x(t) be a nontrivial solution of (1’). Proceeding exactly as in the proof
of Theorem 1, with b 1 and H(t)= 1, we have W(s)= V(s)= [z2(s)+ y2(s)]/2 and

(s)= -R(t)[z2(s)+ y2(s)]+[R2(t)+ l(t)]z(s)y(s)+ z(s)r(t, y(s))/q(t).

But Iz(s)y(s)l <= V(s) and Iz(s)llr(t, y(s))l-<- h(t)V(s)/q(t), so

f’(s)_-< [-2R (t)+ In 2(t) (t)l + h(t)/q(t)] V(s).

Noticing that x(t) and x’(t) not simultaneously zero implies V(s)>0, we
complete the proof by an argument similar to that used in the proof of Theorem 1 in
[4].

Remark. If a(t)= 1 and r(t, x)=O, then Theorem 4 reduces to Theorem 1 in [4].
Notice also that Theorem 4 cannot be deduced from either Theorem 1 or Corollary 2.

Results of type (I) have been obtained by a number of authors for equation (1’),
particularly when r(t, x)=-h(t)x. These results were obtained in almost all instances
by requiring somewhat rigid growth conditions on the function h. Theorem 4 differs
from these results in that the growth condition is placed on the quotient h/(aq)1/2, and
hence applies in cases not covered by previous results. We illustrate this with the
example

(17) (t6x’) +[6t4 +(tv sin t)/(1 +x2)]x 0

where 3’ is a constant and > 1. Theorem 4 applies to (17) for any 3’ < 4, whereas
Theorem 1 in [2] applies only in case y < 3 and Theorem B in [18] only in case 3’ < 0.
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CONSTANT LIMIT OF A SEQUENCE OF ITERATES*

w. F. SMYTH-

Abstract Let N be the set of all points on the complex sphere cr at which a sequence F of iterates of a
meromorphic function f is normal. N is shown to be exactly those points in some neighborhood of which F
breaks down uniformly into a finite number of fixed subsequences. Consider any domain D

_
N together

with all its images under f: F(D)= {D, f(D), f:z(D)," "}. Then, corresponding to F(D), there exists a fixed
finite integer r>0 such that F breaks down everywhere in F(D) into infinite subsequences F=
{f,,,.+iln =0, 1,...}, i=0,. , r- 1; and, if fr(z)is not identically z in F(D), each subsequence fi converges
in each domain of F(D) to a distinct constant limit point drawn from a set of distinct values

{Co,’’’, Otr-1}cF(D), where oti+l(moclr)=f(i), i=0,"’, r-1.

Introduction. The study of the global convergence properties of iterations of
meromorphic, especially rational and entire, functions, as established by Julia [1] and
Fatou [2], [3], [4], is little referred to in recent mathematical literature, even though
the theory yields elegant, powerful, and suggestive results and leaves questions of
considerable practical interest unresolved. It is an area which might usefully be
surveyed and organized into an integrated theory: building on previous efforts in this
direction by Cremer [5] and Montel [6]; incorporating later results by, for example,
R.dstr6m [7] and Talanov [8]; and making reference to cases of practical interest such
as Brooker’s example [9], [10]. Our objective in this paper is a more modest one: to
settle one of the unresolved questions in this field" under what circumstances
subsequences of the sequence of iterates of a meromorphic function converge to a
constant limit function. It has long been suspected [5], [6] that the limit function was
constant under quite general conditions, but no such result has ever been proved" a
number of deceptive "counterexamples" [11], [12], [13] have perhaps served as red
herrings to distract researchers attempting to formulate a constant limit theorem in
appropriate form. As we shall see in this paper, the chief difficulty lies in specifying the
circumstances under which the sequence of iterates of a single point gives rise to an
infinity of limit points; the resolution of this difficulty provides us with a new criterion
of normality: a sequence of iterates is normal at a point z if and only if there exists
some neighborhood of z in which the sequence breaks down uniformly into a finite
number of regular subsequences. We develop our results in three main sections:

(1) Some basic properties are established for a sequence F of iterates of a
function f single-valued and continuous on a point set S of the complex sphere or. If
f(S)_ S, f_l(S)_ S, and every accumulation point of F is a point of S, it is shown in
particular that the sequence F(z) of iterates of a point z S has an infinity of distinct
accumulation points if and only if F(z) gives rise to no fixpoints; and that F(z) has a
finite number r of accumulation points if and only if F(z) breaks down into exactly r
subsequences {fnr+i In 0, 1,... }, 0,’.’, r--1, each convergent to a distinct one
of the accumulation points of F(z).

(2) The concept of a normal family of functions is defined, and the results of the
previous section are applied to establish a new criterion of normality and to show that
for a meromorphic function f the regular breakdown of F into subsequences holds
uniformly in any domain in which F is normal.

* Received by the editors September 9, 1977.
t 84 Dupont Street, Toronto, Ontario, Canada M5R 1V2.
The sphere and the chordal metric X are used throughout, in order that convergence at infinity should

be well defined. For "continuous" and "convergent" and "differentiable", therefore, read "spherically
continuous", "spherically convergent", etc.
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(3) An elementary argument then establishes that for a meromorphic function
the limit function of any subsequence is in fact constant under quite general condi-
tions.

In a final section we discuss some examples, counterexamples, and exceptions.

1. Properties of a sequence of iterates. Let f be a function defined on a point set
S
_

o-. For z S the terms of a sequence

F(z):{:f(z)}={f.(z)ln =0: 1,...}

may be specified recursively as follows"

fo(z)=z; f.+(z)=f f.(z), n=0,1,...

where if fn(z):S, fn+l(Z) and all subsequent terms of F(z) are undefined. F(z) is
called the sequence of iterates of f at z, and f,, (z) the nth consequent of z under f. If for
every nonnegative integer n, fn(z) S, then F(z) determines at least one accumulation
point (and perhaps uncountably many of them); if f is single-valued in S, we may
regard an accumulation point as the uniquely-determined limit point of a Cauchy
sequence which is a subsequence of F(z); a subsequence Fk(Z) is denoted by

F(z)=,,,(z)}=,,(z)lni+l >hi, i=0, 1,...},

where the ni are nonnegative integers, k is in general any real number, and it is
understood that ni hi(k). The sequences F(z) and Fk(Z) will sometimes be called,
and treated as, sets of points.

The inverse function of f is denoted f-1. For z S and integral n _-> 0, {f_,, (z)} is
the (possibly empty) set of points sr such that f,, (sr) z. An individual or representative
element of {f_, (z)} is denoted f-n (z) and called an nth antecedent of z under f. If f is
single-valued in S, if fn(z) S for sufficiently large positive or negative values of the
integer n, and if s >- >- 0, then

(a) f f,(z)= f+,(z)= f f(z),

(b) L’ f_,(z)=f_,(z) {f_,. L(z)},

(c) {f," f-s(Z)}= {f,-s(Z)}=_ {f-" f,(z)}.

In this section we restrict ourselves to functions f and point sets S such that for z s S
(1) f(z) is single-valued and continuous;
(2) f(z) S and g-1 (2")} (22 S;
(3) every accumulation point of F(z) is a point of S,

We shall see in the next section that these are some of the important conditions
satisfied not only by the set N of points at which the sequence F of iterates of a
mermorphic function is normal, but also by the set E of points at which F is not
normal.

LEMMA 1. Denote by a limi__, fn, (z) an accumulation point ofF(z), z S. Then
f(a) and f-l(a) are also accumulation points ofF(z), where

f(a) lim Li+l (Z), f-1 (O) lim f,,, (z), and
j-oo

Proof. By (2), F(z) is an infinite sequence, hence possesses an accumulation point.
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Therefore a and {fn,(z)} exist. By (1) and (3), f is continuous at a. Then given 8>0,
we may find I I(6) such that for all > I,

Hence by (a),f(a)is the (unique)limit point of the subsequence {fn,+l(Z)}F(z), and
therefore an accumulation point of F(z).

Next, let/3 be an accumulation point of the infinite subsequence {fn,-l(Z)} c_ F(z).
Then by (1) and (3), f is continuous at ft. Then given 6>0, we may find I’= I’(6) such
that for all > I’,

x[f(), f"/,,(z)] < ,
where {f,,i(z)}__v_ {f,,,-l(Z)} is the subsequence with limit point ft. But by (a) this tells us
that an infinite subsequence {f,,,,+ l(Z)} {f,, (z)} has limit point [(fl). Hence f(fl): a, so

tha fl f-1 (a).
We note that perhaps f(a)= a; in this case a is called a fixpoint of f. In case no

fixpoints occur, we see that Lemma 1 provides us with the means of constructing an
infinite sequence of accumulation points of F(z) from a given accumulation point
a=lim f,(z). For we may choose a specific/3=f_l(a)=lim fmi(Z); then replace {f,(z)}
by its subsequence {f,,,+l(z)}, so that a lim f,,,+l(z); then include f(a)= lim f,,,+2(z).
Repetition of this process yields the sequence of accumulation points {f+,,(a)}=
{..., f-l(), , f(), }.

LEMMA 2 If/’or z S, a is the limit point of the two subsequences {f,,i(z)} and
{f,,,+l(Z)}, then a lira f,(z) is the only accumulation point ofF(z).

Proof. Since a lim f,,(z), from Lemma 1 it follows that f(a)= lira fn,+l(Z), and
we conclude that [(a)= a. Moreover, we may combine the terms of the two sequences
{f,,,(z)} and {f,,+l(Z)}, eliminating duplicates if necessary, into a new subsequence
{f,,,.,,+l (z)} which will also have limit point a (any infinite subsequence of {fn,.n,+l(Z)}
will necessarily contain an infinite number of terms from either of the constituent
subsequences, or both, and so can have only a as a limit point). Now consider
{f,,,+2(z)}. By Lemma 1, this subsequence has limit point f(a)= a. Then we may join
gni+2(Z)} to the combined subsequence {f,,, ,,,+ (z )} to form {fni, ni+l,ni+2(Z)}, which as
before we conclude has a as its unique limit point. We see that corresponding to every
integer ]-> 0, we may construct a subsequence {f,,,. .,n,/. (z )} with limit point a. Every
term of F(z) is contained in this subsequence. Hence a lim f, (z).

LEMMA 3. For z S and any integer r >= 1, fr(Z) satisfies conditions (1), (2), and
(3).

Proof. The lemma may be proved by induction as a straightforward consequence
of conditions (1)-(3).

From Lemma 3 it follows that we may apply Lemmas 1 and 2 to the sequence

LEMMA 4. If for z S, a is the limit point of the two subsequences {f,(z)} and
{fn+r(Z)} for some least integer r >= 1, then there exist exactly r distinct accumulation
points f (/3) lira f,r+,, (z), m 0,. , r 1, of F(z), where for some particular value
0-<M _<- r- 1, fM(fl) a.

Proof. Lemmas 1 and 3 enable us to conclude that fr(a)= a lim f,,+r(Z), and the
argument of Lemma 2 may be applied to construct a subsequence {f,,.....,,+ir(Z)}_
F(Z) with limit point a. Then the subsequence

{L+;,(z)li o, 1,... }
_

{fni,...,ni+]r(Z)}

also has limit point a. This new subsequence consists of every rth term of F(z)
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beginning with n 1. Repeated use of Lemma 1 leads to the construction of a set of r
subsequences as follows:

{fl’r+nl (Z)} with limit point a,

{f/’r+nl+ I(Z )} with limit point f(a),

’r/nl/r--l(Z)} with limit point fr_l(a ).

The union of these r subsequences exhausts F(z) except for n initial terms which may
be assigned arbitrarily, in particular so that the subsequences become {])r/R. (z)lR,,
(nl+rn)modr} with respective limit points f,(c),rn=0,...,r-1. These
subsequences are just a renumbering, but in the same cyclic order, of the
subsequences {fn+m(Z)}, rn 0,..’, r-- 1, given in the statement of the lemma. There
are no accumulation points of F(z) other than the f,(c), because as in Lemma 2 any
infinite subsequence of F(z) must contain an infinity of points drawn from at least one
of the r subsequences {fnr+rn (Z )}.

It remains to show that for 0<_-m’< rn <-r-1, f,,,(a)#f,,(a). But this follows
from the fact that r is the least integer such that a lim/,,,+(z); for otherwise, setting
K m- m’, we would necessarily have a f: (or). This completes the proof.

A point f,,(a), m =0,..., r-1, is called a fixpoint of order r of F(z); and the
ordered set {a, rice),. .,/_l(a)} a cycle oforder r of F(z). From the proof of Lemma
4, we see that if a fixpoint of order r exists, then a cycle of order r exists, and F(z)
breaks down into exactly r subsequences whose limit points are the r fixpoints. We
have then

LEMMA 5. The sequence F(z of iterates at a point z S gives rise to no fixpoints if
and only if F(z) has an infinite number of accumulation points.

Proof. The result is an immediate consequence of Lemmas 1 and 4.
It is tempting here to try to make a much stronger statement:
CONJECTURE. The sequence F(z of iterates at a point z S gives rise to no fixpoints

if and only if the closure of F(z) is a perfect set.
For sufficiency is a consequence of Lemma 5; and the proof of necessity leads, by

application of Lemmas 1 and 5, to the construction of an infinite sequence of
sequences

f(z)-> F(Cel)--> F(a2 - ",

where
(a) each term of each sequence F(ai) is the limit point of a subsequence of each

preceding sequence;
(b) each cei stands for at least one, but perhaps uncountably many, distinct

accumulation points.
It appears, however, that proof of this result is stymied by lack of information about
the neighborhood of the point z, which could be an isolated point in S. On the other
hand, no counterexample is known.

2. Sequence of iterates of a meromorphie function. We recall the definition of
normality:

DEFINITION. A family F of functions f meromorphic in a domain2 D is said to be
normal in D if every infinite sequence {f,(z)}cF contains a subsequence which
converges uniformly on every compact subset of D.

domain is an open arcwise-connected set.
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F(z) is normal at z if it is normal in a neighborhood of z.
For a sequence of iterates F of a meromorphic function f, we find [5], [7] that we

may identify a set N of domains in which F is normal, and a set E of points at which
no subsequence of F is normal. In the case of a rational function, N CI JE r; we shall
consider this case first, then extend our results to general meromorphic functions. For
rational f, then, generalized versions of conditions (1)-(3) specified in the previous
section apply separately to both S N and S ’ (for proofs, see [1], [5]):

(1) f is meromorphic in S;
(2) f(S)_ S and f_l(S)_ S;
(3) for z S, every accumulation point of F(z) is a point of S. Hence the results

of the previous section apply to every point of both N and E.
Before proceeding, we state without proof two basic results [5], [7] of the theory

of iterations which apply to any meromorphic function f:
(a) Denote by a0 an accumulation point of F(z), where z0 is a point of a domain

D _N. Then for every z 6D, hence every z 6F(D), we may choose from F(z) a
subsequence which converges uniformly everywhere in F(D) to a meromorphic limit
function g(z)such that g(z0)= c0. For z F(D), g(z)F(D).

(b) Every point of E is an accumulation point of antecedents of every point of o’,

with at most two exceptions (that is, for z E and a neighborhood R(z),F(R)
includes every point of o" except at most two). This result is an immediate consequence
of Montel’s theorem [14].

Next we establish for meromorphic functions the conjecture stated in the pre-
vious section:

LEMMA 6. The sequence F(z of iterates of a rational (meromorphic) function f at a
point z has an infinite number of accumulation points if and only if the closure ofF(z) is
a perfect set.

Proof. Suppose the closure of F(z) is perfect. Then F(z) must have an infinite
number of accumulation points.

Next suppose F(z) has an infinity of accumulation points and let one of them be
a lim sri lim f,,,(z). Recall from Lemma 1 that therefore every f+/-,(a) is also an
accumulation point of F(z). Corresponding to each 6i =X(a, r), define a sequence
{Ri(a)} of neighborhoods Ri(a)=R(a, 6i) with boundary point sri. Since f is
meromorphic, hence also every f,,,, we may denote by f_,,, that branch of {f_,,} such
that f_,,(sr/) z, and then define a sequence {f_,,[Ri(a)]} of open regions, each of
which has z as a boundary point and f_,,,(a) as an interior point, and such that
limi_. X[f-,, (a), z] 0. Then z is a limit point of accumulation points of F(z). Hence
every neighborhood of z contains terms of F(z), so that z is an accumulation point of
F(z). Then by Lemma 1, so is every f+,(z) an accumulation point of F(z), and
therefore the closure of F(z) is a perfect set.

We may now state and prove
THEOREM 1. Let F(zo) be the sequence of iterates of a rational (meromorphic)

function f at a point Zo. Then the following three statements are equivalent:
(A) F(zo) gives rise to no fixpoints.
(B) F(zo) has an infinite number of accumulation points.
(C) The closure of F(zo) is a perfect set.

If any of these statements is true, then Zo is a point ofE, the set ofpoints at which F(zo) is
not normal.

Proof. The equivalence of (A), (B), and (C) has been established by Lemmas 5
and 6. Suppose these statements are true, and assume that z0 belongs to a domain
D N. Then by basic result (a), for every z D, there exists a subsequence of F(z)
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which converges everywhere in D to a meromorphic limit function g(z) such that
g(zo) a0. There are an uncountable number of distinct limit points a0, hence an
uncountable number of distinct subsequences. Thus at every point z D, F(z) has an
infinite number of accumulation points, and therefore by Lemma 6 the closure of
F(z), F(z), is a perfect set. The totality of accumulation points of the sequence of
iterates in D is thus represented by a union LJ zo F(z) which contains every point in
D. But this union is a perfect set, hence closed, and must therefore contain the
boundary points of D, which are points of E. These points of E must then be
accumulation points of F(z) for some z

_
D
_
N, contradicting condition (3). Hence

Zo E, as required.
Theorem 1 lays the basis for a classification of points into ordinary (those whose

sequence of iterates given rise to fixpoints) and special. We have shown that N consists
only of ordinary points; it is not known whether or not E necessarily contains special
points, but it may do so: for f(z)= 2’2, points e iz’/k are special if the real number k # 0
is irrational, ordinary otherwise. Using Lemma 4 and Theorem 1, we may now state
our criterion of normality:

THEOREM 2. Let F(z) be the sequence of iterates of a rational (meromorphic)
function f at any point z. Then F is normal at a given point Zo if and only if there exist a

finite integer r > 0 and a neighborhood R(zo) such that for every z R (z0), F(z) has
exactly r distinct accumulation points

fi(O lim fnr+i(Z ), i=0,...,r-1.

Proof. Suppose F is normal at Zo. Since N is by definition open, by Theorem 1
there exists a neighborhood R (z0)containing only ordinary points. Then by Lemma 4,
corresponding to every z R (Zo) there exists the required r-way breakdown of F(z),
and by basic result (a) the same value r and the same breakdown holds uniformly
throughout R (Zo). This proves necessity.

Now suppose F is not normal at z0. Then by basic result (b), for every
R (Zo), F(R) includes every point except at most two. Hence F(R)= or, and there are
certainly more than a finite number r of accumulation points of F(z), z R (Zo). This
proves sufficiency.

We conclude this section by indicating how these results are extended to general
meromorphic functions. For this purpose we exhibit in table form the interesting
classification due to Rdstr6m [7]. Essentially the classification is based on the set X
of points z at which F(z) has only a finite number of terms; there turn out to be only
four possibilities, depending on whether X contains 0, 1, or 2 points, or is dense-in-
itself. For classes I, II, and III, ELI X always exists and is perfect; for class IV, E .
For class I, we have already seen that X ; the example of Latt6s [15],

f(z)= (z + 1)2/(4z(z2- 1)),

shows that it is even possible that N .
Observe first that Theorems 1 and 2 hold not only for class I functions, but for

class IV as well, since conditions (1)-(3) are satisfied by both N and E . For
classes II and III, N of course satisfies conditions (1)-(3); E satisfies condition (1)
trivially; and Rdstr/Sm shows that points of X have no consequents or antecedents in
E, so that E also satisfies condition (2). For classes II and III, then, we need only
examine the applicability of condition (3)to E.

Consider then a subsequence {fn,(z)} with limit point c. The subsequence
{f,,,/l(z)} must also have a limit point/3, which we may suppose belongs to E. But since
condition (3) is satisfied for/3, Lemma 1 applies, and we find c must be an antecedent
of /3, which is impossible since is an essential singularity. Hence c is the only
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TABLE

R&dstr6m’s classification of meromorphic functions according to the set X.

Class Description of [(z) X E N Remarks

IIIa

llIb

Rational
Nonpolynomial entire

z- eA(Z): integer
p > 0, A nonconstant
entire
z e a(z)+B(1/z)’, integer
p, A and B nonconstant
entire

Perfect
{co} E U X

perfect
{0, co} EUX

perfect (E u x)

IV Other Dense- interior
in-itself of tr X

Possibly N
co is an essential
singularity
0 is a pole, co an
essential singularity,
and f(0)= co
0 and co are both
essential singularities
(if f belongs to class IIIa,
f2 belongs to IIIb)
X not necessarily closed

accumulation point of F(z). Similarly for class IIIa we find that if 0 lim f,, (z), then in
fact 0 is the only accumulation point of F(z). Hence if for zE F(z) has an
accumulation point aX, a is the unique limit point of F(z). Then this case is not
relevant either to Theorem 1 or Theorem 2, and may be treated as a single exceptional
case in the proof of the Lemmas. Our main results apply therefore to all meromorphic
functions.

3. Constant limit function. In practice, attention focuses on the domains in which
F is normal, because it is the attractive fixpoints in these domains to which con-
vergence takes place, and which are as a rule solutions of the given computational
problem. We have already seen in Theorem 2 that in every domain D of N, every
point z gives rise to a finite number r of accumulation points, which are limit points of
regular subsequences of F(z), and which are the values at z of r meromorphic limit
functions g. We shall now show that these limit functions are, in cases of practical
interest, constant. In other words, with trivial exceptions the sequence F converges
everywhere in N to fixpoints.

THEOREM 3. Let F(z) be the sequence of iterates of a meromorphic function f at
points z F(D), where F(D) is the set of consequents underf of a domain D N, the set

ofpoints at which F is normal. Then corresponding to F(D)c_ N, there exists a fixed finite
integer r > 0 such that, iffi(z) is not identically z in F(D), F(z) converges everywhere in
F(D) to exactly r distinct accumulation points c, =0,..., r-1, where ai+lmodr)

f(ai), 0," ’, r-- 1, and each ai is a limitpoint ofa subsequence {f,,,+i(z)}_ F(z), j
0,... ,r-1.

Proof. Lemma 4 and Theorem 2, together with basic result (a), have already made
clear that at each point z F(D), convergence to exactly r meromorphic limit
functions g)(z), 0,..., r- 1, takes place, according to a breakdown of F(z) into
subsequences {f,,+ (z )}, and that at some particular point zo, g)(Zo)=a,i
0,. , r- 1. We need to show that unless fi(z)= z for every z F(D), then g)(z) can
take only constant values drawn from the set {ao,’’’, ar-}.

Consider any domain D*
_
F(D) such that go)(Z)= lim f,,(z), z D*. Note that

by the uniform convergence of f,,(z), we may ensure that 2([go)(z), f,r(Z)] < 6 simply
by choosing n > N(6), uniformly for every z D*. Then given e > 0, by the continuity
of f in domains of F(D), we may make

x[fi g(o)(Z), fi Lr(Z )] < E’
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by choosing n > N[8(e)] uniformly for all z D*, so that x[g(o)(Z), fnr(Z)] < 8(e). Then
the subsequence {fnr+i(Z)} converges uniformly everywhere in D* to fi" g(0)(z)=
g(i)(z), 0,. , r- 1. For r, {ft. f,r(z)} has the same limit function as {f,,r(z)}, so
that

g(o)(Z) fr g(o)(Z ),

for every z e D*. This means that every point g(o)(Z) in g(o)(D*)_ F(D)_ N is a
fixpoint of ft. Since fi is meromorphic, this can only be true if for every z D*

(a) g(o)(Z)is constant, or
(b) fr(Z)---- Z.

From possibility (a) we conclude that g(i(z), 0,..., r-1, is constant for every
z 6 F(D); and that g(o(Z) a for some particular value 0 =< j _-< r- 1, g(g(z)= fi(ai) for
i= 1,..., r- 1. From possibility (b) we conclude that fi(z)=- z everywhere in F(D).

4. Counterexamples and exceptions. In a well-known paper [11], Schr6der
presented an apparent counterexample to Theorem 3. He studied the bilinear form

f(z (az + b)/(cz + d),

and showed that if ’1, st2 are the roots of the quadratic equation f(z)= z, then

g(z lim .In (z

(IZ -[- b/c)
(z -)

(sr2z + b/c)
(Z

if 11 + d/c[ > [2 + d/cl,

if + d/cl > [1 + d/el.

He claimed that therefore g(z)was nonconstant. However, substituting 1F2-- -b/c in
the expressions for g(z)yields

g(z)= (1 or (2,

and we see that the limit function is actually constant.
We may nevertheless make use of special cases of the bilinear form to generate

some true exceptions to Theorem 3, and to demonstrate that the class of functions f
excluded by the condition,

fi(z z identically,

is not trivial. We begin with the examples

(a +OrZ / l +doJrZ ),

where a, d are arbitrary constants, p, q -> 1 are integers such that pq r, and w stands
for an ith root of unity. For each of these examples fi(z)= z everywhere on o-.

In 1815 Babbage [12] was led by certain construction problems in geometry to
consider the equation fi(z)= z (sometimes called "Babbage’s equation"). He showed
that given a particular solution f(z) such as either of the two examples above, then

f*(Z)-- h-l" f" h(z)

is also a solution for any homeomorphism h. Thus, for example,

f*(z) h-l[(a + torh(z))/(1 + dtorh(z))]

is always a solution, for every a, d and homeomorphism h.
Seventy years later, Serret, attempting to classify the polynomial equations which

are solvable by radicals, showed [13] that if f was a rational function, then solutions of
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fr(Z) Z could be represented by

f(z)= (l/r) w,[A,(z)] /’,
l<-i<=r

where as above wr is an rth root of unity, and the Ai(z), 1,..., r, are certain
rational functions whose coefficients are expressible in terms of the coefficients of an
arbitrary rth order polynomial. We see then that in general solutions f of fr(Z)= Z may
even be algebraic.

Acknowledgment. I should like to thank James L. Howland, University of Ottawa,
for his assistance and support in the early stages of this research, and for introducing me
to the constant limit problem.
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AN ASYMPTOTIC FORMULA FOR THE DERIVATIVES OF
ORTHOGONAL POLYNOMIALS*

PAUL G. NEVAIt

Abstract. An asymptotic formula is found for the derivatives of orthogonal polynomials on the unit
circle. The condition on the distribution function is essentially local and the result is stronger than those
known before.

Let cr be a bounded nondecreasing function on [0, 27r] taking infinitely many
values. Then there exists a unique sequence of polynomials {n(do’),=0 such that
q,(dcr, z)=a,(do’)z’+ an(do’)>0 and

2r
q,(dr, z) pm(do-, 2;) do-(0) nm (Z ei).

One of the basic problems in the theory of orthogonal polynomials on the unit
circle is to find asymptotic expressions for q,(do’, z) as n-> oe. There is an extensive
literature dealing with this question. (See e.g. [2], [3] and [7].) In order to obtain
asymptotics one has to assume that r behaves nicely in a certain sense. Usually there
are two kinds of assumptions: globally o- must satisfy a growth condition and locally
(near 0, z ei) o" has to be smooth. The weakest condition under which one can
prove asymptotics for p,(do-, z) belongs to G. Freud [2].

Let the Szeg6 function D(do-, z) corresponding to o- be defined by

D(dtr, z)= exp log o-’(t)
1-z e -it dt (Izl<

If

(1) log o-’(t) dt > -o

then D(&r)H2(lzl 1), D(&r, z)O for Izl 1, O(&r, 0)>0 and

lim D(dcr, r e it) D(dtr, e it)
rl-

exists and ]D(do-, e")l2"= cr’(t) for almost every
Using the notion of Szeg6’s function we can formulate Freud’s result. Assume

that (1) is satisfied and in a neighborhood of 0 (z e i) cr is absolutely continuous with
0 < m =< o"(t)_-<M < for [0 tl small and

I (or’(0)-- o"(t))
2

(2) dt <
O-tl small 0

Then

(3) lim [q,, (do’, ei) e in D(dtr, ei)-1] O.

In the end of L. Geronimus’ book [3] fourteen other conditions are given all of
which imply the asymptotic relation (3). The problem of finding asymptotics for

* Received by the editors August 15, 1977, and in final revised form December 8, 1977. This work was

supported by the United States Army under Contract DAAG29-75-C-0024 and by the National Science
Foundation under Grant MPS75-06687 #3.

" Department of Mathematics, Ohio State University, Columbus, Ohio 43210.
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q) (do., z)(k 1, 2,... ) seems to be more difficult. There are only a very few papers
investigating the relationship- (}(&r, ) z -* )--’ e(4) limtn p, z D(do’, z ]=0 (z ).

(See [4], [5] and [6].) In all these papers it is assumed that o. satisfies some very
restrictive conditions. In particular, o. has to be absolutely continuous and (o.,)-1 e L2.
In [4] and [5] the authors apply strong methods of approximation theory. The purpose
of this paper is to show that (4) can be proved under Freud’s conditions. Instead of
approximation theory our approach is based on the following two observations. First,
it is easy to prove (4) provided that o- is very nice locally. Second, the weak asymp-
totics

1 I iO inO I’ i[2(5) lim e )-e O(do., e )- do-(0)= 0

always holds whenever (1) is satisfied. (See [2, V.4].)
In the following A will denote a closed interval in [-2zr, 2zr], A is its interior and

z is the corresponding arc on the unit circle. If P is a polynomial then/5 denotes the
polynomial whose coefficients are the complex conjugates of the corresponding
coefficients of P. The polynomial q* (do.) is defined by

q * (ao., z )= q,(do., z ).

We have therefore by (5)

1 I ,(do.,eio(6) lim Io )-D(&r, e’)-l &r(0) 0

provided that (1)holds.
LMMA. Let o. be such that (1) is satisfied. Let A and A1 c A be given. Suppose

that o. is absolutely continuous on A and o.’(t)= 1 ]:or cA. Then ]’or every fixed
k 0, 1,..., n-lo(do., z
Further (4) holds uniformly ]’or z

Proofi Fix A_ so that A1 c Ac Ac A. By a result of L. Geronimus [3]

(7) q* (&r, e’)= D(&r, eo)- + o(1)

uniformly for 0 e A. Because of the assumptions D(d, e)- is continuous on . We
have

d
io) <

d 0)(a,e (a,e -(a,e II + ?(a,el.
Therefore by the local version of Bernstein’s inequality (see [1, p. 896])

dk i)lmax -q* (do’, e
0Ax

_-< const In k max Iq * (do’, e i)- q,/-g,,l (do’, ei)[ + n
O.A

Consequently for k 1, 2,.

dk

(8) [:(dg, e’)[ =o(n k)

k/2 max Iq,,/-.(do’. e’)l].
0A
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uniformly for 0 A 1. Hence }q*.(k)(do., z)l o(n k) uniformly for z ’1 if k _-> 1 is fixed.
Now we have

(p,, (do’, e iO) e i" q * (do’, eiO).
Differentiating this identity and using (8) we obtain for k 1, 2,. .,

d
g

(9) dog q,(do’, ei) (in )g e i’ o * (do’, ei)+ o(n g)

uniformly for 0 A1. This is also valid when k 0. Replacing differentiation in 0 by
differentiation in z and using the fact that (9) is valid for every k we obtain (4).

THEOREM. Let o" satisfy (1) and let z e i be fixed. Assume that o" is absolutely
continuous near O, 0< m <=o’’(t)<-_M < oo for 10- t[ small and (2) holds. Then for every
fixed k 1, 2,... the asymptotic relation (4) holds true.

Proof. Pick up a sufficiently small neighborhood A of 0 and define o’1 by

do’(t) for t A,
do’l(t)

dt for e A.

Let the function g be defined by

1 for t A,
g(t)

o.’(t) for A.

If A is small enough then do" gdo’1, 0 < m g(t) <M < m and

I’_ (g(O)-g(t))2dt<"
Note that o’ satisfies the conditions of the lemma. Let us expand o,(do’) into Fourier
series in l(d). We have

(10) .(d, z)= .(d,e")K.(d,z,e")d(t)

where
n

Kn (do’l, z, y) E qpl(do’1, z) l(do’1, y).
/=0

Differentiating (10) by z and using the fact that q.(do’) is orthogonal with respect to
gdo’1 we obtain

lI0’o)(d, z) - o.(&r,e")o.(&r,e")d(t)o)(dra, z)

+2 .(d, e")K._(da, z, e") 1- g(t)]
g(0)J

dl(t).

Using the Christoffel-Darboux formula we obtain

(1-z;)K,_(dl, z, y)= (dl, z) (dl, y)-,(dl, z) ,(dl, y).

(See [2].) We get

dk dk-1

(1-z;)Kn-l(dl, Z, y)-kf dzk=,iKn_l(dl, Z, y)

()(d, z) (dl, y)-)(dx, z)n(dl, y).
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Therefore q)(do’, z) (z e i) can be written as

o)(do", z)= A +B + C

where

and

A (,(nk)(do’l, Z)" G (On(dO" e q,,(do’x, e ). 1-

B q*()(dra, z)-- q,(d(r, e") q* (dcr,, e").

1-g(t)/g(_6O)]1 e i(-
&r(t),

1-g(t)/g(O)
&rl(t)i(O--t)1-e

1 I) it)
dk-1

it) --it 1 g(t)/g(O)
C= k o,(&r, e dzk l K,-x(&rx, z, e e l_ei<O_o dcr(t).

We will estimate A, B and C separately. First we consider A. We will show that the
integral in A converges as n + oo. Write r and rl as

O.S=r + +er, crl=rl+erl+r

where a, s and/" refer to the absolutely continuous, singular and jump components
o.j o’ and dorespectively. It is clear from the construction that r o’x, gdo’l. It

follows from (5) that

lim [q,,(do’,, eit)[2o’, (t) dt 1

(or, is either r or or1). Therefore

lim Iq,, (do’,, eit)12d[r*, (t)+ or/, (t)] 0

must hold. Since the function

1-g(t)/g(O)
f(t)= l

1- e

is uniformly bounded on the support of d(r + cr )we obtain

lim q,, (do-, e") 0(do’, e") f(t) d[o’ (t)+ o’{ (t)] O.

Now fix e > 0 and choose > 0 so that 0 + A1 c A and

1

27r o-
If(t)lZg(t)-I dt < e.

We have

1
lo,,(do’, e")o(&r, e")f(t)l &r(t)

27r

[2@[
0+8

it)[ 11/2 [. f
0+8 11/2-< Ire, (&r, e 2g(t) &r(t) [f(t)lZg(t)-1 &r(t)

0-8 "0-8

max Iq,, (dO’l,
tA
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which by the lemma is O(x/7). Using (5) we obtain that

1 IO it) itlim
-,1>8

p.(dcr, e p.(dcrl, e ) f(t) dcr’ (t)

27rl Io-,l>8 D(&r, "")- D(dcr, e ")-f(t) dcr(t).

Letting e 0 we get that

1 fo
2"

i,) itlim c#.(dcr, e q.(dcr, e f(t) dcr(t)= 0

exists and equals

1 " ,)_D(&r, e D(dcr, e")-f(t) dcr (t).
2rr

Because D(dcrl)- is bounded and D(dcr)- L:(dcr), and f L:(dcr), p is finite and
independent of k. Applying the lemma we finally obtain

(11) A po (do’, z)+ o(n k)

as n-+oo where the number p does not depend on k. The expression B can be
estimated in a similar way. The only difference is that this time we have to apply both
(5) and (6). We write

Repeating the above argument and using (6) we see that the first integral on the right
side converges to 0 as n -+ oo. The second integral is a Fourier coefficient of a function
belonging to L2(do’). Thus the second integral also converges to 0 as n-+oo. Using
again the lemma we obtain

(12) B =o(n k)
as n -+ oo. In order to show that

(13) C=o(nk)
as n -+ we use Cauchy’s inequality. We get

’dzk_ Kn-l(dtrl z,
1 e i(-‘)

g(t)- dtrl(t).

By the lemma,

dk-lglZ- ")12=k-iK.-(&r, z, e <_-- const n2
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for 10- tl small and by the conditions

lim
1 I I-g(t)/g(O)l

2

--,o t-01<e 1 TN= g(t)-1 do’l(/) 0.

Therefore we have to estimate

1 I Idk-1 u)121l--g(t)/g(O)122rr t-ol>- dzk- gn-l(do’l, z, e
1 e(-

g(t)- do’l(t)

for fixed t > 0. But this is less than

const. --- dzk_iK,_l(dO’l, Z, e i’) do’l(t)=const. Iq. z
j=0

which is O(n-1) by the lemma. Hence we have proved (13). From (11)-(13) we
obtain

-k _(k-k-(k(do’,Z)=pn q.(do’l z)+o(1) (nc)n qn

for k 0, 1,... fixed where O is independent of k. By the lemma
-k (nk)(do’l Z) Z (do’l )+ (1)n (,19 -kq9 Z 0

as n eo. Therefore

n--()(do’,, z)= z on (do,, z) + o (1)

and the theorem follows from Freud’s result which was formulated in the beginning.
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A COMBINATORIAL APPROACH TO SOME POSITIVITY PROBLEMS*

MOURAD E. H. ISMAILt AND M. V. TAMHANKAR

Abstract. We give a purely combinatorial proof of the nonnegativity of the integrals

o
e-XxL(’x)I-’((1-’)x)L(x) dx and e-:XxL(x)L(x)L(x) dx,

where a, k, m, n are nonnegative integers and I e [0, 1]. We also state the combinatorial equivalent of a

conjecture of H. Lewy. This is done by applying the Master theorem of MacMahon.

1o |ntroduetion. In their study of discretization of the time dependent wave
equation in two dimensions, K. O. Friedrichs and H. Lewy needed the positivity of the
coefficients A (k, m, n) in

(1.1) {(1-r)(1-s)+(1-r)(1-t)+(1-s)(1-t)}-= A(k,m,n)rsmt
k,m,n =0

in order to show that the finite difference approximations to the solution do converge to
a solution of the wave equation. The question of the positivity of A’s is very simple to
state and surprisingly turned out to be difficult to prove. G. Szeg6 [13] solved this
problem using Sonine type integrals for Bessel functions. Szeg6 was also able to
generalize this problem in several directions. He also observed that, Askey and Gasper
[2], the coefficients A(k, m, n) can be expressed in terms of the simple Laguerre
polynomials {L, (x)}=o as

(1.2) A(k, m, n)= e-3XLk(x)L,(x)L,(x) dx.

The generalized Laguerre polynomials {L(x)}-_0 have the generating function, Szeg6
[14]

(1.3) L(x)t" (1- t)--1 exp
-xt

n=0

and satisfy the orthogonality relation, [11 ],

(1.4) e_XxL(x)LO(x)dx
F( + 1 + n),,, a> 1.

n!

The simple Laguerre polynomial Ln(x) is L(x). The Laguerre polynomials are often
called Rook polynomials; see Riordan [12]. Askey and Gasper [2] observed that, due to
the orthogonality relation (1.4), the coefficients A (k, m, n)are linearization coefficients
in

e-2XLk(X)e-2XL,,(x) A(k, m, n)e-2XL,,(x),
n=0

and proceeded to study the numbers

(1.5) A"(la.; k, m, n)= e x ,(x)L(x)L(x) dx,

* Received by the editors July 27, 1977, and in final revised form December 7, 1977. This work was
supported by grants from the National Research Council of Canada and from McMaster University Research
Board.
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Because of the well-known formula, Rainville [11, p. 209],

(1.6) Ln(xy) y,. (1 +a),,(1--y)n-ky k

z,(x)
k=O (n-k)!(1 -t)k

the nonnegativity of A(/z; k, m, n) for some /z implies the nonnegativity of
A (; k, m, n) for all > 0. The following are three results on the sign behavior of
these coefficients.

THEOREM 1.1 (Askey and Gasper [3]). The numbers A(2, k, m, n) are nonne-
gative for all k, m, n 0, 1,. , if and only if a >(-5+)/2.

THEOREM 1.2 ebbi and Gillis [7]). The numbers (-1)kA (, k, n, n) are nonne-
gative for n=O, 1,. and k=O, 1,. ,n.

Quite recently T. Koornwinder [9] proved
THEOREM 1.3. Let

B(n, e-XxL:(Ax )L((1- A )x)L(x dx.

Then B (n, m, k O for a O and O A I. Furthermore if O < A < I then
B(O,m,n)>O.

Theorem 1.3 was iterated by Askey, Ismail and Koornwinder [5, Thm. 1]. Using
the orthogonality relation (1.4)one can easily see that

+"kB(n,m,k)L(a).L(Ax)L((1-A)x)=
=o F(a + 1 +k)

Going back to the Friedricks and Lewy conjecture, immediately after Szeg6 [13]
settled it, Kaluza [8] published an "elementary" proof of that conjecture and obtained
some monotonicity properties for the coecients A (k, m, n). Although Kaluza’s proof
is elementary, in the sense that it uses only elementary series manipulations, it depends
on a very tricky way of combining various powers of r, s and t. It is probably fair to say
that the impression one forms by reading Kaluza’s paper is that Kaluza’s method is too
tricky to work in any other problem. One purpose of the present work is to give Kaluza’s
paper another chance by systematizing his method. While doing so we shall give
combinatorial proofs of Theorems 1.1 and 1.3 when a is a nonnegative integer. Our
proofs use a powerful tool given by MacMahon, which he calls the Master theorem; see
MacMahon [10, pp. 93-98].

THEOREM 1.4 (the Master theorem). Set

V, de (I AX),

where I is the n n identity matrix, A (aii)ii= and X, (xii)ii= , xii xi . Then the
coecient ofx x " in the power series 1/V, is the same as the coecient ofthe same
term in the expansion of

(alex1 +... + alex.)... (a. lXl +." + a.x).
In 2 we start by proving Koornwinder’s theorem, Theorem 1.3 for a

0, 1, 2,.... The proof we give is purely combinatorial and uses only the Master
theorem and the binomial theorem. This is followed by a similar proof of Theorem 1.1
for a 0, 1, 2,.... In ff 3 we mention an interpretation of the numbers A (2; k, m, n)
and B(k, m, n). In 4 we discuss an open problem of Lewy and point out its
combinatorial equivalent. Although we do not offer a solution to this open problem, we
hope to eventually get a solution by this approach. The present work is a continuation of
the work started in Askey and Ismail [4], and in Askey, Ismail and Koornwinder [5].
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2. Combinatorial results and proofs. We first prove Theorem 1.3 then proceed to
the proof of Theorem 1.1. In both proofs, we first obtain a generating function for the
triple sequence under consideration by using the generating function (1.3). Then we
apply the Master theorem to transform the problem to a combinatorial one. Finally
using elementary manipulations we handle the combinatorial problem.

Proof of Theorem 1.3 for a 0, 1, 2, . A generating function for B (k, m, n)
can be obtained as follows

xY, Be(k, m, n)rksmt e 2 rkL(Ax)sL((1 A )x)t"L(x) dx
k,m,n =O k,m,n =O

L((1-A)x)s" L:(x)t" dx.
m=O

Using the generating function (1.3)we get

B"(k, m, n)rks’t" {(1-- r)(1--s)
k,m,n =0

-+--------+ dx(l-t)}’- x exp -x 1-
1-r 1-s

( Ar=++(1-A)s_t)}--1-1-’(a/l) (1-r)(1-s)(l t) 1/1_r
F(a + 1 ){ 1 (1 A )r As Art (1 A )st + rst} x.

Because a is a nonnegative integer, it then suffices to show that the rational function
{1 -(1 -A )r-As-Art- (1 -A )st + rst}-1 has nonnegative power series coefficients. It is
not too difficult to see that

V3 1-(1-A)x1-Ax2-AXlXa-(1-A)X2Xa+XlX2X3
if we choose the corresponding matrix A3 of the Master theorem as

1 A -x/A (1 A -x/ \
A3 -(A (1 A A -4i "A).- -4-a 0

So, it remains to show that the coefficient of rkst in [(1-A)r-A(1-A)s-
t]k[-4A(1-A)r+As-4i-At][-r-41-As] is nonnegative. This is a
combinatorial problem and can be proved as follows’

[(1 A )r 4 (1 A )s 4/][-4a (1 x )r + As 1 At][-r 41 As]"

() (m)(-1)" E [(1-X)r-4a(1-A)s]’(-t)-i

[-4A (1 A)r + As]i(-41 At)-i[r +1 As]"

(--1)+m+" (--1)i(3
i,]

=(-1,+=+" (-l)’+o()(m)(i+j)
(2)rP+qsi+l+n-P-qtk+m-i-iA(q+2i+k-p)/2(1--A)(p+n-q+m+i-D/2.
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(a)Here we follow the standard convention that the bionomial coefficient
b

is zero if

either b or a- b is a negative integer. From the above computations we see that the
coefficient of rks"t can be obtained by letting p + q k, +/" + n p q m and
k + m -/" n. Therefore for k + m -> n

BO(k, m, n y. (_ l ),+p() ( m ) (k + m n). k +m-n-i p

( tl )A 2k+m_n_i_t(1 l )n_k+p+
k-p

=A2k+m_,(l_A),_k(k+m--n),n,{ ()( m )/2km
(-1)’[(1-A)/A]’

n-k+i
>-_0.

Clearly B(0, m, n)> 0 if 0 < A < 1. This completes the proof.
Note that in the process of proving Theorem 1.3 we actually proved that the

coefficient of rks"t" in [(1-A)r-x/A(1-A)s-x/t]k[-x/A(1-A)r+As-x/t]"
[-x/r-x/L-s] is B(k, m, n). Now we prove Theorem 1.1.

Proof of Theorem 1.1 for a 0, 1,. . First we compute a generating function for
A" (2, k, m, n). Straightforward manipulations similar to the first steps in the proof of
Theorem 1.3 yield, see also Askey and Ismail [4],

2
XY. A (2; k, m, n)rksmt" e Y L’(x)rk Y. L(x)s

k,m,n=O k=O m=O

L(x)t" dx
=0

{(1 (1 (1 ,(2-1 r s
r.._ s.._ -_.

1-r 1-s

hence it suffices to consider the case-a 0. Thus

2 Y. A(2, k,m,n)rks"t"={1-1/2(r+s+t)+1/2rst}-1.
k,m,n =0

Next we look for a matrix A3 such that the corresponding determinant V3 of the Master
theorem is

V3 1 1/2(r + s + t)+ 1/2rst.

The matrix A3 is certainly not unique, see Askey and Ismail [4], and

1
1 -1A3=

-1 1

is one such matrix. Hence A(2, k, m, n) is a positive multiple (= 2-k-"-") of the
coefficient of rks"t" in (r s t)k (--r + s t)" (--r s + t)". The last step in the proof is to
establish the nonnegativity of the coetficient of rks"t" in (r-s-t)k(--r+s-t)"(-r
s+t)". Let C(k,m,n) be the coefficient of rksmt" in (r--s-t)k(--r+s--t)"(-r-s)".

(n) t"-i(r-s-t)k(-r+s-t)"(-r-s)i.Clearly (r-s-t)(-r+s-t)’(-r-s+t)"=i=o
]

Therefore the nonnegativity of C(k, m, n) will imply the nonnegativity of A(2, k, m, n).
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The nonnegativity of C(k, m, n) can be established exactly as in the last part of Theorem
1.3. Indeed it is the special case A 1/2 of Theorem 1.3 and the proof is complete.

With reference to the remark made in the Introduction about Kaluza’s proof for
Theorem 1.3, it should be noted that the use of the Master theorem and the manipula-
tions in the proof of the Theorem 1.1 capture and systematize the essential idea of
Kaluza’s proof.

3. Weighted permutation problems. The combinatorial approach to the problems
discussed in the preceding sections reveals their combinatorial nature. The numbers
A(tz k, m, n) can be interpreted as the number of certain weighted permutations. Let
us consider the following derangement problem. We have three boxes containing k, m
and n objects, respectively. We rearrange the objects in such a way that the number of
objects in each box remains unchanged and no object remains in its own box. One can
easily see that there is a one-to-one correspondence between derangements and ways of
obtaining the monomial xyz in (y + z) (x + z)" (x + y)". Indeed the coefficient of
xy"z in (y + z) (x + z)" (x + y)" is the number of derangements. Askey, Ismail and
Rashed [6] used this idea and the generating function (1.3) to show that

(nl, n2,""" ,nk)=(--1)k e-L,,(x) L,,(x)dx,

where (nl, n2,"" ", rig) is the number of derangements of objects in boxes with ni
objects in the jth box, - 1,..., k. These derangements are really weighted permu-
tations. In this case a permutation has weight zero if an object remains in its original
box, otherwise the permutation has weight 1. As another example we consider the
numbers of Askey and Gasper

A(2; k, m, n)= e-2XLk (x )L,,, (x )L, (x ) dx.

We have seen, in 2, that A(2; k, m, n) is a positive multiple of the coefficient of
) )" %x y z in(x-y-z (-x+y-z (-x y+z)".Thecoefficientofx y "in(x--y--

z)k (--X + y Z)" (--X y + Z)" has the following interpretation. Consider three boxes
with k objects in the first box, m objects in the second box and n objects in the third box.
Rearrange the objects so that the number of objects in each box remains unchanged. To
each permutation attach the weight

(-- 1 )number of objects changing boxes.

It is easy to see that the coefficient of xky"Z in (x y z)k (--X + y Z)" (--X y + Z)"
equals the number of these weighted permutations. Another combinatorial inter-
pretation of A (2; k, m, n), in terms of distances in a Hamming scheme, can be found in
Askey, Ismail and Koornwinder [5].

As Askey, Ismail and Koornwinder pointed out in [5], the numbers

B(k, m, n)= Io e-XLk(AX)Lm((1-A )x)L"(x) dx’

have a combinatorial interpretation. We have three boxes containing k, m and n
objects, respectively. As we have seen, in 2, B(k, m, n) equals the coefficient of
kxyz in

[(1-a.)x-.,/a.(1-a)y-.,/zlk[-4a(1-a)x + ay 41 azl"[-4x 41 ay]".
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Thus the third box is a derangement box in the sense that all the objects originally
occupying it must move to other boxes. The reader can easily figure out the weights.

For more examples and related results we refer the interested reader to [4] and [5].

4. A problem of I-I. Lewy. The finite difference approximations to the time
dependent wave equation in three (space) dimensions lead to the following four
variable analogue of Friedrichs and Lewy’s problem.

Conjecture 1 (H. Lewy). If

[(1 r)(1 s)(1 t)(1 u){(1 r)(1 s)+ (1 r)(1 t)/ (1 r)(1 u)

(4.1) +(1 s)(1 t)/ (1 s)(1 u)/ (1 t)(1 u)}]-I
E(k, l, m, n)rkstt’u ",

k,l,m,n =0

then E(k, l, m, n)>-O.
The early coefficients in the power series expansion of

{(1 r)(1 s)/ (1 r)(1 t)/ (1 r)(1 u)/ (1 s)(1 t)/ (1 s)(1 u)
+ (1- t)(1- u)}-1

are positive but the later coefficients do change sign, because Huygen’s principle holds
in three-space. The factor {(1-r)(1-s)(1-t)(1-u)}-1 is an averaging factor that
makes the early positive terms count more than the later terms. This fascinating
problem of Lewy was mentioned in Askey [1] and in Askey and Gasper [2]. The
following is a combinatorial equivalent of Lewy’s conjecture.

Conjecture 2. Let

Y2 ix/’
Y3 " 12 2 1

Y4 --14 xfi- ___1

144 12 2

S

and let G(kl, k2, k3, k4) be the coefficient of rklsk2tk3u k" in ylkly2k2y3k3y4k4. Then

G(kl, k2, k3, k4)>-O
O-kj<-ti

for all lj, 0 _-< lj, 1 _-</" _<-4.

The equivalence of conjectures i and 2 follows from the MacNahon’s Master theorem,
since

1-1/2r -s -x/-it 12u

-r 1-1/2s -t

ir

124ri -s 1-1/2t -u

r -is

144 12
1 1/2(r + s + + u)+ (rs + rt + ru + st + su + tu

[(1 r)(1 s)+ (1 r)(1 t)+ (1 r)(1 u)+ (1 s)(1 t)+ (1 s)(1 u)
+ (1- t)(1- u)].
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We conclude this section by proving that the 4 4 matrix appearing in Conjecture 2
is essentially unique. This is not the case in all the previously mentioned problems; see
Askey and Ismail [4]. Let

1 ar es ht -ju
e’ r 1 bs -jet ku

h’r f’s 1- ct gu

-f r -k’s -g’t 1-du

1-1/2(r+s+t+u)
+ (rs + rt + ru + st + su + tu).

If we let r 1, s u 0 we see that a 1. Similarly b c d 1/2. Now let r s 1,
u 0. This proves ee’= and similarly if’= gg’= hh’ kk’= ]’= . Thus

es ht -]u

1-1/2s -ft -ku

s
1 t gu

12f

1-1/2r

12e

12h

r s -t

12/" 12k 12g

1-1/2(r+s+t+u)
+(rs + rt + ru + st + su + tu).

The substitution r s 2, u 0 implies 12e2f2 + h2 0; hence h Aef where A
+x/ii. Similarly k Izfg, ] vhg where/x +x/-i-i, v +x/Ji. Clearly, by rescaling, we
may take e f =g 1. If in the resulting identity we let r s- u 2 we arrive at

1 a av /, 4 (/2, /,*)2

9 9/, 108 9A 3av

Assuming that/x 8a, v ca, where 6 + 1, e + 1, we can rewrite the above equation
as

that is

1 6 e 3 e (3--e)2
1 +---+--
99999 98e

8
6=2e-26

e

which holds only when 6 1 and e 1, since the only admissible values for e and are
+ 1. Thus there are only two matrices corresponding to A +x/ii. The entries in these
two matrices are complex conjugates, which is expected because their determinants are
real. This shows that, up to a complex conjugation, the matrix appearing in Conjecture
2 is unique.
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ON THE DIFFUSION OF IMMISCIBLE FLUIDS IN POROUS MEDIA*

C. J. VAN DUYN’

Abstract. From the mathematical formulation of the diffusion of two immiscible fluids, we arrive at a

nonlinear two-sided degenerate parabolic equation. Existence, uniqueness and a weak maximum principle
are proved for the Cauchy problem in the half plane x I, > 0. Furthermore, it is shown that the solutions
of a class of Cauchy problems converge towards a similarity solution as c and the rate of convergence is

discussed.

1. Introduction. We shall discuss some mathematical aspects which arise in the
study of the diffusion of two immiscible fluids, e.g. water and oil, in a porous medium,
under the following preliminary assumptions: the flow is laminar and one-dimen-
sional, the medium is isotropic and homogeneous and the fluids are incompressible.
Let Si, 1, 2, denote the saturation of the fluids and ki(Si) and vi their coefficients of
conductivity and velocities, respectively.

Then, the equation which describes the saturation of one of the fluids as a
function of position and time, is found by combining the continuity equation

1
OSi
+--=0, i=1,2,
Ot Ox

Darcy’s law

0(I)
(2) l)i ---ki(Si), i= 1, 2,

Ox

and the complementary conditions

and

Sl-+" S2 1,

(4) p2-pl=pc(S1).

Here g, which depends linearly on the pressure pi, is the piezometric head of the
fluids and pc(S1) is the capillary pressure; see Bear [3] and Morel-Seytoux [10].
Condition (3) expresses the assumption of only two phases, while the last condition
indicates the pressure difference across the interface between the two fluids. Combin-
ing (1) to (4) we obtain an equation which consists of three parts: a flow term, a
diffusion term caused by the capillary pressure in the pores and a gravity term [3, p.
468].

In this paper, we shall assume the flow term and the gravity term to be negligible
and confine ourselves to the diffusion process. Putting S(x, t)= u(x, t), we obtain

(5) ut=(D(u)Ux)x,

where the subscripts denote partial differentiation and

kl(u)k2(1- u) dp,:(u)
k(u)+kz(1-u) du

D(u)=

From the properties of the medium and the fluids, [3, p. 451], we know that the
diffusion coefficient is not uniquely defined. This is caused by the effect of hysteresis in

* Received by the editors June 3, 1977, and in revised form January 3, 1978.
t Department of Mathematics, Delft University of Technology, Delft, the Netherlands.
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the pc (u )-curve the difference between drainage and imbibition. However, in this
paper we shall neglect this effect. Further, it follows from physical consideration that
dp(s)/ds < 0 for all s [0, 1] and that the functions kl(s) and k2(s) are positive for s > 0
with k (0) k2(0) 0.

Thus we shall consider D(s) to be uniquely defined on [0, 1], such that D(s)>0
for s e (0, 1) and D(0)= D(1)= 0. However, this means that equation (5) is degenerate
parabolic. In a neighborhood of a point (x, t) where 0 < u < 1 it is parabolic, but near
points where u 0 or u 1, it is not. These degeneracies can cause perturbations to
have a finite speed of propagation. Moreover, at the interface, where the regions in
which u 1 and u e (0, 1) meet, ux may not be continuous. A similar discontinuity can
occur at the transition from a region where u e (0, 1) to one where u 0. It is therefore
necessary to generalize the notion of a solution of (5).

We shall discuss (5) in the strip Sr (-oo, oo)x (0, T], where T is some fixed
positive number, which may eventually tend to infinity. Along the lower boundary we
prescribe

(6) u (x, O) Uo(X ), -o < x < o,

where Uo(X) is a given function, which is defined, real and continuous on (-oo, oo) such
that u0 e [0, 1]. Set

b(u) D(s)ds.

Then, following Oleinik, Kalashnikov and Yui-Lin [11], we shall say that a function
u(x, t), defined on St, is a weak solution of the Cauchy problem (5), (6) if:

(i) u is real and continuous in St, with values in the interval [0, 1];
(ii) b(u) possesses a bounded generalized derivative with respect to x in St;
(iii) u satisfies the identity"

(7) IIs {(x((U))x-(’u} dx dt= IR ((x’ O)u(x) dx’

for all (e cl(r) which vanish for large Ixl and for T. In 2 we shall establish
existence and uniqueness of a weak solution of the Cauchy problem, and we shall
prove a weak maximum principle.

Equation (5) has a similarity solution, which tends to one as x -eo and which
vanishes as x +oo. Let rt x(t+ 1)-1/2. Then, if we look for solutions of the form
u(x, t)= ]’(rt), we find that " must satisfy the equation

(8) (D(f)f’)’ + 1/2rlf’ 0 on R,

where a prime denotes differentiation with respect to r/. At the boundaries we require

(9) f(-oo) 1, f(+oo) O.

Van Duyn and Peletier [4] showed that problem (8), (9) has a unique solution which is
monotonically decreasing. Moreover, three cases can be distinguished.

Io 11D(s)(10) A. D(s)
ds < oo, ds < co.

s 1-s
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Then there exist numbers a-, a + with -c < a- < 0 < a + < such that

f(r)= 1 for r/ (-, a-I,

(11) 0 <f(r) < 1 for r/ (a-, a+),

f(r/) 0 for r/ [a +, c).

Io I D(s)
(12) B. D(s)= c, =o.

s 1-s

Then f(r/) (0, 1) for any r/ R.

C. Two combinations of the previous cases.

In this case there exists only one number a R, and either f(r/)= 1 for r/e (-, a] and
f(r/) (0, 1) for r/ (a, ) with a<0, or f(r/) (0, 1) for r/e (-c, a) and f(r/)= 0 for
r/ [a, o) with a > 0.

In 3 we shall show that in all three cases, convergence of a solution of (5), (6)
towards the similarity solution will occur as c, if Uo(X) has the same asymptotic
behavior as f(x) for large values of Ix I.

We shall obtain two types of estimates. An integral estimate of the form

IR ]t(rl, t)--f(rl )l drl O(t-l/a) as --> c,

where we have set iT(r/, t)=-u(x, t), and secondly, pointwise estimates whose form
depends on the three above mentioned cases. We find

mo

B

Co

f(x(t+l)-/)

f D(s) dsl= O(t_l/2)"
Ju(x.,) s(1-s)
rx’+)-

D(s) ds 0(t-1/2)
au(x,t)

Either f f(x(t-1)-l/2)D(s) ds] =O(t-1/2),

ft(x(t+l)-I/-)D(S) ds O(t_l/a)or
au(x,t) S

and all these estimates hold uniformly in x [.

2. Uniqueness and existence of the weak solution. We start with the following
uniqueness result:

THEOREM 1. There exists at most one weak solution of the Cauchy problem (5),
(6).

Proof. Since the proof is identical to that of Theorem 1 of [11], we shall omit it
here.

To establish the existence of a weak solution of (5), (6), we use a constructive
method, which is based on the one Oleinik, Kalashnikov and Yui-Lin [11] introduced
in proving the existence of a weak solution of equation (5), in which D(s)>-O and only
vanishes at s -0. First we write

(13) v (x, t) qb (u (x, t)), Vo(X 4 (Uo(X)).
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Then problem (5), (6) becomes

(14)

(15) v(x, 0)= Vo(X) on R.

In [7], [11] the existence of a weak solution of problem (14), (15)was proved by
approximating the initial function v0 by a sequence of C functions, defined on
expanding intervals, which are bounded away from zero. They were obtained by
adding to Vo a small quantity and smoothing the result. A corresponding sequence of
smooth solutions, defined on an expanding sequence of cylinders, was then shown to
converge to a function v which had all the properties required of a weak solution.

In our problem, the function D(s) vanishes for s 1, as well as for s 0. It is
therefore necessary to construct a sequence which is bounded away from both zero and
one. Moreover, whereas in [7], [11] the convergence followed at once from a mono-
tonicity argument, we now have to rely on the Ascoli-Arzela theorem. This required an
equicontinuity property, which we shall establish first.

About the initial value function Uo, we shall assume that u0 [0, 1] and that it is
such that Vo(X) is uniformly Lipschitz continuous on (-c, o). In view of (13), this
implies that there exist positive constants Lo, Mo such that

0= b(0) <- Vo(X) <- b(1) Mo,
and

(16) lvo(X)- Vo(y)l Lolx Y for any x, y R.

Then (16) enables us to construct a sequence of functions {v0,n(x)}--1, whose
properties are given in the following lemma:

LEMMA 1. Let Vo(X) satisfy (16). Then there exists a sequence of functions
{Vo,n(x)}=l with Vo,,,(x) C([-n, n]) such that"

(i) Vo,,, vo as n c, uniformly on bounded intervals;
(ii) Mo2-"-1 <_- Vo,, <--Mo(1- 2-’-1) ]:or all n >- 1;
(iii) Vo,,,(x) Mo(1- 2-n-l) on f-n,-n + 1] LI [n 1, n] for all n >- 1;
(iv) IVo,,,I <-L for all n >- 1, where L >-Lo.
Proof. Let pC(ff), p>-O, Rp(x) dx= 1 and set, as usual, for any e >0,

o(x)=-o(xe-).
Next define to C() by

(17) to,(x) f vo(y)p(x dy,

and consider a sequence {ek}=l, with Ek "- 0 as k , and the sequence of functions
{hk(x)}=l, defined by

(18) hk (x) to (x) {to,k (x)- 1/2Mo}2-k.
Then it is easy to see that:

(i) hk C(R) for all k _>- 1;
(ii) hk Vo as k , uniformly on I;
(iii) Mo2-k- =< hk <- Mo(1 2-k- 1) for all k => 1;
(iv) [h,[<_-Lo for all k >- 1.
To complete the proof, we define the elements of the sequence {Vo,n}--1 by"

(i) Vo.n(x)= h,(x) for Ixl<_-n-2 and for all n >-3;
(ii) Vo,,(x)=Mo(1-2-n-X)for n-l<=lxl<=n and for all n=> 1;
(iii) Mo2-’-1 _-< Vo, (x) <_- Mo(1 2-"-1) and Iv ,, (x)] <_- L for n 2 -<_ Ix -<- n 1 and

for all n _-> 2, where L >- Lo.
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In what follows, we shall assume that D C([0, 1]) C1+(0, 1) for some a

(0, 1]. Since d’(s) D(s) > 0 on (0, 1), it follows that there exists a continuous function,, with t/," R[b]--> [0, 1], such that ,(b(u)) u" i.e. O=b-1. Now, for a given n ->_ 1, we
consider the following mixed initial boundary value problem:

(19)

(20)

(2a)

where a(s)= D(q(s)).

vt a (V)Vxx in Q. (-n, n)x (0, T],

v(+n, t)= Mo(1 2-"-1) for e [0, T],

v(x, 0)= Vo..(x) for x 6 f-n, n],

LEMMA 2. Problem (19)--(21) has a unique classical solution v.(x, t) in ., i.e.
v. C2+ (O.), such that2

(22) Mo2-"- _<_ v. (x, t) <_- Mo(1 2-"-1) ]:or all (x, t)

and

(23) IV.x (x, t)[ <- max {L, Mo} for all (x, t)

Proof. In view of the regularity of D, it can easily be seen that a
C([0, Mo])f’)CI+(0, Mo). Now, let d(s) be a C1+(-o, c)function such that d(s)=
a(s) for s [Mo2-"-1, Mo(1- 2-"-1)] and d(s)s [1/2m, 2M] for s 6 (-, ), where
m, M min, max {a(s): s s [Mo2-"-x, Mo(1 2-"-1)]}. Then we consider the equation

(24) vt (V)Vxx in Q.,

together with the data (20) and (21).
Since (24) is uniformly parabolic, it follows from [9, p. 564] that problem (24), (20)

and (21) has a unique solution v, C2+(0,). Moreover, by the maximum principle it
follows that Mo2-n-1 <= v,(x, t) <-Mo(1 2-"-1) in 0,, so v, is a solution of (19)-(21) as
well. Writing equation (19) as

(25) v,=c(x,t)v.x,

with c(x, t)=a(v(x, t)), an elementary computation shows that c, Oc/Ox C2((.).
Therefore, by a result of the linear theory [5, p. 72], we find that v. C2"1(Q.). Since
it is clear that we have v.x C(Q.), we can apply a standard barrier-function argument
[11, p. 675] to equation (25) in order to obtain the gradient estimate (23).

Thus we have constructed a sequence of smooth functions {v. (x, t)}, each satisfying
(19)-(21), which are bounded and Lipschitz continuous with respect to x in the
corresponding cylinder Q., with a constant which does not depend on n.

Furthermore, each v,, satisfies the linear, uniformly parabolic, equation (25). This
enables us to apply a theorem of Gilding [6] about the HSlder continuity of solutions
of parabolic equations with respect to t. We obtain

(26) [v,(x, t)-v,,(x, to)l <---C[t-t01 l/z,
for all x [-n, n], t, to [0, T] and It-to[ -< 1. Here, the constant C depends only on
max {L, M0} and sups(o.1)D(s).

Therefore, if we fix I=> 1, we know that the set {vn(x, t)}n_-i is bounded and
equicontinuous on Qt. Hence, by the Ascoli-Arzela theorem, there exists a continu-

Here C1+(0, 1) denotes the set of functions u C1(0, 1) with H61der continuous first derivatives
(exponent a), [9, p. 8].

For the definition of C2+’ (tn), see [9, p. 7]..
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ous function 5x(x, t) and a convergent subsequence {vnj(x, t)}, with ni>-L such that
vnj(x, t)o x(x, t) as nj- eo, uniformly on Q. Then, by a diagonal process, it follows
that there exists a function v(x, t), defined on ST, and a convergent subsequence,
denoted by {Vk(X, t)} such that Vk(X, t)o V(X, t) as k oo, pointwise on T. Since this
convergence is uniform on any bounded subset of ST, the limit function v is continuous
on ST. The continuity of v also follows from (23) and (26). We have

Iv(x, t) V(Xo, to)l <- B(lx x0l + It-
for all (x, t), (Xo, to)ST with It-t0[=< 1. Here B =max{L, M0, C}. Bounds on v
follow from (22). We find

0 <-v(x, t)<=Mo in S.
In order to return to the original dependent variable u, we define the sequence

{Uk(X, t)} and the function u(x, t)by"

{Uk(X, t)}= {P(Vk(X, t))} and u(x, t)= (v(x, t)).

Then, by the continuity of , we have Uk(X, t)
and this convergence is uniform on any bounded subset of ST. Since v is continuous
and v [0, M0], it follows that u is continuous and u [0, 1].

It now remains to prove that u is the desired weak solution" i.e. we must prove
that v b(u) has a bounded generalized derivative with respect to x in ST and that u
satisfies (7).

Let recl(T) be an admissible test function, and let K_>-I be such that
supp r c QK.

Then, for k =>K, it follows from (23) that {Vkx} {(&(Uk))x} is a bounded sequence
in L2(QK). Hence, there exists a subsequence {(4)(Uk,))x}, with k>=K which con-
verges weakly to a bounded function p L2(Q:). Thus we have

(, (ck(Uk,))x)- (, p) as k-,

for all C (Q:), where (.,.) denotes the inner product on L2(Q). However, since

(,I,, (4(u,))x)=-(’I’x, 4(u,)),
and because Uk,- U as kl oo, uniformly on Qr, we obtain

(,, p) (,I,x, 6 (u)),

for all e C (O:). Hence p is the generalized derivative of b (u).
Because the functions 4(Uk,) are classical solutions of (19), we have

+K

rio {xfDx(Ukt)-- tUkt} dx dt f_ (x, O)Uo,kt(X) dx.
K K

Now, letting kt eo, we obtain (7). Because r has been chosen arbitrarily, we may
conclude that u is indeed a weak solution.

Summarizing, we have the following result:
THEOREM 2. Let Uo be a continuous function on , such that Uo [0, 1] and

b(Uo(X)) is uniformly Lipschitz continuous on ff. Further let D C([0, 1])(3 CI+’(0, 1)
for some t (0, 1]. Then there exists a weak solution of the Cauchy problem (5), (6).

As a supplement to the existence proof we have the following regularity result:
THEOREM 3. Let u be a weak solution of the Cauchy-problem (5), (6) and let

(Xo, to) be a point in ST where U(Xo, to) (0, 1). Then there exists a neighborhood N of
(Xo, to) such that u C’(N).
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Proof. Let (Xo, to) be a point in $7- where 0< U(Xo, to)< 1. Then, if {Uk} is the
convergent sequence constructed in the existence proof, there exists a positive number
6 and a neighborhood No of (Xo, to) such that 6 < Uk (X, t) < 1 6 in No for all k => K.
Here K has been chosen such that No c Qk for k -> K.

Next we write equation (5) as u,= (c(x, t)ux)x, where c(x, t)= D(u(x, t)). Now,
since every Uk for k >=K satisfies this equation in No and because c(x, t) (c’, c"),
where c’, c" inf, sup {D(s)" s (6, 1 6)}, we can apply a theorem of [9, p. 204]. We
obtain for a neighborhood N1 = No of (Xo, to): Uk C(II) for k ->K and/3 (0, 1],
where the H61der coefficient and exponent do not depend on k. But then
c Co() and it follows from the linear theory [5, p. 72] applied to equation (25) that
Vk, Vkx, Vkx and Vk, exist and are HiSlder continuous in N with exponent/3 for all
k>__K.

A second application of the linear theory [5, p. 64] to equation (25) in a
neighborhood N2 c N1 gives: Vk C2/(2) for all k => K, where IIvl12/ is uniformly
bounded with respect to k. Hence, v C2/(2) and therefore u C2’a(/2).

Because of the particular choice of the initial function (21), it is an easy task to
prove a maximum principle for the weak formulation of the Cauchy problem (5), (6).
This maximum principle will prove to be useful in determining the asymptotic
behavior, as --> , of solutions of (5), (6).

TI-IEOREM 4 (Maximum principle.) Let U and u2 be two weak solutions o]: the
Cauchy problem (5), (6) with initial values uol and Uo2, such that Uox, Uo2 6 [0, 1] and
b (Uol (x)), b (Uo2(X)) are uniformly Lipschitz continuous on R. Suppose Uo(x) >-_ Uo2(X)
]:or all x . Then Ua(X, t)>= u2(x, t) for all (x, t)

Proof. Because Uo(X) => Uo2(X), we have vol(x) _-> Vo2(X) and, in view of (17),
Ol(X)->w2(x) for x. Now, since H(w,k)=ok-{wk-1/2Mo}2-k is a monotonic-
ally strictly increasing function of wk, it follows from (18) that hak(X)>=h2k(X) for all
x R. Therefore, we can construct the functions vol,, and Vo2,, such that vol,n(x)=>
Vo2.,,(x) for all x f-n, n] and for all n _-> 1. Applying this to the mixed problems
(19)-(21) and using the maximum principle for this classical problem, we obtain
vx,,,(x, t) >-_ l)2,n(X, t) for all (x, t)e Q, and for all n >= 1. Therefore DI(X, t) >= /.)2(X, t) in
Sr and hence Ul(X, t)>= u2(x, t)in St.

3. Asymptotic behavior. We start this section with a theorem which is closely
related to the phenomenon of mass-conservation. We shall follow a method which has
been introduced by Gilding [8], in proving mass-conservation for solutions of the
equation ut (u")xx + (u")x.

THEOREM 5. Let u and u2 be weak solutions of the Cauchy problem (5), (6),
with initial values uol and Uo2. If

then

luox<x)- uo <x)l dx <

{u(x, t)- u(x, t)} dx {Uo(X)- Uoz(X)} dx

Proof. Define the new initial data

for all [0, T].

(27) /

Uo (0)= max {Uo(X), Uo2(X)},

(28) u (x)= min {Uo(X), uoE(x)}.
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+Clearly, Uo and u satisfy the conditions from Theorem 2. Let u (x, t) and u-(x, t)
+denote the weak solutions of (5), with initial data Uo and Uo, respectively. Then, since

+
u0 (x)=> u (x)on , we obtain from the maximum principle

+u (x, t) ->_ u-(x, t) in St.
Next, let {ai(x)}=l be a sequence of functions in C(), such that

ai=l for ]x _-< i, 0_<-ai-<l fori<-lx]<-i+l,

c=0 for Ixl=>i+ 1,

where a:(x) is uniformly bounded with respect to => 1 and x , and for fixed
toe (0, T], let {/j(t)}.l be a sequence of functions in C([0, T]), such that

j(t) (I.IISI) ds)/(f+o (s)ds)
where

B(s) exp {- 1/(1 s2)} for Is < 1,

B (s) 0 for Is --> 1.

Since a(x). Bi(t) vanishes for t= T and for large values of Ixl, it is clear that
r(x, t)= a(x)./i(t) is an admissible test function for all _-> 1 and for all ] _-> 1. Then,
we substitute r, u /, uo and u uo into the integral identity (7) and subtract. This
yields

ff a,{4)(u+)-x(U-)} dx dt

(29)

=/[ a,{u+- u-}dx dt+ [ ai(x)i(Ou (x)-u (x)} dx.

Now, by the definition (ii) of a weak solution, we can write the left-hand side of (29) as

-ff a,",{(u+)-(u-)} dx dt.
S

Then, letting ] m, we apply the dominated convergence theorem and find

ai(xu+(x, to)- u-(x, to)} & ai(xu (x)- u (x)} &
(30)

f fs a"(x’(u+)-’(u-)I dxdt’
tO,i

where

Sto. ((-i- 1,-i)U (i, + 1))x (0, tol.

Now, the right hand side of (30) can be estimated by

I Is a{4)(u+)- (u-)} dx dt
tOol

_--< sup Ice’(x)l.SUps(o,)D(s).ff lu+-u-ldxdt<=A <oo,
x(i,i+l) d dSto,i

because u / and u- are bounded by definition and the measure of Sto., is bounded.
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Therefore, from (30), we obtain"

{u+(x, to)- u-(x, to)} dx < oo if and only if {u- (x)- u (x)} dx < oo,

for any to e (0, rl. Let +2 lUol(x)- Uo2(x)l dx < oe. Then since u u lUol- Uo21
we can integrate (30) with respect to to. We find

+ (x)- u (x)} dx < A. T,ai(x){u+(x, to)- u-(x, to)} dx dto T {Uo

for all _-> 1. Therefore u /- u- LI(sr). However, this means that

fI_ {u+-u-}dxdt-0 asioe, forall to(0, T].
tO,i

So from (30), letting - oo, we obtain

(31) {u+(x, t)- u-(x, t)} dx {u (x)- u (x)} dx

for any e [0, T].
Returning to the original dependent variables, we can repeat this procedure to

obtain (30), where the functions u + and u- are now replaced by U and u2. Then, the
right-hand side can be estimated by

].II
S

O{(/,/1)--(U2)} dx dtl<= IIs Ic’l" {& (u +) & (u -)} dx dt,
tO,i tO,i

which tends to zero as oo, for all to (0, T], and the proof is complete.
Convergence, for oo, of a solution u of the Cauchy problem (5), (6) towards the

solution f of problem (8), (9) can now easily be proved. From (31) and the
maximum principle, it follows that

(32) lu (x, t)- uz(x, t)l dx luol(x)- Uo2(X)l dx,

for all e [0, T].
Now let Ul(X, t)=- a(rl, t) be the weak solution of (5), (6) with initial value Uo(X),

and let u2(x, t) f(rt) be the weak solution of (5), (6) with initial value f(x), which, by a
uniqueness argument, is the solution of (8), (9). Then, if

I_ luo(x)-f(x)l dx K <

it follows from (32), letting T tend to infinity, that

f_ [d(rt, t)-f01)l drl <=K(t+ 1)-1/= for all

In order to prove the pointwise estimates, we start with the following observation.
Let the initial value Uo satisfy the conditions mentioned in Theorem 2, and let there
exist numbers b and b-, with -oo < b-< b < oo, such that Uo(X)= 1 for x -0% b-],
Uo(X)e [0, 1] for x (b-, b /) and Uo(X)= 0 for x [b /, oo). Further, let the diffusion
coefficient D be of type A. Then it is clear that there exists a number c (0, oo), such
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that f(x + c) <- Uo(X) <= f(x c) on R. Hence, by the maximum principle

f((x +c)(t+ 1)-l/2)<=u(x, t)<=f((x-c)(t+ 1)-1/2) for all (x, t)S-r.
Therefore, we can estimate

I I f((x-c)(+l)-/) D(s)
ds

f(X(t+l)-l/2) D(s)
ds <-

,(x.,) s(1-s) .lf((x+c)(t+X)-/2) s(1-s)
(33) f((x-c)(t+l)-/z) D(s)

ds +
df((x+c)(t+l)-1/2) S df((x+C)(t+l)-1/2) 1 S

for all (x, t)e St. Next, we use an argument of [1, p. 372]. We know from [4], that the
solution of (8), (9), with D of type A, satisfies D(fOq))" f’(r/)--> 0 as rt ’ a + and r/ a-,
and [(r/)--> 0 as rt ’ +a [(r/)-> 1 as r/$ a Therefore, if we integrate equation (8) from
a- to r/, where r/ (a-, a+), we find

D(f(n))f’(n) - stf (s)

So

D(f07))lf’(rt)l= f’() d <=- _1’1" If()ld

-< 1/2 max {la-I, a+} {1-f(r/)},

since f’()is negative on (a-, a/), and

_D(f’Oq ))f’(r/) =< 21- max {la-I, a+}.
-f(n)

Because of (10) we may integrate this expression from r/= al to r/= a2, with a2 > al
and a x, a2 (a-, a+), to obtain

fa,l) D(s) ds <- 1/2 max {[a [, a+}(a2 al).(34)
(a) 1 s

Now, letting a2 ’ a + and ax ,a-, we can see that (34) holds for all ax, aR. In the
same way we can find, see [1, p. 372]

Ir()D(s) ds<_1/2max{la_l,a+}(a2 al) forallax, a26.(35)
f(az) S

Thus, combining (33), (34)and (35), we find

(tc(t+a)-/) D(s) ds] <-K"(t+ 1)-1/2 for all (x, t) S,
,(x,O s (1 s)

where K’= 2c max {]a-[, a+}.
Summarizing, we have proved the following convergence theorem"
TI-IZOM 6. Let u be a weak solution of the Cauchy problem (5), (6) and let D

be of type A. Further, suppose there exists a number c (0, c) such that f(x + c)<=
Uo(X) <- f(x c). Then, there exists a constant K’, depending on the data of the problem,
such that

f(x(t+l)-’/=, D(s) )--1/2
(.t) s(1 s) ds <- K’(t + 1

holds for any [0, c) and uniformly in x .
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To conclude this section, we shall assume that D(s) is of type B. About Uo we
shall assume that Uo (0, 1) and that there exists a constant Co (0, oo) such that
f(x + Co) <= Uo(X) <= f(x Co). Then by the maximum principle

f((x +Co)(t+ 1)-/2)<-u(x, t)<-f((X-Co)(t+ 1)-/2) in S-.
Now, we estimate

f(x(t+ )-/2) f((x-co)O+ )-l/2)

f f
au(x,t) df((x +co)(t+ -/)

(36)
F((x Co)(t + 1 )-/)- F((x + Co)(t + 1)-/),

ff(n)for all (x, t) St, where F(rl) J0 D(s) ds.
Then, using some results obtained in [4], we know that F’(r/)s C(N) and that

IF’()[ <-- IF’ (0)1 for all r N. Moreover, for IF’ (0)1, which is physically the flux at x 0,
bounds are known in terms of integrals over the diffusion coefficient. Therefore, from
(36) we find

f(x(t+l)-/2)

(37) I| D(s) ds[ <=K".(t+ 1)-/2 for all (x, t)s S-,
i-au (x, t)

where K"= 2colF’(0)l.
Thus, we obtained the following result:
THFOREM 7. Let u be a weak solution of the Cauchy problem (5), (6), and let D

be of type B. Further, suppose there exists a number Co (0, oo), such that f(x +Co)<=
Uo(X) <= f(x Co). Then, there exists a constant K", depending on the data of the problem,
such that

ff(x(t+l)-l/2) D(s) ds <- K"(t + 1)-/2,
au(x,t)

holds ]’or any [0, oo) and uniformly in x R.
Obviously, if D is of type C, one uses either (34) or (35).
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ON WEAK EQUIVALENCE OF LINEAR SYSTEMS
AND FINITE STATE SYSTEMS*

C. T. MULLISt AND R. A. ROBERTS’r

Abstract. It is shown that finite state machines exist which are weakly equivalent to linear systems, for
some nontrivial definitions of weak equivalence. Two systems, one linear with state space 1", the other with
a finite state space, operate on the same stationary uncorrelated input sequence u. The two systems have
real valued output sequences y and . Notions of weak equivalence are formulated which involve sets of
mixed second moments of the input and two outputs. "Power spectrum equivalence" requires that
E(yty,+) E(t+) for all r. "Cross-correlation equivalence" requires that E(uy+) E(ut+,) for all r.

The interdependence of these and other notions of weak equivalence are studied. The existence of weakly
equivalent finite state systems is constructively demonstrated for a standard class of linear systems.

1. Introduction. Let us agree to call the system

(1) Xt+l AXt + but, yt cxt, -c< <,
where xt n, and ut, y, a linear system although it is more properly called a
discrete-time, finite dimensional, non-time-varying linear system. The vector x, is the
state, u, the input, and y, the output. We assume that the system (1) is stable, (i.e. its
eigenvalues satisfy I1< 1), controllable, (i.e. pA kb 0 for all k -> 0 implies p 0), and
observable (cAkx 0 for all k _-> 0 implies x 0). The system

(2) ,;bt+, f(d’t, u,), )t g (t), -< <,
is a finite-state system if b, {1, 2,..., m}, i.e. the state space is a finite set even
though the input ut and output t are real valued.

We shall consider the question "when are the systems (1) and (2) in some sense
equivalent?" The motivation for this question lies in the fact that physical simulations
of the ubiquitous linear system are performed on digital machines, which are in reality
finite state systems. The approximation is generated by discretizing.the linear system,
and, usually, the discretization error is negligible. This requires however that the
number rn of elements of be quite large. There are two questions which occur about
such an approximation.

First, how good an approximation can be obtained if rn is constrained, i.e. what is
the tradeoff between number of states and output error variance E(y,-,)2? This
question is the more practical one and is considered in [2] and [6]. In fact the problem
is closely related to the classical problem of discretization error in numerical analysis,
such as may be found in [3], [4].

The second question is more theoretical. What sort of notions of system
equivalence can be formulated so that the systems (1) and (2) are precisely equivalent?
We shall give some nontrivial formulations in this paper. These involve a "white
noise" test input, and mixed second moments involving the sequences {u,}, {y,} and
{,} which are then stationary second-order random processes.

It is obvious that the error y,-, depends on the nature of the common input
sequence {u,}. Since is finite, one can choose {u,} to generate an arbitrary error. In
order to generate a reasonable problem, therefore, one must choose a reasonable class
of inputs. There are three more or less standard test inputs for linear systems; a unit

* Received by the editors November 18, 1975, and in final revised form January 3, 1978. This research
was supported by the National Science Foundation under Grant GK-43138 and the Army Research Office
under Grant DAHCO4-75-G-0153.

? Department of Electrical Engineering, University of Colorado, Boulder, Colorado 80309.
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pulse, sinusoids and white noise. The unit pulse response and the frequency response
each characterize the input-output relation for a linear system. However, this i no
longer true for nonlinear systems. A white noise input, on the other hand, can
characterize a wide class of nonlinear systems and was proposed by Wiener [8] for this
purpose. We shall thus take {ut} to be an independent and identically distributed
random sequence with E(u,)= 0 and E(u2 )= 1. The distribution function of u is

(3) F(u)= Pr{u, <- u}.

The cross-correlation sequence E[u,y+,] of the input and output sequences of (1)
is known to be the unit pulse response of the system, under the conditions we have
imposed on {ut}. This fact provides an identification technique which has in fact been
realized in hardware. This suggests a notion of weak system equivalence. We shall call
the systems (1) and (2) cross-correlation equivalent if E[u,y,+] E[ut,+].

The autocorrelation sequence E[yty,/,] determines the power spectrum of the
output process. In many situations, such as signal generation, the output power
spectrum is the only important property of the system. We shall call the systems (1)
and (2) power spectrum equivalent if E[yy/+,] E[tt+,]. The problem of constructing
Markov chains with a real valued output having a specified power spectrum has some
precedence in the signal processing literature [5], [7].

We shall constructively demonstrate the existence of cross-correlation and power
spectrum equivalent finite-state systems in this paper.

2. Pulse response and autocorrelation sequences. The common input process {ut}
for the systems (1) and (2) is independent and identically distributed. Therefore, since
the right-hand sides of (1) and (2) do not depend explicitly on time, the state
trajectories {xt} and {b} are stationary Markov processes. So in fact, is {x,, b}. We
shall briefly discuss these processes and consider all mixed second moments involving
elements of the input sequence and the output sequences {y} and {t}.

The sequence {x,} is a stationary, second-order, En-valued process with mean

(4) E(xt)=O

and covariance

(5) E[xtx Tt+-] K(A’)r, ’r >_-0.

Here

(6) K AKAr + bb r E (Ab)(Ab)r.
k=0

(Since (A, b) is stable and controllable, the sum in (6) exists and K is positive definite.)
The scalar output sequence satisfies

(7) yt cxt Z h,ut-,,
-r=X

where

(8) h. & cA’-lb E[utYt+.,.], "r >- 1.

See also a recent paper by R. Brockett, Stationary covariance generation with finite state Markov
processes, 1977 Joint Automatic Control Conference.
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The sequence {ht} is called the pulse response for the linear system. The autocor-
relation sequence for the stationary process {yt} is

(9) r a_g. E[ytyt+.] cK(cA)T htht+.
t=l

for - => 0.
The sequence {t} is a stationary Markov chain taking values in cP -a---

{1, 2,..., m}. The next-state function f and distribution function F determine an
m m transition matrix O and an associated m x m matrix R via

O(, ’)= j dF(u), I {u" f(&, u) &’},(lO)

(11) R(, ’)= I, udF(u), I={u" f(, u)=’}.

(We will usually adhere to the convention that components of vectors and matrices
indexed by be identified by arguments. Subscripts will usually denote time.) We
have

(12)

(13)

Pt’{t+l- ’]t }-- )(, ’),

{utlet , et+ 1--" ’}
R(, ’)
0(6, ’)"

Let I denote the m-dimensional column vector whose components are all unity. Then

(14) O1=1

(15) RI=0

(since the input is zero-mean). The finite system (2) (or the matrix O) is ergodic if for
some t, every component of O is positive. (Note that ergodicity implies a "control-
lability" property, since for any pair of states in there will be a trajectory of positive
probability which joins them.) If O is ergodic, then O’--> lp where p is a probability
vector. The vector p is the unique solution to pl 1, pO p, and satisfies

(16) Pr{t=}=p()>O for all .
Let g be the output map in (2); alternately, the column vector whose eth component is
g(). Suppose that the system (2)is ergodic. Then the output process {1} has
autocorrelation sequence. _a_ E[)3,)3,+,]

(17) E p()O’(, ’)g()g(’)
4,,4,’

grDvOg, " >= O,
where

(18) Do =diag {p(1),...,p(m)}.

(We use this notation throughout. Note that if O is ergodic, Do is nonsingular.)
The state of a deterministic system characterizes an equivalence class of past

input sequences, motivating the use of the word "memory." Let us consider the
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memory (in the mean) that the finite-state machine (2) has of its past input.

E[u,-,14,,] E[E[u,-,lck,-, 4, 4,-,+1- 4",

(19) =2., [R (, ’].Q(, [p(O)Q(,’)Q’-l(’,,)]p(,)
=[pRO’-ID;’I(6t), r>0.

Using this result, we may compute the cross-correlation of the input and output
sequences for the finite-state machine. In analogy with the pulse response of the linear
system, define for r > 0

L & E[u,,+,] E[E[u,g(,+,)l,+,]]

(20) E P(6)g(6)[PRO’-aDa](6)

=pRO’-g.
We shall call the sequence {,} the statistical pulse response for the finite-state
machine.

One can express the expectation of the product of any two elements drawn from
the sequences {ut}, {yt}, {t} in terms of the sequences {h,}, {L}, {?,}. The sequence {r,}
is expressible in terms of {h,} (equation (9)). The only such expectation that has not
been discussed is

hu,-sE[y,,+,I E sl

s=l

where , 0 for r 0.

3. Weak system equivalence. Two systems are generally considered equivalent if
they can’t be distinguished externally; that is, identical inputs produce identical
outputs. We will call the systems (1) and (2) externally equivalent if

(22)

It is unreasonable to expect that external equivalence would be possible unless the
system (1) is somehow trivial. Therefore it is of interest to consider weaker notions of
equivalence. The following are of special interest in the theory of linear systems. We
shall call the systems (1) and (2)

(i) cross-correlation equivalent if h, n, for all r > 0;
(ii) power spectrum equivalent if r, ’, for all r >= 0.

Each of these notions of equivalence involve the systems (1) and (2) and the dis-
tribution function F.

One can compute the mean squared error E(yt- 33,)2 from the pulse response and
autocorrelation sequences as follows. Using (9), (17), and (21), we have

(23)

E(y,- t)2= ro- 2 Y h,L + ?o
"r=l

X (h,-L) +
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The two bracketed error terms in (23) have the following interpretation. Define an
"equivalent linear" system for the finite state machine to be the linear system defined
by

’=1

Then the first term in (23), namely

Ilh -/[I2 E(y, f,)2
is the mean squared error between the two linear systems. The second term

is the mean squared error between the finite-state machine and its equivalent linear
system. This can serve as a measure of nonlinearity, for the finite state system.

For a given next-state map L the output map g which minimizes E(y,-)2 must
agree with the conditional expectation, i.e.,

(24)
=1

Z h,(pO’-D;’)(4).

We will call this map the minimum variance output map. For machines with minimum
variance output maps,

(25)
t=l t=l

It follows that E[,t+,] E[yd,+,] (see (21)).
If the systems (1) and (2) are externally equivalent, then they are cross-cor-

relation equivalent and power spectrum equivalent. Furthermore (24) holds. The
following proposition considers the converse.

PgOPOSTION 1. Suppose that the finiw-staw syswm (2) is ergodic. The following
three’ stawments are incompatible in the sense that if any two hoM, then the syswms (1)
and (2) must be exwrnally equivalent.

(a) , h,, r 0 (Cross-correlation equivalence);
(b) g r,, 0 (Power spectrum equivalence);
(c) fi, E(y,I) (Minimum variance output map).
Pro@ If (c) holds, then (25) holds and for 0, we have

t=l

Consequently (23) reduces to

If (a) holds, then (23) reduces to

E(Yt )/,)2 ro

E(yt- :gt)2 fo- ro.
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If (b) holds, then ro=ro. Consequently, if any two of the three hold, then
E(y, )9,)2 0. Q.E.D.

Is external equivalence possible? Given the disparity between the state spaces of
the systems (1) and (2), it is obvious that if they are externally equivalent, then the
linear system must trivialize. The following proposition characterizes this situation.

PROPOSITION 2. There exists a finite state machine externally equivalent to the
system (1) if and only if {z" h 0} is finite, and there is a finite set U for which
Pr{u, U} 1.

Let U be the support of Pr{. }. Suppose that n max {z" h, # 0} < oo and that U is
finite. We may then take U", with obvious choices of f and g to construct a
finite-state machine externally equivalent to the system (1).

On the other hand suppose that E(y,-)9,)2= 0 for some finite-state system. Then
with probability one, yt can take on only finitely many values. Consider the input-
output map (7). We must have h 0 for some k > 0 since n _>- 1 and the system (1) is a
minimal realization. Assuming U is infinite means that u,_ can take on infinitely
many values, leading to a contradiction. Therefore U is finite. But U must contain
more than one element since ut has mean zero and variance one. If the set {z" h, 0}
were infinite, then the sequence {h0, hi," "} would contain infinitely many values
(since h 2). Therefore, the set of possible right hand sides of (7) is infinite; again a
contradiction. Q.E.D.

External equivalence is possible only in trivial situations. However, we shall show
( 6) that if (A, b) is stable and controllable and F(. is continuous, then there exist
finite-state machines which are cross-correlation equivalent to (1) and finite-state
machines which are power spectrum equivalent to (1). The construction of these
machines is via an "internal" approximation, wherein the state x, of (1) is estimated,
rather than merely the output yr.

4. Internal system equivalence. Let " - R be a map which assigns a point in
[n to each element b of the state space of (2), and satisfies

(26) c(4,)= g(b) for all b .
We will think of (b,) as an "estimate" for x,, and will call a machine described by the
maps (f, .f) an internal approximation of the system (1). Let be the n x m matrix
whose bth column is (b). Then the vector g with components {g(b)} is g (c.)r.

The idea of estimating the state of the linear system suggests further notions of
system equivalence. We will now list some of these and partially catalogue the
dependence of the weak equivalences in the list. If all hold, then the systems must be
internally equivalent, i.e. the covariance of the vector xt-(qbt) must vanish. In the
following, we assume that the system (2) is ergodic.

(El) E[(qb,)] E[xt] 0, or E P(b)(b) ’p 7- 0.

(E2) E[(qbt).f (qbt)r] E[xtx] K, or Y p(b)(b)(b)7" X’DpX"r K.

(E3)
,(4,,) E[x, lck,] (minimum variance condition), or

f( AX(DpQD-1) + bpRD- y AbpRO’Dp

(E4)

(E5) E[u,.f(b,+l)] =E[urx,+I], or
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PROPOSITION 3. I] (A, b) is stable and controllable, and O is ergodic, then
(i) E3 =>El;
(ii) E4 => E1;
(iii) E4, E5 =), internal cross correlation equivalence, i.e.

E[u,(,/.)] E(u,x,/.), > 0;

(iv) E2, E4 :z), internal power spectrum equivalence, i.e.

[(6,)(,/.)] E[x,x.], >_-0;

(v) E2, E3 z:), internal equivalence, i.e.

E{[x, (b,)][x, . (b,)] 7-} 0.

(vi) E3, E4, E5 :z), internal equivalence.
Prool (i) E[(4,,)] E[E[x,14,]] E[x,].
(ii) Take the expectation of E4 to get (A- I)E[(ckt)] 0. Since A is stable, 1 is

not an eigenvalue of A, and A- I is invertible.
(iii) E[utx,+] A-lb A-Xf((pR)7" (pRQ-I)7, E[u,(cb,+)].
(iv) K(A 7,f f(Dof( 7, (A 7,f YD,Q7, E,.,, [p(&)Q(b, b’)].f(b)(b’)r.
(v) Given E2,

But from E3

cov (x,- (c,))= K E[xt(b,)r E[. (b,)x f] + K.

E[x,x (t)7, E[E[x, lc,](ct)7,

(vi) In view of (v) it suffices to show that E3, E4, E5 ::> E2. Thus

ffDpf( 7- AXDpQX7- + bpR7-

A()D,’r)A 7- + bb 7-

Since A is stable, the solution K to (6) is unique, and therefore E2 holds. O.E.D.

5. A Markov chain approximation. In the preceding section certain notions of
weak equivalence were introduced. In 6 it is shown that the consideration of these
equivalence relations is not futile; for any linear system and suitably nontrivial input
there exist finite state machines which are either cross-correlation or power spectrum
equivalent. In order to construct such finite state machines, one is led to consider the
problem which is posed and solved in the present section.

Consider an ergodic finite Markov chain with state space ={1, 2,..., m},
transition matrix Q defined on , and trajectories {4t}. These trajectories satisfy
the Markov property and the fundamental conditional probabilities (12). Let "R" be a given mapping from the state space of the chain into the state space of the
linear system (1). The vector valued sequence {(4’,)} then depends only on the
trajectory of the Markov chain.

The problem posed in this section addresses the following question. Can the
Markov chain and estimator be constructed so that any sample sectuence (4,) is also a
possible trajectory of the linear system (1)?
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It should be clear that not every vector sequence is such a possible trajectory. There
must exist a scalar input sequence t, (for every sample sequence &t) for which

(27) (bt+l) A(t)+bat, for all t.

In other words, the vector (Ot+x)-A(Ot) must be a scalar multiple of the vector
b. If this is the case, then the random sequence tt is uniquely determined by (27). This
pseudo "input" is actually a function of the trajectory {&t}. (Therefore, the usual cause
and effect relationship of input and state are reversed.) For the linear system, the
present state xt and input ut are independent random variables. We shall require a
weaker version for tt, namely

(28)

Finally, in order to avoid trivialities we shall also require that

(29) o. __a E(t72) > 0.

An algebraic version of this problem is as follows’
Problem statement. Given (A, b) stable and controllable, find an integer m, an

ergodic transition matrix O, a state estimator function and a real matrix v, for which

(30) O(i,j)[(])-A(i)-bv(i,])]=O, l <-_i,]<-_m,

(31) E Q(i, ]). v(i, ])= 0, 1 <- -< m,

(32) ;(i) # 0 for some i.

The correspondence of this problem with the original question is established by
setting t v(&t, &t+l). Note that given (Q, ;) the matrix v is essentially determined by
(30); v(k, j) is arbitrary if Q(k, ])= 0. It is perhaps not obvious that (30)-(32) guaran-
tee that

(33) o.2= Y p(i)O(i,/’)[v(i,/)]2>O
id

(where p is the stationary measure for O). We will demonstrate this below. Consider,
for the present, certain properties of solutions.

Let be the n x rn matrix whose &th column is (&). Let/ be the m x m matrix
with components

(34) / (i, ])= O(i, ]). v(i, ])

in analogy with the matrix R in (11). We may then rewrite (31) as

(35) /1=0
which is analogous to (15). Multiply (30) by p(i) and sum over to get

(36) ’Dp ADpO + bpl.

This is analogous to (E3). Now sum (30) over ], using (34) to get

(37) A" ’OT

which is (E4). Multiply (30) by p(i)v(i, ) and sum over i,/" to get

(38)
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which is similar to (E5). Define

(39) / ’Do.T E[.(tt).(tt)T].

Equations (36), (37) and (38) may be combined to get

(40)

Since the only solution to the homogeneous equation Y A YA r is the trivial solution
Y 0, (6) and (40)imply that

(41)

It follows that there can be but two possibilities. Either 0, 2= 0 and 0, or
2X # 0, > 0 and K is positive definite. Thus if (32) holds, then>0 as claimed.

The random sequence {fit} is uncorrelated. To see this, write

(42) pO-ll
0 for z > O, (by (35)).

(This is a consequence of the Markov property.) Finally, consider the covariance
function for {(&,)}. Using (37) and (41) we find that

(43)

E[.(6t)(6t+.,.)T ffDpO.f(T

(Dp.,T)(A Tf-
=o.2K(ATf

2Thus, any special approximation for which o- 1 is (internally) power spectrum
equivalent to the system (1).

Construction. In order to find a special approximation, one must .first construct a
finite set of vectors {(&)} such that for each &, there is a &’ for which (4")-A(&)=
bv(qb, O’). Furthermore the set of all such v(&, &’) must contain zero in its convex hull.
This set will be constructed using a special basis for R". Given such a set, one may
construct a transition matrix Q such that (30) and (31) hold. It then becomes neces-
sary to verify that the transition matrix is ergodic.

Consider the following special basis for I". Let

and let

a(z)= z" + alz
n-1 +’’’ + a,, =det (zI-A)

Ok+l AOk + akb for k 1, , n 1.

Since (A, b) is controllable, these vectors are linearly independent. By the Cayley-
Hamilton theorem,

(44) An + anb a (A)b O.

Consider the lattice L of vectors whose components with respect to the basis {Ok} are
integer valued, i.e.

L= Y :k0k" :keT/,k 1,2,...,n
k=l
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If x L, then

Ax +bu=A kk +bU
k=l

(45) Y. k(Abk + akb)+ b u akk
k=l =1

U-- ak 11"[" k-lCk
k=l =2

Let

,.(t)=/ Ak-lbuk’[Uk[----<l for k=l,...,t/.
k=l

4(c)= U 4(t).
t>o

Since the eigenvalues of A satisfy IA[< 1, g(oo) is bounded. Impose the norm

Ilxlloo-max (161" f 1,,,,, n} where x
/=1

and choose M satisfying x (oo)=> Ilxllo < M.
LEMMA. For any x L, there is a trajectory of the system (1) which begins at x,

remains always in L, and passes through the origin in finite time, with
M(la ll + +

Proof. If x, ’--1 sci,4’i L, and u,- Yi=l aji, E Z, then X,+l L. Construct {ut} as
follows. If IIx,ll> M, then choose u, so that u,-Y.i=l ai:i, is an integer but lu, I--< 1/2. If
IIx,llo <-- M, then set u,- ,i= aii, 0. We will still have

i=1 i=1

We cannot have [[xt[[ >M for all t, since for each we would have xt Ax + zt, where
Zt l-,kt Ak-lbuk, ]Uk] < 21-. Therefore, since 2zt (t),

IIx, llo <- IIA’xllo / M/2.
But Atx 0. Thus there exists

" min {t" Ilxt[] < M}<

By construction, the Pl component of X+l will be zero, the 4’1 and 42 components of
x+2 will be zero, etc. (see (45)). In fact x, 0 for >- z + n. Q.E.D.

We may now construct Q and . Let

(46) U max 1, M lal

(Note that (44)was used in (45).)
Denote the set of points reachable from the origin via the system (1) with inputs

bounded by 1, in time by

U-- akk is an integer.
k=l

Therefore, Ax + bu is also an element of L, provided that
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Define L0 to be the set of all lattice points in L which are reachable via a trajectory of
(1) which begins at the origin, remains always in L, and satisfies [utl <- U for all t. The
set Lo is finite since all permissible trajectories are bounded by UM. Let m be the
number of points in Lo and define so that

(47) {(1),... ,(m)}=Lo.

For a given 4 s cI)= {1, 2,..., m} consider the possible solutions (4’, u) to the
relations

(48) (b’) A(q)+bu Lo, lul u,

Let J be the greatest integer in U. By the definition (46), J -> 1. By the construction of
L0 there are at least J solutions to (48) with u < 0 and at least J solutions with u > 0.
Define v(b, b’)= u whenever (48) holds, arbitrary otherwise. Let O be any transition
matrix satisfying O(4’, b’)>0 if and only if a solution (b’, u) to (48) exists, and
satisfying (31). This is possible because for each there are at least 2J solutions to (48)
(and thus at least 2J positive elements in the bth row of O). Furthermore, since the
numbers v(b, b’) associated with the solutions contain at least J positive and J
negative values, the nonzero elements of the bth row of O can be chosen so that (31)
holds. Because O(b, b’)>0 implies that (48) holds with u v(b, b’), equation (30)
holds. Finally (32) must hold trivially since the vector b must be in L0, and also
therefore one of the .(b).

Therefore we have constructed a Markov chain with transition matrix Q, a state
estimator 9, and a matrix v satisfying all the conditions of the problem except possibly
ergodicity.

Is (2 ergodic? The origin is an element of L0, and we may take (1)= 0. By
construction, O(1, 1)>0 since (b’, u)= (1, 0) is a solution to (48) with b=l.
Furthermore, by the definition of L0, and the fact that O(b, 4’) is positive whenever a
solution to (48) exists, there must be a path of positive probability from the origin
(4, 1) to any other state b’. But by the Lemma, there is also a path of positive
probability from 4’ back to 1. Let T be sufficiently large so that for any 4’ there are
paths of length => T from b’ to 1 and 1 to 4" of positive probability. Then for any pair
(b, b’) there is a path of positive probability of length 2T which begins at b, proceeds
to 1, remains there for a time and then proceeds to 4’ at time 2 T. Since every element
of oaT- is positive, (2 is ergodic. We have proved the following proposition.

PROPOS:ON 4. There exists a solution to the Markov chain approximation
problem.

Example. The construction of ((2, ) is no doubt grossly inefficient. There may be
much smaller (in the size of (I)) solutions. As an example, consider first order linear
systems (n 1) with 0<A < 1. Let b 1. We have L=Z, and () is the open
interval (-M, M) with M 1 /(1 A). Then U is given by

U=/1, ifA <1/2,
A/(1-A) irA->1/2.

Some analysis shows that

L0 {k s Z, -’ <= k -<

where e is the integer satisfying

U2-1 < ’_-< U2.
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For the case A < 1/2, the construction yields the following chain (which is also a solution
for 1/2 <-A < 1, even though the construction will produce larger chains for this ,range of
values of A).

/ [-1, 0, 11 (the points in Lo),

[vii] 0 1
-A 1 -A

A 1-A 0
Q 1-2q q

1-A A

(to satisfy (48)),

0<q<1/2.

This chain is ergodic with stationary measure

p [zr, 1-2zr, ,r], zr=q/(1-A +2q).

One may readily check to see that (30), (31), and (32) are satisfied.

6. Cross-correlation and power spectrum equivalence. In 5 we constructed a
Markov chain {t} with a vector-valued output {(,)} and a scalar-valued output
a, v(,, +1) so as to satisfy (27)-(29). In order to construct an honest finite state
system (2) we must reverse the cause and effect relationship between {,} and {if,}, and
relate t, to the actual input ut. In other words we must construct functions f and w so
that if

(49) ,+1 =f(t, u,),

(o) a, w(,, u,)

then (27)-(29) hold. Furthermore we must have

(51) Pr{,+l,}- O(t,

where (Q, 2) is the solution to the special approximation problem. We will assume
that the distribution function F is continuous.

Define the functions f: x and w: P x as follows. Let v be the matrix
which appears in (30). For a given e , let (O,..., 0,,) be a permutation of P for
which

(52) v(, 01) -< v(, 02) <-... <= v(, Ore).

Since F is continuous, we may choose numbers {ao,’’’, a,,/l} satisfying

F(a)-F(ak_) Q($, Ok), 1 k m.

Then [ and w are such that

(53) _<Uak{[(, U)=Ok,
w(, u) v(, 0).

By construction, the Markov chain defined by (49) will satisfy (51), and if tTt is
given by (50), then (27)-(29)will hold. Furthermore

(54) E[a,u,] > O.
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This positive correlation is due to the agreement in the ordering of the {ak} with the
order in (52). In other words u’> u=> w(b, u’)>-w(b, u)with strict inequality on a set
of positive probability.

PROPOSITION 5. If (A, b)is stable and controllable, and F is continuous, then there
exists a finite state system which is internally cross-correlation equivalent to the linear
system (1).

Proof. Let (Q, ) be a solution to the special approximation problem. Construct
the maps f and w to satisfy (53) for each b. Let tt satisfy (50) where {bt} is generated
by the finite state machine (49). Let r/= E[ut,] > 0. Define a "scaled" estimator

’() n-().
Since (27) and (28) hold, we have

and

E[’(bt+l)lbt] A’(bt)

E[Ut’()t+l)]-- -lE[ut(ft+l)]
E[u,(A(6,)+ba,)]

--b.

Therefore, for the internal approximation (L-’), the weak equivalences (E4) and
(E5) hold and by Proposition 3, we have internal cross-correlation
equivalence. Q.E.D.

We could modify this construction to obtain internal power spectrum
equivalence, but it is not really necessary since in this case the input is of no relevance.
As we mentioned below equation (43), we need only construct a special approxima-
tion for which

2r E[a

This is easily done by the obvious scaling ;’($)= ;($)/w2 of a given special approxi-
mation. Therefore we have the following.

PROPOSITION 6. If (A, b) is stable and controllable, then there exists a finite state
system which is internally power spectrum equivalent to the linear system (1).

We have constructively demonstrated the existence of internal cross-correlation
equivalent finite state systems and internal power spectrum equivalent finite state
systems when (A, b) is stable and controllable and F is continuous. The existence of
cross-correlation or power spectrum equivalent finite state systems follows by simply
defining , g(,) c(t).

Conclusions. The motivation for considering finite state machines (with real-
valued inputs and outputs) that are equivalent (in some sense) to a given linear system
arises from the widespread use of digital systems for the simulation of linear systems.
Fidelity in this context is usually phrased in terms of quantities such as the output
mean square error E(y-)2. This error variance can be zero only for certain trivial
cases. A different problem is formulated here. Namely, what kinds of equivalence
relations are there for which it is possible that a linear system and a finite state
machine can be equivalent?

Two nontrivial equivalence relations have been offered: cross-correlation, and
power spectrum equivalence. These relations involve two systems and a white noise
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input process. It was shown that for any stable linear system, if the distribution
function F is continuous, then there are finite state machines which are equivalent to
the linear system in either sense. (Not simultaneously, however, since Proposition 1
showed that this would imply external equivalence, and Proposition 2 showed that this
could happen only in trivial cases.)

As a corollary, it follows that any power spectrum obtained by shaping white
noise with a finite order linear filter can also be obtained with a finite Markov chain.
This has been an unproved conjecture.
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CONVERGENCE OF ’PERIODIC IN THE LIMIT’ OPERATOR
CONTINUED FRACTIONS*

ROBERT C. BUSBY? AND WYMAN FAIR?

Abstract. By straightforward analysis, we prove a convergence theorem regarding continued fractions
whose entries are members of a Banach algebra. If the entries converge fast enough to a certain fixed
element, convergence is assured. Under suitable other restrictions, a stronger theorem results.

1. Introduction. It was shown by Fair [1] that if A is an element of a Banach
algebra (by which we will always mean a Banach algebra with norm one identity I),
and the spectrum of A does not intersect (-oo, -1/4]; then the continued fraction (c.f.)

I A A
(1.1)

I+ I+ I+...

converges to an element K of (see (1.4) below) where AK is a root of the
polynomial XZ+X-A. In this paper we investigate the c.f.

I A1 A2(1.2)
I+ I+ I+...

in what Khovanskii [2] calls the ’periodic in the limit’ case, i.e. when the A, converge
suitably to an element A of . The c.f. (1.2)can be regarded as a ’perturbed’ version
of (1.1). We will usually write A,, A + E, and look for ’smallness’ conditions on the
perturbations E, which guarantee convergence.

In 2 we will prove our most general result. We say that the c.f. (1.2) is ’tail-end
convergent’ if there is an n -> 1 such that the c.f.

I A,, A,,+
(1.3) I+ I+ I+...

converges. We will prove that if the E,, form a series which converges in norm in
with sufficient rapidity, then (1.2) will be tail-end convergent. This result requires a
hypothesis on A which in general is slightly stronger than that required of A in (1.1).

In 3 we consider the case where the A,, (equivalently ) are commutative. We
do not, however, require any other conditions (such as normality or positivity)on the
A,. We show here that if lim,_. A, A then (1.2) is tail-end convergent. In fact we
actually show that if the E, are uniformly ’small’ and converge to zero in norm, then
(1.2) itself converges, from which the result previously stated is immediate.

This result is proven by modifying the argument of Khovanskii [2, pp. 62-65] in
which he proves a similar result for the case where the A, are complex numbers.
Actually Khovanskii proves (by a method essentially due to Pringsheim [4] that
when lim,,_,oo A, A, (1.2) will be tail-end convergent, except for particular A which
Occur as unspecified zeros of certain polynomials. We refine his argument very slightly
to remove this restriction; then we rearrange and modify it so that is may be applied to
elements of a commutative Banach algebra. At various steps we provide lemmas and
detours needed for these ’operator modifications’, but we will refer directly to Kho-
vanskii whenever possible to avoid needless duplication of his arguments. We
conclude this section with some notation and preliminary results.

* Received by the editors August 18, 1977.

" Department of Mathematics, Drexel University, Philadelphia, Pennsylvania 19104.
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Let A belong to a Banach algebra s4, and let tr(A) be the spectrum of A in 4. If
f(z) is an analytic function in some domain D containing tr(A), we define f(A) in the
well-known fashion using a ’Cauchy integral formula’ (see Naimark [3, ch. III]); then
ff(A) is an algebra homomorphism (with some care taken with domains) and
o’(f(A)) f(o’(A)). If B 4 and r(B)CI (-o, 0] , then we will always let q be
f(B), where f is the unique branch of x/ defined in the cut plane C--t(-o, 0] and
positive on positive real numbers.

Consider the c.f. (1.1) and define elements Pn and Qn (n ->_0) in inductively by
the formulas:

P0 P1 O0 L O1 I + A,

(1.4) en+l en + APn-x (n >= 1),

On+l=Qn+AOn_x (n_-> 1).

It can easily be shown by induction that if the On are invertible, then

I A AO:lPb =I + I+... +I

the nth ’convergent’ of the c.f.: thus:

We say (1.1)converges if all Qn are invertible and the sequence QIpn
(.5) converges in . If so, the corresponding limit will be called the value of (1.1).

Similarly consider (1.2) and define Rn and Sn(n =>0)inductively by:

Ro=R1 So I, S1 =I+A1

(1.6) Rn. Rn +An.IRn- (n 1),

Sn+x-’Sn’-l-An+lSn-1 (n --> 1).

Again if all Sn are invertible then

s-lRn(n >= 1)- I A A__...,
I+ I+... +I

(1.7)
We say (1.2)converges if all Sn are invertible and the sequence S-IRn
converges in .

Finally if is a Banach algebra, we let 2 be the Banach space /x, with norm
given by"

(1.8) I][ vU][] =max (IIUII, VII)

and let 2,2 be the Banach algebra of 2 x 2 matrices with entries from and ordinary
matrix multiplications (using the product in ), and where [Aii] ’2,2 is given the
operator norm relative to the obvious action of 2,2 on 42, i.e.

(1.9) [[[Aii][[ sup {I[A11U
IIull,llvIll

Since we may choose U or V to be independently equal to I or 0, we see that:

(1.10) II[A,]II max {IIA,II}.
1<=i,j_2
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2. The main result. We begin with some general lemmas, in all of which is a
fixed Banach algebra over the complex numbers.

LZMMA 1. Let re =[aii] and [Bii] be in sgz.2. Then IIA,-
i,j= 1,2.

Proof. For 1, 2, let

liI 0 ]8
0 q2iI

in 2,2 where 6ij is the usual Kronecker delta. Then by (1.9)we easily see that lie,l[ 1,
i= 1, 2. If 1<=i, ]-<2,

(by (1.10))

LEMMA 2. Let (Bn)l<_n<o be a sequence in and let e > 0 be given. Then"

(a) If Y,,= 111B,,[[-=$<oo, the infinite product ri,=l (I+B,) converges to an ele-
ment P in g, and

(b) S < In (1 + e ) => [1I P[I < e.

Proof. Define Bo to be 0, and for each integer n ->_ 0 let P, 1-I_-o (I + Bs). Then if
n>m>-O,

Pn-Pm=Bm+l +.. .+B,,+(
m+ <=i,i<-n

BiBi) +" + B,.,,+" B,,,

and so

IIP= P[i <= IIB+ xII + "+[IB.II+( E
m+ <-i,j<=n

[IB, IIIIBII) +’’" + IIB..+,II""" IIB.II

=( fi (l+llBkll))-l=<exp( IlBkll)-Ik=m+l k=m+l

(since 1 + a -< e when a -> 0). Since ,-_1 [IB,,II < oo, the above computation shows that
{Pn}o_-<,,< is Cauchy in s and so converges in s to an element P. This proves (a).

If we let m 0 and allow n to pass to infinity in the above inequality, we have
liP-/11--< exp (k=l IIBII)-1 < e and this proves (b).

LFMMA 3. I] fi, is an invertible element ol s and ]:or some B s, lib-All<
IIA-II-, then B has an inverse (in ]’act B-1= A-l(,,__o [(A B)A-]")).

Proof. See Rickart 15, Thm. 1.4.6].
We now refer to the notation and remarks of 1 concerning the c.f. (1.2). We

suppose that we have A such that o-(A)f-1 (-oo, -1/4] and A invertible. We

[I A] in sg22, and let P,, O,, R,, S, be as in (1.4writeA,,=A+E,,n_>-l. LetC=
I 0

and (1.6). Then from (1.4) it can easily be seen that:

(2 1) [O,, ]=Cn+I[I] in--z, (n =>1),
O._ 0
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and

(2.2) C,,+1= [Q, P,A]P, Pn-IA
Then the discussion following (1.1), and (1.5) imply that"

(23) 01C"+1= [ l OIP"A ]o-lp,, (o-lp,,)(O--11p,,_l)a

and

(2.4) lim 0-1Cn+=[ I KA], K KZA
where KA is a root of X2+X-A. Similarly by using (1.6) we can see that:

(2.5)
S,+x Sn-2J

hI- Fn
Sn--2

where

0 E,,] (n _-> 1) in ,52 2.(2.6) F,,=
0 0

By induction,

where we let Fo be the zero matrix Since C is invertible (in fact C-=
A-[ 0 -/A]) we can show that

-I

Thus

n--1

H (C+Fk)=C"+lH (I+C-n+k-lFn-kCn-k)
k =o k =o

(2.7)
L JLuJSn

where

n--1

C-n+k- -k C-k-(2.8) Z, [I (I + aF,-kC" )= rI (i + 1FkCk).
k=O k=l

In a completely analogous way we can show the following"

en-1

where

(2.10)
n--2

-n+k n-k-1Y. l-I (I + C F.-kC )= 1-I (I + c-kFkCk-).
k =0 k =2

Now, keeping all of the above notation, we can state the main result of this
section.
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THEOREM 1. Let A. A + E. in , with A invertible and tr(A
Suppose E.L1 IIE.II," < where . IIcIIIIc-ll,

Then the c.f. (1.2) is tail-end convergent.
Proof. Suppose first that we can find a real number e such that:
1) 0<e <21-;
2) e,l-e)<inf, [IQ-IP,AI,-C3) E __, [IE.IIv" <ln (1 +e)(I 1if-a).
Note that there are numbers e satisfying 1) and 2) since O-Ip,A is invertible for

all n and converges to the invertible operator KA.
We must show that with these assumptions, each S, is invertible and the sequence

(SIR,,)I <=n< converges in M. By (2.7)

Sn-1 0

with Z, a partial product of 1-Ik=l (I + C-k-IFkCk). By (2.6) and (1.9), IIFll IIEII for
all k. Then

E I[C--lFCll E IIC-1111111 < In (1 + e)
k=l k=l

Z]and so Lemma 2 tells us that Z,, converges in M2,2 to an element Z
Z21 Z22J

and

II1-211<o It is also clear that III-Zll<e for all n. By (2.3) and (2.7),
zlnl + Q21 21P.AZ. which by (2.4)converges to Z11 + KAZ21. Now by Lemma 1, we
have"

(2.11)
(a) ]]gln -II]<e for all n,

(b) [IZ < e for all n, [[Z21]I < e.

Since e < 1, (2.11) and Lemma 3 tell us that Z1,1 is invertible with inverse I+
(I-ZI, )+..., thus [[(Z )-ll[<--Ek=O[lI--Z11[lk,, 1/(1--e). Hence

fIZZ. -O’S.[i IIQ-Ip.AZ2.111 < IIO’P.Alle < 1 -e

(by hypothesis 2)=< [l(Zan )-11[-1 and so by Lemma 3, O-aS, (hence S,)is invertible for
each n. The hypotheses also imply that e/(1-e)<llKA[1-1 and so by repeating the
above arguments, we see that lim,,_.oo Q-Is,)=--Zll +KAZ21 is also invertible. Thus
lim,_. S10, exists.

[K K2A]One can show as with (2.3) and (2.4) that Q-aC" converges to K2 KaAJ as n

goooes to infinity. Thus b (2.9), Q-aR,, will converge if Y,, does; since
y.,=zIIC-FC-II[<__IIc-1IIE=IIE[I,/ <oo. (2 10) and Lemma 2(a)yield the con-

-1 -1 -1vergence of Y. Thus S. R. (S. O.)(O. R.i exists for all n and converges in M.
Now suppose the hypotheses of the theorem hold. Since y _-> 1, the sequence y" is

monotone increasing, and E.I IIE.II <. Choose n so large that

E IlE.II," < In (1 + e)(llC-111-’)

where e is any number satisfying conditions 1) and 2) stated at the beginning of the
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proof. Then

N-l+nE IIE-l+llv --< E
n=l n=l

E IIE.II" < In (1 + e)(llC-’ll-’),

and so by the first part of this proof, the c.f. (1.3) converges. By definition this means
that (1.2) is tail-end convergent, and we are done.

It may be that y will be difficult to find for certain algebras ,d. When ,d is an
algebra of operators on a Hilbert space H, we can estimate y directly in terms of A as
follows:

PROPOSITION 1. Suppose A A +E for all i, where A and the E are bounded
linear operators on a Hilbert space H.

Then (1.2) will be tail-end convergent provided =1 IIE,[Itx" < c where

2[-4 _171 + 1/211A --44 + IIm
-1In particular such convergence holds if lim,,_,oo eZIIEII <

Proof. We have regarded ,d2.2 as an algebra of operators on ,d_ and used the
corresponding norm, I1" (see (1.9)). We may also, in this case, regard 42,. as an
algebra of operators on Hif)H. If we denote the corresponding operator norm by II1" III
then we have,

(2.12) sup V/I[A1+Al.nII+IIA21/A2[[
11112+11.112 _-<

where s and /are vectors in H.
Now let , 7, a, and fl range over the unit ball in/4, E and F range independently

over the operators on H of norm less than or equal to one on H. Comparing (2.12)
with (1.9), we see that:

II[A,;]II sup {ll(m liE q- A 12F)11, [I(A21E + A2F)IlI}
E.F...

_--< sup {[[A xls +A 12r/[I, IIA2xa + A/II}

-< sup 4I[A 11" + A 12T/I[2 -[" IIA= /A227 [[2

III[A,]III.
We may now use standard Hilbert space results to compute norms, I11" 111. Note that

CC* (C* is the adjint peratr t C n H H)= [ (I +AA*)I ]isapositiveself
adjoint operator on HO)H, and so (I[ICIII)(IIIC-1111)2=IIICC*IIIIII(C-1)*C--III]
]IICC*IIIIII(CC*)-IlII =/zo/Ao, where /zo and Ao are respectively the maximum and
minimum (positive real) numbers in the spectrum of CC*. Since the operator entries
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of CC* commute, it is routine to show that

[1 ]-CC*}=-(A2-2)I-(A-I)AA*A tr(CC*)--det A
0

is a singular operator on H.
Clearly A 1 does not satisfy this conditon so we see that A o’(CC*)-

A(A 2)/(A 1)6 cr(AA*).
Now the maximum and minimum numbers in the spectrum of the positive self

adjoint operator AA* are 1133"11=-113112, and 11(33")-111-1=113-111-2, respectively.
Thus it is easy to see that/.to must be the largest root of the quadratic equation

A (A 2)= 113112, namely 1 + 1/2113112 / 1/2x/4 + 113114,
(h-l)

and ho must be the smallest root of the equation (-2)/(,- 1)= IIn-ll-a, namely
1+IIA-II-2-,/4+IIA-I1-4. Then ,=IICIIIIC-II<-2111CIIIIIIC-III=-, and the result
follows from Theorem 1 and the above computations.

Note that different specific estimates can be made for other types of Banach
algebras 54. Also one could modify the norm definition for operators in 542,2, given in
Theorem 1 (with some care) and achieve slightly modified results.

3. The commutative ease. In all of this section, 54 will denote a fixed com-
mutative Banach algebra with identity L Let A e d. Then we say:

(3.1) A is proper if tr(A) 0 (-, J] .
If A is proper in 54, we define elements U(A) and U’(A) in d by:

(3.2) U(A) 1/2I +1/2x/i + 4A; U’(A) I- U(A), where x/(. is the canonical
branch of square root defined in the Introduction. It is clear that the spec-
trum of U(A) does not contain zero when A is proper, and so U(A) is
invertible in

(3.3) Define V(A), for A proper, to be U’(A)U(A)-1.
By the spectral mapping theorem [5 Thm. 3.5.1] we see that the spectral radius

r(V(A)) (sup {cr(V(A))})of the element V(A) is less than one. In general, however,
this will not extend to the norm. W6 will say"

(3.4) A is strongly proper if A is proper and V(A)[[ < 1.

Note that if r(V(A)) V(A)]} or if 4 is a commutative C*-algebra (e.g. operators on a
Hilbert space or matrices) and A is normal in s4, then proper implies strongly proper.
In particular this is so if s4 is the complex numbers.

LEMMA 4. Suppose A is strongly proper and invertible in . Then for every
e, 0<e < 1, there is a 6 6(e)>0 such that if (An)ln<= is a sequence in s with"

(a) lim,_ A, A and
() Ila a. II--< ,

then there exists a sequence (U.)o_<.< in with"
(1) U,(I- U,+I)-- -An+l;
(2) lim,_,oo U, U =- U(A), and
(3) III- uu-111 < ; n 0, 1, 2,. .
Proof. This proof is simply a sight refinement and reorganization of computations

given by Khovanskii in [2, pp. 62-65]. Let M=IIV(A)I[< 1, and N=M1/3. Since
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0<N< 1, we can choose an integer k => 1 such that Nk+l(1-N)<e. Let 6 be
Nk(1--N)2[[A-I[I-a, and suppose (An)l=<n< is a sequence in satisfying (a) and (/3)
above. First we note that if Un s satisfies (3) above, then by Lemma 3, .UnU-1 (and
so U,,) is invertible. Moreover if we let W,, (U,, +A,,/I)U1, we can show, precisely
as in Khovanskii [2, pp. 62, 63] that

U- Wn (UUn Un -An+I)U
U’[(I- U,,U-)-(I-A,,+A-1)][I-(I U,U-)]-1,

i.e.,

(3.5) (I- W,,U-) U’U-[(I U,,U-)-(I-A,,+IA-)][I-(I U,,U-)]-.
Now IlI- uu-ll l-N, which implies that II[I- (I- uu-)]-ll_-<

Y.--o III- uu-’ll <= l/N, and so by computation (3.5), we have"

I[I- W,, U-1,I < ]IV(NA )ll([l/-,, U.U-1[]+[[I A,,+IA-I[I)
(3.6)

N=(III U,u_aII/III_A+A_I])"
Now by (a) and (/3) above, there must exist a sequence 0= nl< n2<’" of

integers such that if , is an integer, u>-nx, then IIA-A/II<N/-1
Thus

(3.7) u>_nx III-A+IA-III<Nk+x- (l-N)2.

We choose a, 0<a<l, such that 1-a<Nk+I(1-N)and define U0 to be aU.
Since U0 satisfies (3)above, we may let U1 Wo=(Uo+A)U. Then clearly Uo(I-
U1)=-A, and by (3.6) and (3.7) we see that III-UU-II<-N(N/(1-N)
+N (1 N)2) N /(1 N) < e. Now if 2 =</x -< n2 and we have defined Us for s </x
satisfying (1) and (3) above, we may let U,, W,_I. Exactly as above we see that
U,_(I U,) -A,, and that III u,u-11l <N /=(1 N) < e. When we let Un2+l
W,2, we see by (3.6) and (3.7) that III- U,2+1U-II <NN+:(1 N)+NN+(1 N)2

Nt’+3(1-N), and (1) continues to hold. In the same way we can define U,/, for
tz=2,..., (n3-n)), and show that I[I-U,+,U-[I<N+3(1-N). Continuing this
whole process by induction, we finally define the sequence U, for all n.

Since always, U,/x W,, (1) above holds, and the continuation of the above
estimates shows that"

III-U.+.U-’[I<=N++’(1-N) for/x=l,2,...,(nx+l-nx), h=0,1,2,...,

(3.8)

where in order to include the first term, we set no 1.
From (3.8) it is clear that (2) and (3) hold, and we are done. The above compu-

tations are quite similar to those in Khovanskii, and in spirit originated in the paper by
Pringsheim [4].

We will also need the following result"
LEMMA 5. Let B be an invertible element with Ilnll< 1. Then there exists a

6(B)>0 such that if (Bn)l<=n< is a sequence in with"
(a) lim._. B. B and
(b) lIB. B <- 6(B ) [or all n, then
(1) [or each n, tr,, I + B1 +BxB2 +" + BIB2" B. is invertible in and
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(2) o-, converges in M to an invertible element.
Proo[. Since IIBII< 1, 2(1 +I[Bll)-a > 1, and so we may choose 6 =- 6(B) so small

that (1-(3 + IIBII))-a <_-2(1 IIB[I)-a(1 + IIBII)-a.
For each n >_- 1, let D, Bn- B. Then

o’,,- E B* =IIDx+[(Da+Dz)B +DD]+...+[(D+...+D,,)B"-
k=O

+(0102+0103+’" "+Dn-lDn)Bn-2+ DaD2" D,][I

-<6+[2611BI1+62]+’"+ n6llBll"-a + 2 621IB +"" + 6

(6 + IIBl[)* IIBll*.
k =0 k =0

Thus

Now since IIBII< 1, I-B is invertible, and I-B"+1 is invertible. Then since
Bk =(I-B"+I)(I-B)-1, it follows that k--O Bk is invertible and its inverse is*-0

(I-B)(I-B"+a)-a=(I-B) Y-,=o B*"+I Thus II(E2=o n)-ll<llI-nll Y=o Ilnll"+
III-BII(1 IlBIl"+)- and so

(3.10) (= B*)-ll]-I >-- l-IlBlln+l >- 1-llBlln+.
0 IIt-BII l+lIBII

Now using (3.9), (3.10) and the definition of 6 we see that

=o (1 -IIBII)(I + [IBII) (1 -IIBII)

1-IIBH"+a[ 2 ] 1-1IB[["+1

1 -I111 1 + IIBII- 1 a + I111

Thus by Lemma 3, o-. is invertible. Now it is clear that or. is a Cauchy sequence and
thus converges to an element r of M. By extending (3.9) and (3.10) to the limit, we see
that

=o 1 (6 + I[BII) 1 -IIBI[

-1-11BII l+lIB]l
1

1
<_ B*

1 +llS[I o

and as before tr must be invertible. This completes the proof.
We note in passing that even if (b.)l.< is a sequence of complex numbers

converging to zero and lb.] < 1 for all n, in fact even if lb.] =<1/2 for all n, the sum
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bl + bib2 +" need not be nonzero. In fact, as Professor C. Rorres has pointed out to
the authors, one may take bl 1, bk -21-k(k > 1).

We now put the various pieces together to prove the main result of this section.
THEOREM 2. Suppose A is a strongly proper, invertible element of d. Let

(A,)l___,<o be a sequence in d converging to A.
Then the continued fraction (1.2) is tail-end convergent.

Proof. Let U- U(A) be defined as before, U’= I-U, V= U’U-1. Since IIVII<
1 by hypothesis, we may choose 8(V) as in Lemma 5. Then select e so small that
IIU-l[[e(1-e)-1 <min (1, 8(V)) and choose 8--3(e) as in Lemma 4. Let us suppose,
first of all that IIA-AnlI<-8 for all n _-> 1, and choose the sequence (U,,)o__<n<o in
accordance with Lemma 4. For each n, let U’, -I-U,,, and note that Lemma 4, (1)
becomes"

(3 11) U,,U’n+l -An+l (nO).

We now recall equations (1.6). Note that if we define R-1 0 and $-1 =/, the
initial values in (1.6) tell us that the inductive equation continues to hold for n 0.
Thus if we let D,,,n->-l, denote either R,, or S,,, then we see that D,,/I=
Dr,+An/lDr,-l(n =>0). By combining this with (3.11)we get: D,,-(U,, + U’,,)D,,_I+
U,,-I U,,D,,-2 0, n >_- 1 or

(3.12) (V,- UnDn_x) Un (Dn-x- Un-lDn-2), n >- 1.

Let n run through the integers from 1 to k and add the resulting equations,
getting:

D- UDk-1 U’k U’I (Do- UoD-1)
(3.13)

(UIU2" Uk)(Do-UoD-1)(UIU-; )(UU )"" (UnU- ).

If we now let k run from 1 to n and adjoin a simple identity, we get the system"

(D,, U,,D,_)= (UI U,,)(Do- UoD_)(U’ U- )’’" (UtnU’ )-

(mn-- Un-xmn-2) (Ul Un-1)(mo- UoD-)(U’I U- )’" (Utn-x U!1 )

(3.14)

(01- VlDo) Vl(Do- VoD-1)(Vl V-
(Do- UoD_)= (Do- UoD-1).

Multiply these equations respectively by L U,,...,(U,U,,_I.’. U2),
(U, U1) and add getting:

Dn -(Un Uo)D-I (Ux U2 Un)(Do- UoD-1)O’n,
(3.15)

o-n--I+(UIU-I)+(UIU-1)(U2U-I)+’ +(UIU’) (’UnUn).-1
If we let Dn S,,, we see that S. (U,, Uo)+ (U U2" U,,)Uo’,,, or:

& (u Uo)[+(U’oU )+(U’oU-’ )+...
(3.16)

U+(U’oU ) .u )]-=(u.... Uo).

Similarly if we let D. R. we have"

(3.17) R, (Wn Wl)O’n.
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We know by Lemma 4 that [[I-U,,U-1II<e for all n->0. If we let y.=
-U,,U-1, then U.=(-3,.)U, and so (U’U2I -U’U-1)= U-l-l-U-1=kj-l[(i_y,,)-i I] U- (k=l (Yn)) (since I111< 1). Hence if n > 0, IIv.u. vii--<

kIIu-Xll E_-I IIu-Xll/( 1 )< (w) (by assumption).
Then Lemma 5 tells us that each o-,, and/z, above are invertible and converge

respectively to invertible elements tr and/x of . Thus S-IR,, U-llz-lo’, exists for
all n and converges to U -1

/. tr, which means (1.2) converges. Finally if the condi-
tions of the theorem hold, there must be an N such that [[A-A.II_-<6 for. n->N.
Applying all the above to the c.f. (1.3), we see that (1.2) is tail-end convergent, and we
are done.
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LINEARIZATION OF MONOTONE HILBERT NETWORKS*

VACLAV DOLEZAL?

Abstract. In this paper we consider a linearization of a nonlinear monotone Hilbert network in a

neighborhood of some operating point. Three theorems are established which give estimates for the
difference between the exact and approximate current distribution. Two examples of specific networks are
considered.

Introduction. The problem dealt with in this paper resembles the small-signal
analysis of nonlinear networks [1] and [2], but differs from it in several aspects. To
compare the present approach, let us recall the following facts. In the standard
small-signal analysis we assume that the network under consideration is described by a
canonic system of differential equations

(*) ; f(x, u, t), x(0) 0,

where x is a state variable vector and u repreSents the signals. If the solution Xo(t)of
(.) with u Uo(t) is known, we seek the solution xv(t) of (.) with u Uo(t)+ v(t) in the
form xv(t)= Xo(t)+ v(t). Assuming that Ilvll is small, we then take Xo(t)+* (t) as an
approximation to x(t), where * (t) is the solution of the linear equation

() * A(t)* + B(t)v(t), * (0)= 0.

Here, A (t) is the Jacobian of f with respect to x evaluated at (x0, u0), and the meaning
of B(t) is analogous. Thus, in the vicinity of (x0, u0) we replace f(x, u, t) by a strictly
local approximation l(x, u, t)=A(x-xo)+B(u-uo)+f(xo, Uo, t) that is linear in x
and u.

Now, suppose that, for a given r > 0, we define the "overall relative error" hr by

sup
Iloll-<_r

From the construction of :o* it follows that A decreases if r does. However, if r is not
"too small", then clearly , can be diminished, if we replace A and B in (,) by some
more suitable matrices A and B such that Ar(x-xo)+B(u-uo)+f(xo, Uo, t) is a
better approximation of f(x, u, t) on some neighborhood fL(Xo, Uo) (depending on r)
than l(x, u, t) is. In other words, the small-signal analysis fails to give good results, if
Ilvl[ is not sufficiently small.

The present approach, apart from its more general setting, introduces more
flexibility into the problem. To explain the underlying idea, consider a Hilbert
network ’= (,, G)[4]. Assume that we know the current distribution io in cor-
responding to some EMF vector eo (operating point), and that we seek distributions
ie*, which correspond to excitations eo+e*, where the e*’s satisfy the inequality
[[e*l[-<_r with some given r >0. To find approximations to the ie*’S, we linearize the
network in a vicinity of io. More specifically, defining the operator ’ by ’sc-
(io+s)-io, we assume that we can find a linear operator o which satisfies the
inequality 112’-2o11 < a[[[[ on a certain ball centered at the origin, where a > 0 is

* Received by the editors October 26, 1976, and in revised form May 10, 1977.
? Department of Applied Mathematics and Statistics, State University of New York at Stony Brook,

Stony Brook, New York 11794. This research was supported by the National Science Foundation under
Grant MPS7505268.

523



524 VACLAV DOLEZAL

not too large. If i** is the solution of the linear network0 (o, G) corresponding to
e*, we will take io + i** for an approximation to the solution ie. of .

The overall relative error

(/) a, sup IIi *- (io + i> )11’ Ile*ll
Ile*ll_r

depends, of course, on the choice of o, and consequently, on the constant a.

However, in specific cases of networks it is usually not difficult to construct o so that,
for a given r > 0, a is small enough. (Refer to the examples at the end of the paper). In
this context, let us emphasize that taking the Fr6chet derivative of at io for o (a
counterpart of the small-signal analysis) need not lead to smallest values of a.

It turns out that if z is strongly monotone, we can give a simple upper bound for
A,, which is roughly proportional to a for a small. The theorems that follow deal with
various cases of assumptions imposed on the definition domain of . Note also that
need not be single-valued.

Results. Let us begin with some preliminary considerations. The concepts "set
mapping", "simple", (), etc. have the same meaning as in [4]. Also, if h > 0, let

nh -{x:x ,
LEMMA 1. Let be a real Hilbert space, let D {0} be a linear subspace of, and

let r > O. Assume that
(i) T: D () is a set mapping such that

(1) (Yl- Y2, X1- X2) bllxl- x=ll=

]’or all xi D, yi Txi, 1, 2, and some fixed b > 0,
(ii) there exists a linear operator To: D and a constant a with 0 < a < b such

that

for all x D f-) BR with R b-lr and all y Tx,
(iii) ToD .

Then T is simple on D, and To possesses a bounded inverse T-1" g D with IIZ 111--<
(b a )- 1. Moreover, if y (TD) fq B, and x T-y, Xo T- y, then

(3) IIx xoll -< ab -1 (b a )-  lly II.
Proof. Simplicity of T follows immediately from (1). Thus, T-’(TD)D is an

operator, and (1) implies that

(4) [IT-yx- T-yII <- b-llyl- y=ll

for all Yl, Ye (TD). Moreover, since 0D, (2)shows that T0 {0}. Hence, T-0=0
and (4) yields

(5) IIT-y[I <- b-lllyll

for all y (TD).
On the other hand, if x D and y Tx, we have by (1),

(6) (y, x> >-_ bttx[I=,
Now, if x D fq BR, then, for any y Tx,

(7) (Tox, x)= (y, x)-(y Txo, x).
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Also, by (2),

Hence, (6) and (7) yield

(8)

(y- Tox, x)<-tlY- Tox]]" ]]xll <- a[[x[[2.

Tox, x )>- (b a )llx 2.

However, since To is linear, (8) holds for every x e D.
Moreover, since b-a > 0, (8) shows that To is one to one on D. Hence, the

inverse TI: --> D exists. Thus, by (8) and Schwarz inequality,
for each y e , i.e., T is bounded and

(9) IITall(b-a)-.
Next, let ye(TD)B; and x T-y, Xo Tly. Then xD, and by (5), I[x[I-<

b-Xllyll _<- b-r R, i.e., x e D iq BR. Moreover, we have by (2) and (9),

IIx xoll- T Tox Toxo)ll- Tox y )ll

--< Ilr [l" Ilrox yll--< (b a)-la Ilx I[-<_ (b a)-lab-’lly
and the proof is complete.

The assumption (iii) in Lemma 1 is sometimes inconvenient. Fortunately, it can

be traded for another assumption. Indeed, we have the following modification of
Lemma 1.

LEMMA 2. Let be a real Hilbert space, let D be a nonempty subset of such that
0 D, and let r > O. Assume that

(i) T:D-->() is a set mapping satisfying (1) with some fixed b >0,
(ii) there exists a linear bounded operator To: --> and a constant a with 0 < a <

b such that (2) is satisfied for all x D BR with R b-lr and all y Tx,
(iii) D BR is dense in BR, i.e., D Bn BR.

Then T is simple on D, and To possesses a bounded inverse T- --> with IIT <

(b-a)-x. Moreover, if y (TD)fqBrand x T-y, Xo Tly, then (3) holds.

Proof. As before, it follows that (8) holds for each x e D IqBR. However, (iii)
and continuity of To imply that (8) holds on B, and consequently, by linearity of To,
everywhere on . Since b-a > 0, (8) shows that To is a maximal monotone, coercive

operator [3], so that To . The rest of the proof is the same as that of Lemma 1.
The assumption on boundedness of To can be dropped, if we strengthen the

above condition (iii). Actually, we have
LEMMA 3. Lemrna 2 remains true if conditions (ii) and (iii) are replaced by the

following assumptions:
(ii)* BR c D for R b-lr,
(iii)* there exists a linear operator To: -> and a constant a with 0 < a < b such

that (2) holds for all x BR and y Tx.
If, in addition, D and T is a hemicontinuous operator, then Tpossesses an inverse
T-X: --> , and (3) holds for any y Br, where x T-Xy, Xo TXy.

Proof. We conclude as before that (8) holds for every x BR. However, since To is
linear, (8) is satisfied on the entire space a. Moreover, linearity of To implies that To is
hemicontinuous on . Hence, To is maximal monotone and coercive, so that To-
[3]. The rest of the proof is obvious.

As for the last assertion, note that our assumptions imply that T is maximal
monotone and coercive by (1). Thus, Tt B, which proves our claim.
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Observe that, under the assumptions of Lemma 3, To is automatically bounded.
Indeed, it follows that Ta" o--> o is bounded and (9) holds. Thus, by the open
mapping theorem, To itself is bounded.

Let us now apply the above results to Hilbert networks. To avoid restatement of
basic definitions, we refer the reader to the survey paper [4]. We will consistently use
the notation introduced there.

In order to simplify the formulation of the following theorems, we will assume
without loss of generality that the operating point eo and the corresponding solution io
of (2, G) are zero. Actually, if io corresponding to eo 0 were not zero, then
instead of " we could consider the network "= (’, G) with 2’ being defined on
D’= D io by

(10) 2’x=2(io+x)-2io,
whose solution to corresponding to e o 0 is zero.

TI-IEOREM 1. Let H be a real Hilbert space, let ./" (,, G) be a Hilbert network
with , being a set mapping defined on a nontrivial linear subspace D of H, and let
r>0. Furthermore, let F=f(*(NaD)cH, and let W’F-->(Hc) be defined by
w 2*22.

Assume that
(i) there exists b > 0 such that

(11) (Yl- Y2, Xl- X2) : b[[Xl- x2[I2

]:or all xi F, yi Wxi, 1, 2,
(ii) there exists a linear operator zo" D --> Hc2 and a constant a with 0 < a < b such

that

(12) IIY Wox -< a IIx
for all x F fq B’ ,

R and y Wx, where Wo X ZoX, B’R {x’x Hc, [[x <
R} and R b-lr,

(iii) the network o (o, G) possesses a solution for any e H.
If H is the (unique) solution of corresponding to some e*Hc: with

[l*e*[[ r, and i* is the (unique) solution Ofo corresponding to e*, then

(13) jig i’11 ab -l(b a )-ll*e*[I.

Moreover, (12) can be replaced by the stronger assumption that

(14) [[u 2oV[[ avll
for all v e D BR and u 2v, where BR {v" v Hc, Ilvll R}.

Pro@ By Theorem 2 in [4], (iii) is equivalent to the conditon WoF H. Thus,
by Lemma 1, W is simple on F, and Wo has a bounded inverse W "HF.
Consequently, Theorem 2 in [4] shows that each solution of is determined uniquely,
and the same is true for o.

Next, let e* e H be such that possesses a solution corresponding to e*, and
let ]12*e*ll r. Then 2*e* e (WF) and we have by (3)in Lemma 1,

(15) W-2*e*- W2*e*llNab-l(b-a)-l[12*e*[[.
However, by Theorem 2 in [4],

(16) i= 2W-2*e* i* 2W12*e*

Since is a norm-preserving isomorphism ([4, Proposition 1]), the inequality (13)
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follows immediately from (15)and (16).
To prove the last proposition, assume that (14) holds. Since .Hc Na and . is

norm-preserving, it follows that .B Na BR. Moreover, since 2F Na 71 D, we
have

(17) (F n Bk) Na NB ND.

Now, let xFB, and let y Wx=*x. Then XBRD by (17), y=*z
for some z x, and (14) yields

[Jr W0xll II *z  ’2o2X II *(z 2o x)ll
lie 2o X a II x a fix II.

Hence, (12) is satisfied and the proof is completed.
THEOREM 2. Let H be a real Hilbert space, let (, G) be a Hilbert network

with being a set mapping defined on a nonempty subset D H such that 0 D, and
let r >0. Furthermore, let F= *(Na D)cH, and let W:F (H) be defined by
w

Assume that
(i) there exists b > 0 such that (11) is satisfied for all x F, yi Wx, 1, 2,
(ii) there exists a linear bounded operawr o:HHc and a constant a with

O<a <b such that (12) holds for all xFB and y Wx, where Wo=
X ZoX, B, {x’x H, I[x[[ R and R b-ar.

(iii) F B is dense in B’R.
IrisH is the (unique) solution of corresponding to some e*H with

[l*e*[lr, and i* is the (unique)solution o[0= (20, G)correwonding to e*, then
inequality (13) is satiOed.

Moreover, in (ii) the requirement that (12) holds can be replaced by the stronger
assumption that (14) is [uOlled for all v6DB and u2v, where B=
{v" v H, Ilv R }.

Proof. If we recall Lemma 2 it follows that W is simple on F, and W0 possesses a
bounded inverse W[a"HH. Thus, by Theorem 2 in [4], every solution of is
determined uniquely, and, for any e* H,o has a unique solution corresponding to
e

The proof of inequality (13) follows the same pattern as in the proof of Theorem
1. As for the last assertion, we confirm as before that (14) (12). (Note that (17) holds
independently of whether D is a linear subspace or not).

THeOreM 3. Theorem 2 remains true if its conditions (ii) and (iii) are replaced by
the following assumptions"

(ii)* BR c D for R b-it,
(iii)* there exists a linear operator 2o: H H and a constant a with 0 < a < b

such that (12) holds for all x B and y Wx, where Wo *o.
If, in addition, D H and W is a hemicontinuous operator on H%, then .

possesses a unique solution for any e* e H, i.e., (13) holds for any e* e H with

Proof. If (ii)* holds, we have by (17), (FB)=NnBR. Since B=
Na BR and is one-to-one, it follows that F B B, and consequently, B’RCF.
Applying now Lemma 3 to W and W0, we confirm our claims.

Finally, if D H:, then F H. Hemicontinuity of W and (11) imply that W is

a maximal monotone, coercive operator, and consequently, WH H [3]. Thus, by
Theorem 2 in [4], has a solution for any e* H.
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Remark 1. As it was pointed out above, Theorems 1-3 deal with the particular
case that the operating point e0 and the corresponding solution io of d are zero. On
the other hand, the conditions (11), (12) we used are invariant with respect to
"shifting". More specifically, if the solution i0 of corresponding to e0 0 is not zero
and ’* satisfies (11), then we see easily that *’ also satisfies (11), where ’is defined by (10). A similar statement is true for condition (12).

Let us now consider two examples of specific networks.
Example 1. Let H be the real space L2[0, r], (we will also write L2 for brevity),

and let

Ko {x:x absolutely continuous on [0, r], x(0)= O, x’ L2}.

Let G be a finite oriented graph having c2 branches and Cl nodes, and let d be the
c2 c incidence matrix of G. Let X be a real c2 Co matrix, whose columns constitute
an orthonormal basis in the solution space of the equation dr 0, R c2. Finally,
let k be a fixed integer with 1 <- k _<- c2.

Furthermore, assume that
(i) is a real, symmetric, positive definite k k matrix, and that the c2c2

matrix L is defined by

r_..,_i_0_lL=
i_0!0J"

(ii) R:R --> R c2 is a continuous function such that

(18) IR (o")1 <-- < + t3’lo"l

for all cre R2 and some fixed a, fl _-> O, and

_>_ [(19) XT[R(Xse)-R(Xn)I(-rl) bl-n
for all , r/ R and some fixed b > 0 (here, signifies the Euclidean norm).

(iii) S is a real, symmetric, positive semidefinite matrix.
Let D Ko L2- L[, let be defined on D by

(20) (x)(t) {Lx(t)}’ + R(x(t))+ S fo x(r) dr,

and consider the Hilbert network (, G).
Clearly, is a model of an LRC-network, whose resistors are nonlinear, time-

invariant, and whose inductors and capacitors are constant. Note that the inductors
(and possible mutual inductive couplings) are confined only to branches bl, b2, , bk,
and that the initial currents in these branches are assumed to be zero.

From the assumptions (i)-(iii) it follows easily that LP maps D into L[, and that

(Wx- Wxz, x,- x)>- bllx,- xll
for all Xl, X2F, where F=P*(NnfqD)and W )*, i.e., d satisfies the condi-
tion (i)in Theorem 1.

In addition to (i)-(iii), let us make the following assumptions"
(iv) There exists a c2 c2 matrix M and a constant a with 0 < a < b such that

(21) IR (r)-Mr -< a Io’l
for all r s R.
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(v) If the operator 2o is defined on D by

(22) (2oX)(t)= {Lx(t)}’ + Mx(t)+ S x(r) &r,

then the linear network o (2o, G) (with constant elements) possesses a
solution in D for any e* 6L2. (Note that we can give fairly simple conditions
under which Hilbert networks of type like or o have a solution for each
e* eL2. A detailed treatment can be found in [5].)

From (20), (22) it follows that 7-x-ox R(x)-Mx. A routine argument will
convince us that, due to (21), we have 112X-2oxll<-allxll for all x D, i.e., condition
(14) in Theorem 1 is met with any r > 0.

Thus, all assumptions of Theorem 1 are satisfied. Consequently, if " has a
solution for some e*Lz, and if i* is the solution of the linear network
corresponding to e*, then by (13),

Ili i*11--< ab-l b a )-allxe
Example 2. Consider the infinite DC-network given in Fig. 1 whose graph G

is formed by an infinite grid in the plane. We will assume that each branch of G
contains the same nonlinear resistor described by a function O" R R a, whose graph
may look like the one in Fig. 2. Our objective will be to establish a linearization ’0 of

which will make the error in the solution as small as possible for all excitations e*,
whose norms do not exceed some given r > 0. More specifically, we will try to find a
resistance po such that the linear network o, obtained from by replacing each
nonlinear resistor by a linear resistor with resistance po, will approximate the
behavior of .

To this end, assume that the function p’RR satisfies the following condi-
tions:

(i) p(0)= 0,
(ii) t(:l--2)2’(p(l)--p(72))(l--2)O(l--2)2 for all :1, :2 R .and some

fixed a, 3 such that

(23) 3a >/ _>-a > 0.

Using the standard notation, in our case we have H R 1, and consequently,

FIG.
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o() /
/ po

/

-R R

/

FIG. 2

Hc2 R 12. Moreover, the operator 2 is defined on 12 by

(24) 2z [p(Zl), p(z2), p(z3),"" .it.
Thus, our network is modeled by the Hilbert network (2, G).

From the assumptions (i), (ii) it follows readily that 2 maps 12 into itself, 20 0
and

(25) <2Z1 2Z2, Z Z2> -- IlZl Z 2[I2,
(26) [12Z 2Z211 [[Z1-- Z211
for all Zl, Z212. However, (25)shows that the operator W=*," satisfies the
condition (11) on F R 12. Indeed, if xl, x2 e 12, we have

WX Wx2, x x2 <a gXx 2"gax2, x x2

<22x 22x, 2xx 2x> >- 112"(x, x)ll- IIx, xll.
Similarly, (26) implies that W is continuous on 12.

Next, if po is a real number, define the operator Zo" 12-+ 12 by Zoz OoZ, and let
o (o, G). Naturally, for our linearization we are going to choose p0 so that the
constant a in (12) (or in (14)) can be made as small as possible. To find such po, denote

-1R a r, KR [-R, R]-{0}, and let

(27) SR sup -’p(:),
EKR

A little thought will convince us that with

(28) po 1/2(SR + JR),

JR inf ’- 0 ().
5EKR

aR =1/2(Sn --JR)

we have

(29) sup Il-’lp(#)-oo’]= inf sup I’l-llp()-w:].
EKR (oER EKR

Consequently, we take this po for the resistance of resistors in our linear network o.
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Now, (29)yields I(:)-oolal:l for every s[-R,R]. Thus, if z=[zi]sl2,
--< R, then Izl--< R for every/" and we have

2 2(30) IIz-2ozlt=Zlo(z;)-o0z alzl =allzll=.
On the other hand, (i) and (ii) yield/ >= ’-lp()->_ a for every 0; hence, by (27),

(31) S, Ja.
Consequently, by (28),

(32) a ( a),

so that

(33) a a (3a > 0.

Hence, (30) and (33) show that the operator o satisfies (14), and consequently, the
assumption (iii)* in Theorem 3.

Finally, referring to Theorem 3, let e*m l= and lie*liar. Then possesses a
unique solution corresponding to e*, and o possesses a unique solution i* cor-
responding to e*. Since I[*e*ll I1*11 Ile*ll r, we have by (13) and (28),

(34) Ili-i*l[(s-J)-[-(s-J)]-l[le*l[.
Using (32) and (33), we also get

-1(35) II/-i*ll (-)(3 )-llle*ll.
Note that if we put r and p (S+J), where S, J are given by (27),

(with K replaced by R-{0}), then (35) holds for every e* l.
Observe also the following" In our considerations leading to inequalities (34) and

(35) we have never used the fact that the graph G is a grid, i.e., our results do not
depend on G. Consequently, (34) and (35) hold for any (finite or infinite) DC-
network, each branch of which contains the same nonlinear resistor that satisfies the
requirements (i) and (ii).
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ON CHARACTERIZATION OF FUNCTIONS BY
THEIR GAUSS-CHEBYSHEV QUADRATURES*

ITSHAK BOROSH’ AND CHARLES K. CHUI:

Abstract. If p is a polynomial, then all but a finite number of the Gauss-Chebyshev quadrature formulae
for p are exact. The purpose of this paper is to establish a converse as well as some related results. In
particular, a formula is given to recapture a function from its Gauss-Chebyshev quadratures.

1. Introduetlon. Throughout this paper, we only consider Gauss quadrature
formulae with nodes at the zeros of the Chebyshev polynomials

Tn(x) cos (n cos-x x)= 2n-lx +’’’,

given by

(1)

where

ff 2)-1/2f(x )(1 x dx O" (f) + Rn (f),

(2/- 1
(2) On (f)

7r y f(x,,.j), x,,.j cos --.
n i=1 2n

The Gauss-Chebyshev quadrature formula (1) is said to be exact for a function f if
Rn(f) 0. It is well-known that if f is a polynomial of degree at most m, then Rn(f) 0
for all n > m/2. It is natural to ask if a converse would hold; namely, if Rn(f) 0 for all
sufficiently large n, is it possible to conclude that f is a polynomial? It is clear, however,
that if f is an odd function on [-1, 1], then Rn(f)= 0 for all n. Hence, based on the
conditions Rn(f) 0, we have no information on the odd part of f. This leads to the
consideration of R" (f’) as well.

DEFINITION 1. For f C[-1, 1], consider the Chebyshev series

(3) f(x) 1/2ao + E a,V, (x),
k=l

where

(3’) ak f(x Tk (X)(1 X2)-1/2 dx,
77"

k 0, 1, .. We say that f belongs to the class if

(4) Y. [ak I< c
and

(4’) 2" 2 la:", I--’ O.
k=l

* Received by the editors November 23, 1977.
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It will be shown that is a fairly large class of functions. In particular, it contains
every function f with a Lipschitz continuous derivative (cf. 5).

In this article, we will establish the following results’
THEOREM 1. Let f cg satisfy Qn(f) 0 ]:or all n 1, 2,.... Then f is an odd

function on [- 1, 1 ].
THEOREM 1’. Let f be differentiable on [-1, 1] such that f, f’ cg. If Qn(f)

Qn (f’)= 0 for all n 1, 2,. , then f is the zero function.
THEOREM 2. Let f g be an even function on [- 1, 1]. If Rn (f) 0 ]’or all n > N,

then f is a polynomial with degree at most 2N.
THEOREM 2’. Letfbe differentiable on [-1, 1] such that]’, f’ g. IfRn(f) Rn(f’)

0 for all n > N, then f is a polynomial with degree at most 2N + 1.
Two examples will be given to show that the above results are sharp in the sense

that both (4)and (4’)are needed in the hypotheses.
In order to give a formula to recapture a function from its Gauss-Chebyshev

quadratures Qn(f), we need the following definition.
DEFINITION 2. Let v be a function defined on the set of positive integers N as

follows:

v(1)= 1,

(5) Y’, v(d)(- 1)n/d 0 if n > 1.

Hence, v(1)= 1, v(2)= 1, v(3)=-1, v(4)= 2, etc.
THEOREM 3. For n O, 1, 2, , let Pen be even polynomials defined as follows:

(6)

Then

Qm(P2n)= 6m.n
form, n 1, 2,.

Theorem 3 shows that all the conditions Qn (f)= 0, n 1, 2, , in Theorem I are
required to guarantee that f is an odd function. The following result shows that an even
function can be reconstructed from its Gauss-Chebyshev quadratures.

THEOREM 4. Let {a,,} be a sequence of real numbers converging to ao such that
an -ao O(1/n x+) /’or some e >0. Then the polynomial series

(7) ao + E (an ao)Pzn (x)
n=l

converges uniformly on [-1, 1] to a function f. Moreover, Qn (f)= an for n 1, 2,....
It should be mentioned that somewhat similar but different results were obtained in

[2], [3], [4], [7].

2. Preliminary iemmas. In order to establish the above results, we need several
lemmas.

LEMMA 1. For n, k 1, 2,. ,
0 if2nXk,

Qn(Tk)= (-1)zr /fk 2nl.
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Proofi We note that

COS
F/ /=1 H /=1

k (2j 1

2n

nj=l

ijk’rr/ .e -ik.a-/(2n

Hence, if k 2nl, then

Q.(Tk) Re
7r- e i2rr/]

nj=l

and if 2n 2’ k, then e ik/" 1, so that

and

e =(-1 rr,

eiikr/n eikr/n 1 e ikr 1 (-- 1)k
j= 1- e ikr/n e -ikr/n 1’

On(Tk)= Re
rr 1--(--1)k }eikz,-/(2n) ik/(2n)n e

O.
n 2 sin (kr/(2n))

As a consequence, we see that if f has a uniformly convergent Chebyshev
expansion

f(X) ao+ Y akTk(x)
k=l

on [- 1, 1 where the coefficients are given by (3’) (for instance, if f is continuous and is of
bounded variation on [-1, 1]), then

(8) O,, (f) -ao + rr E (- 1)ka2nk, n 1, 2,...
k=l

where we have convergence for each n. If, in addition, 0. (f)= 0 for infinitely many n,
then a0 0 since O. (f) is a Riemann sum of the integral

2 IJ 2)-ao (1 x /2f(x dx.
7"g

That is, we have the following
LEMMA 2. Letfhave a uniformly convergent Chebyshev expansion (3) on [- 1, 1 ]. If

Q,(f) 0 for infinitely many n, then ao O.
Hence, the conditions Q, (f)= 0, n 1, 2, , give the following system of linear

equations:

(9) C, ., (--1)kc,k O, n 1, 2,...
k=l

where c, a2n.
LEMMA 3. Let C, be defined as in (9) with Y’. [Ck] < oO. Suppose that C, 0 ]:or

n l, 2, Then

(10) Ci 22i for 1, 2,....
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Pro@ Throughout this paper, Ix (n) will denote, as usual, the M6bius function; i.e.,

1 ifn =1,

Ix(n)= (-1)’ ifn=ql...q,,

0 if p21n for some p > 1,

where q 1," q, are distinct primes. (a, b)will denote the greatest common divisor of
the positive integers a and b, and pl 2, p2 3,..., p,, the primes in increasing
order. Let P, pa’"pt. For each i, which we fix, let bd cai and Bd Cdi. Then

(11) O= Y Ix(d)Ba Y’. 2 Ix(d)(-1)’’/a b,,,.
dIPk dl(P.,m

Let (Pk, m)= u and rn un, and consider the following two cases.
Case (1), n odd. In this case, (-1)"/a=(-1)u/a and the coefficient of b,, in (11)

becomes alu Ix(d)(-1)"/’. If u is odd, then

Ix(d)(-1)u/a=- ix(d)= {-1 if u 1,

dlu dlu 0 ifu>l

(cf. [6]). If U is even, then u 2v where v must be odd since UlPk, and hence, we have

2 Ix(d)(-1)"/a= Y Ix(d)+ Y Ix(2d)(-1)’/a
dlu dlv dlv

=2 2 Ix(d)=
2 ifv=l,

air t0 ifv>l.

Case (2), n even. In this case, m is even so that u must be even and 41m. This implies
that mid is even whenever dlu. Hence

1 if u 1,

al
Ix (d)(-1)’/a

al,
Ix(d)=

0 if u > 1.

But u is even in this case. Hence, the coefficient of b,, is zero whenever n is even.
Combining the above two cases, we can conclude from (11) that

0 Y Ix (d)Ba -bl + 2b2 + R,,
dlP

where ]R,I- 2 Y,,,>p Ib.,I-<-2 Y’.=p Ic,]. Hence, R, 0 as k tends to infinity. That is,
bl 2b2, or c 2c2i.

We also have the following
LEMMA 4. Let C, be defined as in (9) with Icl < oo. Suppose that Cn 0 ]:or

n l, 2, Then

(12) Cl C2"q- 2 C4i.
i=1

Proof. The proof of this lemma is quite similar to the previous one except that we
now use Ix (2d) instead. Indeed,

(13) 0= Y Ix(2d)Ca= Y Y Ix(2d)(-1)’’/a c,,,
dlP dlu

where u (P,, m) and we set rn nu.
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Case (1), n odd. In this case, if u is also odd then

1 if u 1,

dlu
l(2d)(--1)"/d=

dlu
t(d)=

0 if u > 1,

and if u is even, then u 2v where v is odd and

j-1 if v 1,(2d)(-1)m/d
dlu 0 ifv>l.

Case (2), n even. In this case both rn and u are even and m must be divisible by 4.
Setting u 2v, v odd, we have

E 1(2d)(-1)"/a= E tz(2a)+ E/x(4a)
dlu d[v

J-1 if v 1,
(2)/z(d)

dlo 0 ifv>l.

Combining the above two cases, we have, from (13),

0 E tx (2d)Ca Cl c2 E C41 + lk
dlPk _p,/4

where I1 -<y> Icl- 0 as k c. This completes the proof of the lemma.
Combining Lemmas 3 and 4, we have the following main lemma, which is essential

in our proof of Theorem 1.
LEMMA 5. Let Cn be as defined in (9) with levi < and

(14) Y. [c2"l o(2-").

Suppose that C, 0 [or n 1, 2,.. . Then c, 0 [or n 1, 2,. ..
Proof. By combining (10) with 1 with (12), we have

c1=2 C4k,
k=l

Solving this equation simultaneously with 0 2C4 gives

cl =4 E c8,.
k=l

Again combining this equation with 0 4C8 yields

171-"8 E C16k,
k=l

etc. Hence, continuing this process, we can conclude, using the condition (14), that
Cl 0. Next, for each fixed i, let bk cki, k 1, 2,. . The same proof above gives
bl ci--0. This completes t.he proof of the lemma.

We remark that Lemma 5 is sharp in the sense that o(2-n) in (14) cannot be
replaced 0(2-"). Indeed, if c2-= 2-", n 0, 1,... and c,, 0 for m 2", then it is
easy to verify that C, 0 for n 1, 2,. , and at the same time,

E Ic2"1=2 2-",

n=0,1,2,....
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The following result gives a complete description of the function v.
LEMMA 6. The function v(n is multiplicative and its values are given by

v(n)= I(n) ifn is oaa,
(15)

v(2") 2"-1 ]’or a 1, 2,....

Proof. From (5), it is known that v(n) is the convolutive inverse of the function
(-1)"/1. If (m, n)= 1, then one of the integers (rn + 1) and (n + 1) is even and therefore
we have

(m + 1 )(n + 1)---o(mod 2).

This gives rnn + 1 =(m + 1)+(n + 1)(mod 2) and (-1)""+1 (-1)"+1(-1)"+1. That is,
the function (-1)"/1, and therefore its convolutive inverse v(n), are multiplicative.
Next, if n is odd, then the equations in (5) are exactly the defining equations of the
M6bius functions/z (n), so that v(n) t (n). If n 2‘’, a 1, 2,. , then we have, from
(5),

v(2‘’)= E v(2/3).
0=0

This gives, by induction, that v(2‘’) 2‘’-1.
If n is any positive integer, then n =2"n* where n* is odd, so that v(n)=

v(2‘’)v(n*) 2"-1ix (n*).
We next give a bound for the polynomials P2. (X) defined by (6).
LEMMA 7. Let n be a positive integer with n 2‘’n* where n* is odd. Then

(16) [p2, (x)[ =<--d(n *)

for all x [-1, 1 ].
Here, and throughout, d(n) denotes, as usual, the number of divisors of n (cf. [6]).
Proof. Since the Chebyshev polynomials are bounded by one on [-1, 1], we have,

by using Lemma 6,

max ]pz, (X )l -< 2 lu(d)]----- 2 2
-l<--x<----1 71" din 7"/" /3=0 din*

_-1 1 + Y. 2/3-1 2 I(d)l
/3

7"g din*

<=--d(n*).

This completes the proof of the lemma.

3. Proofs of the theorems. Theorems 1 and 1’ follow immediately from the lemmas
in 2. Indeed, if f c is represented by the Chebyshev series (3), then Q,(f)= 0 for
n 1, 2,. gives ao 0 by Lemma 2, and

, (--1)kc.k 0
k=l

n 1, 2, , with c. a2.. Also, since f c, the sequence {c.} satisfies the hypotheses
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of Lemma 5, and is therefore the zero sequence. That is, a2n 0 for all n and f is an odd
function, proving Theorem 1. If, in addition, Q, (f’)= 0 for all n, then both f and f’ are
odd functions, so that f 0, proving Theorem 1’.

To prove Theorem 2, we assume Theorem 3 which will be proved afterwards. Set

g(x)= | f(/)(1- t2)-x/2 dt-f(x).

Then, by hypothesis, g is an even function in C and satisfies Q, (g)= R,, (f)= 0 for all
N

n > N. Let p(x)= k--1 Qk (g)P2k (X ), where P2k are the polynomials defined in Theorem
3. Then p is an even polynomial with degree at most 2N such that

O.(p)=O.(g)

for n 1, 2, . Hence, O, (p g)= 0, n 1, 2, , so that g p by Theorem 1. That
is, f is a polynomial with degree at most 2N.

If the hypotheses of Theorem 2’ are satisfied, then the even part fe of f is a
polynomial with degree 2N and the odd part f0 of f is such that f; is a polynomial with
degree 2N also. Hence, f is a polynomial with degree at most 2N + 1.

To prove Theorem 3, we consider

By Lemma 1, we have Qm(T2k) 0 unless k ml, in which case, we have Q,,(T2k)
(- 1)lTr. Hence, if rn ,t" n, there is no k with m Ik and k In, so that Qm (p2,,) 0. If, on the
other hand, rn In, then n mu and

Q.(p) __1 ,() (_l)lTr
7r llu

which is &,., by (5).
To prove Theorem 4, we use the usual notation" 2"1 In if and only if 2"In but

2"+1 n. Hence, by (16), we have

n=N1 a=0
NI <=n<-N2

lee. co[ Ip2. (x)l

where each n* is odd and n 2"n*, and this yields

N2 )l d(n)Z (a,,-ao)pz.(X <=C E 2 Z
n=Nx =0 n=Nx n

But for each 6 >0, d(n)= o(n) (cf. [6]). Therefore, for every n >0, and N1 sufficiently
large, we have

2 (a.-ao)pz.(X <C 2 2- .
n=N1

This proves that the series (7)converges uniformly on [-1, 1] to some continuous
function f. It is clear that O,([)= c,, n 1, 2,. , from Theorem 3.
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4. Sharpness of the results. We will now give two examples to indicate the
sharpness of Theorem 1. These examples can be easily modified to show that Theorems
1’, 2, and 2’ are also sharp in the same sense.

Example 1. Let f be an even function on [-1, 1] defined by

d(x) 2 Ta*(x).

Since T.(x)l_-< 1 on [-1, 1] for all/’, it is clear that the Chebyshev series converges
uniformly and f e C[-1, 1]. Furthermore, Q,,(f)= 0 for all n 1, 2,.... Note that f
satisfies (4) but not (4’).

Example 2. Let g be an even function on [-1, 1] defined by

(17) g(x)= Y tx(2n)Tz,,(x).
n=l n

It will be shown below that this Chebyshev series also converges uniformly on [-1, 1],
so that g C[-1, 1]. Furthermore, for each n,

Q,(g)=Tr E (-1)
ktx(2kn)

nk=l k

=’rr E (-1)k/x
(2kn)

Fl (k,Zn)= k

()
=--tz(2n) Y =0

F/ (k,Zn)= k

where the last equality was proved in [1]. Note that g satisfies (4’) but not (4).
To prove the uniform convergence of the series, we recall a result of Davenport [5]"

max tx(2k)e i2k <-Cn/(logn)2
0

where C is an absolute constant. Hence, by partial summation, we have

1 i2,01 i i2’0Re (2j) e (2/)em+ j=l n j=l

+
=./(/+ 1) =.(2)e

c{ n }m

)+ ) 2N
(m + 1)(log m n (log n i=, ] (log ])

for all x e [-1, 1]. Hence, the Chebyshev series converges uniformly on [-1, 1] to g.

5. The class . We will show that the class is fairly large.
DEFINITION. Let a > 0. fl [-1, 1] will denote the class of all functions f on

[- 1, 1 such that

)(;)= o (log )
where w(6;f), 6 > 0, denotes the modulus of continuity of fi
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Hence, f,, At for any/3 > 0, where A is the usual Lipschitz class (cf. [8]).
PROPOSITION 1. Let f be differentiable on [- 1, 1] such that f’ l-l,, for some a > 1.

Then f c.
Proof. By using standard techniques, we have

all I) )-( x /:f(x)T (x) dx
7"g

2
f(cos t) cos nt dt

f’(cos t) sin sin nt dt

1
f’ cos t+ sin t+ sinntdt,

7rn

so that

2zrna,= f’(cost) sint-f’ cos t+ sin t+ sinntdt.

Hence,

127mall <= f’(cos t) sin f’ cos + sin + dt

_<- If’(cos t)l sin t-sin t+ dt

+I_lf’(cos(t+))-f’(cost)l ]sin (t+) dt.

The first term on the right is of order O(1/n), while the second term is equal to

I_ f’(cos t)-f’(cos (t-Tr))Ilsin tl t

f’(x)-f’ x cos-+ 41- x sin dx

Clearly, each of the terms on the right has the same order, so that it is sufficient to
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consider one of them. But

f’(x)- f’ x cos + /1 sin dx
n

+ f’ x cos x cos-+v/i: sin dx

Therefore, we have

cos ) +C2/llg( in ) =O(0ogn, )’

n (log n

so that condition (4) is satisfied. Also,

1
N

k=l =1Nk (log N + log k)

1
C 0

k-- k (log N + log k

by the dominated convergence theorem. In particular, condition (4’) is satisfied and
fe.

6. Final remarks. The problems considered in this paper could be asked for any
Gaussian quadrature formula, q,. For instance, if f belongs to some class of
"sufficiently smooth" functions and q, (f)= q (f’)= 0 for n 1, :2,..., is f necessarily
the zero function? It is not difficult to show that the answer is affirmative if @ is the class
of all polynomials. However, the methods we use in this paper depend very heavily on
the structure introduced by the Gauss-Chebyshev formulae and do not apply to the
general case.
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SINGULAR PERTURBATION OF AUTONOMOUS LINEAR SYSTEMS*

STEPHEN L. CAMPBELL," AND NICHOLAS J. ROSE"

Abstract. Let X (t) exp ((A +Be)t) where A, B are n x n matrices. It is shown that X (t) converges
pointwise for > 0 as e 0 if and only if Index B <- and the nonzero eigenvalues of B have negative real
part. An explicit representation of the limit of X(t) is given. These results are applied to the singularly
perturbed system a? A l(e)x + A2(e)y, e9 Ba(e)x + B2(e)y. This paper differs from earlier work both in the
derivation of necessary and sufficient conditions and in the explicit forms for the limits.

1. Introduction. The motivation for this paper is the study of the singularly
perturbed autonomous system of differential equations

(1)
3 A1 (E)X -t- A 2(e )y,

e3) Bl(e)x + B2(e)y

where Ai(e), Bi(e) are matrices, x and y are column vectors and e > O. Such systems
arise, for example, in the analysis of linear dynamical systems [8] where the parameter e
may represent various "small" quantities (mass, time constants, etc.). When these small
quantities are neglected (e 0), we obtain the reduced system

(2)
.f A I(0)x +Ae(0)y,

0 .(0)x + .(0)y.

Sufficient conditions are known [11] for solutions of (1) to converge as e 0+ to a
solution of (2) for > 0. We shall present both necessary and sufficient conditions for
such convergence and in addition obtain an explicit formula for the limit.

Equation (1)may be rewritten

(3)
y

where

(4) A(e)=[Al(e) A2(e)]0 0

The fundamental solution of (3) is

[o o]B(e)=
Bl(e) Be(e)"

(5) X (t) e (a()+B(‘)/‘)t.

Thus our problem may be reformulated as follows: to determine necessary and
sufficient conditions for (5) to converge as e 0/ for > 0 and to find an explicit formula
for the limit. In a later paper, we shall present an asymptotic expansion of (5).

The calculation of limits similar to (5) also occur in Ellis and Pinsky’s study of the
Navier-Stokes equation [5], [6]. In [3] these limits are analyzed using the techniques of
this paper.

2. Terminology. All matrices are over the complex field. If A is an n x n matrix,
then Index A is the least nonnegative integer k such that rank (A k/l)= rank (A k) (by
definition 0k= L the identity matrix).

* Received by the editors February 28, 1977, and in final revised form February 13, 1978.
? Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27607.
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If Index A k, then it follows from the Jordan form of A that

0

where C is nonsingular and N is nilpotent of index k. If k 0, N is absent in (6) and A is
nonsingular; if k n, C is absent and A is nilpotent. The Drazin inverse of A, denoted
by A, is given by

(7) A T-1 0
T.

0 0

The properties AAD AA, AAA A, A+IAD A for > Index A easily
follow (these properties uniquely determine A). If A has index 1 (N 0 in (6)), then
A is sometimes denoted by A (the group inverse of A) and has the additional
property that AAA= A. If Index A 1, the number of linearly independent eigen-
vectors corresponding to the eigenvalue zero is equal to the algebraic multiplicity of the
zero eigenvalue.

Recall that a matrix A is called stable if all eigenvalues have negative real part. A is
stable if and only if e At 0 as o. We need a generalization of this concept: a matrix
A is called semistable if A has index 0 or 1 and all nonzero eigenvalues have negative
real part. It follows from (6) that A is semistable if and only if eAt converges as -.For vectors x, y we use the Euclidean inner product (x, y) y*x. The norm of x is

Ilxll x/(x, x); the norm of a matrix A is IIAII sup {llAxll’l]xll 1}; the numerical range of
A is W(A)={(Ax, x>" Ilxll 1. The set of eigenvalues of A is denoted by o-(A).

Re, Im refer to real and imaginary parts of complex numbers. If E is a set of
complex numbers then Re F_, {Re A’A E}. For sets of complex numbers E, E’ we let.
p (X, X’) inf {In a’l’a E, a’ E’}.

The following inequality will be needed:

(8) 0<p(a, W(A))-<II(;-A)-’II for A : W(A).

To prove (8), we note that W(A) is a compact set. Thus

0<p(,, W(A))= inf {I, -tzl’ W(A)}

--inf {l(Ax-Ax, x)l" Ilxll 1}

since the continuous function f(/z)= IA -/xl achieves its minimum on W(A). Using the
Schwarz inequality we get

p(A, W(A))-<_inf {II(A -A)xii’l[xl[= 1}.

Inequality (8) now follows from Theorem 6.5.1 of [9].

3. Main result. For notational convenience, it is easiest to study (5) with A, B
independent of e. The more general case will follow quickly. Our main result is"

THEOREM 1. Suppose thatA, B are n n matrices. LetX(t)= eA+/)’. Then X(t)
converges pointwise as e 0+ for > O, if and only if B is semistable. IfB is semistable,
then

(9) lim e (A+B/e)t--" e(t-O)At(I-BB).
--0

The proof of Theorem 1 will be given in 4 and 5.
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Example. Let

A
0 2ri

B=
0 0

Then Index B 2 so that B is not semistable. By Theorem 1 the limit (9) will fail to exist
for all t-> 0. However,

(A+/)- [ 1 [e"-l]/(2zrie)]0 e 2rit

so that (9) does hold if is an integer. In studying (1), however, it is of interest to know
when (9) exists for all > 0 and the semistability of B is necessary.

4. Sufficiency of semistability. In this section we prove
THEOREM 2. IfB is semistable,

(10) lim e(A+B/) e (t-B’)A (I- BBD) (I- BBD) eA(t-a).

Proof. Suppose B is semistable. If B =0, then (10) is immediate. If B is in-
vertible, then (10) is known; however, it may also be proved by the same technique we
use. Assume then that 0 tr(B) and B # 0.

First we show that without loss of generality, we may assume that A and B in (10)
are.’

0 AI A.z-I

where Bll is nonsingular and Re W(Bll)< -/ for some fl > 0. To prove this, we note
that if T is any nonsingular matrix (independent of e), then

e(A+B/e)= T-1 e{TAT-I+(TBT-1)/e}T.

It follows that a simultaneous similarity may/be applied to A and B without
affecting our results.

Assume then that B is already in Jordan form, B =diag (/11, 0), where/11 is
nonsingular and has its "ones" on the subdiagonal. Apply a similarity to B using
T diag (a, O 2, a ") where a > 0. Then B is similar to diag (Bll, 0) where Bll is
the same as/11 except that the subdiagonal of Bll contains an a in each place that/1
has a 1. Since Re tr(B11)< 0, it is easy to see that, by taking a sufficiently small, we may
insure that Re W(Bll)<-/3 for some fl >0.

To calculate the limit (10) we shall use the Cauchy integral formula for matrices

(12) e (A+B/e)
1 x dAe (A-A-B/e)-1

2zri

where (e) is a contour containing o-(A + B!e) in its interior. Therefore, it is necessary
to obtain information about tr(A + B/e). The needed information is contained in the
following two lemmas.

LEMMA 1. For e > 0 and A, B given by (11),

cr(A + B/e Go t.J Gx(e
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where

o {z" II(z A22)-11{-1 =<
)-1Ga(e)={z [](z-mla-Bll/e II- --<ltm2[I}.

Proof. This is just the Gerschgorin theorem for block matrices [7].
Let Co> 0 be picked so that, with/3 determined above,

>[IA111+IIA211 + Ilm2][ + 11A221[ + 3.
E0

LEMMA 2. For 0<e-<-co, there exist two circles Co and I(E) such that Go is
contained in the interior ofCo and G (e ) is contained in the interior of1(e ). Furthermore,
P(0, (’x(E)) > 1 and Re

Proof. Since Re W(Bxl)<-fl for some /3>0, it follows that Re W(B11/e)<
-/3/e. Thus there exists 3’ > 0 so that the circle l(e) with center at (-(y +/3)/e, 0) and
radius y/e contains W(B11/e) in its interior. Now using (8) and the triangle inequality it
follows that for tz G(e)

o(,

Therefore the circle l(e) with center at (-(3, + B )/ e, O) and radius rl(e)
,//e+IIAalI[+IIA1211+l contains Gx(e)in its interior and for 0<e =<Co, Re a(e)<
-t/e.

Similarly one can show that for tz Go, I1< Ilazlll + IIAzzll. Therefore, the circle o
with center at (0, 0) and radius ro IIA 1211 + [IA 2211 + 1 contains Go in its interior. Also we
have

p(Co, Cl(e))=(T+[3)/e--rl(e)--ro> 1.

For the rest of the proof, assume that 0< e =< Co. We now proceed to establish (10).
From (12)and Lemmas 1, 2 we have

e(’+/ Xo(e )+ X,(e(13)

where

1 I x )-1(14) Io(e)=/ e (A -A-B/e dA,

1 f e’(A-A B/e(15) II (E) ’- (e)
)--I

Consider (15). Let eZ to obtain

1 : /(16) I,(e)=..,(.e (C-cA-B)- d(

where l(e) is the circle with center at (-(T + fl ), 0) and radius T+ek, k=
[]A,,][ + [A ,[ + 1. Thus

(17)
1

IIIx(e)ll < 2rr(y + ek). e sup {[l(r eA B

Since II(-eA-B)-’II---,II(-B)II- as e-,0+, II(-eA-B)-’II is continuous on the
compact set 61(e)[O, eo] and, therefore, attains its maximum on this set. Thus

[[I, (e )[[ <=Me-r/ for some M>O and Ix(e)-->O as e --,0+.
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(18)

Finally we consider (14), which may be rewritten

Io(e )= ea+B/po(e

where

(19) Po(e) / (.-A-B/e)-1 dh.

Since Po(e) is a projection which commutes with A + B/e, we have

(20) Io(e e Fo()po(e
where

(21) Fo(e)=(A +B/e)Po(e)=-f- ( -A-B/e)-1 d.

In (19), let r eA to obtain

I 1 I (-eA-B)-ld(1
((- ea B)-I dsr

o(o)
(22) P(e -r- o()

where o(e) is a circle with center at the origin and radius ero. Since (eo) does not
contain any of W(B11)we have

(23) lim Po(e)=
1 I (st-B)-1 dr.-+ / o(o)

It is easy to verify that if B has index 1, the following identity holds [12]

(24) (st- B)-I --(I--(BD)-IBD + (-I(I-BBD).

Thus the integral in (23) may be evaluated using the residue theorem to obtain

(25) lim+ Po(e )= (I- BB).
e--)O

In (21), let (= eh to obtain,

1 I (’-ea- B)-I drFo(e) -/ o(o) e
(26)

1f st{(( ea B)-lea (( B)-I + (sr B)-I} d(.
27ri o(o) e

Thus

1 I 1 I (--((-B)-ld(+O(e).Fo(e --- ((-B)-IA((-B)-I d(+i e

From (24) we see that the integrand of the second integral is analytic inside Co and the
integral is zero. The first integral can be evaluated by residues using (24). Thus,

i_,mo+ Fo(e (I BBD)A (I BB).

Therefore,

}imo+_, I(e)= li_,mo+ Io(e)= e(I-BB)A(I-BBD)(I--BBD)= e(I-BB)A ([- BBD). 7]
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5. Necessity of semistability. This section will complete the proof of Theorem 1 by
showing the necessity of semistability.

Completion ofProofof Theorem 1. Assume that Xe (t) has a pointwise limit as e 0+

for => 0. As observed in the proof of Theorem 2, we may assume that a similarity
transformation has been performed on B so that

J1 0"" 0

where o-(Ji) hi, o’(N)= 0, hi : hj if i: j, Ihil -0, i= 1,..., r. In addition, we may
assume that W(Ji) is in the open left-half plane if Re hi < 0, W(Ji) is in the open
right-half plane if Re hi >0 and W(Ji) W(J.) if :/’, 1, 2,. , r. Let h0=0 if
the nilpotent block N is present. From [7] anfl the same reasoning used in the proof of
Theorem 2, for 1, 2,..., r, there exists he(i) r(A + B/e)such that [he(i)-hi/e[ <=
Ki + 6i/e, where Ki and 6i are constants.

First we show that Re h <_- 0 for h o-(B). Suppose that h o-(B) and Re h > 0, then
there exists he r(A + B/e) such that Re he +o. Let Se be such that (A + B/e)e
;, [ll[- 1. Then [le(A//)ll-lle"l[--,o which is a contradiction.

Some further calculations are necessary before we can rule out the possibility that
Re/i 0, : 0. Using [7], we can argue as in the proof of Theorem 2 that for e less than
some eo there exist contours i(e), Co(e)which do not intersect such that W(Ji/eo)
Interior (ci(6)), W(N/e)_ Interior (COo(e)), r(A + B/e)_ [,-Ji Interior (i(6)), and
p(W(Ji/e), %(e)), p(W(N/e), c0(e)) are bounded independent of e. Thus each cCi(e)
contains only those eigenvalues of A + B/e that are clustering ’near’ those of Ji/e. Then

where

Xe (t)= eV’(e)tPi(e)
i=0

1

J (h-A-B/e)-1 dA,Pi() 7/ ,
1 I )--1h(h -A-S/e dh.(e ) (A + B/e )Po(e

,(e)

As in the proof of Theorem 2, it follows that Pi(e)- I-(Ai-B)D(Ai-B). Since Xe(t)
has a limit for > 0, so does Xe(t)Pi(e). Thus e v’(e)t has a pointwise limit for > 0 for
each i.

We shall show that

(27) Fi(e)=hiPi(e)/e +Gi(e)+(hi-B)[I-(hi-B)(h-B)]/e,

where Gi(e) is continuous at zero.
Assume for the moment that (27) holds. We shall use this to show that we cannot

have Re hi 0, : 0, and that B has index 0 or 1.
Note that Pi(e) is indempotent and the last term in (27) is nilpotent, so that

Trace F,.(e) txihi/e + Trace Gi(e
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where /,ti is an integer. Assume that Re Ai =0 and ImAi #0. Then there exists a
/,(e)etr(F/(e)) such that Re (/z(e))is bounded and ]Im(e)]+c. Let &(e) be an
eigenvector of F/(e corresponding to/z (e) and assume IlO (e)ll 1. Pick a subsequence
4(ek) SO that &(ek)converges; then

(e’()’&(e), O(e)) e.(.)

converges for all > 0 which is a contradiction. Thus Re Ai < 0, 1, , r.
Now consider (27)for i=0. Since A0=0 we have Fo(e)=Go(e)+Q/e, where

Q= B(I-BB). Since Trace F0(e)=Trace G0(e), we must have that tr(Fo(e )) is
bounded. Pick tl such that ]Imtr((Go(e)+Q/e)tl)]<=Tr/2. Let Ln be the principal
branch of In z. Then if e(a(E)+/E)t’ - 0 we have

(Go(e)+O/e)tl Ln e(o()+/)tl --> Ln 0.

However, if Q # 0, the left-hand side cannot possess a limit. Thus Q B(I BB) 0
and B has index zero or one.

Hence it suffices to show that (27) holds for Theorem 1 to be proven. To see (27),
let/ B- hi, and " eh- hi. Then,

1 f (A-AJe)(A-A-B/e)-dA(Fi(e )- Aile )Pi(e )=-l I ( eA )-ldsr
2rri ,( e

where i(e) is a circle with center at the origin which does not contain any nonzero

eigenvalues of/. Hence as in the proof of Theorem 2"

1 I 1 f_((._/)-d,F"(e)=Ai/ePi(e)+-iTri (-eA-B)-’A(-l)d+i e

The first integral is a continuous function of e and the second can be evaluated to yield
1(I-lJ)/e. Thus (27)follows.

6. Generalizations. While A, B were assumed constant for notational con-
venience, the following more general theorem holds.

THEOREM 3. Suppose thatA (e )--> Ao as e --> 0/. Suppose thatB (e is right differen-
tiable at e O. Let

X (t) e (A()+n()/)’.

Then X(t) converges pointwise for O<t if and only if B(O) is semistable. If B(O) is
semistable, tken

(i) lim,_,o/ X (t)= e(-a()a()%(A+a’())(I B(O)B (O)),
(ii) X (t) converges uniformly on compact subsets of (0, oo),
(iii) X’ (t) converges uniformly on compact subsets of (0, c) to

(I B(0)B (0)D)(Ao + B’(0)) e a-O(0)n())(A+n’())’ (I B (0)B (0)D).

Proof. It is clear from the proofs of Theorems 1, 2 that they go over immediately
to A(e)Ao. Suppose then that B(e) is differentiable at e=0. Thus B(e)=
B(O)+B’(O)e+b(e) where b(e)/e0 as e-0. Then, A(e)+B(e)/e
[A(e)+B’(O)+qb(e)/e]+B(O)/e and A(e)+B’(O)+c(e)/e+A(O)+B’(O) which is
the case just discussed. There remains then only to verify (ii) and (iii). But if B(0) is
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semistabte, then,

X(t)= eV()tPo(e ) + eF()tel(e )

where Re[o,(Fl(e))\{0}]<0 and Fo(e)->(I-B(O)B(O))Ao(I-B(O)DB(O)). Since
Ile(’)’e(e)ll= O(e-’/) by (12), both (ii) and Off) follow. 71

7. An application. As an application of Theorem 3, consider the system

A I(e )x +A2(e )y,
(28)

+
with the initial conditions x(0)= Xo, y(0)= yo and the corresponding reduced system

(29) : =Alx +A2y, O=Bx +B2y

where Ai(e)--> Ai, Bi(e )--> Bi for = 1, 2 as e --> 0+ and B(e), B2(e) are right differenti-
able at e 0.

THEOREM 4. The solution Ix, (t), y (t)] of (28) has a pointwise limit.for > 0 ]’or all

(go, yo) if and only if B= ""// 01- is semistable. B is sernistable if and only if B2 is

semistable andBBB B. IfB is semistable, then [x (t), y (t)] converges to a solution
of the reduced problem (29). Let [x(t), y(t)] be this limiting solution. Note that B then
exists and equals B. Then

(30)
y(t)J

e -B"B)
Yo

where

[I(E) A()/{(e)
(0) B (O)J"

If the Bi(e) are constant, then (0) is

(31) [x(t)]:[e’-’t’s:"’,’x(O)+O((A1-AB:B)t)A(I-BB:)ty(O)]l y (t)J -BBix (t) + (I BB2)y (0)

where 0(z)= (e 1)/z. All limiting solutions satisfy the initial conditions

B B[X(O)] 0

y(o) =[o]"
Proof. Let

a(e)= [a(e) a2(e)]0 0

Then all solutions of (28) are of the form:

z, (t) I. y, (t)J
e

[0 0]B()
BI(e) B2(e)

By Theorem 3, z(t) has a limit for all Xo, Yo if and only if B is semistable. But
tr(B) o’(B2) LI {0}, and from 10],

B1 Bz (BzD)ZB1 B"
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Thus one can verify that B has index 1 if and only if B2 has index 0 or 1 and
BBEB1 B1. Equation (30) follows from Theorem 3. We shall now show (31) holds.
Suppose B has index 1 and the Bi(e) are constant. Then,

BB1 BBz’ 0 0

Hence,
A(I-BBg)t__ r e (A x-A2BgB1)t

L 0
k (t)Az(I

where b(t)= O((A1-A2BB2)t) and O(z) has the power series expansion (ez- 1)/z.
Thus,

[ e(A-AEBB)t ](I BB) eA(I-BB)t-
t (t)A2[I BB1]t

-BB1 e(A-A2nn)t -BBlC(t)AE(I-BB2)t+(I-BB2)
Note that given initial conditions Xo, yo for (28),

and

eA)+B)/)tBB[]O for t>0

[x0] converges.At)+B)/)’(I-BB )
Yo

[x0]Hence to describe the limits of x, y, we may as well assume R (I- BB). Then,
yo

BB2Yo =-BBlxo, Xo arbitrary. Hence,

x (t) e Ax-AzOn)Xo + Ck (t)A 2t[(I BB2)yo],

y (t) -BB1X (t) + (I BB2)y0
are the limiting solutions of (28). That (31) is a solution of (29) follows from the uniform
convergence of x(t), x’(t), y,(t), y’(t) on compact subsets of (0, ). 71

COROLLARY 1. I1 B is sernistable, then the solution of (28) can be written

[x (t)]
y (t)J

e
Xo + e<A<)+n<)/)tBB + E(t)<t-nn.)a<o),(i BB )
Yo Yo

where the first term is the solution of the reduced problem (29), the second term is the
"boundary layer correction" and E(t)O uniformly on [0, to] for every to>0 as e 0+.

It should be noted that previous work on (28)-(29) usually assumes that B2 is
invertible and has no purely imaginary eigenvalues. Finally from [4], we have

COROLLARY 2. The fundamental matrix Z (t) of (28) converges pointwise for > 0
and solutions of the reduced problem (29) for consistent initial conditions are uniquely
determined, if and only if, B2 is stable.
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EXISTENCE FOR NONLINEAR VOLTERRA EQUATIONS
IN HILBERT SPACES*

VIOREL BARBUt

Abstract. Existence results for Volterra equations of the form Bu + a * Au f are established. Here A
and B are subdifferentials of convex functions on a real Hilbert space.

In particular, existence results for the nonlinear differential equation (d/dt)Bu + Au g, u(0)= Uo are
derived.

1. Introduction. In this paper we are concerned with the nonlinear Volterra
equation

Io(1.1) Bu(t)+ a(t-s)Au(s)dsf(t), (0< <oo).

Here the unknown u takes values in a real Hilbert space 1-1, a(t) is a scalar function
and A, B are (possibly) multivalued maximal monotone operators acting in H.

When a(t)= 1, equation (1.1) is formally equivalent to nonlinear differential
equations of the form

d
mBu(t)+Au(t)g(t), (0</<oo)
dt

(1.2) u(0)= uo

for which the standard existence theory of nonlinear differential equations of mono-
tone type (see e.g. [2], [6], [8])is not in general applicable.

The reader will certainly recognize that in applications, A and B will often take
the form of a partial differential operator on a domain 12 of some Euclidean space (see
Examples 1 and 2 below). Such equations arise very naturally in various problems of
nonlinear viscoelasticity and heat conduction in material with memory.

Our approach when studying (1.1)consists in "regularizing" the equation by
adding the term eu’ to the left-hand side. After establishing a priori estimates

independent of e, existence results for equation (1.1)are obtained on letting e 0+.
When one passes to the limit, the compactness assumptions and monotonicity of A
and B play a crucial role.

The plan of the paper is the following" In 2 the basic assumptions and the
existence theorems are stated. The proofs are delivered in 3, 4 and 5, respectively.
Two examples illustrating the theory are presented in 6.

To our knowledge, under the general conditions considered here, equation (1.1)
has not been studied in literature. As for equation (1.2), there is an extensive
literature treating the case in which A and B are linear but few results are known
about the solvability of nonlinear equation (1.2), (see e.g. [4], [5], [7], [11], [12], [16]).
Our results can be compared most closely with that of O. Grange and F. Mignot [12].
However, there is not a large overlap and the methods are quite different.

:. The main results. To begin with we list the notations and general assumptions
which will be in effect in the sequel.

(a) H is a real Hilbert space and V, W are real reflexive Banach spaces dense in H.
It is assumed that

(2.1) Vc WcHc W’c V’

* Received by the editors March 21, 1977, and in final revised form November 30, 1977.

" Faculty of Mathematics, Universitatea "A1. I. Cuza", Iai, Romania.
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algebraically and topologically, where W’ (respectively V’) is the dual of W (resp. V)
via the inner product (.,.) of hr. In other words W’ (resp. V’) is the completion of H
under the norm
sup (Iv*, )I/1111; v w)), The norms in H, V and W are denoted by l" I, I1" IIv and
I1" IIw, respectively.

(b) A 04 and B 0q where 6" W f-co, +col and 0’ V - f-co, +col are lower
semicontinuous, proper convex functions. Here 06 and q denote the subdifferentials
of 4’ and 0 respectively (see e.g. [14, p. 59]).

In particular assumption (b) implies that the operators A and B are maximal
monotone from W and V to W’ and V’ respectively. Let An" H H be the operator
defined by’ Anu Au H. We shall assume that

(c) the operator An is maximal monotone on H.
A sufficient condition for this is (see e.g. [2, p. 254])

(2.2) lim

Let Aa h-l(I-(I +,AH)-I), h >0, be the Yosida approximation of An (see [6,
p. 28] for properties of Aa). The next assumption relating A and B is

(d) there exists a real number 3’ such that

(2.3) (Axu, v >- 3" forueH, veBuHandA>0.

(e) The function p is strictly convex and

(2.4) lim

As regards the scalar kernel a we will require that
(f) a e C1([0, co[), a’ is locally absolutely continuous on [0, co[ and a(0)>0.
The first existence result is
TIqEOIEM 1. Let the general assumption (a)-(f) be satisfied. Further, assume that

A is single valued, everywhere defined on W and

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

the infection of V into W is compact.

Then for every f e WI, ([0, oo[; H) equation (1.1) has a solution u in the sense

u P([0, [; v) c([0, oo[; w),

Au L,c ([0, co[; W’), ’AU(s) ds Lc ([0, co[; H),

f-a * Au Loc ([0, col; H)

(f-a Au)(t)Bu(t) a.e. t>0.

Here Wl; ([0, co[; H), 1 <-p-<co, denotes the space of all locally absolutely
continuous functions u(t) on [0, co[ with values in H such that u(k)e L’oc ([0, co[; H).
We have denoted by C([0, co[; Vw) the space of V-valued weakly continuous
functions on [0, co[. Finally, (a Au)(t) stands for the convolution product [ a(t-
s)Au(s) ds which makes sense in virtue of (2.7). In particular it follows from (2.7) that
f-a * Au Llc ([0, co[; W’) and (f-a Au)’ G Lloc ([0, co[; W’).

Under additional conditions relating A and B, the compactness condition (2.5)
may be avoided. For example we have

THEOREM 2. Let the general assumptions (a)-(f) be satisfied with V W H.
Assume in addition that"
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(g) D(B)c D(A) and ]’or each Uo D(B) there exist positive constants r, a and 13
such that

(2.10) IAut<-alBu[+ foru D(B), lU-Uol<-r.
(h) For every > 0 the level subset {u H; q(u) <- } is compact in H.
Then for every f 6 Wdz ([0, co[; H) equation (1.1) has a solution u C([0, co[; H)

in the sense that there exist v and w in L2o ([0, co[; H) such that

(2.11) w(t)Au(t), v(t)Bu(t) a.e. t>0

(2.12) v(t)+(a * w)(t)=f(t) a.e. t>0.

Here D(A) and D(B) denote the domains of A and B while A and B denote
their minimal sections, i.e. IAu] inf {[z]; z Au}.

Inasmuch as the constant kernel a(t)= 1 satisfies condition (f), the above exis-
tence theorems are applicable to differential equations of the form (1.2). For example,
Theorem 1 gives

COROLLARY 1. Assume that A and B satisfy conditions of Theorem 1. Let
g e LZoc ([0, col; H) and Uoe H be given such that

(2.13) g 6 Loc ([0, col; W’), BuoK
and the in]e.ction of V into W is compact.

Then initial value problem (1.2) has a solution u C([O, co[; V) C([O, co[; W)
in the sense that there exists v Lo ([0, co[; H) such that

(2.14) v’Lo ([0, co[; W’), v(t)6Bu(t) a.e. t>O

(2.15) v’(t) + Au(t) g(t) a.e. > 0 (’ -t)
An analogue of Theorem 2 may also be formulated for equation (1.2) but we do

not give details.
It should be said that assumption (e) together with condition (2.5) imply that the

operator B-1 is continuous from V’ to W. Hence under assumptions of Theorem 1 the
operator AB-1 is demicontinuous (i.e. strongly-weakly continuous) from V’ to W’.
This fact reveals that Theorems 1 and 2 require that in a certain sense the operator A
be "dominated" by B.

If A and B are partial differential operators this means roughly that the order of
B is bigger than that of A. A different situation arises in Theorem 3 below.

As before W is a rehl reflexive Banach space which is dense in H and

WcHcW’

algebraically and topologically. Furthermore,

(2.16) the injection of W into H is compact.

We shall assume that A 0#: W--> W’ and B 0o: H --> H where and q are
lower semicontinuous, proper convex functions from W and H, respectively to
]-co, +co]. Further, assume that

(2.17) lim O(u)/llullw--

(2.18) (Axu, v)>-O forallh >OandveBu,

(2.19) D(A)= W and A maps bounded subsets of W into bounded subsets of W’.
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As regards the kernel a(t)we shall assume that

(2.20) a C2([0, oe[), a(0)> 0, a’(0) -< 0

and a" is locally absolutely continuous on [0,
TtqEOIEM 3. Let the assumptions (2.16)-(2.20) be satisfied. Let f be given such

that

(2.21) f Wllc2 ([0, 00[; H), f" 6 L2o ([0, o[; W’)

(2.22) f(O)B(W).

Then equation (1.1) has a solution u L ([0, o[; W) in the sense that there exist

functions v and w satisfying

(2.23) w(t)Au(t), v(t)Bu(t), a.e. t>0,

(2.24) v W,; ([0, o[; W’)0 C([0, [; H)

(2.25) Jo w(s) ds L ([0, o[; H), w L ([0, o[; W’),

(2.26) v(t)+(a w)(t)=f(t) forevery t>-O.

COOLLAr 2. Let A and B satisfy assumptions (2.16)-(2.19). Let g
Lo ([0, c[; H) and Uo W, Vo H be given such that

(2.27) g’ L2o ([0, o[; W’), Vo Buo.
Then the initial value problem (1.2) has a solution u Lo [(0, c[; W) in the sense"

(2.28) v Wl,; ([0, o[; W’)71C([0, o[; H)

(2.29) w(s) ds Llc ([0, oo[; H), w glc ([0, oo[; W’)

(2.30) v(t) Bu(t), w(t) Au(t) a.e. > 0

(2.31) v’(t)+ w(t)= g(t) a.e. t>0

(2.32) v(0)= Vo.

It should be observed that (2.32) makes sense because by virtue of (2.28), v
C([0, oe[; Hw), i.e., v is weakly continuous from [0, co[ to H.

Under appropriate conditions on A and B, equation (1.2) has been studied by O.
Grange and F. Mignot [12] by using a discretization method. Corollary 2 extends their
main results in the sense that B need not be the subditterential of a positive homo-
geneous function as it is assumed in [12]. Also, more general operators A are allowed
here.

3. Proof ot Theorem 1. It suffices to prove the existence on each interval of the
form [0, T].

Let Uo D(q) {x H; o(x)< o} (the effective domain of o) be such that Buof-)
H - . For each e > 0 consider the integro-differential equation

(3.1) eu’+Bu+a * Au f, 0< t<oo ’=

with the initial condition

(3.2) u(0)= Uo.
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This equation has been studied under appropriate conditions on A and B by the
author in [1] (in this context see also Chap. IV in [2]) and recently by M. G. Crandall,
S. O. Londen and J. A. Nohel [9] who allow more general conditions on the kernel a.

We shall denote again by B the operator u Bu (’IH. It is well known that
condition (2.4) implies that this operator is maximal monotone from H into itself. As
a matter of fact it is the subdifferential of convex function

0(u) if u 6 v
(u)= + if u H\ V.

Thus we are in the situation ofTheorem 1 in [9] so we may infer that for each e > 0,
equation (3.1), with the Cauchy condition (3.2) has a solution u C([0, oo[; W) in the
sense

(3.3)

(3.4)

(3.5)

u’, Lloo ([0, o[; H),

v Ll2oc ([0, oo[; H),

o’AU,(S)

ds Lc ([0, oe[; H),

v (t) Bu, (t) a.e. > 0,

eu’(t)+v(t)+(a * Au)(t)=C’(t) a.e. t>0.

Furthermore, u may be obtained as limit for , 0+ of solutions ua to the
regularized equation

(3.6) eux +Bux +a Axu, 9]" a.e. t>0

satisfying initial condition ux(0)= u0. More precisely, for every T>0 there exists a
sequence (again denoted A) tending to zero such that (see relations (2.32) in [9])

ux u in C([0, T]; W) and weak-star in L(0, T; V)

ux u weakly in L2(0, T, H)

(3.7) vx v weakly in L2(0, T; H)

Io Au(s) ds Io Au(s) ds weak-starinL(0, T; H)

where

(3.8) eu,x + vx + a Axu,x f a.e. > 0.

Next we shall derive bounds on solutions u to problem (3.1), (3.2).
LEMMA 1. Let T > 0 be given. There exists a positive constant C independent of

e ]0, 1] such that

(3.9) Iv(t)l dt+ Au(s)ds <-C .forO<e_<-l, re[O, r],

(3.10) e lu:(t) dt+lu(t)ll+llAu(t)ll,C oree]O, 1] a.e..te]o,r[.

Proof. Without any loss of generality we may assume that 0 => 0 on V and O => 0
on W. For example this may be achieved replacing the operator A byu Au -AUl
and B by Bu Bu- v where u e W and V e Bul are arbitrary but fixed.

Forming the inner product of (3.8) with v,a, integrating over [0, t] and using the
chain rule (see e.g. [6, Lemma 3.3])

d
(3.11) d--(u(t))=(vx(t), u’x(t)) a.e. t>0
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we get

[v(s)l2 ds <- ep(Uo)+ If(s)l [v(s)] ds

(3.12)
+ [(a * Axux)(s)[ [vx(s)l ds.

Next we multiply (3.8) by Axux and integrate over [0, t]. Using condition (d) we get
after an integration by parts that (we drop the argument under integral sign)

Io (a * Aux, Axux)ds ed/(Uo)+ If(t)[ IF,x (t)l
(3.13)

which yields

Io’ (a Axu,x, Axu) <- C1 + C2 max {IFx (s)l; -<- s <= t}.ds 0

Here F(t) o Axux (s) ds. Then by virtue of condition (f) we may conclude that
(see [9, proposition (a)]):

(3.14) [Fx (t)]-< C for all e, h > 0, [0, T],

where C is independent of e and h.
Integrating by parts in a Axux we get

(3.15) (a Axu)(/)= a(O)Fx (t)+ (a’ F,x )(t).

Substituting (3.15) in (3.12) and using (3.14) we get (3.9) as claimed.
To establish (3.10) we shall first prove that u’ L(0, T; H) and

(3.16) e [u’ (t)[-< C for e > 0 and a.e. ]0, T[.

To this purpose consider t, h real numbers satisfying 0 < < + h < T. Then equation
(3.8) and the monotonicity of B yield

dlU.(t+h)-u.(t)l+ u.(t+h)-u.(t), (a(t+h-s)-a(t-s))Au(s)

t+h

Next we multiply (3.8) by u(t)-uo to find

ed
2 dt

]u,x (t)- Uo[2 _-< IBuol [u (t)- Uol + If(t)[ lux (t)- Uol

+l. a(t-s)Axux(s)ds [ux(t)-Uol, a.e. ]0, T[

and therefore

(3.18) lim sup e lu,x (h)- Uol/h <-IBuol + If(0)l, for all e, A > 0.
h0
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Integrating (3.17) and using estimate (3.18) yields

E 2

-2 ]u. (t)l + (a * a.u, u. ds + a(O) (u ’, au. ds

(3.19)
_<-(IBu01/l(0)l)2// (f’,u’)ds, a.e. te]0, r[.

Let Ox:H [0, +m[ be such that Ax 0Ox. Then 0x is Fr6chet differentiable on H
and (see e.g. [6, Proposition 2.11 ]), Ox (u) O(u) for all > 0 and u W.

Also observe that absolute continuity of a’ together with estimate (3.14) imply
that a’ Axux is uniformly bounded on [0, T]. These facts and estimate (3.9) yield
after some calculations involving Gronwalls’s lemma that e lu’ (t)l < C for all e, > 0
and a.e. e ]0, T[ where C is independent of e and . Remembering (3.7) we obtain
(3.16) as desired.

Now we multiply equation (3.5) by u u where u is any fixed element of D()
and use estimates (3.9) and (3.16) to find

((3.20) (u(t))(Uo)+Cxlu(t) + lu(s)l Ot T

(we notice that (3.9) also implies that I(a * Au)(t)l is uniformly bounded over [0, T]).
On the other hand condition (2.4) implies that for every > 0 there exists 0 real such
that

(u)e llullv + 0 for all u 6 V.

From this and (3.20) we deduce that

(3.21) Ilu(t)llv c for [0, rl and all e e ]0, 1].

Since A is monotone from W to W’ and defined on all of W, it is locally bounded on
W so that estimate (3.21) together with assumption (2.5) imply that

(3.22) Ilnu(t)ll, C for all e e ]0, 1] and e [0, rl.
Finally, we take the inner product of (3.5) with u’ and integrate over [0, T].

Making use once again of equation (3.11)we get
To lu212 t+(u,(r))+((a Au)(r), u(r))

T T

-a(O i (Au ,u  et- o
T

([(r), u(r))-Jo (Z’, ue dt- (Uo)- (f(O), Ue (0)).

On the other hand integrating by parts,

(a’ * Au)(t)= a’(O)F(t)+(a" * F)(t)

we deduce by (3.9) that la’* Au(t)l are uniformly bounded on [0, T] because, by
assumption (f), a"e L(0, T). These relations imply (3.10) as claimed.

We continue the proof of Theorem 1 by letting e 0+. First we notice that by
virtue of (2.5) the injection of W’ into V’ is compact. On the other hand the family
{F}c C([0, r]; V’)is equibounded and equicontinuous (because by (3.10), {dF/dt=
Au} is bounded in L(0, T; W’)). Then by the Arzela-Ascoli theorem we have the
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existence of a function F C([0, T]; V’), and a sequence e,, - 0/ such that

(3.23) Fe, F in C([0, T]; V’) and weak-star in L*(0, T; H).

Extracting a further subsequence if necessary, by virtue of Lemma 1 we may
assume that there exist the functions u L(0, T; V) and v L2(0, T; H) such that

ue. u weak-star in L(0, T; V)

(3.24) re. v weakly in L2(0, T; H)

enue. 0 in L2(0, T; H).

We set gn f- e,ue. a(O)Fe. a’ * Fe. f- e,u e. a Aue.. By (3.23) and (3.24) it
follows that

(3.25) g,(t)f(t)-a(O)F(t)-(a’ F)(t), a.e. 6 ]0, T[

in the strong topology of V’.
It should be said that condition (e) part (2.4) implies that the range of B is all of

V’ (see e.g. [2, p. 56]), while the strict convexity of q implies that B -1 is single valued
on V’. Thus B-1 is demicontinuous from V’ into V. Since the bounded subsets of
V are compact into W we may therefore deduce from (3.23) that

(3.26) ue,(t)= B-g(t) u(t) a.e. ]0, T[

in the strong topology of W. Hence

Aue, Au in L(0, T; W’)

(a * Aue,)(t)- (a * Au)(t) weakly in W’ for all e [0, T] because A is demicontinuous
from W to W’. Finally since by virtue of (2.4), B is maximal monotone on H, relations
(3.25) and (3.26) imply by a standard argument that v(t)eBu(t) a.e. t]0, T[.
Summarizing at this point we have proved that u(t) is a solution of equation (1.1). It
remains to prove that u e C([0, T]; W) f"l C([0, T]; Vw). This follows by noticing that
(f-a. Au)(t) is V’-valued continuous and, as observed earlier, B-a is demicon-
tinuous from V’ to V and continuous from V’ to W. The proof is thereby complete.

4. Proo[ o Theorem 2. For the proof we need the following existence result for
equation (3.1).

PROPOSITION 1. Let the assumptions of Theorem 2 be satisfied. Then ]’or each
e >0, ’e Wll,;2 ([0, oe[; H) and uoeD(B)fqD(O), problem (3.1), (3.2) has a solution
ue satisfying ue, u’e e Llo ([0, oo[; H) and there exist ve, we Ll2oc([0, co[; H) such that
ve(t) Bue(t), we(t)e aue(t) and

(4.1) eu’e +re +a * we =1 a.e. t>0.

Proposition 1 has been proved in [9, Thm. 2] in the special case in which
condition (2.10) holds on every bounded subset of D(B). (On these lines more general
results can be found in [3].)

Proo] Let uea be the unique solution of approximating equation ( > 0)

euex + Buex + a * Axuex l a.e. > 0
(4.2)

u(0)= u0

where Ax denotes as usually the Yosida approximation of A which in our situation is
maximal monotone on H. It is well known (see e.g. [9, Lemma 2.1]) that problem (4.2)
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has a unique solution uea WI,;2 ([0, o[; H). We shall use the notations

Fex (t)= Axuex ds, vex f- euex a * Axuex.

Reasoning as in the proof of Lemma 1 we obtain the estimate (see (3.12) and (3.15))

(4.3) ]vex dt + Ife (t)] <- C for e, A > 0, [0, 7’

where T> 0 is fixed and C is independent of e and A. Furthermore, the inequality
(3.19) yields

e lu’ (t)l--< C for all e, A > 0, a.e. ]0, T[
and therefore

(4.4) q,(u(t))<-C(u,(t)l+ lu,(s)lds+l foralle, A>O, te[o,r].

(We shall denote by C several positive constants independent of e ]0, 1] and A > 0.)
As seen in the proof of Theorem 1, inequality (4.4) in conjunction with condition (2.4)
implies that ]uex(t)l is uniformly bounded on [0, T]. Thus by virtue of condition (h),
{ue (t); 0 <- <- T, 0 < e <- 1; A > 0} belongs to a compact subset of H. Then assumption
(g) yields

IAux(t)l<=alvx(t)l+ for e,A >0, t[0, T]

where a and /3 are independent of e and A. Recalling that IAxul<=lAul for all
u D(A), we see that it follows from (4.3) that

T

(4.5) | IAxuexl2 dt <-_ C for all e, A > 0.
Jo

Next we multiply (4.2) by u’ex and integrate over [0, t] to find

2e lu ex ds + q(uex (t))+ (uex (t), (a * axuex )(t))

a (0) (uex, Axuea) ds (uex, a’ Axuex) ds

q (Uo) + (f(t), uex (t))- (f’, uex) ds (/(0), Uo).

By an elementary calculation involving estimate (4.5)we get

(4.6) e [u’ex dt < C for alle, A>0.

Then by assumptions (e), (h) and the Arzela-Ascoli theorem we deduce from
(4.5) and (4.6) the existence of functions ue C([0, T]; H), re, we L2(0, T; H) with

u’e L2(0, T; H) and a sequence A, 0 such that

(4.7)

in C([0, T]; H)

weakly in L2(0, T; H)

weakly in Lz(0, T; H)

weakly in L2(0, T; H).
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Since A and B are maximal monotone, we have

(4.8) v(t) Bu(t), w(t) Au(t) a.e. ]0, T[

and

(4.9) eu’,+v+a*w=f a.e. ]0, T[.

Therefore u is a solution to (3.1). It is instructive to notice that estimates (4.4), (4.5),
(4.6) in conjunction with (4.7) give a bound independent of e for u. More precisely
we have

(4.10) (elu’ /lvl=’+lw12)dt/lu(t)[/(u(t))<C fore >0, t[0, T]

where C is independent of e. In particular, we deduce that

(4.11) eu’ 0 strongly in L2(0, T;H)for e 0.

Returning to the proof of the theorem we set

g f- a * Au, q -eu ’.
Then (4.1) may be rewritten as

(4.12) u,(t)=B-l(g,(t)+q(t)) a.e.t]0, T[.

Let iT, B-lg. By definition of B we have

tp(t(t)) <- q(Vl)+ (g(t), t(t)- vl)

where vl is arbitrary but fixed in D(q). Invoking conditions (2.4) and (h) we deduce
from the latter that {tT(t)} belongs to a compact subset of H. Moreover, as is easily
seen from estimate (4.10) and condition (f), {g} is an equibounded and equicon-
tinuous family of H-valued functions on [0, T]. As observed earlier condition (e)
implies that the operator B-1 is single valued and demicontinuous from H into itself.
Moreover, condition (h) shows that B- maps bounded subsets of H into relatively
compact subsets of H. Let us assume for the time being

LEMMA 2. The operator B- is uniformly continuous on every bounded subset ofH.
Hence we may conclude that {tT} is an equicontinuous and equibounded subset of

C([0, T]; H). Then again using the Ascoli theorem we have the existence en 0 and
u C([0, T]; H) such that

(4.13) tT u in C([0, T]; H)

while by estimate (4.10)we have

(4.14) lim qn(t)= 0 a.e. ]0, T[

in the strong topology of H. Since B- is continuous it follows from (4.11), (4.12) and
(4.13) that

(4.15) lim u(t)= u(t) a.e. ]0, T[.
en--O

Hence the Lebesgue dominated convergence theorem implies that

(4.16) u u in L2(0, T; H)
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while by estimate (4.10)we may assume that

re. --> v weakly in L2(0, T; H)

we. --> w weakly in L2(0, T; H).

Since A and B are maximal monotone, just as above, we have

w(t) Au(t), v(t) Bu(t) a.e. 6 ]0, T[

which show that u is a solution to (1.1)on the interval [0, T].
It remains to prove Lemma 2. Suppose that the sequences {un} and {v,} exist in H

such that [u,[+lv[<=M, [u,-v,]-->O as n-->o and IB-au.-B-av.l>=p>O for all n.
We argue from this to a contradiction. Let y, B-lu, and z, B-iv,. By definition of
0q we have

(4.17) q(y,,)-< (u,,, y,, u)+ q(u) for all u H,

respectively,

(4.18) q(z,,) -< (v,,, z,, u)+ (u) for all u H.

In particular, conditions (2.4) and (h) imply that {y,} and {z,} remain in a compact
subset of H. Thus extracting subsequences, we have as nt-->

(4.19) Y,,k "-> yl, z,,k --> Y2 strongly in H

(4.20) u, --> u 1, v, u weakly in H.

Since q is lower semicontinuous, it follows by (4.17) and (4.18) that

q(yl) -< (Ul, yl- u)+ (u) for all u H,

and

qg(y2)--<(U, y2--U)-I-qg(U) foralluH.

Hence yx B-Ul and yEB-lul. Since B-1 is single valued (because is strictly
convex) we conclude that yl y2. On the other hand relations (4.19) imply that

lY- Y21 ->/9 > 0. The contradiction we have arrived at concludes the proof.

5. Proot ot Theorem 3. Without any loss of generality we may assume that
0 A0 and 0 B0. This can be achieved by shifting the domains and ranges of A and
B. As above we confine ourselves to proving the existence on an arbitrary interval
[0, 7"1.

We apply Theorem 2 where B is replaced by B +eAn + el (e > 0). It should be
said that condition (2.10) is satisfied in the present situation because condition (2.18)
implies (see [6, Proposition (2.17)]),

(5.1) elAul<-I(B +eAH)Ul for all u D(AH)D(B).

(The notations are those used in 4.)
Thus for each e > 0 the equation

eue + eAHUe +Bu + a * AHUe f (0 < < T)

has at least one solution ue e C([0, T); H) in the sense that there exist ve and we in
L2(0, T; H) satisfying

ve(t)e Bue(t), we(t)e AHue(t) a.e. e ]0, T[
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and

(5.2) eu,(t)+ew(t)+v(t)+(a w)(t)=f(t) a.e. t]0, T[.

Furthermore, it follows from the proof of Theorem 2 (see estimate (4.10)) that

(5.3) IvlZds+lf(t)l<-C fore<0, t[0, T]

(5.4) e (lu + [w[2) dt <- C for all e > 0

where F(t)= w ds and C is independent of e.
Making use of monotonicity of A and B it follows from (5.2) that

+(u(t+h)-u(t), f a(t+h-s)w(s)ds)<-((t+h)-f(t), u(t+h)-u(t))

for 0 _-< < + h _-< T. Since a’ e L1(0, T) and f e W1’2(0, T; H) the latter implies that
is absolutely continuous from [0, T] to H and u’L2(O,T;H) (i.e.,
W1’2(0, T; H)). Dividing by hZ and letting h tend to zero we get

io io
,,

(5.5) e lu’, ds+ (u’,,a * w)ds+a(O) (u,, w)ds <= (f’,u’)ds.

and

On the other hand, one has

(u’, w) ((u))’

respectively,

a.e. e ]0, T[

(a’, w)(t)= a’(O)F(t)+(a" , F)(t),

(a", w)(t)= a"(O)F,(t)+(a’" , F)(t).

Substituting these equalities in (5.5) and recalling that fl’L2(O, T; W’), a’"e
(0, T) we obtain after rearrangements that

a (O)O(u (t)) <-- a (O)d/(ue (O)) + a’(O) Jo (u, w ) ds +lf’(0)l

/c l+llu(t)l[+ Ilullds fore>0.

(Here we have also used estimate (5.3)). Since a’(0)-< 0 and (w, u)>-0 (because A is
monotone) we find

(5.6) O(u(t))<=O(u(O))+C(1 +llu(t)llw+( Ilull=wds +lu(0)[

for all e > 0 and [0, T].
Now we shall find a bound for O(u(0)). Let Uoe W=D(O) be such that f(0)e

BUo (see condition (2.22)). Multiplying (5.2) by u(t)-Uo and using the monotonicity
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of B together with definition of 0, we find

e(u(t), u(t)- Uo)+ ep(ue(t))+((a * w)(t); ue(t)- Uo)
<- e(uo)+ (’(t)-f(0), u,(t)- Uo) for [0, T].

Letting 0/ yields

u 12(5.7) 1/21u (0)l o for all e < 0.

Combining this inequality with (5.6) we get that

a Ilu, ll ds

which in conjunction with condition (2.17) implies that

(5.8) Ilu, (/)11 c for all e < 0 and [0, T]

(C is independent of e) and therefore

(5.9) IIw (t)llw’-<- C for all e > 0 and 6 [0, T]

because A is bounded on bounded subsets. In particular it follows that {F} is an
equibounded and equicontinuous subset of C([0, T]; W’). Since by virtue of (2.16)
the injection of H into W’ is compact, we may conclude by the Arzela-Ascoli
theorem that {F} is compact in C([0, T]; W’). Thus there exist functions F, u, g, w
and a sequence e, 0 such that

(5.10) F,. F in C([0, T]; W’) and weak-star in L(0, T; H)

(5.11) u. u weak-star in L(0, T; W)

(5.12) e,u., e,w. --> 0 in L2(0, T; H)

(5.13) w. -> g weak-star in L(0, T; W’)

(5.14) v. -> v weakly in LZ(0, T; H).

It should be observed that estimate (5.3) together with (5.10) imply that F(t)H
and IF(t)[-<_ C for every s [0, T]. Moreover, since F C([0, T]; W’) and the injection
of H into W’ is compact we deduce that F is weakly continuous from [0, T] to H, i.e.,
F s C([0, T]; Hw). Remembering that

(a * w)(t)= a(O)F(t)+(a’. F)(t)

we find that it follows from (5.2), (5.8), (5.9) and (5.10)

(5.15) v. v f- a g in C([0, T]; W’)

and

v,.(t) v(t) a.e. ]0, T[, weakly in H.

In particular, we have

(5.16) v(t)+(a g)(t)=f(t) a.e. t ]0, T[
and

(5.17) v(t)+a(O)F(t)+(a’. F)(t)=f(t) a.e./]0, T[.
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Thus modifying the values of v(t) on a subset of Lebesgue measure equal to zero we
may assume that v C([0, T]; Hw) and

(5.18) lim v,(t)= v(t) weakly in H for every [0, T].
O

Now we shall prove that v(t) Bu(t) a.e. ]0, T[. By monotonicity of B we have
T

I9 (tT-v,, t u, dt >=0

for all tT, t7 L2(0, T; H) such that t(t) Ba(t) a.e. ]0, T]. Letting e, 0, we find by
(5.11), (5.14) and (5.15) that

T

(5.19) fo (-v’a-u)dt>-O"

Let/ be the realization of B in LZ(0, T; H), i.e.,

Oa { L(O, T; H), (t) a(t), a.e. ]0, T[}.

The operator/ is maximal monotone in L2(0, T; H) because B is maximal monotone
in H. Since inequality (5.19) holds for each [tT, tT] / we infer that v /u, i.e.,

(5.20) v(t) Bu(t) a.e. ]0, T[.

To conclude the proof it remains to show that g(t) Au(t) a.e. ]0, T[. Since A
is maximal monotone from W to W’ it suffices to prove that

T T

(5.21) lim |(we,,ue,)dt<=| (g, u dt.
o o

(Extracting a further subsequence if necessary, we may assume that o(W,, u.)dt
converges as e,, - 0.)

To this end we take the inner product of (5.2) with u’ and integrate over [0, T].
After some calculations we get

(5.22)

T

-a(O) Io (w, u) dt= q(u(0))-(f(0), u(0))

+(lu (0)1- lu (T)lZ) + e (4, (u, (0))- 4,(u (T)))

T TIo (f ue) dt + Io (a’ , we, ue) dt

((a * w, )(T), u, (T))

+(f(T), u(r))- q(u,(T)).

Let ,*. H ]-oo, +oo] be the conjugate function of ,,
(5.23) q*(y)=sup((y,x)-q(x);x H}.
We have (see e.g. [14, p. 60]) B-= o* and

(5.24) q*(y) (y, x)- q(x) for y 0q(x).

By (5.23) and (5.24) it follows that

if(o), u(O))-,(u (o))_<- *(1’(o))
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and

(u (r), v(r))- (u(r)) *(v(r)).
Taking into account that

v (T) f(T) (a * w)(T) e (u (T) + w (T))

we deduce from (5.11), (5.13), (5.14) and (5.22),
T T

a(0) lim | (w., u,)dt <- q*(f(0))+ | (/’, u)dt
enO o o

(.)
-[ (a’ * g, u)dt-lim *(v(T)).
o nO

Since * is convex and lower semicontinuous on H, it is weakly lower semicontinuous
and therefore (5.18)yields

lim *(v.(T))*(v(T)).

Substituting in (5.25)we get

a (0) lim I0
T

end0
(5.26)

(we,, u,) dt <- o *(/(0))- q*(v(T))

T T

Returning to equation (5.16), we observe that it implies v’ 6 L(0, T; W’) and

v’+a(O)g+a’*g=f’ a.e.t]0, T[.

Hence

(5.27) a(0) Io7"
T T T

(g, u ) dt Io (f u ) dt fo (a , g, u dt lo (v t, u dt

while
T

Jo (v’, u) dt= o*(v(T))-q*(v(O)).(5.28)

Comparison of (5.26), (5.27) and (5.28) yields (5.21) as desired. Before concluding the

proof some words of explanation are in order concerning (5.28).
Since u(t)e B-l(v(t))=Oo*(v(t))a.e. t 10, T[, we have

(5.29) q*(v(t))-q*(v(s)) <- (u(t), v(t)-v(s))

for all s, in [0, T]. Since v’ e L(0, T; W’) and u e L(0, T; W) it follows from (5.29)
that the function - q*(v(t)) is absolutely continuous on [0, T] and

(*(v(t)))’ (v’(t), u(t)) a.e. e ]0, T[

which implies (5.28) as claimed.
Thus the proof of Theorem 3 is complete.

6. Examlles. In the sequel D. will be a bounded and open subset in R" wiih
smooth boundary F. WI’p (1) and W’’ (1"1) will denote usual Sobolev spaces on
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Example 1. Consider the integro-differential equation

-.= + a(t-s)g(u(s,x))ds=l:(t,x)

in the domain {t _-> 0, x fl}, together with the boundary-value conditions

(6.2) u=0 onF

and the initial condition

(6.3) u (0, x ) Uo(X ), x

We require that p->_ 2 and that g is a nondecreasing continuous function on R
]-oc, +[ satisfying

(6.4) g(0)= 0, Ig(u)[ =< C(lul’-1 + 1) for u R

where a satisfies

(6.5) p<-a<o ifp->_n; 2<-a>np/(n-p) ifn>p.

Theorem 1 applies neatly to this situation if we make the choices:

H=L2(n), V=W’p(n), W=L

and B" W’p (0)--> W-a’P’(a), A. L(a)---> L’’(Y)(1/p + lip’= 1, 1/a + 1/a’= 1)
defined by

,6.6, (Bu, v)= Ia [0xU/I p-2 0--u-u O--V dx foru, ve W’P(tl)
i= OXi OXi

(6.7) (au(x))= g(u(x)) a.e. x e t) for u e L’(fl).
It is well known (see e.g. [13, p. 185]) that under above conditions the operators

A and B are monotone and demicontinuous from W and V to W’ and V’ respec-
tively. Moreover, the restriction of A to L2(fl) is maximal monotone (see e.g. [2, p.
87]) and one has

(Au, Bu)>-O foralluD(B)andh >O.

The functions q and 4’ are given by

q(u)= dx p foru
i=l

and

i f
u(x)

O(u) g(r) dr dx for u L (f).
aO

Finally, we observe that condition (6.5) in conjunction with the Sobolev imbedding
theorem implies that the injection of V into W is compact. Thus if the kernel a(t)
satisfies condition (f) we may apply Theorem 1 to deduce that for each
Loc ([0, [; L2()) with Of/Ot L2oc ([0, co[; L2()) problem (6.1), (6.2), (6.3) has at
least one solution u (t, x) satisfying

(6.8) u C([0, o[; L" (fl)) ") C([0, o[; (W01’ (t))w)

(6.9) Bu Loc ([0, co[; LZ(fl)).
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We do not know whether or not we have uniqueness in the above problem. This
happens, for instance, if g is locally Lipschitzian on R.

Example 2. Relevant examples of nonlinear differential equations of the form
(1.2) can be found in [5], [11]. One example, which comes essentially from [13, p. 451]
is the degenerate parabolic equation

(6.10) 0 . O- ( Ou (t’i X )lp-2 OU (t’Oxi X ))O--7B(u(t, X))-- g(t, x)
i=1

in the domain {t _-> 0, x e f}, with boundary value conditions

(6.11) u(t,x)=O fort->_0, xeF
and initial conditions

(6.12) Vo(X)e [3(u(o, x)), x f.

Here/3 is a (possible multivalued) maximal monotone graph in R x R such that
0 (0).

In Corollary 2 we make the following choices:

(6.13) H L(f), W W’p (f), p => 2

(6.14) Au=-

(6.15) Bu {W e L2(); w(x)E (U(X)) a.e. x D.}, u e L2().
We recall that B 0q where o: L()- ]-oe, +eel is given by

(u)= L2()

and ]: R - ]-c, +oo] is uniquely determined (up to an additive constant) by condition
=oi.

It is obvious that conditions (2.16), (2.17) and (2.19) are satisfied. To verify (2.18)
it suffices to show (see [6, Thm. 4.4)] that

(Au, Bxu)>=O forallu6D(AH)andh >O

which follows immediately from the obvious relation

(Bxu(x))= fix(u(x)) a.e. x fL u L2(f).
Hence Corollary 2 is applicable.

Let g Loc ([0, oo[; L2()) and Vo L2(f) be given such that

Og/Ot Loc ([0, oo[; w-l’P’(f))
Vo(X) fl (Uo(X)) a.e. x f, Uo W’p (f).

Then there exists a solution u to problem (6.10)-(6.12) in the following sense

(6.16) u

(6.17) v wll; ([0, (x)[; W-I’P’())("] C([O, oo[; L:(n)w)
(6.18) v(t,x)[3(u(t,x)) a.e.xfL t>0

(6.19) O--- = x/ =g, 0< t<o, xeD,

(6.20) v(0, x)= Vo(X) a.e. x e ft.
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Remark. In the special case /3(r)= Irl-2r, a 22, the above problem has been
studied by Raviart [14] (see also [10], [12]).

Since our result allows multivalued functions/3 (in particular, we might take/3 as
the subdifferential of indicator function of some closed, convex subset of R), equation
(6.10) includes a large class of parabolic variational inequalities associated with the
pseudo-Laplacian A. In particular, the classical Stefan problem can be reformulated
as (6.10) where p 2 and/3 is suitably chosen (see e.g.J.L. Lions [13, p. 208]).

Acknowledgment. The author acknowledges gratefully the referee’s remarks
and suggestions on the paper, which helped him to improve its readability.
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ON THE SPEED OF PROPAGATION OF SOLUTIONS OF
INTEGRODIFFERENTIAL EQUATIONS*

PAUL L. DAVIS

Abstract. Linear Volterra integrodifferential equations of hyperbolic type from the electromagnetic
theory of dielectrics, heat conduction theory of materials with memory and from viscoelasticity theory are
examined. For a particular class of kernels solutions of initial value problems for these equations can all be
split into a part propagating outwards and a part whose support remains within the support of the forcing
term. The speed of the outward propagating part of each equation is exhibited.

1. Introduction. The notion of hyperbolicity was extended to integrodifferential
equations of Volterra type in [1]. Equations arising in the electromagnetic theory of
dielectrics and in heat conduction for materials with memory were examined in [2]
and [3] respectively and sufficient conditions for hyperbolicity were given. An equa-
tion is said to be hyperbolic if solutions of an appropriate problem propagate with
finite speed. In [2] and [3] we prove that this occurs without exhibiting the speeds of
propagation. We now prove that for the class of kernels considered in [2] and [3] the
solutions of these equations and an equation from viscoelasticity theory can be
represented as the sum of a function that behaves as a solution of the wave equation
and a function that propagates with zero speed. The latter function is said to be
trivially hyperbolic. We exhibit the speeds of propagation of the first function. They
are the speeds of propagation of the integrodifferential equation.

A summary of [1], [2], [3] is given in 2. By carefully examining the roots of
certain polynomial equations in two variables in 3, we reach the desired charac-
terization of solutions of these integrodifferential equations.

2. Background. Equations of the form

(2.1) u(x,t)= ._
k(t-s)Lvu(x,s)ds+g(x,t)

v-----1

when x (xx,"’, x,,) and L is a constant coefficient differential operator with
respect to these variables are considered in [1]. A kernel k is said to be in the set 1 if
its Laplace transform/ is a rational function (degree of numerator less than that of
denominator). In all that follows kernels are assumed to be in .

DEFINITION. The above equation is hyperbolic if for each g C(R" [0, c)) that
is infinitely differentiable in x for each > 0 and satisfies g(x, t)= 0 when Ix[--> bg,
1, , n, there exists a unique solution u C(R [0, o)) that is infinitely differenti-
able in x for each > 0 and has finite signal speed; i.e., there are c _>-0 such that u at
time t, > 0, vanishes outside of {- bi cit < x < bi + ct[i 1, , n }.

Denote the polynomial associated with L by Qv(r); that is,

(9

The analysis in [1] leads to sufficient conditions for hyperbolicity in terms of
-1

(2.2) M(w, ’): ( O(i()k(w,)(1- O(i()k(w))
u=l

* Received by the editors June 6, 1977, and in revised form December 12, 1978.

" 47 Grandview Avenue, White Plains, New York 10605.
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To show that a particular equation is hyperbolic one uses a representation of t(r, t),
the Fourier transform of u with respect to the space variables and the following
theorem:

PALEY-WIENER THEOREM [12]. Suppose F LZ(R"). Fis the Fourier transform of
a function vanishing outside of {-bi <-xi <-_ bi, i= 1,..., n} if and only if F is the
restriction to R of an entire function F((), C, of exponential type; that is, ]:or each
e > 0, there is C > 0 such that

IF(g’)l - Cexp . (b, + e)lsril.
i-=1

When k M for u 1, , p, M(x, ) is a rational function w for each sr with poles
wi(r), 1, , s (r). Let C(w, 6) be a circle of radius 6 about w. The representation of
a is as follows:

(2.3)

where

(2.4)

t(sr, t)= ,(sr, t)+ Io M(t-s, ()((, s) ds

exp (wj(()t) exp (tw)2Q(w + wj((), () dwM(t, ()=-i i=x

and 6(st,/’) is a sufficiently small radius.
Maxwell’s equations together with the constitutive relations

D(t)= E(t)+ q(t-s)E(s) ds, H(t) =/x-’B(t)

are considered in [2]. Such relations are also considered in [8], [9], [13]. E=
(Ex, E2, E3) is the electric field, D the electric displacement, H the magnetic intensity
and B the magnetic flux density. Such constitutive relations serve to model elec-
tromagnetic fields propagating in a dielectric. We assume that e/x c

-e where c is the
speed of light in vacuum. The speeds of propagation of the solution of the
integrodifferential equation associated with these constitutive relations are shown in
3 to be + c. It is shown in [2] that each component of E satisfies the equation

Au g(eu + q(t-s)u(x, s) ds
tt

Assuming that u is known for =< 0, we are led to an equation of the form (2.1) by
integrating twice with respect to and denoting all known quantities by g. The
equation is given in the beginning of the next section.

A hyperbolic theory of rigid conductors of heat composed of materials with
memory [4], [5], [10], [11] is based on the constitutive relations

and

e(t)= cO(t)+ I_ a(t- s)O(s) ds

q(t)= q(t-s)VO(s)ds
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and the energy-balance law

= -V. q+r.

0 denotes the departure of the temperature from its reference value, e the internal
energy, q the heat flux and r is the (known) heat supply. When these relations are
substituted into the energy-balance law, we have

(\cO(x,t)+_ a(t s)O(x,s)ds q(t-s)aO(x,s)ds+r(x,t).

Assuming that 0 is known for <-0, we arrive at an equation of the form (2.1) by
integrating once with respect to and denoting all known quantities by g. The
resulting equation is (3.2) of 3. The speeds of propagation of its solution are
+ (p(O)/c)1/2 when this quantity is real. A thorough analysis of the linear equations of
rigid heat conductors for a wider class of kernels is given in [16].

A one dimensional equation of linear viscoelasticity is given by

u,, c x2 + o(t- s -of x, s) ds,

where u (x, t) is the displacement at time of that point in the material body which is at
position x at time 0. A general theory of linear viscoelasticity is given in [6].
Existence, uniqueness and stability results for the general equations of linear visco-
elasticity are given in [14] and [15] along with an examination of the above one
dimensional equation. If u is known for t-< 0, another equation of the form (2.1)can
be constructed from the one dimensional equation. It is equation (3.3) of the next
section. The speeds of propagation associated with this equation are +/- c.

3. Polynomial analysis. The equations discussed in 2 are as follows:
Electromagnetic theory"

-1 (t s)u(x, s) ds + g(x, t)(3.1) u(x, t)=c z (t-s)Au(x,s)ds-e o

Heat conduction"

(3.2) u(x,t)= --C-I I0 a(t-s)u(x,s)ds

Viscoelasticity"

02
(3.3) u(x,t)=cz (t-s)-x2U(X,s)ds

q(z) d’)Au(x, s) ds + g(x, t)

+ (t-s-r)o(r)d x2U(X,s)ds+g(x,t).
Let Mi, i= 1, 2, 3, be the expression (2.2) associated with equations (3.1), (3.2),

(3.3) respectively. We have
2 2 -lq 2c [(I + (w)w w(w)+(w)l(I

MI(W, ’)= 2, M2(w, ’)=
W -["2 C 21@El2 -1(W)W CW + (w)l l=’

c:(+(:(w)
M3(W, )= 2 22w +c +(w)"
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Let
-1

q(w)=
’=o aiwi)(i=o biwi)

where the numerator and denominator have no common divisors and b,, # 0. That is,
q M. Assume that a M also so that

-1

(w)= cw dw

where d 0. Substituting these into M, 1, 2, 3 we are led to the study of the
following polynomials in two variables for electromagnetic theory, heat conduction
and viscoelasticity, respectively.

Pl(w,z)=b,,w "+2+c2z2 b,,-kw "-k+ E (bk-z+e ak-2)W,
k =0 k =2

q q-1 m q m-1

P2(w, z)= c Y. , dibkWj+k+a + Y Z CibkW++1 + z 2 E Y’. akdiw+,
/=0k=0 /=0 k=O /=0 k=0

m-1

P3(w, z)= E biwi+2+c2z 2 _, biw + z 2 E aiw.
/=o /=o /=o

The behavior of the roots w(lr[)of Pk(W, [srl)=0 as [’lc can be investigated by
examining the roots of

Rk(W, Z)= wszZPk(1/W, l/z)

as z 0 where s is the highest power of w to appear in Pk (W, Z).
THEOREM 1. Only two roots, WkI(Z) and Wkz(Z), of Rk(W, Z)=0, k 1 and 3,

approach zero as z O. These roots can be written as

w,(z)= iz/c + ., giz
+1 wk2(z)= -iz/c + ., giz

+1

/=1 j--1

(The g are generic constants.) If c0(0)> 0, two roots of RE(W, Z)= 0 approach zero as
z 0 also. Moreover,

w21(z) iz(c/o(O))1/2 + _, j+l

and

w22(z)= iz(c/q(O))/2 + E gizi+a.

Proof. Since s m +2 for R1 andR3 ands=re+q+1 for R2,

RI(W, z) b.,z 2+ c 2 b-kW
k=O

k+2
m

+ Z
2 (bk-2 + e-ak-2)W m-k+2,
k=2

m

R2(w, z)= cz 2 ., dqbkW "-k
k=0

ql2 E (cdibk + cibk)W m+q-k-
/=0 k=O

q rrt-1

+ akdiW "++l-k-i
j=o k=O
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and

rn--1

R3(w,z) =z2 Y’. biw’-J+c 2 biw "-i+z+ Z aiw "-i+z.
i=o i=o i=o

Since Rl(W, 0) and R3(w, 0) have cZbmw 2 as lowest order term and Rz(W, 0) has
am_ldqW 2 as lowest order term, each of Rk(W, z) has two roots approaching zero as z
approaches zero. (It is shown in Lemma 3.1 of [3] that o(0)= a.,_l/b., which is not
zero.) Motivated by Newton diagrams [7], we let z and w tu. Consider Gk(t, u)=
Rk(tU, t)/t2. For k 1 and 3, we have

Gk(t, u)= b.,(1 + c2u2)+ trig(t, u).

Moreover,

Gz(t, u)= a.,_ldq(cb,./a.,_a + uZ)+ tHz(t, u).

It follows that Gk (0, + i/c) 0 and

0
--Gk(O, +/-i/c)#O
Ou

for k 1 and 3. Since a,,,-1/b,,, 0(0), G2(0, + i(c/qg(o))l/2) 0 and

0

Ou
--Oz(O, +/-i(c/q(o))l/2) O.

Whenever Gk(O,s)=O and (O/OU)Gk(O,s)7O for some complex number s, the
implicit function theorem implies the existence of u(t) analytic in a neighborhood of
the origin such that u(O)=s and Gk(t,u(t))--O. Letting w(z)-zu(z), we have
Rk (w (z), z) 0 where (with gi as generic constants)

w (z) sz + 2 gizi+l.
j=l

The theorem now follows by choosing the appropriate values of s.
For I(] sufficiently large, the roots Wk.,(l(I) of Pk(W, Isrl)= 0 are given by

where Rk (Wk,,, (Z), Z) O.
COROLLARY. Let Wkl(Z) and Wk2(Z) be the two roots approaching zero as z

approaches zero. For k 1 and 3,

and

Moreover,

and

Wl(ll)--- icl[+ o(11)

w2(ll) ic[ffl + o(11),

Wzl(lffl)-- i(q(O)/c)a/=l[ + o(1’1)

Wzz(lr[) i((O)/c)a/Zlff[ + o(ll).

Pro@ If Rk(w(z), z)= 0 where

w(z)= sz + 2 gz+,
i=l
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then

w(lcl)-- 1/w(1/lCl)
-1

(s/It’l)+ E g’l([ -j-1
j=l

It’l(x /
s

where IIY(I[) is bounded as Il, The corollary follows when we choose s
appropriately.

DEFINITION. A function (x,) satisfying (x, 0)=0 for x[-b,b], k=
1,..., , is said to prapaae i peed c i e x direcia if (x, )=0 for

THEOREM 2. Assume g(x, t) propagates with speed 0 in each direction and that it
is infinitely differentiable. If and a, then solutions of (3.2) when c(0)>0,
and of (3.1) and (3.3) exist, are unique and infinitely differentiable. Furthermore the
solutions of (3.1) and (3.3) can each be written as the sum of three functions, one
propagating with speed 0 in each direction (trivially hyperbolic), the other two pro-
pagating with speeds c and -c in each direction. The same can be said of (3.2) except
that the speeds ofpropagation are ((O)/c)/.

Proof. Existence, uniqueness and differentiability results are contained in [2] and
[3] for (3.1) and (3.2). These results for (3.3) follow in a similar manner. The Fourier
transform of each of the hyperbolic parts can be represented using (2.3) and (2.4).
Terms containing expressions of the form

(2i)-a exp (W([(l)t) f exp (tw)(w + W(l(I), () dw,
ac(0,(,m))

m 1, 2, give rise to the nontrivial hyperbolic parts. The remaining terms represent
the Fourier transform of the trivial hyperbolic part. The previous corollary together
with the Paley-Wiener theorem are all that are needed to show that each of these
parts has the desired properties.
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GEGENBAUER TRANSFORMS VIA THE RADON TRANSFORM*

STANLEY R. DEANS"

Abstract. Use is made of the Radon transform on even dimensional spaces and Gegenbauer functions of
the second kind to obtain a general Gegenbauer transform pair. In the two-dimensional limit the pair reduces
to a Chebyshev transform pair.

1. Introduction. Gegenbauer polynomials of the first kind appear in a natural way
when studying the Radon transform of functions which have certain spherical sym-
metry. We shall make use of this property of the Radon transform to obtain a new
Gegenbauer transform pair. Although the final result does not contain Gegenbauer
functions of the second kind, these functions are important in the derivation and their
use here supplements the informative recent study of these particular special functions
by Durand [1] and by Durand, Fishbane, and Simmons [2].

The work which follows serves a threefold purpose. First, we are able to demon-
strate an important use of the Radon transform as a tool. Second, more insight is
obtained regarding the use of Gegenbauer functions of the second kind. Useful material
on these functions is contained in the Appendix. Finally, we derive a set of equations
which constitute a Gegenbauer transform pair with a fundamental connection to the
dimensionality of the space

2. The Radon transform. Let x (xl, X2, Xn) be a point in R (n -> 2) and let
F 6 be a function of the n real variables xl, x2, , x,,. The properties of the space ,
which consists of all rapidly decreasing C functions on R", are developed by Schwartz
[3]. The reason for working in a space with such nice properties will be clear when it
becomes necessary to make changes in the order of integration and to perform repeated
integrations by parts.

Given F 6e, the Radon transform of F is given by [4],

(1) f(cs’ P)= I F(x)(p- x) dx,

where p is real, is an arbitrary unit vector in [n, sc. x Y’.= sCKx, is the Dirac delta
function, dx dxa dx2 dx,,, and the integral is over the entire space. It is important
to observe that the symmetry condition

(2) f(d, -p)= f(-, p)

follows directly from the definition (1).
Following the initial work by Radon [5], many of the technical properties of the

Radon transform were worked out by several authors [4], [6]-[ 10]. Among other things
these authors develop a formal expression for inversion of the transform, valid for
functions in 5, and it turns out that the inversion formula for even n is considerably
more complicated than the formula for odd n. There is a Hilbert transform associated
with the even case which remains unevaluated for the most general functions. Our
concern here is with this even n case exclusively and involves defining F in such a
fashion that it is possible to perform the Hilbert transform.

* Received by the editors January 27, 1978, and in revised form June 8, 1978. This work was partially
supported by the U.S. Department of Energy.

t Department of Physics, University of South Florida, Tampa, Florida 33620, and Lawrence Berkeley
Laboratory, University of California, Berkeley, California 94720.
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3. Decomposition of F. We consider those functions F which may be decomposed
either as

(3) F(x) Gl(r)Slm(..),

or as a linear combination of terms of this form. Here, x I", r Ix I, x/r, and the
doubly subscripted St,() is a real spherical (or surface) harmonic [11], [12] of degree
which comes from an orthonormal set with N(n, l) members. That is, members of the
set {S/l(.), S/2(.),""", SIN(n,l)()} satisfy

(4) In Slrn ()Sl’m’() d ll’mm’

where d is understood to be the surface element in hyperspherical polar coordinates,
andn designates an integral over the unit sphere. A very useful property of the Sl() is
that they satisfy the symmetry condition

(5) Sl(-) (--)lSl().
Further properties, including an explicit expression for N(n, l), can be found in
Hochstadt 12].

4. Radon transform of the decomposed function. When the Radon transform (1)
is applied to (3) the result is

(6) [(, p)= Gl(r)S()(p-. x) dx.

Without loss of generality we may assume that p 0 since one may always calculate
[(,-p) from (2). If we convert (6) to spherical coordinates (dx r- dr d) and
observe that 8(p-r. )= (p/(. )-r)/l" 1 for purposes of doing the r integra-
tion we obtain

(7) f(, p): Slm() 2 al(p/(" ))l" "Application of the Hecke-Funk theorem [12] yields

(8) f(’ P))n-lSlm()Iol()n-lc7(1) ()Gt C (t)(1 t2)-l/2dtt’

where C’ (t) is a Gegenbauer polynomial of the first kind, ton is the surface area of a unit
sphere in Rn, and v 1/2(n 2). The ratio tOn-x/C’ (1) may be written in terms of Gamma
functions,

(4,r)F(/+ 1)F(v)
(9) Mr ton_,/ C7 (1)

F(/+2v)

Equation (8) may be converted to the desired form by making the change of
variables r p t,

(10) f(sc, p)= MS,.(j) rG(r)Cl 1 dr.

It will be especially useful to write this equation as

(11) f(:, p)= gt(p)Slm(),
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where

(12) g(p) M r2G(r)C 1- dr.

The symmetry conditions on/c and St, yield the defining equation for gl(-p),

(13) g(-p) (-1)g(p).
5. The inversion. We now turn our attention to inverting the Radon transform

when F is given by (3) and f is given by (11). The inversion may be written as an
integration over a unit sphere in : space [9]

(14) F(x) Ia f*(j’ x)d,

where

(15) f*(, x)= Yf(, p).

(Keep in mind that sc is already a unit vector. We have used the notation ? in (14) to
emphasize that the integration is over the unit sphere.) For even n the operator is
defined by

2(2r)._
H f(, p)

and H designates the Hilbert transform

(17) H{q(p)} --1 [’ q(P) dp.
7r ._p-t

After inserting the decompositions for F and " in (14) we have

Gl(r)Sm() [.. Slm()gf (r .) d"
(18)

M[Stm(;) 1 gf (rt)C (t)(1 t2) -1/2 dt,
.1_

where the second step was obtained by applying the Hecke-Funke theorem again [12].
By inspection of (18) it is clear that

(19) Gl(r) M| g’{ (rt)C (t)(1 t2) ’-1/2 dt
3--

and g must be calculated from g Ygl.

6. Improvement on the inversion formula. For even n (2, 4, 6,...) and u
1/2(n- 2) it is possible to modify (19) considerably by actually doing the integration.
Explicitly, g{ (rt) is given by

(--1)n/2 1 I_(20) gf (rt)
2(2r),,_ --r g"-x) (P)(P rt)- dp,

where gl"-)(p)=(d/dp)"-gt(p). If (20) is substituted into (19) and the order of
integration reversed, the equation for G(r) becomes

(--1)n/2 Mr g,,_) p(21) at(r) 2(2r)._a rr (p)Ir dp,
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where

(22) I’(;)= 1C(t)(-t) (1-t2)-l/Edt.

At this point it is clearly desirable to require that r > 0. The r 0 case may be done
separately.-rStartingo w)th (ool 9i The integration in (22) may be taken over four separate
regions, -oo +-r+0 +jr we observe that I(-p/r) (-1)’/1I’(p/r) then by a
change of variable p -p over the negative p region in (21) it follows that

(_1)-/ M’ gn-1) (p)! dp + gn-X) (p)I dp(23) G(r) (2,a.),_------r rr--7
The reason for writing Gt(r) in this form is to enable us to evaluate the I’ integrals.

Notice that in (23) the o integral forces p/r _-< 1 and the , integral forces p/r >= 1.
For convenience we momentarily designate

P=x if P< 1,

P=z ifP>l.
r r

(Unlike prior usage of x, here x is a real variable rather than a vector.) This establishes
contact with the usage of x and z in the Appendix and in [1], i2] where the Gegenbauer
functions of the second kind D are discussed.

From (A.1) and (A.3) we immediately obtain

I’ (x) rr(1 X2)v-1/2D’[(X)(24)

and

(25) I’[ (z) 2rr e-i’’(z 2-1)"-*/2D’[(z).
These results, combined with (23) give

M’ {(-1)"/2 gn-1)(p)Dr(x)(1-x2)-l/2 dpG(r)
(2) r

(26)

2 g,-x) (p)Dr(z)(z2_ 1)-x/2 dp

By use of (A.4) and (A.14) the two integrals may be combined, and after some
simplification we find

-v-1

r(/+2)r
g (p)N__ dp

=F(/+ 1)F(v) g"-) (p)C 1
2r F(/+2v)r

The o integral can be shown to vanish. To see this, first perform n 1 integrations
by parts to obtain an integral of the form

where Ol-2(z) is a polynomial of degree I-2, and Ol_2(-z)=(-1)lOl_2(z). (The
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integrated parts always vanish by symmetry.) Next, make use of (12) to replace gl(p).
This leads to an integral of the form

A change in the order of integration over the indicated region of the pt plane leads to

I dtt2VGl(t) fot dp QI-2() C[() (1- ()2]v-l
Now the p integration can be shown to vanish. If the variable change p yt is made, and
the symmetry of the functions in the integrand taken into account the p integral
becomes (aside from a constant factor)

I_ QI-2()C7 (y)(1-y2)U-1/2 dy.

Since Q-2 is a polynomial of degree I-2 in y it follows by orthogonality that this
integral vanishes.

Hence we finally have the desired result, which consists of the Gegenbauer
transform pair,

-r(/+ )r() g"-’ (p)C[ 1 dp(28) G(r)
27r/1F(/+ 2u)r

and

(29) gt(p)
(4"rr)"F(/+ 1)F(u) r2Gt(r)C[ 1

p 2 ,-1/2

F(l+2u)
dr,

where , 1/2(n- 2) and the dimensionality n is even (n 2, 4, 6,. .).

7. Limiting ease n = 2. It is especially interesting to examine the n 2 limiting
case of the above transform pair since that corresponds to the Radon transform on a
plane. The result is straightforward if one first multiplies by u/u and then lets u 0. The
result is the Chebyshev transform pair [13]

(30) G,(r) =-1 g(p)T 1 dp

and

(31) gt(p) 2IfGt(r)Tl()[1 ()21-1/2 dl?’o

8. Closing remarks. The connection between Radon and Gegenbauer transforms
was observed by Ludwig I-9] in his discussion of the Radon transform on Euclidean
space where it was pointed out that results about the Radon transform imply cor-
responding results for Gegenbauer transforms and conversely. (Apparently the Radon
transform--Gegenbauer transform connection was known prior to Ludwig’s work, but
not published. See the remark in the introduction to Ludwig’s paper.) For spaces of
even dimension the inversion formula obtained in [9] involved both a Hilbert transform
and an integration with a Gegenbauer polynomial. The work here shows that after the
Hilbert transform is performed the resulting inversion formula (28) still may be
expressed as one member of a Gebenbauer transform pair. Recent work with odd
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dimensional spaces [14] shows that with minor modification the inversion formula (28)
also holds for odd n. The only modification required is that the overall minus sign in (28)
must be changed to plus. Finally, it should be pointed out that the transform pair (28),
(29) is not the only possible transform pair involving Gegenbauer polynomials, and the
method here using the Radon transform is not the only way to obtain such pairs. For
example, another transform pair was obtained by Higgins [15] using a very different
approach, and a still different procedure developed by Sneddon 16] utilizing the Mellin
transform could be adapted to solving the inversion problem discussed here.

Appendix. In this appendix we collect several formulas which are needed in the
preceding work. Some of these are included for convenience and may be found in [2].
Others, notably those involving the Chebyshev functions, do not seem to be available in
the standard sources. Our notation and conventions conform to that used by Durand,
Fishbane, and Simmons [2], since their treatment of the Gegenbauer functions is the
best available source for the type of results needed here. These authors derive many
properties of the Gegenbauer functions of the first kind C (z) and second kind D(z)
for general values of a, A, and z. Our concern here is primarily with the restricted case
where both a and A are nonnegative integers (designated by writing a v and A l)
and z is real. We use x (in place of z) to emphasize that the argument lies on the interval
[-1, + 1] or [0, 1] and z whenever the argument is complex or greater than unity.

For integral h and Re a >-1/2, D and C are related by [2]

(A.1) D’(z) ei"’(z 2 1)1/2_, 1 [ C (t)(z t)-l(1 t2)-/2 dt.
2r J_l

To obtain D7 (x) we make use of the general prescription

D(x)= lime [ei,m(x+ie)_e-i,D(x_ie)]
e-0

(A.2)
i=

(z2-1)+ (1 -x2) e for (x + ie),
(1 x) e-i for (x ie ).

This yields

(A.3) D{(x) (1_X2)1/2_, 1 I C{ (t)(x t)-l(1 t2)’-1/2 dt.
"/r

For integral a v the following relation holds

(A.4) z2- 1)v-ll2DT(z)=1/2(Z2- 1)v-112C7 (z)---7-TEI+2v-1 (z),
ltv)

where El+2,,_(z) is a polynomial of degree l+2v-1. These polynomials can be
expressed in terms of associated Legendre functions of the first kind,

(A.5) E"I+2v -1 (Z) () 1/2

(Z 2 1) 1/2(v--1/2)DV--1/2
_r l+v_l/2 (Z)

Explicitly, in terms of Chebyshev polynomials of the first kind T and second kind Ul
(the argument may be either z or x),

1EP_, 7 U,_,

(A.6) E+I T/+I,

EL3 =1/2[(/+ 1)Tt+3- (1 + 3) T/+I].
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In general,

_2- v-1 (l+v-k-1)!(/+2v-1)!
(A.7) E’+_- 2 (-1) r+_._,

k=O k l (l+2-k- 1)

where we have used the standard symbols for factorials and binomial coecients. The
E’s satisfy the recursion relation

(A.8) El+2v-1 (z) (I + 1)zET_2(z) (I + 2V --2)El+2v-3(z)V-1
and the symmetry property

(A.9) E+2-1 (-z)= (-1)/+1E+2_ (z).

Explicit results for the functions D may be written conveniently in terms of the
function V(z) where

(A.10)

with recursion relation

(A.11)

We have

Vl(Z) Tl(Z)-(Z2- 1)’/2Ul-l(Z),

gl+z(Z) 2z gl+l(Z)- gl(z).

1D(z) .-olim 1D’}’(z)=--[a V(z),
(A.12) D (z)=-(z2- 1)-1/2Vl+1(Z),

D (z) -1/4(z- 1)-3/ 1/2[(/+ 1) V+(z)-(l + 3) V+(z)].

In general,

(A.13)

D’{(z) -(z2-1)1/2-vv-1E (-1)k( )v-122v-iF(v) k=0 k

(l+v+k-1)! (l+2v-1)!
l!(l+2v-k-1)!

By application of (A.2) and (A.4),

(-1)"+(1-X2)1/2-’’

(A. 14) D’{(x) 2._r() ElV+2v-1 (X).

The Chebyshev expansion for the C’ is given by

2C (z)= .-olim --al C7 (z) - Tl(Z),

(A.15) c (z)= U(z),

In general,

(A.16) C’ (z)

C (z)=1/4(z2- 1)-1[(/+ 1)Ut+2(z)-(l + 3) Ut(z)].

(Z2--1)1-vv-1
4-’r’(v) E= (_1)k u-k i (1 +v-k-1)!(l+2v-1)!

l!(l+2v-k-1)!

These results also hold for z x.
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For future reference, we examine another form for D’ which is especially valuable
for large values of or z. We first define r (z - 1) 1/2 and observe that

(z + ,)-1 z " and (z + r)- 1 2sr(z + r).

In terms of these variables we have

1D(z) =-[(z )-l,

-1
(A. 17) D (z)= --(z + st)--1,

D(z)= --(z + .)--/--2 1 +

Higher terms have the form

(A.I8) D[(z)
(-l)/’-1(z +

Or, in general,

(A.19)

v(v- 1). z + 2_______ O(/_2)}.2l "
DT(z)

(_l),,l,,-l(z + ()-l-, v-1

2"F(v)sr"
(2/st)l-" =o2 (-1) V-k 1

(l+k)!(l+2v-1)!
l!(l+v+k)!
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ALGEBRAIC METHOD FOR SOLVING LINEAR PARTIAL DIFFEREN-
TIAL EQUATIONS WITH VARIABLE COEFFICIENTS. PART I: BASIC

THEORY*

SERGE VASILACHt

Abstract. The present paper is devoted to an algebraic method of solving linear partial differential
equations whose coefficients are functions of the independent variables. The method, based on the
composition product of tensor products of kernel-distributions, permits the transformation of partial
differential equations with variable coefficients, into linear equations of composition, whose elements belong
to some composition algebra of kernel-distributions.

1. The composition algebras.
1.1. Introduction. It is known that the symbolic methods based on the convolution

product and on the integral transformations of distributions, such as Fourier transform
(cf. L. Schwartz [1, Chap. VIII) or Laplace transform (cf. J. Leray [2]: Garnir [3], Silva
[4]), permit the transformation of linear differential and partial differential equations
with constant coefficients, into algebraic equations of convolution.

Similar results can be obtained in the case of functions of one variable, by means of
Heaviside’s operational calculus (cf. Heaviside, [5]), whose mathematical foundation
has been given by Mikusinski, (cf. [6]).

The extension of this operational calculus to functions and distributions of several
variables is given in our previous papers [7], [8], [9].

Unfortunately, all these methods can be applied only to linear equations with
constant coefficients. The problem of construction of an algebraic method for solving
linear equations with variable coefficients is quite different.

We construct such a method on the one hand, by means of the composition product
to be defined in tensor products of locally convex spaces, (cf. our previous papers 10],
[11]), and on the other hand, by introducing a new class of distributions (cf. Vasilach,
[121).

Our method permits us to transform linear equations with variable coefficients, in
algebraic composition equations. For the application of our method to linear ordinary
differential equations with variable coefficients cf. Vasilach,[14].

The present article is devoted to the basic theory of the extension of this algebraic
method to linear partial differential equations with variable coefficients.

1.2. Composition algebras in ’{-rx{+ry and {+rx{-ry. For the general alge-
braic definition of the composition product of tensor products of bimodules and of
locally convex spaces, see [10] and [11].

LetX" (resp. Y" be atopologicalspace isomorphicto the Euclidean space IR", n => 1.
Let (cf. I-8, Chap. II, 2]) @<+r,,) (resp. @<-ry)) be the locally convex space of
indefinitely differentiable functions with support limited to the left (resp. to the right)
for x X" (resp. y Y"). Let, (cf. [8], loc. cit.), -rx) (resp. @{+ry)) be the strong dual
of @{/rx} (resp. @{-ry}). Let (cf. 12, 2, pp. 2-7]) @{/r,,{-ry be the locally convex space
of indefinitely differentiable functions with support limited to the left for x e X" and to
the right for y e Y".

Let [12, 2, pp. 7-9] @-r,,){+r} be the strong dual of +r,,}{-ry}. Then, {-r,,}{+ry)
is the locally convex space of distributions with support limited to the right for x e X"
and to the left for y e Y".

* Received by the editors December 11, 1975, and in final revised form January 3, 1978.

" D6partement Math6matiques, Universit6 Laval, Qu6bec 10, Canada.
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It is known [12, 3, No. 2 Thm. 1] that (kernel theorem):

(1.1) -r)+ry) -r) (

For -rx) considered as subspace of -rx), endowed with the topology induced by the
latter, one has (-r) @ -ry) c ’ (-r), and ’(-rx) (2rx) (+r)y) is a composition
algebra for the operation of ((-rx) +ry)) x ((-rx) @ +ry)) into
defined by

(1.2) (S, r)So T [_ S(x, ), T(, y) d

(S(x, ), T(,

where E" is a topological space isomorphic with R n, n -> 1.
Moreover, if we take y -< =< x :> yj -< j -< xi for all/" { 1, 2, , n }, we have 13,

pp. 848-849]"

(1.3) So T= S(x, )T(, y)d:.

1.3. The composition modules -r.O+r, and +r.O-r. We have here
a similar definition as for the composition algebra -rx)D(/ry). Then, VS
@(-rx) @’ -’ @(+ry).(+ry), VT (-rx) ) (+r) we have T S

Therefore +r,)+r) is a right composition module over the composition
algebra (+r,) (R) ’(+ry).

Likewise, -r,) +ry) is a left composition module over the composition
algebra -rx) ( fl0(+ry). In the same way one can show that +rx) ( -ry), the strong
dual of (-rx)(+ry) is a right (resp. left) composition module over the composition algebra
(+r,) ( -ry) (resp. 50+rx) (-ry)).

Remark 1.1. The relation (1.3) shows that the composition operation is an
extension of the composition product of kernel functions such as defined in the theory of
Volterra’s integral equations.

Remark 1.2. For x X", y Y" let

def

(x y) (y x) (R) (x,

be the Dirac kernel. Then (cf. [14, remark of 1.2]) 8(x- y) is the unit element of the
composition product, i.e.,

(.) S 6(x y)= 6(x y)o $ $, for all S ’y.

Indeed, (,) is true VS -rx) +ry) since 6(x y) belongs to the composition
algebras (-rx)) +ry) and -rx) (+ry).

On the other hand, ’ )y and x ) ’y are composition algebras for the same
composition operation (1.2) and ’ ’y is a right (resp. left) composition
module over the composition algebra x ’y (resp. ’ (R) y), whence (.).

Now, let

t+k2+...+k",,.,,..,,, x y)= (R) ,,, (x- y)
1=i

be a derivative of 6(x-y) Then 6(x-y)’(+r,) (R) (-ry) implies

k=l
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Therefore

() a x, (xi- Yi) T e (+rx) (-r)

VT (+rx) () (-r), because (+r=) ) is a composition module.(-ry)

2. Composition product of kernel-functions.
L2.1. Preliminaries. Let loc)x(Ltoe)y be the vector space of functions f defined in

X" x Y", such that for each fixed y Y", f is locally integrable with respect to Lebesgue
measure on X", and for each fixed x X", f is a locally bounded and measurable
function of y Y".

LThen, for arbitrary elements f, g of ocx(Ltoc)y, the composition product

(2.1) (fog)(x, y)= f(x,

has meaning for -o < a y <-
(1, 2,..., n), d dq d2 d:3 d:,, and d dl aeo.

2.2. Heaviside’s kernel.
DEFINITION 2.1. We will call Heaviside’s kernel in XN x yn, the

(2.2) Y(x, y)
,=1
+ Y(x; y,) {10 for xi ->_ Yi, J (1, 2,.. , n)

elsewhere.

2.3. Kernel-functions in ’ ’(+I’x) (-ry).

DEFINITION 2.2. For f an arbitrary element of (Loc)(Lc)y we call kernel-function
the element of @(+r)’ ’(-ry) defined by

Y) for
(2.3) Oe} Y(x, y)/(x, y)= {,,x, x y,

elsewhere.

2.4. Composition product of kernel-functions. For each pair (f, g) of elements of
(Lloc)x(Lloc)y the composition product of the kernel-functions {f} and {g} is given by

{f}o {g}= I_,,Y(x, )f(x, )Y(, y)g(:, y)ds

(2.4)
(rx

lJy f(x, )g(, y) d" for x => y

elsewhere

in which f(x, )g(, y)d: is the composition product (2.1).
,-,,9(/,rrt) be the vector space of continuouslyRemark 2.1. For x e X y e Y", let (.)

differentiable functions of order =< 1 (resp. -<m) with respect to x e X" (resp. y e Y").
Let us set

Ill 11 + 12 + + l., Im[ ml + m2 +’’" +ran,

OX ’ OX l oxlnn Oy 11 Oy 2 Oy k’nn oxl ay"
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r,o(l,m)Then, 0,,y), provided with the composition product (2.1), is a topological algebra for
the topology defined by the sequence of norms:

01/l+lmlf
IIll Sup

Ox Oy’
(2.5)

Isl--< I/l, Itl-<-Iml, (x, y)K L.
for Kv (resp. Lv) an exhaustive sequence of compact subsets of X

(l,m)Clearly, each element of c<x,y) becomes a kernel-function in (+rx)(.--ry), if we
multiply it by the Heaviside kernel.

3. Derivation operators of kernel-functions.
3.1. Derivatives in T ,,y In order to simplify our text, we will suppose in the

sequel that n 2 and will consider functions of two variables (x, y)s R 2 and of two

variables a,/ R 2, such that

-oo<a<-_<=x and -</<=7-<y.

Let cCa.,,,)p,) be the vector space of functions continuously differentiable of order
-<1 (resp. <-m) with respect to x (resp. y), and of order <-p (resp. =<q) with respect to
(resp./3).

Then, we denote by +v.y)_v.n) the corresponding space of distributions, and for f
an arbitrary element of c(t.m)(,.q), we denote its kernel function in +r,)(-r) by

(f}= Y(x-a)(R) Y(y-B)f(x, y, a, B).
Under these conditions we have

(3.1) O{f}Ox (x-a)(R){/(a, y, a, fl)}+ xx
where {f(a, y, a, fl)} Y(y-tiff(a, y, a, fl)is the kernel-function with respect to the
pair of variables (y,/).

Likewise, we obtain"

(3.2) 0{f}= {f(x, 8, a, )}
Oy

where {f(x, fl, a, )}= Y(x-a)f(x, , a, fl) is the kernel-function with respect to the
pair of variables (x, a).

From (3.1) we obtain by recurrence:

o"{} o+ 2 --(x-)(3.3)
Ox Ox j =o Ox

(3.4) :3{f} IO}+ }(v-k-1, (y __).
3y 3y J k =0 3y Y

On the other hand, from (3.4) we obtain:

(y

(3.5)

-oG or (Y-)"
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But for {0f(a, y, c, B)/cgy } considered as a kernel-function with respect to the pair
of variables (y,/3) we have [14, (3.5)]:

(3.6)
v--1

(v-k-l) okf(ol, [J, Ol, ){f(’ Y’ ’ )} E (y )
Oy k=O Oy

where we have set

k Oy
,

Therefore

(3.7)
k =0 -X"X Oy

() ( (v-k- 1) }(y-/)+(x-)

[of(,, y: , fi)
8y

E (y -/3)
k=O

whence

o(l+u){f}
+(x-)(R)

Ox 3y 3x 3y

(3.8) -(x-a)(R) E 8(--) (y -/)
k =0 Oy

’-(9 {Of(x, :oz,/)} " (y _/).

(3.9)

Finally, from (3.8) we obtain by recurrence:

,gx ,gy"

.oX, oy +3Xt l= 3X

+ "--(x-l (’’’
3y k=O OX k

-1 -1 okE E ("--)(x-a)@ (--) +lf(, , a, )(y-)
k=O t=o OX

The fundamental formula (3.9) gives us the relation between the derivative
O"/{f}/(Ox 0y ) of the kernel function {/} and the kernel function of the derivative
O’+f/(Ox 0y ) of the function f.

Remark 3.1. In the same way we obtain the derivatives of the kernel-functions,
with respect to the pair of variables (a,/) and, also, with respect to the variables x,
y, c, B.
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Thus, for example, we obtain, with respect to the variables a,/.

(3.10)

whence by recurrence:

=-(x-)(R){[(x, y,x,/)}+

=-{/(x, y, , y)}(R) (y-:)+ {},

(3.11) 9a-------- Oa,j+ (-1 )(x-a)(R) k
k-O 3a

and

0--- ,O/3l+ Y’. (-1 Y’’Y
From (3.12) we obtain

(3.13) oaol+v{f}-ofl 0--0 Of/OflJ )v-I o{olf(X, Y)} (v--l-l)+ (- 1 Y’7’ (R) ‘5 (Y B).

But

and

o7(x, ) o"{f(x, t)}x’ }= x’ u-1 t97(X, y, Xy (-1)-i Y
=o OB

whence for 01+v{f}/(oqo OqB v) we have the following expression:

(3.14)
u--1

)u--1 (u--l--l) oil(x, y, X, y)
+(x-,)(R) E (-a (y-)

"[- k=oV-lE (-- 1)u-k olokf(x’o; a, y)} () ‘sy(v-k-1) (y fl).

Finally, from (3.14) we obtain by recurrence the following fundamental formula"

(3.15) (- 1 ),-k ,5 (,{,-k-) (X a (R)
okf(x’ y’ X,

"’0 k=O Oa k

--1 v--1

E E (--l)g-k(--1)"-t‘5(xg-k-’)(X--a)()‘5(f-l-’) (Y--fl)
k =0 1--0

o"+’[(x, y, x, y)

which gives us the relation between the kernel distributions (O"+"{f})/(Oa OB")and
{o"+f/(o, " 0t)}.
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Remark 3.2. Suppose f independent of the variable x X (resp. y Y). Then we
set

f lx (R) g(y, a, fl), (resp. f l y (R) g(x, a, ),

where 1, (resp. l y) is the function of x X (resp. y Y) equal to 1.
Using these identities we obtain by formula (3.3) (resp. (3.4))

o"{f}
Ox

,5,, (x o ) (R) { 1 (R) g (y, a, B )}

( 3"{f-}={l@g(x’a,8)}@t’-l)(Y-fl))"resp.
Oy

Similar formulas can be obtained for functions independent of a,/ or independent
of x, y, from (3.9) (resp. (3.15)).

Let f(x,y,a,)=a(x,a)(R)b(y, fl) and g(x,y,a,)=c(x,a)(R)d(y,) be ele-
ments of

L L(Loc)x(Llc)a (( ,oc)y( loc)/.
Then we have

{f}o{g}={fo g}

={a (R) b}o{c (R)d}
(3.16)

a(x, )c(, a) d (R) b(y, n)d(n, )n
which implies [ g e (Lo)(L,o) N (Lo), LIoc)0" Suppose now f(x, y, a, fl)=
Y(x-a) Y(y-fl)= Y(x, y, a, fl).

Then, it follows from (3.16) that the 2nd composition power of Y(x, y, a, ) is
given by [14, (3.6)]"

{ Y(x, y, a, fl)}2 { Y(x a )}2 @ { y(y fl )}2

1
Whence, by recurrence, the following expression for the nth composition power

oI Y(x, y, , )"

3.. Veleetefi eel-tefi. We have:

{[} (x, y, , ) Y(x ) @ Y(y Bg(x, y, , ) O(x ) @ O(y )

Likewise

(x, y, ,/)o {} {/}.
Therefore, 8(x-a)(R) 8(y-/) is the unit element for the composition of kernel-
functions. In particular one has:

8(x, y, a, )o Y(x, y, a,/)= Y(x, y, a, fl)o 8(x, y, a, fl)

Y(x,y,a, fl).
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PROPOSITION 3.1. We have

6’y(x, y, a, 3) Y(x, y, a,/3)= 6(x, y, a,/3)

(3.18) and

Y(x, y, , fl) 6"y(X, y, a, 3) 6(x, y, a, fl).

Indeed, by virtue of Proposition 3.1 [14, 3] and the formula (3.16) above, we
have:

6x"y(x, y, a, 3) Y(x, y, a, 3)

=(6’(x-a)(R)6’y(y-))o(Y(x-a)(R) Y(t-3))

=(6’(x-a)o Y(x-a))(R)(6’y(y-3)o Y(y-3))

(x-)(R) (y-3).

The second statement can easily be proved in a similar way. Therefore, we can write by
definition"

(3.19) (Sxr)-x= Y(x, y, a, 3)
and

(3.20) 8"y(x, y, a, 3)= {Y(x, y,a, 3)}-=8’(x-a)(R)8’y(y-3)
whence

(3.21) Y(x, y, a, )o {Y(x, y, a, fl)}- 8(x-a)(R) 8(y-fl).

Then we find by recurrence or by (3.17):

((y -/)("+"(x,y,,,/) ,s(:(x ,)(R)..
(3.22)

xy

Y(x -r)}-" (R) Y(y
and by (3.19)"

def

(x-(x, y, ,, t) =(’(x-,)}-’ (R) {’(y-t)}

(3.23)
{Y(x-a) (R)

={ (x-’)’-/(/z 1),
/3)1’-1

(v-1)t }’

(3.24)

3.3. Derivation of the composition product of kernel-functions.
PROPOSITION 3.2. We hove"

’ (x, y, ,,/)o {/}
cgX

Indeed we have

e’(x, y, ,, 3)o (/’)=
:
Oy

e’,, (x, y, ,,/3)0 {f}= (e;(x -,)(R) e(y -/3))0 {h

=/I: 6’ x C)f C’ Y a 3 d }
=(x-a)(R){f(x,y,,)}+
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by virtue of (3.1) and the formula (3.15) of [14, 3]. The proof for the second formula
(3.24) is similar.

PROPOSITION 3.3. We have:

Indeed,

{f} ,(x, y, , t) f(x, y, , t) (- ,,) de

(x -,) (R) {f(x, y, x, t)}- 0’

according to the formula (3.10).
The proof for the second formula (3.25) is similar. Likewise, (3.24) and (3.25) give

US:

(3.26)

(3.27)

whence

()>(x, y, ,, t)o ok{f}
( (yl) (X, y, 0, )o {f}

Ol{f}
OX k Oy

{f}o ?)(x, y, , t)= (-){}

{f}o (yi)(x y, Ol, )--" (--1) O/{f}

8?)0 8(o {f}o 6(’)x 8(’) (-I)’+’

(3.29)

Moreover, the associativity of the composition product gives

(_ 1)0+.+,+’
OX Oy Oa p O

Ox OY
(- 1

Ox Oy Oa OB

for all k, 1, p, q, s, t, nonnegative integers.

3.4. Operators of multiplication in +r,,)(-ry). Let $’xy be the locally convex space
of indefinitely differentiable functions in X" Y". Let T be an arbitrary element of
+r)(-ry); then /u $’y, the product u. T has meaning. Indeed, q (-r)(+ry), one
has u .o (-r)(+ry), where (u. T, q) (T, up). We say that u e $’xy is an operator of
multiplication in +r’x)(-ry). Therefore, $’y, and a fortiori, (-r)(+ry) are spaces of
multiplication operators in -r)(-ry).

For u e $y (resp. u e (-r)(+ry)), the support of u T is contained in the inter-
section of the support of u and the support of T; i.e.u. T e(+r)(-ry) (resp.
u T e $"y) [12, 3, Prop. 1].
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Moreover, the bilinear mapping (u, T)<-> u. T, from (+rx)(-ry) +rx)(-ry) in
’,y (resp. from ,,y x +r,,)(-r) in /r,)(-ry))is hypo-continuous [1, loc. cit., Prop. 2].

Remark 3.4. The bilinear mapping (u, p <--> u from g,, x (-rx)(+ry) in
(-r,)(/ry) is also hypocontinuous [12, loc. cit., Remark 1].

PROPOSITION 3.4. i) Let a(x) (resp. b(y)), ]:or x X (resp. y yn), be a multi-
plication operator in +rx)(-ry). Then one has"

(3.30) (a(x)(R) b(y))(S T)= (a(x)S)o (b(y)T)

For S +r,) (-ry) and T +rx ) -ry.
ii) Let a(x) (resp. a(y)), for x X (resp. y Y") be a multiplication operator in

+r(-ry. Then one has"

(3.31) So (a(x)T)= (Sa(y)) T

for S +r,) (-ry) and T +r,) -ry).
Proof. It follows from the fact that +r,) -ry) is a composition bimodule (cf.

(1.3)).
Remark 3.4. In particular for {f}, {g} kernel functions we obtain

(3.32) (a(x)(R)b(y))({f}o{g})={a(x)f}o{b(y)g}.

Now, let a(x, y) (resp. b(x, y)) be a function such that a(x, y). f(x, y,a, 3) (resp.
b(x, y). g(x, y, a, 3)) belongs to the same space as f (resp. g). It is clear that

(3.33) a(x, y). {f}= {a(x, y). f} and b(x, y). {g}= {b(x, y). g}.

Then, we have

(3.34) {a(x, y). f}o{b(x, y). g}= {-a(x, y). f(x, y, a, B)b(a, )} {g(x, y, a, 3)}.

PROPOSITION 3.5. Let a(x, y) be an operator of multiplication in +rx)(-ry). Then
we have:

{Y(x-a)}" (R) {Y(y-/)}q {a(x, y),"+q(x, y, a, 3)}
(.)

=(-1)v+
cgp+, {(x_a)v-1 (y_/),-I }Oa v 03------ (p 1)!

(R)
(q 1)!

a (a, 3)

The proposition is an obvious consequence of (3.29) and (3.31).

3.5. Derivatives of the composition product in [+r)(R)-r).
PROPOSITION 3.6. Let Xn, yn be topological vector spaces isomorphic with R,

n<__l.

For x (Xl, x,. , x,) (+Fx); y (yl, y," , y,,)s (-Fy) we have"

(3.36)

(3.37)
,9$ (x, y)

S(x, y)o (xl?(x y)= (--1)

where 8()(x-y) (resp. 8((x-y)) is the partial derivative of order k (resp. I) withxl xi

respect to x (resp. xi) of Dirac kernel 8(x-y ) in X" Y" and S is an arbitrary
element of’(+Fx)(-Fy).

Proof. 8(x- y) being the unit element for the composition product (cf. Remark

The composition product in the left hand side of (3.36) and (3.37) has meaning, because
+r,o t-r is a composition bimodule (el. 1, (1.3)).
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1.1), we can write:

()(x/- y) S(x, y).8()(x-y), S(x,

On the other hand, we have 8(k)(Xjxi yj) S(X, y) {fxlJyi O’(k)"xt Xi )
$(x," ., x-, , x/,’.., x, y) d:} ()(x) * $(x, y) where , denotes the
convolution operator with respect to the variable x, between ((x) and $(x, y).
But, one has:

oS(x, y)((x) ,, S(x, y)= x
which proves (3.36).

Likewise we obtain

S(x, y)o ((x-y)=, S(x, y)o ’?(x,- y,)

whence (3.37).

S(x, Yl,""", Yt-1, ’r/i, Yi+I,""’, y,,,)8(rli-yi)drli
y

(- 1)’S(x, y) *Y’ 8(y,) (-1)’oS(x, y)

Remark 3.5. The conjunction of (3.36) and (3.37) gives us the more general
formula:

(3.38) 8(k)(x-- y) S(x, y)o 8(t,)(x-y)=(-1) O+’S(x’ y)
"J cgx Oy

In particular, in -rxy) )+raB) we obtain the formulas"

o+S(x, y, a,
(3.39) 8((x -a)(R) 8((y -)o S

8x k 8y

(3.40) So (8(f)(x -a)(R) 8)(y -/3))= (-1)"+q
O+S(x’ y’ a, fl)

and

((x (x -)(R),(,’ (y t3)) so (,(: (x -,)(R),() (y
(3.41)

(_1).+, 8k+t+"+S(x. y. a. )

Now, the extension of the formula (3.35) is given by the
PROPOSITION 3.7. Let a(x, y) be an operator of multiplication in -rxy(+raB). Then

we have:

( ok+’S(x, y, a, B))({Y(x-a)}p (R){Y(y-/3)}’)o a(x, y) 8- cgY r
(3.42)

ok+ {(x-a)"-’ (y-/3)-’(-1)k+’ Od 3’ (p- 1)!
(R)

(q- 1)!
a(a, ) S.

Proof. If we denote by A the left-hand side of (3.42) we obtain, by virtue of the
formulas (3.39)and (3.40):

A {(x_a).-1 (y_)a-1}(/9- 1)!
(R)

(q- 1)!
(a(x, y)(8k)(x-a)(R) 8(y’)(y -/3)))0 S
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(p- 1)!
(R)

(q- 1)!
a(a, ) (8(k)(x--a)

(R) ,> (y ))o s

[ k+l {(X O)p-1 )q-1(_l)k+l (y--/3
Oa k ofl’ (p--l)!

(R)
(q--l)!

a(a, fl) S.

4. Algebraic composition equation" of a linear partial differential equation with
variable coefficients.

4.1. Fundamental formulas of composition in ’(+[’xy (-FB)

THEOREM 4.1. Each linearpartial differential operator with variable coefficients may
be transformed in a composition product in

Proof. Let f be a partial linear differential operator with variable coefficients, of
order m, (resp. n) with respect to x (resp. y) acting on an element of
defined by

(4.1) D,(S) aik (X, y)
oJ+ks(X, y, a, 13)

/=0 k =0 fX 0y k

We suppose that the coefficients ajk(X, y) are operators of multiplication in
+r)(-r,,a), for any j and k belonging to the set {1, 2, 3,. ., n}. Then, according to
(3.39) we can write:

D.(S)= E E aik(X, y){6)(X--a)(R) 6k)(y--B)o S}
i=o k=O

whence, by virtue of (3.36):

(4.2) D,(S) aik(x, y){6o)(x-a)(R) 8(k)(y -B)} S.

Clearly, f(S) is an element of
By composition to the left of both sides of (4.2) with { Y(x a )}" (R) { Y(y -/3 )}" we

obtain"
{ Y(x ct )}" (R) { Y(y fl)}"o D,(S)

=[ o " {Y(x-a)(R) Y(Y-/)"}
k=O

-)(R),((y -t))] S(x, y, , ).(ajk(x, y))(8’) (x
Now keeping in mind the formula (3.42) we obtain:

{Y(x-a)"* (R) Y(y-fl)"} D,(S)
(4.3) cgi+k (X a),._ (y B),,_x }. . (--1)i+k-------E () aik(Ot fl) S(x, y, or, fl)

i=o k=o Oa OO (m 1)! (n 1)!

This fundamental formula (4.3) gives us the proof of our Theorem 4.1.
In particular, if we suppose am,,(x, y) 1, we obtain:

(4.4)

{Y(x-a)"} (R){Y(y -B)"} f(S)
m--1 n--1

i=0 k=O

o o (m 1)!
(R)

(n 1)!
a(, )

={(x-) (R) (y -/3)+H(x, y, c, t)} S(x, y, a,/3),
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in which we have set"
m--l

),+k OJ+k (x--ol)rn-1
(4.5) (H(x,y,a, fl)}=+ X X (-1

i=Ok=O Oa OB k (m--l)!
@

(n--1)I
ai(a, B)

Obviously, {H(x, y, a, )} belongs to

4.2. Fundamental kernels. Consider in +rxy-ra the equation

0m+ m--1 1 oi+k{E}
(4.6)

"{E}
V E ak(x, y)ox Oy =8(x-a)@8(y-B)

3x 3y" i=0 k=O

where aik(X, y) are operators of multiplication in +ry)(-re).
Then, the fundamental formula (4.4) allows us to write (4.6) as follows:

(4.7) {6(x-a)@6(Y-)+H(x’Y’a’)}{E}={ (x-a)-(m1)
@ (Y-l"-}(n1)

in which H(x, y, a, ) is given by (4.5).
On the other hand, let (+rxy)(-ro))n] be the ring of formal series with respect to

the addition and the composition product, whose terms belong to
On the algebraic structures of algebraic formal operations see our previous papers

[15] and [16].
More precisely, let S] ZS(x, y, a, ) and T] T(x, y, a, fl) be arbi-

trary elements of (+rxy(-r)]. Then, the addition and composition between S]
and T] are given respectively by:

(4.8) S]+T]=[S+ T]= Y (S,,(x, y, a, fl)+ T,,(x, y, a, fl))

and

(4.9) [[ S]] [[ T]] [[S T]] ( S,oTq).
vN] v=p+q

[IS + T]] and [IS T]] belong to [[(+r)(_r))l].
Let us now return to the composition equation (4.7). By transfer of this equation to

(’(+r)(-ra))]], we obtain

(4.o (x-)(R)(y-l+Hol= n-)! (R)
(n-)!

in which we have set [[(x ) (R) (y ) HI] $, with So (x a) (R) (y B);
$ H, $ 0 for p 2, and

(m )
N

(n )
r,

where

and Ty 0 for v >- 1. On the other hand, we have

E (-1)"{H"})o6(x-a)(R)6(y-B)o{H}]
(4.12) [[8(x a) (R) 8 (y -/)1] (L (-1){H})

l[(x-)(R) (y-/)]]
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where [[(x-a)(R)(y-fl)]] is the unit element of the composition algebra
(+rx)(-r))]].

Therefore (-1)(H is the inverse element of (x-a) (y-fl)+(H in
this composition algebra. Then, by composition to the left of both sides of (4.10) with

(-1){H}, we obtain for the solution of (4.8) in (+rxv)(_r)), the expression

(4.13) = 2 (-1){H}
,(x- (y-
(m 1)

@
(n 1)

Now, if the resolvent kernel F] (-1){H} converges in +r,y)(-r), then E]
belongs to this composition algebra andE may be considered as the solution of (4.6).

Now, we will show that the series (-1)"{H(x, y, a, fl)} converges in the
topology of (+rxy)(-ra).

The proof is similar to that of the corresponding "resolvent kernel" for ordinary
differential equations (cf. [14, 4, No. 4.1]).

To do this, let (yx) be the vector space of continuous functions in
(x, y)e y and (a, )e.

In [14, 2, Prop. 2.2] we have proved that (yx) is a topological composi-
tion algebra, for the topology defined by the sequence of norms"

u If(x, y, (,/3)l

where lap, bp] X [Cp, dp] Kp are compact subsets of 2 2
xy

,, such that Kp p+1.

On the other hand it is easy to show that we have"

(H(x, y, , )}

{m-1 n-1

),+k O’+k ((X--)m-1 (Y--)n-1,=oE k=OE (-1 O7 3k (m 1)! (n 1)’.
a,k(a, fl)

i.e., H(x, y, a, ) is the kernel-function of the function"

n(x, , , )
(4.14)

m-, .-, #+ ((X-- (y-- ))- )--
X X (--lY+ (,)
i=o :o 7k (m 1) (n 1) aik

Therefore, without loss of generality we can consider H(x, y, a, fl) as an element of
2(, x ).

Then, we have

((, , , #)o=(_)(_#),

((, , , #)’= ((, , , #)= ((’)(, , ,
{H(x, y, , )} H(x, y, , n)H@, , , )dd

{g((x, y, , },

(H(x, y, a,/9)}" H("-’)(x, Y, , 1)H(, 1, a, #) d, dl

(g()(x, y, (,/3)},
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in which H(")(x, y, a, ) satisfies the inequalities

IIn()ll Ilnll (bo ao)-’ (do co)-’
(m- 1)! (,- 1)!

Vp {1, 2, 3,...},-<ao<=a<=x<=bo< and-<co<-<-y<=do<.
2Therefore E->_I (-1)H()(x, Y, a, /3 converges in (2y,), and then, the

resolvent kernel {F(x, y, a,/3)} is given by:

(4.16) {F(x, y,o,B)}=6(x-o)(R)6(y-B)+{ Y (-1)H()(x, y,a,3)}
where {E->I (-1)H(")(x, y, a, B)} is the distribution of +rxy)(-ra) which corresponds

2to the function E,(-1)H()(x, y, a, B)of (x).
This result shws that the solution E], given by (4.13)coincides with

{E}={6(x-a)@6(y-B)+ 2 (-l)H()(x, y,a,)}{Y(x-a) @ Y(y-B)"},
(4.17)
which is the required solution of (4.6).

We will call {E} the fundamental solution of (4.6). Now, if S(x, y, a, ) is a given
element of +r)(-r) the solution of the equation

8+T - -(4.18) + E E a(x,y) =S8x Oy o o 8x 8y

is given by the composition product:

T=EoS.

4.3. Example. Consider the equation

(4.19) +a(x, y)E 6(x -a)(R) 6(y -/3).cgx

The formula (4.14) gives us {H(1)(x, y, a, B)}= {a(a,/3)} whence

{H()(x, y, a, B)}

{a (a, B)}

a (a, B) a (, n) de dn {H()(x, y, a, B)}

a(a. fl) a(l. nl)dl dnl a(2. n2)" d.
u--2

a(-l. u-x)du-1 du-l}
Then, according to the inequalities (4.15) we have"

(bp ao)-’ (do o)v-1

IIH()ll.--<llall; -_-]]{ (-1)!
where

[lallp sup ]a (x, y)]
ap _X bp
Cp

_
y

Vpe{1, 2, 3,...}.
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Consequently, the fundamental solution of (4.19) is given by

(4.20) {E}= Y(x-a)(R) Y(y-B)+ X (-1)(H(V)(x, Y, a,B)} Y(x-a)(R) Y(Y-fl).

But, [14, 3, formulas (3.8) and (3.9)], we have:

n(V)(x, y, a, B) (Y(x -a)(R) (y-/3))

(4.21) H((x, y, , n ) ddn

primitive of H()(x, y, , ) with respect to (, B)

and

(4.22)

(Y(x -a)(R) Y(y x/3))0 H(x, y, a, )

H("(:, r/, a, fl) d: dr/

primitive of H()(x, y, a, 3) with respect to (x, y).

Then, we obtain for {E} the expression"

(4.23) {E}= Y(x-a)(R) Y(y-B)+ 1 (-1) H()(x’ y’ ’ ,1)ddrl

in which we have

a(, n)ddrl a(, n)d dnl"" a(:-x, r/-l) d-i
v--1 "fly--1

In particular, if a(x, y) is a constant function, our method implies (cf. [8, Chap. V,
Sec. IV, No 2, formula (10)]):

{Jo(2X/h (x a)(y -/))} for a > 0,

{Io(2x/]a I(x a)(y -/))} for a < 0.

Our next paper will be devoted to the construction of formal fundamental solutions
of linear partial differential equations in which a,,,,,(x, y)= 0, in particluar, to the
construction of fundamental solutions for some linear partial differential equations with
constant coefficients.

Other papers will be devoted to:
a) the study of some problems of convergence of formal solutions;
b) boundary value problems;
c) translation operators in +rx)(-r,t) and their applications to solving linear

equations with finite differences and variable coefficients;
d) algebraic method for solving integro-differential equations.
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STRICTLY AND STRONGLY STRICTLY CAUSAL
LINEAR OPERATORS*

AVRAHAM FEINTUCH’

Abstract. The relationship between the strictly causal operators and the Jacobson radical of the algebra
of causal operators is exploited to study causal operators. The strongly strictly causal compact operators are
characterized in terms of their spectra.

1. Introduction. A formal approach to causality was first considered by R. Saeks
in [12] where he introduced the idea of a resolution space. By using this concept and
the theory of Brodskii, Gohberg and Krein [4] on Cauchy integrals of operators on
chains, Saeks was able to give a unified theory of causality and strict causality and
apply these ideas in an abstract setting to problems on feedback, time invariance, and
various other aspects of dynamical systems.

Our purpose here is to give a slightly more general formalism of causality which
contains that of Saeks. This is done by noting the important link between the above
mentioned work of Brodskii, Gohberg and Krein with the nest algebra theory of
Ringrose [11]. Although this link has been made in [2] its relevance for causality has
not, to our knowledge, been previously pointed out. This will allow us to characterize
the strictly causal operators in terms of the Jacobson radical of the Banach algebra of
causal operators, which in turn will make the actual identification of strictly causal
operators simpler. It will also allow us to give a complete characterization of compact
strictly causal operators, thus solving a problem raised in [12, p. 52] by Saeks. We
extend these results to the class of strongly strictly causal operators and show that for
compact operators, these two classes are the same.

In his work Saeks has pointed out the applicability of the Nagy-Foias theory of
contractions [6] to causality, in particular [13, Thin. 7.3] and to systems theory in
general. This has recently been followed up by a number of authors. A particular class
of contractions which appear quite naturally in a causality structure (as seen in [8]) is
the class of Co contractions.

In the last part of this paper we use our formalism to study strict and strong strict
causality for Co contractions. Since these concepts were introduced to obtain results
on stability of systems it is not surprising that they are closely related to spectral
properties of operators.

2. Preliminaries and notation. will represent a Hilbert space. If N is a family of
subspaces of g, nxN will represent the closed linear span of the subspaces of V
and fqnN is the intersection of the subspaces in A:. All subspaces will be assumed
closed.

() will denote the algebra of all bounded linear operators on Yd. If T ()
and M is an invariant subspace of T(TM c M) we will write M Lat T.

If is a family of subspaces of f, Alg will denote the strongly closed algebra

{T 3(,)1TN N VN

and Alg V+/- (Alg ,/V)* T: T* 6 Alg W’}.

3. Nests, nest spaces and nest algebras. Let Y( be a Hilbert space. In order to
simplify technical matters we will assume that Y( is separable although this assumption
is not necessary.

* Received by the editors September 24, 1976, and in final revised form December 30, 1977.

" Department of Mathematics, Ben Gurion University, Beer Sheva, Israel.
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DEFINITION 3.1. A family N of subspaces of is a nest if it is totally ordered by
inclusion. N is complete if

(i) {0}, e ;
(ii) for dV0 c, fqoN and /XoN are both in

N_ will denote the subspace k/{M: M ,M c N} with {0}_ {0}. If N_ N, N_ is
called the immediate predecessor of N.

DEFINITION 3.2. A nest V is maximal if
(i) N is complete.
(ii) for all N V, NON_ has dimension not greater than 1.

If for all N , NON_ {0} we say that V is continuous. Otherwise, has gaps.
It should be mentioned that Ringrose’s original definition of maximality is

different than that given above. However he showed that the condition given above is
equivalent 10].

We can now define the concept which will allow us to consider causality in an
abstract setting.

DEFINITION 3.3. A nest space is a pair (, dr) consisting of a Hilbert space X and
a maximal nest f of subspaces of X.

Alger, the algebra of operators, leaving invariant the subspaces of V, will be
called the nest algebra for .

4. Causality and anti-causality.
DEFINITION 4.1. Let (, N) be a nest space. A bounded linear operator T is

anti-causal if T Alg A and causal if T s Alg- (or equivalently, T* Alg V’).
At this point it is worthwhile to see the relationship between the resolution space

of Saeks and our nest space.
Let E be a spectral measure defined on the Borel sets in an ordered topological

group G whose values are projections on . This defines a resolution of the identity
via

E’ E(-oo, t), E,= I-E’= E(t, oo).

Let H’ and Ht denote, respectively, the ranges of E and Et. Then T is causal [12,
p. 18] if for any x, y Y( and t G such that Etx =E’y then EtTx =EtTy. As is
pointed out in the Theorem on that page, this is equivalent to T .leaving invariant
{Ht: e G} or T* Alg W with {Ht: G}. Since is easily seen to be a maximal
nest, Saek’s definition is included in ours.

5. Causal invertibility. If Y( is finite dimensional and T is an invertible causal
operator on (Yg, N) then T-1 is causal. This is generally not true if is infinite
dimensional as is seen in the following example.

Example 5.1. Let =/2(-o, c; C), the Hilbert space of complex sequences
{an}_ satisfying ,=-oo lal2 < o. Let en (-o < n <) be the vector in Yt’ whose nth
coordinate is 1 and all other coordinates 0. Let Mk ,---o e,,. Then J" {{0}, ,
Mk --c < k < c} is a maximal nest and (,) is a nest space. Define an operator W on
Y( by:

Wen en+

Then W is a unitary operator and is the well-known bilateral shift. Also W Alg W
and is causal. It is easily seen that W* =W-1 is not causal.

The questionmis the inverse of a causal operator causal?m is of major importance
in the study of feedback stability of linear systems. We give, at least formally, a complete
solution of this problem. This contains as a special case a theorem of Saeks [12, p. 20].
Practically, however, it seems quite difficult to use this theorem in all of its generality.
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DEFINITION 5.2. The operator A on Y( is strictly positive if there exists a real
number 6->_ 0 sch that

Re (Ax, x) >= IIx 2

for all x Y(.

In the engineering literature such operators are often called strictly passive or

dissipative because of the relationship between positivity and passive systems.
THEOREM 5.3. Let T be causal on (Y(, 3/’). T-1 exists and is causal if and only if

there exists a causal operatorA with A-1 causal such that AT (or TA is strictly positive.
Proofi Necessity. Suppose T-1 exists and is causal. Just take A T-. Then

AT I which is strictly positive.
Sufficiency. Let E be a projection on some subspace of V-. It suffices to show

that ETE acting on EY( is invertible, for then by the invariance ofE we have

EW ETEW TEW.

Thus T-E=E and E is invariant under T-. Since E is arbitrary, T-X
AIgW"-.

Since EAE is invertible by hypothesis, this is equivalent to showing that ETAE
ETEAE is invertible. This is where we use the strict positivity. There exists 6 > 0 such
that for Ilxll 1, x EH,

6 <= Re (TAx, x) <- [(TAx, x)]

I(ETAEx, x)l

<--[IETAEx IIx IIETAEx
Noting that by the coinvariance of EH for A* and T* we have

EA*T*E EA*ET*E,

the same computation shows that

liE TA )*Ex => 3.

By [1, p. 84, Cor. 4.9], this implies that ETAE is invertible and thus that ETE is
invertible. This completes the proof.

An operator T is definite if (Tx, x)# 0 for all x
COROLLARY 5.4. Suppose T is invertible and causal. Then T-1 is causal if and

only if there exists A, A-1 causal such that TA (or AT) is definite.
COROLLARY 5.5 (Saeks [12, p. 20]). Suppose T is invertible, causal and for some

n >= 1, T is definite. Then T- is causal.
Proof. By Corollary 5.4, (T")-1 is causal Oust take A I). Then so is T-1-"

Tn-I(T,,)-1.
6. Memoryless operators.
DEFINITION 6.1. Let T be an operator on (, 3"). T is memoryless if T is both

causal and anti-causal.
If - Alg V" CI Alg W"+/-, then T is memoryless if and only if T e . Also, if

denotes the family of orthogonal projections onto the subspaces of W’, then is the
commutant of . This easily implies that if T is an invertible memoryless operator so is
T-1.

We give a characterization of the memoryless operators. This proceeds in two
stages. First we reduce the problem to unitary operators and then characterize the
unitary memoryless operators.
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THEOREM 6.2. Let T be a causal operator on (Y(, ) with polar decomposition
T UP. Then T is memoryless if and only if U is.

Proof. If T UP and U is memoryless then so is U*. Since T is causal, so is
U*T=P. But P is self-adjoint and thus is memoryless. T is then a product of
memoryless operators.

To see that if T is memoryless so is U we observe the fact that the algebra of
memoryless operators is the commutant of the self-adjoint set ’. Thus d is a Von
Neumann algebra and contains each factor in the polar decomposition of its members.

Let Y{ be a Hilbert space and consider the Hilbert space =/2(_, ; y{). The
bilateral shift W on Y( is defined as in Example 5.1. The multiplicity of W is defined to
be the dimension of Y{. The next theorem is well known.

THEOREM 6.3. Let U be a unitary operator on a Hilbert space Y(. Then
decomposes into an orthogonal sum Y( o Y(1 which are invariant under U. UlY(o is
a bilateral shift ofsome multiplicity and UIY(I has the property that ifMis invariant under
UlY(1 then so is M-.

Proof. See [14] and (or) [6].
As a consequence of Theorem 6.3 and the invariant subspace structure of the

bilateral shift we have
THEOREM 6.4. A causal unitary operator U on (Y(, /’) is memoryless if it doesn’t

contain a bilateral shift direct summand offinite multiplicity.

7. Integral Representations. Let q be the set of projections onto the members of. By a partition of ’ is meant a finite subset {Ei: 0 < --< n} of such that

0 Eo < E1 <" <En L

AEi will denote the projection Ei-Ei-1. A partition i is a refinement of if
_
1.

Note that the partitions of ’ form a directed set under refinement.
A detailed theory of integration on nests is presented in [4] and [10]. Here we

consider a special case.
Let T be a bounded operator on Y( and any partition of . Then we form the

sums:

,(T)= E Ei-IT AEi, //,(T) EiT AEi,
i=1 i=1

-(T) _. FiT AEi, Ei-1 <= Fi <= Ei, (T) AEiT AEi.
i=1 i=1

If the above sums converge in the uniform topology on (Y() we write

L#(T) (m ) I ETdE, -//(T) (M) I ETdE,
-(T) I ETdE, @(T)= I dETdE.

(T), //(T) and (T) are called, respectively, the integral, upper integral and lower
integral of triangular truncation of T with respect to . @(T) is called the integral of
diagonal truncation. Corresponding definitions exist in the strong operator topology.
For this case we will place an’s-’ in front of the symbol (e.g. s- @(T)).

When is replaced by- we obtain the corresponding integrals -+, +, + and
+. Simple computations give the following proposition.
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PROPOSITION 7.1. (a) @+(T)= @(T);
(b) -+(r)= dETE;
(c) ?/+(r)= r-(r);
(d) +(T)= T- q/(T).
The.next definition is motivated by the finite dimensional case.
DEFINITION 7.2. T is lower triangular if T=?/+(T), upper triangular i4 T=

a//(T), diagonal if T @(T).
The idea of the next theorem is due to Saeks in the resolution space formalism.

The proof in the next space formalism is essentially the same. We will therefore prove
only one part.

THEOREM 7.3. Let T be an operator on (, W). Then:
(i) T is causal if and only if T q/+(T);
(ii) T is anti-causal if and only if T ql (T).
(iii) T is memoryless if and only if T (T).
Proofof (i). If T is causal, then T(I E) (I E)T(I E) for all E . Let be a

partition
0 Eo < E1 <" < En I.

Then (I-Ei)T AEi= TAEi for all i. Thus
i=, T AE, r i=1 AE T. Then 07/+(r)= T.

Now suppose T 07/+(T). Then
T(I-- E) all+(T)(I- E)

Let k be the integer such that

?/;(T) 2,=1 (I-E,)T AE,

lim +(T)(I-E)

=lim (I-E,_I)TAE,(I-E).
i=1

Ek-1 E <= Ek.
vk+ (I El-)T AEi. AlsoThen AEi(I- E) 0 for < k + 1. Thus T(I- E) lim/,i=l

(I-Ei_) (I-E)(I-E_I) for -< k + 1. Then

k+l

T(I-E)=lirn Y. (I-E)(I-E,_I)T
i=1

k+l

(I E) lirn i=1 (I Ei-1)T AEi

-(I-E) lirn (l-Ei-1)T AEi(I-E)
i=1

=(I-E)T(I-E).

This completes the proof.
Remark. It is not hard to show that Theorem 7.3 could be stated for strongly

convergent integrals as well. This is in contrast to the results discussed in the coming
sections where we will differentiate between the two topologies.

8. Radicals of nest algebras. At this point we diverge from causality to study the
relationship between the Jacobson radical of the Banach algebra AlgW and the
integral representations studied in 7. Most of the results brought here first appeared
in [2].
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DEFINITION 8.1. Let be a Banach Algebra. The Jacobson radical of is the
intersection of the kernels of all irreducible representations of .

The next lemma lists the properties of that we will use. These are well known
and proofs can be found in [9, Thms. 2.3.2-2.3.5].

LEMMA 8.2. Let be the radical of the Banach algebra . Then:
(i) Yt is a norm-closed two-sided ideal of
(ii) contains every quasi-nilpotent one-sided ideal of
(iii) {R [RA is quasi-nilpotent ]:or all A } {R [AR is quasi-

nilpotent or all A }.
If is a nest algebra Alg aV we have the following characterization of due to

Ringrose [11, Thm. 5.4]:
THEOREM 8.3. T Alg belongs to if and only if for any e > O, there exists a

partition of such that

IIAET AEII < e

for l <-_i <=n.
This leads to the following corollary which is of central importance for what

follows.
COROLLARY 8.4. 9] {T Alg aV: (T)= 0}.
Proof. See [2].
This simple corollary was seen by Erdos and Longstaff to provide the link

between the Ringrose theory and that of Brodski, Gohberg and Krein. This led them
to the next theorem which is the main result of [2].

THEOREM 8.5. (T) exists if and only if T T1 + T2 with T1, T’ where is
the radical of Alg W’. T1 and T2 are uniquely given by

T1 -(T), T2 +(T).
9. Strict causality and anti-causality. We have seen that the causality of an

operator does not in general ensure the causality of its inverse. Since this property is of
major importance in the study of stability of input-output feedback systems, a number
of authors were motivated to strengthen the causality condition. The most natural way
to do this in the context of the above discussion was given by Saeks.

DEFINITION 9.1. T is strictly anti-causal if T= ff(T)=ETdE and strictly
causal if T +(T).

Physically, strict causality is a delay type condition. As a consequence of the
above discussion we get a natural characterization of strict anti-causality.

THEOREM 9.2. The following are equivalent:
(1) T is strictly anti-causal;
(2) T;
(3) T is anti-causal and -/(T)= 0;
(4) T is anti-causal and (T)= 0.

Proof. (1)=> (2). Suppose T is strictly anti-causal. The -(T) exists and equals T,
by Theorem 8.5 T Yr.

(2) ::> (3). If T, -(T) converges. Since 0 and the decomposition T=
-(T)+0 is unique it follows that -*(T)=0. Since TYt and Algac, T is
anti-causal.

(3)=)>(4). If -+(T)=0, then g+(T)=+(T)=0 Since @(/)= ?/+(T)-(T)
it follows that (T) 0.

(4)=>(1). Since T is anti-causal, T=(T). But (T)=II(T)-L#(T)implies
07/(T) (T) T and thus -(T) exists and equals T.
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We have a dual result for strict causality.
THEOREM 9.3. The following are equivalent:
(1) T is strictly causal;
(2) T*;
(3) T is causal and if(T)= 0;
(4) T is causal and @(T)= 0.
Remark 9.4. As immediate consequences of the identification of the strictly

causal operators with the radical of Alg dY we obtain the following:
(1) The strictly causal operators form a uniformly closed two-sided ideal in Ac

[12, p. 37];
(2) if T is strictly causal, then T is quasi-nilpotent;
(3) if T is strictly causal, then (I- T)-1 can be obtained by a Neumann series in

T. (This was proved directly in [15].)
In [12] Saeks raised the question under what conditions would the resolvent of a

causal operator be analytic in the open right half-plane. The motivation for this
question is historical. For a time-invariant causal operator it is classical that this is the
case. While it is not hard to see that in general this is not the case it follows from (2)of
the above remark that for T strictly causal even more is true. In fact, (AI-T)-1 is
analytic everywhere in the complex plane with a puncture at the origin.

The next definition is motivated by Theorem 9.3.
DEFINITION 9.5. The causal operator T is strongly strictly causal if T s-+(T)

or equivalently if s- (T)= 0.
While a simple characterization of the strictly causal operators was possible in

terms of the radical of Alg Ar, the problem of characterizing strongly strictly causal
operators is much more difficult. This problem is made more acute by the fact that
strong strict causality is quite common. For example, if K is a convolution operator on
L2(-oo, o) with kernel K e L’, then K is causal if and only if k(t)= 0 for < 0 and
strongly strictly causal if and only if k(t)= 0 for t<=0 (see [12, p. 33]). On the other
hand K will rarely be strictly causal.

However, there is a relationship between strict and strong strict causality.
THEOREM 9.6. Every strongly strictly causal operator is a strong limit of strictly

causal operators.
Proofi Suppose T is strongly strictly causal. If is any partition

of g, by causality

0=Eo<El<" <E,, =I

0 0 0 0

AE2T AE 0 0

T= AEaT AE2 0

AE.T AEI AE.T AE2

AEIT AE 0 0

0

0

0 0 AETAE
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We use matrix notation to make the argument more transparent. The first matrix
corresponds to T-a//(T) and the second to @(T). Note that T-//(T) is nilpotent
and that for any A causal, [T-//(T)]A is nilpotent. By Lemma 8.2 (iii) [T-(T)]
is strictly causal. Since T is strongly strictly causal, fi(T) converges strongly to zero
and IT- a//(T)] converges strongly to T. This completes the proof.

10. Compact operators. The problem of characterizing all compact strictly
causal operators was mentioned in [12, p. 52]. Our characterization of strictly causal
operators as the radical of Alg A/" will make the problem quite transparent. In fact, a
solution will follow immediately from known results. What is more surprising is that
this also leads to a characterization of strongly strictly causal compact operators.

We begin with the following result proved in [2].
THEOREM 10.1. Let T be a compact causal operator. Then T is strictly causal if

and only if T is quasi-nilpotent.
COROLLARY 10.2. Let T be a strictly causal operator. Then T is compact if and

only if Im T- (1/(2i))(T- T*) is compact.
Proof. This follows immediately from Theorem 10.1 and the fact that if T is

quasi-nilpotent and Im T (1/(2i))(T- T*) is compact then so is T [10, p. 60].
DEFINITION 10.3. For each N 3" such that N # N_ other than (0 define as to

be the number a such that PTP-aP where P is the projection onto NON_. Then
(aN[N f and N # N_) is the set of diagonal coefficients of T relative to Y.

THEOREM 10.4 [10, p. 176]. If T is compact then tr(T) is the union of the set of
diagonal coefficients ofK relative to f and the point O.

This theorem allows us to characterize the strongly strictly causal compact
operator.

THEOREM 10.5. If T is a compact causal operator then the following are
equivalent:

(1) T is quasi-nilpotent;
(2) T is strictly causal;
(3) T is strongly strictly causal.
Proof. It suffices to show that (3) (1). Suppose T is strongly strictly causal and

a #0 is in or(T). Choose e >0 such that e2<[[2.
Since a r(T) there exists, by the previous theorem, someN such that

a as. Let E and E_ denote the projections on N and N_ respectively, and let x be a
unit vector in the range of E- E_. By strong strict causality there exists a partition
such that for any refinement 1 of ,

Let 1--i [,_J {E, E_}. If 1 is given by 0 < E1 < < E, I with E E., then, since

AEix 0 for : j,

[[l(T)xll= AEiT AEix
i=’1

[2-It aZ xll II-xll

which contradicts the strong strict causality of T.

11. Co contractions. Here we study strict and strong causality properties of Co
contractions. The motivation for studying such operators in a causality setting was
given in [8].
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We describe these operators very briefly. For a complete and elegant treatment of
this subject the reader is referred to [6].

H will denote the algebra of bounded analytic functions on the open unit disc
with the usual norm. If T is a completely nonunitary contraction and u H, the
Nagy-Foias functional calculus described in [6] allows us to define the operator u(T).

DEFINITION 11.1. T is a Co contraction if there exists a nonzero function u e H
such that u (T) 0.

THEOREM 11.2. Suppose T is a causal, invertible Co contraction on (, W). Then
T-1 is oausal.

Prod1( Since T-1 is in the double commutant of T, it follows from [5] that r-1 is a
strong limit of polynomials in T and I. Thus T e Alg W implies T-1 Alg W.

We now turn to strict and strong causality. Here we will add the natural restric-
tion (see [6]) that I-T*T (or I-TT*) is compact. We have seen that a necessary
condition for an operator T to be strictly causal is o-(T)= {0}. Since, except for the
trivial case, the continuous spectrum of a Co contraction is contained in the unit circle
[6, p. 126], we will study I- T instead of T.

THEOREM 11.3. Suppose T is causal Co contraction on (, W) such that I- T*T
(or I- TT*) is compact. Then I T is strictly causal if and only if o’(T) {1}.

Proof. Since I-T*T is compact, so is T(I-T’T)= T-TT*T. Thus we can
write T U+K where K is compact. Since the essential spectrum of T essential
spectrum of U {1}, it follows from [3, p. 23] that U ! + K1, where gl is compact.
This implies that I- T is compact.

Since I- T is a compact causal and o’(I- T)= {0}, it follows from Theorem 10.1
that !- T is strictly causal.

The converse is trivial.
To obtain information about strong strict causality we use a result similar to that

of Theorem 10.4.
THEOREM 11.4 [7]. Suppose T is a Co contraction such that I- T*T is compact. If

T is causal on (, W) then the point spectrum of T is identical to the set of diagonal
coefficients of T.

This allows us to prove the following:
THEOREM 11.5. Let T be a causal Co contraction on (, ) such that I- T*T is

compact. Then if I- T is strongly strictly causal,

(r(T) {zl lzl--1}.

Proof. Suppose a co-(T)such that ]a[ 1. By [6, p. 126], a is in the point
spectrum of T and thus by Theorem 11.4 there exists N dV" such that a aN. We
proceed as in the proof of Theorem 10.5.

Let E and E_ be the projections on N and N_ respectively and let x be a unit
vector in the range of E-E_. Choose e > 0 such that e2< I1- a 2. By strong strict
causality, there exists a partition such that for any refinement 1 of ,

111(I T)xll < ,
Let i --i U {E, E_}. If 1 is given by

0<El<’’ "<En=i

with E Ei, the same computation as in Theorem 10..5 leads to
2

which contradicts the fact that I- T is strongly strictly causal.
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Remark 11.6. It is not known whether the converse is true; i.e. if o-(T)
(zl Izl- 1 then T is strictly causal.

12,. Application to feedback systems. A feedback system is defined by the equa-
tions

y =Ke+d, e=Fy+u,

where K and F are causal operators on a fixed nest space (,) and e, d, u, y are
vectors in . Conceptually, u is viewed as the system input signal, d as a disturbance
in the output; y is the output and e is the input to K.

Rewriting these equations as

(I KF)y Ku + d, (I FK)e u + Fd

it is seen that to solve for y or e, (I- KF) or (I-FK) must be invertible. It is easy to
see that (I-KF)- exists if and only if (I-FK)- does [12, p. 64].

DEFINrrION 12.1. A feedback system is well posed and stable if (I-KF)-1 exists
as a bounded causal operator on (, ).

We note that while this is not the usual definition of well posedness and stability,
this is equivalent and is used in most applications (see [12, pp. 66-75]).

As applications we present greatly simplified proofs of results of Saeks given in
[12, pp. 78-80].

THEOREM 12.2. For the feedback system defined on (27g, ,g) by the equations
y Ke + d, e Fy + u, suppose that dEKFdE exists and has norm less than one. Then
the feedback system is well posed and stable.

Proof. We show that (I-KF)- exists and is causal. By the additive decom-
position theorem [12, p. 41],

KF= T + T2,

where T1 is strictly causal and TE=J dEKFdE with lIT211< 1. Thus (I-T2)-x exists
and can be written as a power series in T2.

Then I-KF- (I- T2)- T1 and formally

(]-KF)-I- [(I- T2)- TI]-1= (I- T2)-111 TI(I- T2)-]-.
Thus to complete the proof it is enough to show the second term exists and is causal.

Since T1 is strictly causal, so is TI(I- T2)- and its spectrum consists only of zero.
Thus if S TI(I-T2)-, there exists n such that IIS"II<I. This implies that the
Neumann series i=0 converges to (I-S)-1. Thus (I-S)-1 is causal and the proof
is complete.

COROLLARY 12.3. If either K or F is stricdy causal, then the feedback system is
well posed and stable.

Proof. KF is then strictly causal and if KF T + T2 as in the above theorem
T2- 0. We now apply the previous theorem.
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A COMPUTER METHOD FOR VERIFICATION OF
ASYMPTOTICALLY STABLE PERIODIC ORBITS*

JOHN E. FRANKE" AND JAMES F. SELGRADE’

Abstract. This paper provides criteria for locating a periodic solution to an autonomous system of
ordinary differential equations and for showing the solution is orbitally asymptotically stable. The numerical
analysis and the computer program needed to establish these criteria for a specific 2-dimensional system of
equations are discussed.

1. Introduction. The intent of this work is to show how techniques of global
analysis and numerical analysis enable a computer to prove certain qualitative pro-
perties of solution curves to autonomous ordinary differential equations. General
results in global analysis are discussed in 2 and 3. These results provide criteria for
locating a connected, attracting invariant set and for proving this set is a periodic orbit
with one zero characteristic exponent and the remaining characteristic exponents
having negative real parts. Such a periodic orbit is orbitally asymptotically stable.

In 4 and 5 we develop the numerical details and computer programs needed to
implement our method on an actual system of differential equations. For this demon-
stration we choose the following system on R2:

(1) 2=y, =a(1-x2-y2)y-x.

Here a is a parameter which we take to be .05. This is a modification of the Van der Pol
equation, chosen to reduce programming cost and to simplify some of the analysis. The
periodic solution we find is circular of radius one centered at the origin. The existence of
this solution and the result concerning its characteristic exponents may be obtained by
classical methods, as explained in 4. However, this simple example illustrates how to
handle the numerical difficulties encountered in applying our computer method to more
complicated systems ofequations.

2. Background. Let X R and F be a continuously differentiable function from
R to R . An autonomous system of ordinary differential equations is denoted

(2) ., F(X)

where "." represents differentiation with respect to R. F is called a vector field. The
unique solution to (2) with initial condition X is a parametrized curve t(X), with in
an open interval of R containing zero, such that b0(X)= X and-b,(X)lt:s F(,bs(X)).

This curve qbt(X) will be referred to as the orbit through X. For each fixed t, bt is a
differentiable function from an open subset of R" into R". The parametrized family of
differentiable functions bt is called the flow of F. See [9], [16] for details. If X s R and
F(X) 0, then qbt(X) X for all R and we call X a rest point of bt. If X is not a rest
point and br(X)= X for some T > 0 then X is called a periodic point of bt.

* Received by the editors November 23, 1977, and in revised form March 9, 1978.
Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27607.
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Equation (2) determines a system of ordinary differential equations on RnR
given by"

(3) 2 F(X), DF(X)V

where (X, V) R" x R" and DF(X) is the derivative matrix of F at X. This system is
called the linearized equations, [9], corresponding to (2). The solution curve to (3) with
initial condition (X, V)e R" x R" is t(X, V)=- (cbt(X), D4)t(X) V). Here 4)t(X) is the
solution to (2) and D4t(X) is the derivative matrix of bt at X. t is called the tangent
flow. If X is a periodic point of bt then the second equation of (3) is linear with periodic
coefficients. In this case, Floquet theory may be used to find characteristic exponents [9]
if the periodic orbit is known explicitly. In order to obtain information about the
characteristic exponents, we study the component of the solution D4)t(X)V normal to
the vector field at 4t(X). We make the pertinent definitions in a setting more general
than that of a periodic orbit.

A compact subset A of R" is an invariant set of the flow b if, for each R, A is a
subset of the domain of d, and 4(A)= A. For each Xe A, the vector field at X
determines two subspaces of R" x R" called the tangent and normal subspaces:

Ex =-{(X, V) R" x R": V aF(X) for some a R },

Nx=-{(X, V)eR"xR": (V,F(X))=O}.

Here "(., )" denotes the usual inner product on R". If A contains no rest points then
E =-UXA Ex is a continuous line bundle over A and N =-xa Nx is its normal
bundle. In general, E and N are only semicontinuous. Let Ox: {X} x R" Nx be the
orthogonal projection of {X} x R" onto Nx. Explicitly, Ox(X, V)= (X, 7rx(V))where
zrx(V) V if F(X)= 0 and otherwise

zrx(V) V-((V, F(X))F(X)/(F(X), F(X)>).

Since we will be concerned with only the second coordinate of Ox, we will refer to rrx as
the normal profection.

A compact invariant set A is quasi-hyperbolic if
(i) E is a continuous subbundle of A R", and
(ii) the flow on the quotient bundle (A Rn)/E induced by the tangent flow has no

nonzero bounded orbits.
Conditions (i) and (ii) guarantee that each rest point in A is an open-closed subset of A
and A has only a finite number of rest points. Condition (ii) says that the normal
projection of the orbit of each (X, V)AxR"-E is unbounded, i.e.,
(Dd)t(X)V)[ is unbounded where "1. [" denotes the Euclidean norm on R". Quasi-
hyperbolicity is a weakening of the classical notion of hyperbolicity [14].

A is hyperbolic if there exist continuous invariant subbundles E and E of A R
so that A R" E E E and if there exist real numbers h (0, 1) and c > 0 such
that

(i) if (X, V) E and > 0 then [Vet(X) V[ > cA -t] V[, and
(ii) if (X, V)E and t>0 then ID ,(X)Wl<c *lWl,

If A is connected and the dimension of E is k, then stable manifold theory [13] asserts
the existence of a (k + 1)-dimensional submanifold W of R" containing A such that for
each Y W there is an XA and a e(0, 1)so that [ck,(Y)-4,(x)l<ca’ for all t>0.
Thus the distance between b (Y) and A approaches zero as - oe. Similarly there is an
unstable manifold corresponding to E whose points approach A as
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In the presence of chain recurrence, hyperbolicity and quasi-hyperbolicity are
equivalent. Given X, Y R" and e, T > 0, an (e, T)-chain from X to Y is two finite
sequences, of points and times,

{X0 X, Xl," Xn Y; to, tl, In-i}

such that ti -> T and [b,, (Xi)-Xi+ll < e for all i, 0 -< < n 1. A point X A is A-chain
recurrent if for every e, T > 0 there is an (e, T)-chain from X to X contained in A. If all
points in A are A-chain recurrent then A is called chain recurrent. For example, rest
points and periodic orbits are chain recurrent. The following are proved in [5]"

THEOREM 2.1. Let A be a compact invariant set of the flow 4,. If A is quasi-
hyperbolic and chain recurrent, then A is hyperbolic.

THEOREM 2.2. Let A be a compact invariant set of c,. If A is hyperbolic and chain
recurrent, then A is contained in the closure of the set of periodic points of

3. General theory. In this section we establish the theoretical results needed for
the computer analysis.

If A is a subset of R" and J a subset of R, define 4j(A)=- U ,j 4t(A). Let A be a
compact subset of the domain of 4t for all ->_ 0. Then the to-limit set of A is

to(A)-= (3
t_>0

where ( denotes the toplogical closure. Intuitively, to(A)is the positive end of the orbit
of A. Similarly, the a-limit set of A is defined as the negative end of the orbit of A. A
subset A of R" is an attractor for 4t if it has a compact neighborhood U such that
A to(U). An attractor is compact and invariant.

PROPOSITION 3.1. Let Ube a nonempty, open, connected subset ofR" with compact
closure. If there is a T>0 such the ceUis contained in the domain of4rand 4r(cCgU) is
contained in U, then to(cgU) is a nonempty connected attractor contained in U.

Proof. to(cCgU) is connected since U is connected. What remains to be shown is
that cCg(4(t.oo)(cCU)) is a subset of U for large t.

Notice that 4T(CCeU) C(4T(U). Since g4’T(U) is compact, there is a minimum
distance d from c(bT(U) to the complement of U. Because of the compactness of
there is a time S such that for each Y ceU we have

Y- 4,r(Y)l < d for all [0, S).

Let X e ceU. Since T(X) tT(cU), (T-S,T](X) is contained in g. Thus the
orbit segment 4tO,T(X) intersects the complement of U for at most T- S units of time.
Now consider 4)r(4to,rl(X)). Since 4)T(X) and r(4)tr_s,rl(X)) are contained in
4)T(c(u), the orbit segment tT,2TI(X) intersects the complement of U for at most
(T-S)-2S units of time. Continue to apply bT to the orbit segments of X until the
multiple of S is larger than T, thus showing that segment 4 t,,,T,(,,+IT (X) is a subset of U
for some integer m. Since m is independent of X e eU, we have that bt,,T, (ceU) is
contained in U andso 4)t(,+T,(cCeU)iscontained in CbT(cCU). Thus for (m + 1)T
we have

CoroI.,LAR 3.2. Suppose U is an open annulus in R 2 with boundary OU and
suppose the flow cbt has a restpoint within the inner bounding circle ofthe annulus. If there
is a T>0 such that r(0U) is contained in U, then to(U) is a connected attractor
contained in U.
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Proof. Using domain invariance and the Jordan curve theorem (see [3, chap. 17]),
it follows that CkT(CeU) is a subset of U.

In 4 we use the computer to verify the hypothesis of Corollary 3.2 pertaining to
(1). We construct a grid of disks covering the two bounding circles of the annulus. Then
the computer uses a numerical method to show that after a fixed time T the orbits
through the centers of the disks are inside the annulus. In fact, each center is far enough
inside to show that the entire disk is inside the annulus even compensating for the
numerical error and the machine error. Thus the existence of an attractor A inside the
annulus is established.

Now we discuss results which allow us to conclude that A is a periodic orbit whose
nontrivial characteristic exponents have negative real parts. Henceforth the positional
subscipt on 7rx will be suppressed to simplify notation.

PROPOSITION 3.3. Let A be a compact invariant set ofqb,. Suppose there is a T > 0 so
that ]’or each X A and (X, W) Nx with WI 1 we have

Ir(D6T(X)W)l < 1.

Then there exists a > 1 so that for all (X, V) A x R"

r(D4,-r(X)v)l->_ t3 Ir (V)l.
Proof. If (X, V) Ex then both sides of the concluding inequality are zero. This

follows because E is invariant under the tangent flow.
If (X, V)Ex then zt(V)Nx is not zero. By compactness, there is a (0, 1)so

that for all (X, W)Nx with IWI 1 we have

I’(D6(X)W)l o.

From linearity, it follows that for all (X, W)Nx
Ir(O(X)W)l Wl,

Let Y =- Dck-r(X) V. Since Y- zr( Y) E6_x), Dckr(ck-r(X))(Y- zr( Y)) belongs
to Ex. Since DckT(ck_7-(X)) Y= V, 7r(V)=Tr(Dc7-(ck_T(X))Tr(Y)). Also since

Ir(D4(4,--(X))r(Y))I-<- c [r(Y)l, we have

Ir(V)l =< a zr(D4,-r(X)V)l.
-1Taking/3 a completes the proof.

COROLLARY 3.4. Let A be a compact invariant set of4t. Suppose there is a T > 0 so
that for each X A and (X, W)Nx with WI 1 we have

Ir(D4,r(X)W)l < 1.

Then {zr(Db,(X) V): <- 0} is unbounded [or all (X, V) A x R" E.
The conclusion of Corollary 3.4 plus a condition on the rest points is even

stronger than quasi-hyperbolicity. Assuming the conclusion of Corollary 3.4 we show
that A is a periodic orbit or rest point.

THEOREM 3.5. Suppose A is a compact, connected, invariant set and suppose that
]’or each X A the set {Tr(Dck,(X)V): t_<0} is unbounded for all (X, V) A x R"-E.
Then A is a periodic orbit or rest point whose nontrivial characteristic exponents have
negative real parts.

Proo[. If X A is a rest point then, by elementary linear theory [9], it is hyperbolic
with n-dimensional stable manifold. Thus X has an open neighborhood with the orbit
of each point in the neighborhood limiting on X as o; and no orbit can limit on X
as --> --.
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If X A is not a rest point, the a-limit set a(X) is a connected chain recurrent
subset of A [6]. a (X) contains no rest points because the orbit ofX would limit on such a
point as t-. Thus, by hypothesis, a(X) is quasi-hyperbolic; and Theorem 2.1
implies that a(X) is hyperbolic with n-dimensional stable manifold. So there is a
neighborhood of a (X) such that the orbit of each point limits on a (X) as . Hence
this neighborhood of a(X) contains no periodic points except those in a(X). Since
Theorem 2.2 implies that a (X) is contained in the closure of the set of periodic points,
a(X) contains a periodic point. This periodic orbit is hyperbolic with no nontrivial
unstable manifold, so no orbits limit on this periodic orbit as -o. In particular, the
orbit of X cannot limit on it unless X is on the periodic orbit.

Thus every point in A is a periodic or rest point. But each such point has a
neighborhood containing no other periodic or rest point. Hence, by connectedness, A is
one periodic orbit or rest point. The condition on the characteristic exponents follows
from Floquet theory.

In 5 we use the computer to verify the hypothesis of Proposition 3.3 for the
linearized equations corresponding to (1). Hence, Corollary 3.4 and Theorem 3.5 show
that the invariant set within the annulus is a periodic orbit with characteristic exponents
having negative real parts.

4. Finding an attractor. In 4 and 5 we willustrate the numerical analysis, the
specific error estimates, and the computer program needed to apply our method to show
the existence of an asymptotically stable periodic orbit in (1). This result can be
obtained by other methods. The existence of the periodic solution is obvious after
changing the equations to polar coordinates and the Poincar6 criterion [2] implies that
one characteristic exponent has a negative real part.

Equation (1) has a rest point at the origin. So in this section we use the computer
and Corollary 3.2 to show that the annulus U(.99, 1.01) centered at the origin with
inner radius .99 and outer radius 1.01 contains an attractor. Preliminary calculations
indicate that the bounding circles of U(.99, 1.01) move inside of U(.99, 1.01) in time
T .64. First we show that certain orbits remain in U(.94, 1.06) for .64 units of time.
Many of the error bounds will be computed over U(.94, 1.06), but care must be taken
since this annulus is not convex.

Since 1.064 is an upper bound on the vector field in U(.94, 1.06) a solution
remaining in U(.94, 1.06) for time .04 can travel a distance at most .043 from its initial
position. Thus a solution with initial position in U(.988, 1.012) remains in U(.94, 1.06)
for time .04.

LEMMA 4.1. If XI U(.987, 1.013) and IX-Xal<.001 then the line segment
from ,(X1) to ,(X2) belongs to U(.94, 1.06) for all [0, .04].

Proof. The triangle inequality and the proceeding paragraph imply that

IXa- ,(X2)1 IX1-X2l + Ix=-  ,(xz)l < .001 + .043.

And IX1 ,(X)] < .043. Therefore ,(X1) and ,(X2) belong to the disk of radius .044
centered at X1. Since this disk is convex and is contained in U(.94, 1.06), the desired
result follows.

Let (r) be the disk of radius r centered at the origin. A Lipschitz contant L 1.15
for the vector field in the disk (1.06) is computed as the maximum norm for DF over
(1.06). See [2] for the following result:

LEMMA 4.2. If C,(X), Ct(X2) (1.06) for all [0, T], then

14,,(x,)-,(x2)1 eL’lx- X21.
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In particular, for T .04, we have

[(t(Sl)- (Dr (X2)] e (115)(4)1X1 g21 < 1.0481X1 gal.

The previous lemmas will be used in investigating the truncation error due to the
numerical method. An upper bound for the local error for 5th order Taylor series is
M1h6/6! where M1 is the maximum over X U(.94, 1.06)of the norm of the sixth
derivative of cht(X) with respect to t. For (1), M1--< 83.85 and so the local error is
bounded by 4.77 10-1 for h .04.

Let X denote the ith iterate of the Taylor series numerical method with step size
.04 applied to (1). The next lemma states that keeping track of the first 16 numerical
iterates can be used to show that the true solution remains in U(.94, 1.06) for
0 -< t_-<.64. To prove this, the cumulative error between each iterate and the true
solution is calculated.

LEMMA 4.3. Suppose X, i=0,..., 16, belong to U(.988, 1.012). Then ct(X)
belong to U(.94, 1.06) for [0, .64]. Also

i--1

fi- bi(.o4)(X)[ < (4.77 10-1) (eO4L)
i=o

where L 1.15 and so e4< 1.048.
Proof. We induct on i, the number of iterates of the numerical method. For 1,

bt(X) belongs to U(.94, 1.06) for 0-< <_-.04 since IX- bt(X)[ <_-.043. Thus our
upper bound for the local error due to the numerical method can be used, i.e.,

[X1- b.o4(X)l < 4.77 10-1 < .001.

Since X e U(.988, 1.012), we have 4,.o4(X)e U(.987, 1.013).
By induction assume 4,,(X) U(.94, 1.06)for all t, 0<= t-<_ i(.04); and

i--1

Ixi-bit.o4)(X)l < (4.77 10-1) E (1.048) j.
/=0

We now show the result for + 1 <_- 16.
Since (4.77) 10-1Y.-1

=o (1.048) =< 1.12 10-8, we have [xi-(/)i(.o4)(X)l< .001
and Xi, bi(.o4)(X) U(.987, 1.013). Thus Lemma 4.1 gives that b,(X’), b(i+t)(.o4)(X)

U(.94, 1.06) for all [0, .04]. Also another step of the numerical method can be
used to generate Xi/1. Using Lemma 4.2, we get:

[Xi+1- (i+1)(.04)(X)[ - [Xi+1 (.04(gi)[ + ].04(xi) (i+1)(.04)(X)[
i-1

<4.77 10-1+(1.048)(4.77 10-1) (1.048)
j=O

(4.77 x 10-1) E (1.048)(
i=0

Thus the result is established for + 1.
COROLLARY 4.4. Suppose Xi, 0,. , 16, belong to U(.988, 1.012) then [Xi-

bi(.o4)(X)l<l.12xl0-8 and so bi(.o4)(X)U(.987,1.013). In fact, qbt(X)
U(.965, 1.035) for all [0, .64].

Proof. The first assertion follows from Lemma 4.3. Then since the orbit of
bi(.oa)(X) leaves and returns to U(.987, 1.013) in time .04, the farthest it can travel in
.02 units of time is (.02)(1.064) < .022. Hence ;b t/i(.o4)(X) U(.965, 1.035) for 0 -<_ <-
.04 and i=0,..., 15.
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R. Martin has shown us how we can improve on the Lipschitz constant L 1.15
used in Lemma 4.2. First we need a result from linear algebra [12, p. 140]. Let
"(., .)" denote the usual inner product on

THEOREM 4.5. If A is a real n n matrix with transpose A* and X R", then
(AX, X) <=K(X, X) where K is any upper bound]or the eigenvalues of (A +A*)/2.

LEMMA 4.6. Let F be a continuously differentiable vector field on an open set

G R". Let k,(X) denote solutions to F(X). IfX, Y G such that the line segments
connecting 4,(X) and b,(Y) are in G for [0, T], then

I,(X)- ck,(Y)l <-- er’lX Y}

where K SUpzG {h (Z)" A is the largest eigenvalue of (DF(Z)+ DF(Z)*)/2}.
Proof. Fix X, Y G. For each [0, T], define g," [0, 1]--> R" by

g,(s) sk,(X)+ (1 s)k,(Y).

By assumption the straight line image of gt is in G. Using Theorem 4.5 and the
fundamental theorem of calculus, we have

(k,(X)- ck,( Y), F(b,(X))- F(ct( Y)))

Jo ($,(X)-$,(Y),DF(g,(s))(6,(X)-$,(Y)))ds

Jo KI$,(X)- 6,(Y)[2 ds.

Now define h" [0, T] R by h(t)= I$,(X)-$,(y)[2. Using the preceding inequal-
ity, we get

dh
d 2(,(X)- e,( Y), F(6,(X))- F(6,( Y)))

2KI6,(X)- $,(Y)[2 2Kh(t).

Thus h(t) e2r’h(0) and so
To bound the largest eigenvalue of (DF(Z)+DF(Z)*)/2 we use a theorem of

Gershgorin [12, p. 146]. Let aii denote the i] component of (DF(Z)+DF(Z)*)/2.
Then

(4) h(Z)mx aii+.= lail

For (1), taking the supremum over Z U(.94, 1.06), we conclude that K < .03427.
LEMMA 4.7. Suppose X U(.988, 1.012) and $t(X) U(.965, 1.035) for all

[0, .64]. If IX-X[ < .0242 and ]Y-Xi < .0242, then for [0, .64] the line
segment from $,(X) to $,(Y) is in U(.944, 1.06) and

I,(x)- ,(Y)l e’lS- YI
where K is as in Lemma 4.6.

Proof. For eachX such that IX X] < .0242, let s > 0 be the first time that the line
segment from bs(X) to Ss(X) intersects U(.94, 1.06). (Note s may be oo.) If s ---.64
then Lemma 4.6 gives

14t(X)- bt(X)[--< eK’IX X} for all [0, .64].
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Assume s < .64. Since line segments from 4,(X) to b,(X) belong to U(.94, 1.06) for all
<-s and bs(X) U(.965, 1.035), then

.025 =< [4s(X)-b(X)[--< eC[X X] < e(3427)(64)}g xO] ". 0248.

This contradiction implies that s => .64. Thus for [0, .64],

I,/,, (x)- ,,(x)l <-- eK’lX Xl < .0248.

This same inequality is true if Y replaces X. So both bt(X) and bt(Y) belong to a
disk of radius .0248 centered at bt(X). This disk is contained in U(.94, 1.06) so the line
segment from bt(X) to bt(Y) is in U(.94, 1.06). Therefore, Lemma 4.6 asserts that

This completes the proof.
For X U(.988, 1.012)and X such that IX-X[<.01, the triangle inequality

implies

IX16- (.64(X)[ IX16- D.64(S)[ / ].64(X) (.64(X)[.
If X,X,’--,Xa6U(.988, 1.012)then Corollary 4.4 implies that ,(X)
U(.965, 1.035) for all [0, .64] and so

Ix6- .64(x)1 < .a2 0-+ 1.64(x) .64(x)1.

Using Lemma 4.7, we get

(5) 1X16- b.64(X)] < 1.12 10-8/e64:ls-g]< 1.12 ao-8 / (1.023)lx-xl.
Equation (5) bounds the error between the 16th iterate starting at X and the true
position .64(X)for X near X.

We use a PL/1 program on an I.B.M. 360 computer to show that U(.99, 1.01)
gets mapped inside U(.99, 1.01) by .64. Using double precision variables, we are able
to bound the total roundoff error by 1 10-12, which is insignificant when compared
with the error in (5). We wish to thank S. Danielopoulos for his assistance in computing
the roundoff error.

The program uses a fifth order Taylor method with 16 steps of size .04. The initial
position is on U(.99, 1.01). Each iterate is checked to see that it is in U(.988, 1.012).
Hence Lemma 4.3 and Corollary 4.4 apply to show that b,(X) U(.965, 1.035) for all

[0, .64]. So, if IX-XI < .01, we have equation (5). Then X16 is checked to be in the
interior of U(.99, 1.01) by more than 1.12 10-8. Let _a be the distance X16 is within
U(.99, 1.01). By equation (5), (.64(X) is in the interior of U(.99, 1.01) for all X such
that

]X-Xl<r=min {(_a 1.12 10-8)/1.023, .01}.

This shows that a disk of radius r centered atX is taken inside U(.99, 1.01) by .64. The
next initial position is chosen to be a distance of 1.99 r along 0U(.99, 1.01)from X. A
disk centered at this initial position (or grid point) is determined and the union of these
two disks is shown to cover the arc in U(.99, 1.01) connecting the two initial positions.
The program continues to choose grid points until the 8U(.99, 1.01) is covered. In fact,
because of the symmetry in (1), we need only cover the portion of U(.99, 1.01) in the
lower half-plane. Thus, with Corollary 3.2, we have established the following:

TI-mOREM 4.8. Let 4,(X) denote the solution curve to equation (1) with initial
condition X R 2. Then b.64(OU(.99, 1.01)) is contained in the interior of U(.99, 1.01);
and U(.99, 1.01) contains a connected attractor.
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Also we have the following results which will be used in the next section.
LEMMA 4.9. IfX U(.98, 1.02) then b,(X) U(.94, 1.06) for all [0, .64].
Proof. Since X U(.98, 1.02), X is within a distance of .01 from 0U(.99, 1.01).

Each point of 0U(.99, 1.01) is within .01 of some grid point X 0U(.99, 1.01) and so

IX-Xl<.02. The computer program and Corollary 4.4 give that b,(X)
U(.965, 1.035) for all 6 [0, .64]. Thus Lemma 4.7 implies

14,,(S)- 4,, (X)l eK’ls X[ < .02046.

Therefore ,(X)e U(.94, 1.06).
LZMMA 4.10. For each Ye U(.98, 1.02) and Xsuch that IY-X<.01 then the

line segments from ,(Y) to ,(X) belong to U(.94, 1.06) for all [0, .64].
Proof. Since Y e U(.99, 1.01), Y is within .01 of some grid point X. Since

.014< .0142 andlX YI < .01, we have Ix-xl < ,0242, The computer program and
Corollary 4.4 give that ,(X)e U(.965, 1.035) for all [0, .64]. Thus Lemma 4.7
implies the desired result.

5. Characteristic exponents. The previous section establishes the existence of an
attractor A contained within U(.99, 1.01). Now we intend to use Theorem 3.5 to show
A is an asymptotically stable periodic orbit. Note that F(X) 0 for all X e A, so A
contains no rest points. For each X e U(.99, 1.01) and (X, V) in the normal subspace at
x with V] 1, we will show that the normal projection I(D.64(X)W)l is less than 1.
Hence this is true for all X A; and Proposition 3.3 and Theorem 3.5 apply. The error
bounds are computed in U(.94, 1.06) (1.06).

The linearized system corresponding to (1) is:

(6)
=a(1-x2-y2)y-x’

=(-2axy- 1)u +a(1-x2-y2)v-2ay2v,
where (x, y, u, v)= (X, V) R2g2. To simplify notation let W (x, y, u, v) R and
let (W)= ((X), D(X)V) be the solution to (6) with initial condition W. If the
convexity condition in Lemma 4.6 holds, we conclude that

for all e [0, .64]. Here K is computed from the vector field of (6). Maximizing over
U(.94, 1.06) (1.06) we get K .3714.

LZMM 5.1. If (X, V)e U(.98, 1.02) x (1.012), then ,(X, V)e U(.94, 1.06)x
(1.0426) for all [0, .08].

Proof. Consider the solution to (6) with initial condition (X, 0). Note ,(X, 0)=
(&,(X), 0) for all t0. Since X e U(.98, 1.02), Lemma 4.9 asserts that ,(X)e
U(.94, 1.06) for e [0, .08]. The convexity condition in Lemma 4.6 is satisfied as long as
D,(X)V remains in the disk (1.06). But the first time D&,(X)V meets the (1.06)
is greater than .08 because

tD,(x)wl 0)1 e8)1 El < e(3714)(8)(1.012) 1.0426.

So the assertion is proved.
The norm of the sixth derivative of qt(X, V)with respect to maximized over

U(.94, 1.06)xN(1.06) is 375.51. Hence the error due to a fifth order Taylor series
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approximation with step size h .08 is

375.51(.08)6 --< 1.37 x 10-7.
6!

Let W (Xi, V) denote the ith iterate of the Taylor method with step size .08 (the
step size is doubled to reduce cost) applied to (6). The following lemma uses numerical
iterates to show the true solution remains in U(.94, 1.06)x fi9(1.0426) for [0, .64]
and computes the truncation error.

LEMMA 5.2. Suppose Wi, i=0, 1,..., 8, belong to U(.988, 1.012)xN(1.01).
Then ,(W) belongs to U(.94, 1.06)x 9(1.0426)fort [0, .64] andfor 1, 2,. , 8.

i--1

]W-(.os)(W)l-< (1.37 x 10-7) Y (e8); < 1.219 10-6

i=0
where K .3714.

Proof. We induct on i. For i= 1, note that Lemma 5.1 implies t(W)
U(.94, 1.06)x@(1.0426) for te[0, .08] since We U(.98, 1.02)x@(1.012). There-
fore, we can use the local truncation error to get

W .os(W)l < 1.37 x 10-7 < 1.219 x 10-6

By induction assume < (1.37 x 10-7) Yi._lo e8Ki and ,(W)
U(.94, 1.06)x (1.0426) for all 0<-t<-i(.08). We now prove the result for i+ 1<-8.
First we establish the convexity condition needed for Lemma 4.6.

Since wi=(x, V)e U(.988, 1.012)x9(1.01), X’ is within a distance .01 of
0U(.99, 1.01). Thus there is a grid point Z 0U(.99, 1.01)so that Ix-zl <.02. The
computer and Corollary 4.4 have shown that 4,(Z) U(.965, 1.035) for [0, .64].
Also

< .02 / 1.219 x 10-6

< .0242.

So X and b(.os)(X) are within a disk of radius .0242 of Z. Therefore, Lemma 4.7
implies that the line segments from b,(X) to 4,(4(.o8)(X)) belong to U(.94, 1.06) for
0<-t-<.08. Also, since V @(1.01) and Dcicos)(X)V@(1.012), Lemma 5.1
asserts that Dc,(Xi)V and Dqb/(.o8)(X)V belong to the convex set 9(1.0426) for
0 <- <- .08. We may conclude that the line segments from ,(W) to ,(q(.os)(W))
belong to U(.94, 1.06) x 9(1.0426) for all [0, .08]. Hence Lemma 4.6 gives

l.o8(W’)- (i+1)(.o8)(W)l e8)1 w’- ,co8)(w)l
i-1

<- eK(8)(1.37 x 10-7) e8m.
i=0

Using the local truncation error, we see that Iwi+l-qI.o8(Wi)l( 1.37x 10-7. By
the triangle inequality

W’+1 *(,+1 )(.08)( W)l <- wi+l xIY.08 wi )1 + I.os(w’) %+1)(.08)( w)l
i--1

<1.37x 10-7+(1.37x 10-7)e c(’8) e 8:
]=0

(1.37 x 10-7) 2 e8
i=0

< 1.219 x 10-6.
This completes the proof.
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LEMMA 5.3. Let (X, V)e U(.99, 1.01)x(1) and choose (X, V) such that
I(X, V)-(X, V)[ <.01. If t(X, V) U(.94, 1.06)x (1.0426) for all e [0, .64]
then t(X, V)e U(.94, 1.06)xN(1.06)and

I,(x, v)-q’,(x, v)l _-< e’’l(X, V)-(X, V)l
< .01269.

Proof. By Lemma 4.10 the straight line connecting &t(X) and bt(X) are in
U(.94, 1.06) for all e f0, .64]. Thus the straight, line connecting t(X, V) and
(X, V) will be in U(.94, 1.06)x(1.06)as long as ID,(X)(V)I< 1.06. Since
D4,,(X)(V)@(1.0426) the above inequality will be true while ID4,,(X)(V)-
D,(X)(V)I < .0174. Now

[,(X, V)-,(X, V)[_-< e:’l(X, V)-(X, V)I
e.3714(.64)(.0 1)
.01269

for [0, .64]. Hence ,(X, V)6 U(.94, 1.06) (1.06).
Lemmas 5.2 and 5.3 allow us to bound the distance between the eigth computer

iterate of W and 1,I/’.64(W) where W is within .01 of W. When Wi, 0, 1, ,8 are
checked to be in U(.988, 1.012) (1.01)then

[W8- xt.64(W)] ]W8-1,I/’.64(W)]-]--11,II.64(W0) I3’.64(W)

(7) < 1.219 10-6 + 1.2691W WI
=< .012691219.

Likewise the distance between the eighth computer iterate of X and 1,I/’.64(X) where
IX X] < .01 can be bounded. So we analyze the errors for a Taylor method applied to
(1) as was done for (5) except now the step size is .08 instead of .04. Since M1 83.85
and h .08, the local error Mlh6/6! is bounded by 3.053 10-8. For K .03427

7

IX8 ().64(X)] (3.053 x 10-s) e8:i < 2.466 x 10-7.
Thus

IX8- 6.64(X)1 IX8- b.64(X)[ + 1.64(X) 6.64(X)]

(8) < 2.466 10-7 + e"64K IX-X]

< 2.466 10-7 + 1.0231X-XI.
To use Theorem 3.5, we must show that for each X U(.99, 1.01) and (X, V) Nx

with IV[ 1, the normal projection of the orbit of V has shrunk in time T .64, i.e.,

7rcb.64(x)(Ot.64(X) w)l < 1.

Thus the initial position V= (u, v) is the unit vector normal to the vector field

F(Xo) (yO, a(1 (x)2- (yO)2)yO_ xO).
For X near X, IV- V] can be bounded in terms of IX-Xl. Since IV- V] is not

changed in taking the normals, the total change comes in making them unit vectors. On
u(.98, 1.02), IF(X)I > .978. Hence

1v Vl < IF(X) F(X)I.
./5
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Since IX-XI <.01 and X U(.99, 1.01), we apply the mean value theorem to a disk
of radius .01 inside U(.98, 1.02) to see that

So

and

IV(x, r)-v(x o, y o)1
=< ((y y 0)2 + 1.05202(x x) +. 10606(y yo)]2)1/2
<- 1.104IX Xl.

IV- VI < 1.12861X XI

I(X, V)-(g, V)l <= (IX-Xl2 + (1.1286)21X-X12)/2
_-< 1.5081X Xl.

Combining this with equation (7) gives

(9) wS-qt.64(W)l < 1.219 x 10-6+ 1.9141X-Xl.
Equation (9) implies that, if W8 U(.99, 1,01)@(1.01) and IX-XI=<.01, then
IWa-.64(W)l<.02 and the straight line from W8 to I/’.64(W) is in U(.97, 1.03)
(1.03). Thus we may use the mean value theorem when computing the projection.

To compute the projection of a vector (u, v) onto the unit vector perpendicular to
the vector field (, ))= F(x, y), we use the function

r(x, y, u, v)--
-up +v

This abuse of the notation in 3 is done to stress the positional coordinates (x, y). If
there are changes A, A, Au, and Av, then the mean value theorem for a ball in
U(.97, 1.03) (1.03)can be used to bound the change in -, i.e.,

0,rr 0"rr c3,rr 07"r
m+ Av supATr =< A sup -7.+ A3) sup -;-7.+ Au sup

OX oy Ou v
where the suprema of the partials are taken over U(.97, 1.03)x N(1.03). Evaluating
the suprema gives

A,rr _--< 4.7 max {A.i:, A9}+ 2 max {Au, Av}.

Again using the mean value theorem for a ball in U(.97, 1.03)xfi9(1.03), we get
A2 Ay and A3) --< 1.163 max{Ax, Ay}. Thus we have

(10) A,n’<=5.467max{Ax, Ay}+2max{Au, Av}.

This projection map r is applied to the numerical solution W8 producing an error
of 1"/7’(W8)-q’/’(I3’.64(W))l. Since

max {Au, Av} <-IW8 I3’.64(W)1
and

max {Ax, Ay} <= IX8- b.64(X)l,

we use inequalities (8) and (9) in (10) to get

Ir(WS)-r(.6,(W))l < 5.464(2.466 10-7 + 1.0231x- xl)
+2(1.219 10-6-t 1.9141X-XI).
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Thus

(11) Izr(W8)-zr(.64(W))] < 3.786 10-6 -[" 9.4181x-xl

The computer calculates [zr(W8)l which is the length of the projection of V8 onto
the normal subspace at X8. Since VI 1, _b 1 -Ir(w8)l is the decrease in the length
of the projection. If _b is greater than 3.786 10-6, then we know that the projection
]zr(.64(W))] is less than one. In fact, from (11) we know that the projection
[zr(.64(W))[ has decreased for all unit vectors V in the normal subspaces at points in a
disk of radius (_b -3.786 10-6)/9.418 centered at the initial point X, i.e., IX-X[ in
(11) is taken to be the minimum of (_b-3.786 10-6)/9.418 and .01.

A second PL/1 program is employed to numerically approximate the solutions to
(6) using a 5th order Taylor Series method with 8 steps of size .08. Each iterate Wi,
i= 1,...,8, is checked to see that it belongs to U(.988, 1.012)@(1.01). Thus
Lemma 5.2 applies, establishing the error bound for xIJ’.64(W0) and also the hypothesis
of Lemma 5.3. Lemma 5.3 gives equation (7) which establishes the error bound for
I3’.64(W) where W is near W. Finally the normal projection of V8 is computed and
compared with the error in equation (11). Thus the normal projection for a neighbor-
hood of W is shown to shrink. Such a neighborhood is called a valid neighborhood. If
we can show this for all points (X, V) Nx where X U(.99, 1.01)and [VI 1, then we
can appeal to Theorem 3.5.

To cover the annulus with valid neighborhoods (actually only the lower half
because of symmetry) we fix an angle and cover a radial segment with disks from the
inner bounding circle to the outer bounding circle. Then the angle is changed slightly
and the new radial segment is covered by disks overlapping the previous disks. We start
on the x-axis, i.e., with the angle equal to zero. The initial position is (x, yO, u o, v 0)
(.99, 0, 1, 0). After eight steps the normal projection has shrunk an amount _b. Thus the
radius of the first valid neighborhood is r (_b- 3.786 10-6)/9.418. To cover the first

FIG.
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radial segment we use disks with a constant radius rl .9r. Each initial point is chosen a
distance of x/rl from the previous initial point. The radius of the valid neighborhood
for each initial point is computed and shown to be greater than rl. Thus the rl disks are
also valid neighborhoods. In this way the computer program passes across the annulus
covering a radial segment. Nine tenths of the radius of the disk covering the outer
boundary component is used as the radius r2 for the disks of the next pass across the
annulus. The angle for the second segment is (.54r1+.5x/r2)/1.01 radians in the
clockwise direction from the previous angle. With this choice of angle and radii the
region between the two radial segments is covered. (See Fig. 1.) This procedure
continues until half the annulus is covered.

The first PL/1 program, discussed in 4, used 2 minutes and 14 seconds of
computer time for a total cost of $8. The second program ran for 4 minutes and 22
seconds with a cost of $15.

6. Observations. This example was chosen to illustrate a method in a relatively
simple situation. The fact that (1) is two dimensional not only allows the use of results
concerning annuli (Cor. 3.2) but also forces the normal subspace to be one dimensional.
Thus the shrinking of only one vector over each point in the annulus must be verified.
Also, the normal projection of the orbit of each unit vector in the normal subspace is a
nonincreasing function of time t. So it does not take long before shrinking is noticed.
Although these simplifications make the computing less expensive, the basic method is
applicable to the general n-dimensional situation.

Since a small neighborhood of a periodic orbit is not convex, such regions may need
to be studied when finding a periodic orbit. Our discussion illustrates one approach to
handling a nonconvex region numerically.

Equation (1) is similar to the Van der Pol equation

f a (1- x2)y x.

Our method can be used to prove the existence of a stable periodic orbit for this
equation. However, in the Van der Pol equation the normal projection is increasing for
certain ranges of time so it will take longer to notice that all projections have shrunk.

More interesting examples occur in three dimensions. B. Goodwin’s [8] model for a
cellular control process having negative feedback appears to exhibit limit cycle
behavior. J. J. Tyson [15] shows the existence of at least one periodic orbit for certain
parameter values. S. Hastings [10] proves this cycle is orbitally asymptotically stable
when the repression is of sufficiently high order. We may be able to prove this stability
for a wider range of parameter values. Also limit cycle behavior is suspected for the
Field and Noyes’ equations [4], [11]. This system may also lend itself to our analysis.

Acknowledgment. The authors would like to thank S. Danielopoulos and R.
Martin for helpful conversations.

REFERENCES

R.C. CHURCHILL, J. FRANKE AND J. SELGRADE, A geometric criterion for hyperbolicity offlows, Proc.
Amer. Math. Soc., 62 (1977), pp. 137-143.

[2] W. A. Cor’r’EL, Stability and Asymptotic Behavior of Differential Equations, Heath, Boston, 1965.
[3] J. DUNGUNDJI, Topology, Allyn and Bacon, Boston, 1966.
[4] R.J. FIELD ,ND R. M. NOYES, Ocillations in chemical systems. IV. Limit cycle behaviorin a model ofa

real chemical reaction, J. Chem. Phys., 60 (1974), pp. 1877-1884.



628 JOHN E. FRANKE AND JAMES. F. SELGRADE

[5] J. FRANKE AND J. SELGRADE, Hyperbolicity and chain recurrence, J. Differential Equations, 26
(1977), pp. 27-36.

[6],Hyperbolicity and cycles, Trans. Amer. Math. Soc., to appear.
[7] C. W. GEAR, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall,

Englewood Cliffs, NJ, 1971.
[8] B. C. GOODWIN, Oscillatory behaviorin enzymatic control processes, Advances Enz. Reg., 3 (1965), pp.

425-438.
[9] P. HARTMAN, Ordinary Differential Equations, John Wiley, New York, 1964.
10] S. P. HASTINGS, On the uniqueness and global asymptotic stability of periodic solutions for a third order

system, Rocky Mountain J. Math., 7 (1977), pp. 513-538.
11] S. P. HASTINGS AND J. D. MURRAY, The existence ofoscillatory solutions in the Field-Noyes modelfor

the Belousov-Zhabotinskii reaction, SIAM J. Appl. Math., 28 (1975), pp. 678-688.
[12] M. MARCUS AND H. MINC, A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon,

Boston, 1964.
[13] C. PUGH AND M. SHUB, The f-stability theorem forflows, Invent. Math., 11 (1970), pp. 150-158.
[14] S. SMALE, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), pp. 747-817.
[15] J. J. TysON, On the existence of oscillatory solutions in negative feedback cellular control processes, J.

Math. Biol., (1975), pp. 311-315.
16] F. WARNER, Foundations of Differentiable Manifolds and Lie Groups, Scott Foresman, Glenview, II.,

1971.



SIAM J. MATH. ANAL.
Vol. 10, No. 3, May 1979

1979 Society for Industrial and Applied Mathematics

0036-1410/79/1003-0018 $01.00/0

OPERATIONAL RULES*

RAIMOND A. STRUBLE"

Abstract. The concept of operational rules in the two-sided operational calculus is formalized and
extensively illustrated. The paper continues the conceptual development, begun in an earlier one, which is
based upon the Fourier transform from an operator ring K onto the arithmetical ring r of all functions
which are measurable and finite-valued almost everywhere on the real line. The Fourier transform can be
further extended so that it is a vector space isomorphism from the vector (nondirect) sum 6e K + onto
itself. This is an extension of the classical L1 and L2 Fourier transforms which is also compatible with the
distributional Fourier transform. The concept of operational rules is extended to

1. Introduction. In [24] (referred to hereafter as Part I), the Fourier transform
has been extended to the ultimate setting in which it can be considered numerical-
valued" as a ring isomorphism onto the arithmetical ring Yg" of all measurable and
finite-valued almost everywhere functions on the real line, under pointwise addition
and multiplication. The "original space" is fabricated as a convolution-type ring K of
two-sided operators analogous to-those constructed by Mikusifiski on the half-line
[14]. The ring K contains (isomorphically) the subspaces of all classical L1 and L2
functions and all distributions whose Fourier transforms are regular. It thus provides a
very suitable setting for development of the classical and distributional two-sided
operational calculus. Basic definitions and theorems have been presented in Part I. In
this second part, we continue the conceptual development with special emphasis
placed upon operational rules. We are now able to formalize this important concept in
a meaningful and comprehensive manner because of the immenseness of the function
ring 3’{’. Also we can now express all operators as functions (not necessarily algebraic)
of the differentiation operator and all functions of the differentiation operator as
operators. The work suggests, mainly through examples and illustrations, how the
Fourier transform can be used to exploit the arithmetic and analysis of ordinary
functions. A similar development could be given for functions and operators of several
variables.

In 2, we restate needed definitions from Part I. Some of the terminology and
notation used is standard; some of it is not. The relationships between operators and
distributions is explained in 2 and 3. General operational rules are defined and
illustrated in 4, and functions of operators are treated in 5. These sections demon-
strate the versatility of the numerical-valued Fourier transform and suggest many
areas for investigation. In 6 we extend the Fourier transform (even further) as a
vector space isomorphism from the vector sum 5 K + Y{ onto itself and apply this
extended transform to obtain an interesting version of the Mikusifiski field of one-
sided operators.

The classical theory of Fourier transforms has a long history beginning, appro-
priately, with Fourier himself [4]. References [1], [16], [28] indicate the extent of the
predistributional development. (See [8] for a brief treatment.) The present work (a
sketch of the operational calculus on the real line) is perhaps best viewed as an
addendum to that classical theory in that it is primarily concerned with numerical-
valued Fourier transforms. However, it makes no contribution to hard analysis at all
(the central theme of classical Fourier analysis), and is more suggestive of abstract,
soft analysis.

* Received by the editors January 21, 1977, and in final revised form December 19, 1977.
f Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27607.
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2. Notation and preliminary definitions. We refer the reader to [7] and [30] for
standard concepts relating to distributions and their Fourier transforms. The notation
and terminology we shall employ are as in Part I" R denotes the real line, C the
complex plane, and the real C-axis; the latter to be distinguished from R.
denotes the space of infinitely differentiable test functions b(t)of the real variable

R, with compact supports, together with the standard topology given by Schwartz
[19]. Z denotes the space of entire functions (z) of the complex variable z o + ip
C, which are the Fourier transforms of the elements of @, together with the standard
topology for which the Fourier transform from @ onto Z,

(1) (t)->(z)= | e-’’ck(t) dr,

and the inverse Fourier transform from Z onto ,
(2) 4(z) 4(t)

__
e (o) &o, (o e)

become topological vector space isomorphisms. We recall that Z is the collection of
entire functions which satisfy families of inequalities of the form

(3) Iz’4,(z)l < t e alImzl (k 1, 2,...

for positive constants c and a depending upon p.
The topological duals of these spaces are denoted, as usual, by @’ and Z’, and

an element f @’ is called a distribution, and an /lement g 6 Z’ is called an ultra-
distribution. A distribution f (ultradistribution g) is said to be regular if f(g) is a
locally Lebesgue integrable function and (f, qb)=_f(t)b(t)dt for all
((g,O)=I_og(o)O(o)&o for all 4,Z). The latter integral is required to be
absolutely convergent. (See [27] for some pertinent observations concerning regular
ultradistributions.)

If f is a distribution, then ]z will denote its Fourier transform (as an ultradistribu-
tion) which satisfies the Parseval relation

(4) 2rr(f, 4;) (

eor an 4; e z, where g(t)= 4(-t). With this definition, the Fourier transform
becomes a vector space topological isomorphism from @’-onto Z’ (with respect to
their weak topologies, say), and satisfies

(5) f*’-’ 14; (with 4; as a multiplier on Z’)

for all f ’ and b @, where denotes, as usual, convolution. Moreover, @ is
considered a subspace of @’, and the Fourier transform of a function b 9, given by
(1) is the same as the Fourier transform of the distribution b f @’, given by (4).
The delta function will be denoted, as usual, by g(t). Its Fourier transform is the
constant function 1.

The following definitions and propositions are not standard, but have been given
earlier in Part I, where additional results and discussion may be found.

DEFINITION 1. The collection of all (Lebesgue) measurable functions which are
finite a.e. (almost everywhere) on is denoted by Y{, and will be considered a ring
under pointwise addition and multiplication of functions a.e., is unit (is invertible) in
Y{ iff is nonzero a.e. on t.
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PROPOSITION 1. Let Y{. Then there exists a unit Y{ such that both and the
product are bounded functions.

Proof. Let 37(w) 1 / (1 + ](w)1).
Each of 17 and 37 in this proposition is a regular ultradistribution and so can be

expressed as the ratio t7/17 of two such ultradistributions. This observation we
reformulate in the following proposition.

PROPOSITION 2. If
and Y{ both regular ultradistributions which are bounded. If is a regular ultradistri-
bution, then

By considering the inverse Fourier transforms of regular ultradistributions we can
(using Proposition 2) form an isomorphic ring of fractions of the corresponding
distributions.

DEFINITION 2. Let K denote the collection of all (formal) fractions g/f of
distributions with e Y{" and )re Y{ both regular ultradistributions which are bounded
and )r a unit of Y{’. Such fractions are identified, added and multiplied, just as ordinary
numerical fractions are, with the operations corresponding to addition for dis-
tributions and (extended) convolution for distributions defined by fl * f2 ]’3 iff )r3
TIT2. The mapping which sends the fraction x g/f K to the function /]r 2/is
called the Fourier transform, and the elements of the ring K are called operators.

It turns out that distributions are not actually needed at all, just ordinary
functions together with the classical (inverse) Fourier transform. This is because a
function in Yf can also be expressed as the ratio of two functions each of which is
abolutely integrable and has a classical Fourier inverse. (See [26].)

PROPOSITION 3. The ring K of operators is isomorphic with a convolution ring of
fractions of continuous ]:unctions on R, each of which is the classical inverse Fourier

transform of a function on which is absolutely integrable.
Because of this last proposition it becomes important to further clarify the

relationships between operators, distributions, and functions. This we undertake in
the following section.

3. Identification and representation of distributions. It is suggested by Prop-
osition 2 and Definition 2 that we identify distributions with operators having the
same Fourier transforms. Thus whenever

(6) -- f’(oa)g(w) do (absolute convergence)

defines a continuous mapping from Z into C for some locally integrable function
the corresponding distribution f, defined by 27r, 4) I_ ]r(w)4(o))dw, is identified
with the operator x for which . In this way the operator ring K is seen to contain
(isomorphically) the subspace N of all distributions whose Fourier transforms are
regular. This is a very large class of distributions and includes, of course, all dis-
tributions with compact support. Whenever a tempered [19] distribution in N is also
regular, we shall say that the corresponding operator is a "function". Thus in partic-
ular, K contains the subspaces of all classical L1 and L functions wherein extended
convolution becomes ordinary convolution (because of the classical convolution
theorems).

Suppose now that f N, i.e. f @’ and ]r is regular. Then for each & e @, the
distributional Fourier transform of the convolution f. & is the product f& of the
distributional Fourier transform of f and the classical Fourier transform of &.
Normally, is only considered a multiplier in Z’, but in this case ]r is regular, and so
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this product is just that in the function ring ’. Thus the above identification of
distributions and operators preserves all convolution properties in @’.

On the other hand, there are distributions f with distributional Fourier trans-
forms 1 which are not regular, but for which the product/r4 with some (nonzero)
function Z becomes regular. For example, the distributional Fourier transform
[30, pp. 190] of the Heaviside step function H(t)= (1 +sign t)/2 is pvl/(io)+rS(o),
and does not belong to /’, while the product of this singular ultradistribution with any
d Z for which d(0)= ’-oo b(t) dt 0 is the regular ultradistribution (to )/ (ito ),
which does belong to ’’. Whenever this happens, we say that the distribution f is
represented by the operator x for which =]rd/. Thus H(t) is represented by the
operator x 1/s, for which (to)= 1/(ko), and we say that 1/(ko) is the Fourier
transform of H(t) in 7. Similarly, t"H(t) is represented by the operator n !/s , whose
Fourier transform is (-i)+n!/to+. According to this definition, different dis-
tributions can be represented by a single operator (for example 1/2 sign is represented
by the same operator as is H(t)), but only one operator can represent any given
distribution. This concept of representation is consistent with (and only a slight
aberration of) that treated in several earlier papers. Operators which represent dis-
tributions are called neocontinuous, inasmuch as they inherit certain continuity pro-
perties from distributions. (For details see [12], [21], [23], [25].) The analysis of
neocontinuous operators has not been vigorously pursued.

4. General operational rules. The operational calculus is initially concerned
with the resolution of analytical problems by applying algebraic (and/or other simple)
procedures in a suitable transformed space. For one-sided problems, i.e. problems
relating to functions, distributions, operators, etc. on half-lines or half-spaces, the
one-sided Laplace transformation is often used to convert analytical initial boundary-
value problems into algebraic or functional equations in the space of holomorphic
(analytic) functions in complex half-planes. For two-sided problems, the two-sided
Laplace transformation [29] is often used to convert analytical problems into similar
equations in spaces of holomorphic functions in vertical complex strips. In either of
these situations, manipulative (and analytical) procedures in the transformed spaces
are interpreted in the original spaces as operational rules, and it is always hoped (and
sometimes shown) that inversion back to the original spaces is ultimately possible. The
latter can be a serious stumbling block in the method and restricts applications to
those particular instances where the transforms of the solutions are known (or
assumed) to exist. Mikusifiski’s operator field may be viewed as a device for partially
circumventing this last problem in the one-sided operational calculus. However, the
simplicity stemming from working with ordinary functions is largely lost, and a new
type of analysis for operators (sometimes as intractible as the original) must be
substituted. Meaningful operational rules, on the other hand, are severely restricted
due to the necessity of always working backward through convolution to obtain an
interpretation.

One may similarly view the present extension of the numerical-valued Fourier
transform as a device for fulfilling (historical) expectations of the two-sided opera-
tional calculus in the exploitation of the arithmetic and analysis of ordinary functions.
Thus any procedure (whatsoever) leading from and to (nonpathological) functions on
the real line can be given an operator interpretation and can be viewed as an
operational rule. These procedures could be the solving of linear or nonlinear integral
equations, differential equations, functional equations, difference equations (for step
functions), or the application of limiting processes or integral transforms, etc., in short,
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nearly any procedures of classical analysis of ordinary functions. We shall, therefore,
formally define operational rules and then proceed to illustrate them with some
familiar, and not so familiar, examples.

DEFINITION 3. Let M: x y be a mapping from a (nonempty) subset J of the
operator ring K into K. Then the corresponding mapping/r. _>)7 from the subset. {:?Ix J} of the function ring Yg" into .9’g" is called the Fourier transform of M.
Similarly let fiT/. )7 be a mapping from a (nonempty) subset . of Yg" into fig’. Then
the corresponding ma.pping M: x-> y from J {xl ]} into K is called the inverse
Fourier transform of M. A pair of mappings (M,/(/) so related is called an operational
rule.

We reserve the square bracket notation y Mix] and 37-//[] to depict such
mappings, and Definition 3 can then be re-expressed simply through the equation

(7) /’[;l for all J (or x J).

As is customary, we shall call the sets J and ] the domains of the mappings, and we
shall at times consider mappings which are either restrictions or extensions (relative to
their domains)of given ones as the same mappings.

We have already encountered some operational rules in Part I. The exponential
shifts e -i’**, the dilatations U,, and the algebraic derivative D are familiar mappings of
operators to operators. Their Fourier transforms are the mappings from functions to
functions given by (to)-- (w + a ), (to), (to/n ) and (to)-- d/dto, respectively.
The domains of the first two kinds are all of Y{’, while the domain of the last includes all
continuously differentiable functions. (See Part I.) The dilatations U, illustrate the
class of operational rules based upon "changes of variables" in the operator and
function rings. The exponential shifts illustrate operational rules based upon "changes
of variables" in the function ring (transformed space) and, at the same time, "multi-
pliers" in the operator ring (untransformed space). The algebraic derivative illustrates
operational rules based upon "multipliers" in the operator ring and somewhat more
sophisticated procedures, like differentiation, in the function ring. Even more sophis-
ticated are the procedures of (classical) fractional differentiation (and integration) [17]
in the function ring. These procedures (mappings) lead to operational rules symbol-
ized by fractional powers Da of the algebraic derivative in the operator ring. For many
interesting and useful operational rules of the various types mentioned above, see
[29].

Even more familiar (and fundamental) are the operational rules which say that
addition and convolution in the operator ring correspond to addition and multi-
plication in the function ring Thus for example, the convolution mapping x y x
(for a fixed y and all x K) has for its Fourier transform the multiplication mapping-- )7. In particular, the differentiation operator s, whose Fourier transform is ito,
leads to the familiar operational rule xs x x(1) iff Y(to)-- ito(w).

As a less familiar (and yet well-known) example, let us consider a measurable
function 3(to, ’) of two real variables which, for each fixed to, is bounded and for which
sup {3;(to, ’)l-c<: < o} as a function of w is absolutely integrable. Then for each
t L1, the function defined by

(8) 5(,o)= I_
is also in L1, and the mapping ’: (--) (defined at least on L1) is the Fourier
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transform of the mapping F: b 0, where

1 I f i2t(lI_O(t)=- ei’(w)do) e
k2

e’(-e)’(w-,)dw ()d
(9)

ee’y(t, )()d e e(’ "V(t, )6(z) d dr

and y(t, )(w)= (w, ) for each fixed . In this case, the mapping F is called a
pseudo-differential operator [6], while y(t, ) is called its symbol and (w, ) its
cokernel. The pair (F, P) defined by (8) and (9) may be viewed as an operational rule
(7). Pseudo-differential operators arise rather naturally when Fourier transform
techniques, which are readily applicable to differential equations with constant
coefficients, are applied in the variable coefficient situations. A number of different
settings for these operators have been proposed. (See [3], [10], [13].)

Equation (8) is a modified form of convolution in the function ring Y{ and (9) is a
modified form of pointwise product in the operator ring K. This is a reversal of
procedures used in the original construction of the two rings and the Fourier trans-
form between them. It is of some interest to consider this reversal of procedures more
fully. The classical (backward)convolution theorem suggests the following.

DEFINITION 4. Let fi e Y( be nonzero, and assume that for some nonzero 2 e Y{

the ordinary convolution

(10) 2= *i()= (-)i()d= ()i(-)
exists for a.e. o) e . The mappings -- (1/(27r))37 * if, for all such in Y{’, is called
the convolution by . The corresponding mapping x w y x in K is called pointwise
multiplication by y.

As a ready example of (10), consider the step function 1/2sign and its Fourier
transform in 27{, 1/(i). The operator pointwise product w(t)= (1/2 sign t). x(t) has for
its Fourier transform the function convolution

1 I_ (:) dC,

sometimes called the Hilbert transform [15] of . For certain one should consider
this is a principal value integral, since quite generally it is not an absolutely convergent
Lebesgue integral. For functions (or distributions) x in K, of course, (1/2sign t). x(t)
equals 1/2x(t) for > 0 and equals -1/2x(t) for < 0. The distributional Fourier transform of
the step function 21- sign is pvl/(iw).

The collection of operational rules defined by (10) includes the classical result
which says that the Fourier transform of the pointwise product of two La-functions is
the convolution (with factor 1/(27r)) of the Fourier transforms of the factors, provided
these latter are also in L1. Moreover, this operational rule includes the distributional
multiplier concept (when applicable here)which says that (for example)]’b is a
distribution with compact support, whenever ]’@’ and d @, and that f-=
(1/(27r))1r* d (1/(27r))(f’(’), d(w-)). Indeed the latter reduces to (10)whenever )r
is regular. On the other hand, for every ultradistribution 1 the convolution
(1/(27r))1r* d belongs to Y{ for every dZ. Hence for every distribution f in @’ and
every test function d in @, the product ’d is an operator in K.
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Definition 4 allows for an interpretation of the substitution of certain operators
into holomorphic functions which vanish at zero. For example, since log (1+ t)=
-Ynel (-1)nt/n ([t[< 1), y =log (1 +x) can reasonably be defined as the operator
whose Fourier transform is given by

n factors

=-27r Z
-1

[Y]"/n, where[Y]"=

whenever this last series of convolutions converges, say pointwise a.e. on .
A special subring (actually a field under addition and ordinary convolution)of

two-sided operators of K, called exponential operators, has been studied in [23] and
[25]. These consist of convolution quotients formed from the convolution ring ’consisting of C-functions on R which, together with all their derivatives, decay
exponentially as It]. (Hence the name for such operators.) Their Fourier trans-
forms are meromorphic in various strip-type neighborhoods of the real axis of C,
and every such function which is the ratio of two bounded holomorphic functions in
such neighborhoods is the Fourier transform of some exponential operator. This
(sub)field A/g, of exponential operators, therefore, is isomorphic to a field of
meromorphic functions (in neighborhoods of gt). Certain operator transformations
related to these exponential operators have been considered in [25], together with
their Fourier transforms. The latter have been viewed as (continuous linear) mappings
from Z into Z, where Z, is the ring of analytic functions consisting of the
Fourier transforms of the exponentially decaying functions in ,. Each such pair
obtained from an operator transformation and its Fourier transform yields an opera-
tional rule (7). (See [25] for some specific examples and additional properties.)

It seems appropriate to call an operator x Laplace transformable [16] if its
Fourier transform is meromorphic in a strip-type neighborhood Nb --{Z[ Jim z < b}
of gt. In such a case, we can define the Laplace transform of x (as is customary) to be
the function of the rotated variable p,

{x}: p->(p/i), where p iz i(to + ip)

which is meromorphic for ]Repl<b. For such operators a real exponential shift
(multiplier) x(t)--e-’tx(t) (o- real with Irl<b) can be interpreted as the inverse
Fourier transform of the mapping (to)--(w-io-). The latter corresponds to the
mapping {x}(p)---{x}(p+tr) of the Laplace transforms. In particular, all
exponential operators are Laplace transformable and admit to suitable real exponen-
tial shifts, in addition to all pure imaginary ones. The collection of Laplace trans-
formable operators forms a field in the ring K containing the subfield g, of
exponential operators.

An important (and unlimited) source of operational rules stems from considering
substitution or composition in the function ring Y{, that is, whenever /r[] consti-
tutes substitution of into another (fixed) function or the substitution of another
(fixed) function into . We consider these special operational rules in the next section.

5. Functions of operators and operators as operational rules. One of the more
interesting aspects of the operational calculus concerns the concept of "functions of
operators", such as power series of the differentiation operator s, and their meanings.
It is clear what meaning should be given to a polynomial function of an operator. Thus
if P(z)= ao+alz +a2z:+’’ "+a,z is a polynomial with complex coefficients, and if
x is an operator, then y P[x] should be the operator formed by substituting x for z
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and interpreting multiplication as convolution, i.e.
n factors

(11) y =P[x]=ao+alx +a2x * x +. "+anx * x *"" * x.

For x=s/i, this gives P[s/i]=ao+(al/i)s+(a2/i2)s2+...+(a,/i")s, where s
(equivalently 5)(t)) is just a notation for the jth order differentiation operator. The
Fourier transform of P[s/i] is the polynomial (to)=ao+ato+a2to2+ .+a,to".
Hence P[s/i] is the operator whose Fourier transform is if(to). In the general case of
(1 1), the Fourier transform is given by

(12) )7 P[aT] ao + a 1.1 + a2.12 +.. + ann,

where the right-hand side is precisely the arithmetical function obtained by substitut-
ing the function for z in the polynomial P(z). Thus/ and P are, in a symbolic sense,
the "same" function. Alternatively, the polynomial function/(to) may be regarded as
an element of , so that the mapping /6[], given by (1 2), comes from composition
in ff" with the fixed element/. The corresponding mapping x--P[x], given by (11) is
then viewed as induced composition in K with the fixed element p. Let us, therefore,
formally distinguish the operational rules which stem from composition in ’. For this
purpose, we should consider (without loss of generality since we identify functions
which agree a.e.) the functions in ff" to be Borel measurable [9]. Thus if 37, {, we
shall say that the composition belongs to (i.e.)7 . {) if for any finite-valued
(Borel) measurable functions )7, )72, equivalent (equal a.e. on ) to 37 and any
measurable functions 1,72, equivalent to , the mappings to--j71(1(to)), to--

)72(2(to )) are defined for a.e. to (they are automatically measurable and finite-
valued) and are equivalent. In this way composition becomes well-defined in ’{. If
37 ’{, then must be real-valued a.e. on and the measure of any set N
{to[(to)M} must be zero whenever the measure of M is zero. Indeed, any
changes in the values of the function 37 over a set M of measure zero, must not affect
the composition except on a set N of measure zero. Thus a substituted function must
not be too repetitive.

DEFIrroN 5. Let )7 (, and let J’ { ,7/’[)7 a r}. (The set ] is nonempty
since it contains the identity function.) The mapping I7". I7"[] 37 o ff defined
on ] is called composition in 7{ with the function . The inverse Fourier transform
Y: x w Y[x], where Y= I7"[] 37 , is called induced composition in K with
the operator y. The operational rule given by the pair of mappings (Y, l7") is called
composition with the function .

According to this definition, to each operator y there corresponds a unique
operational rule (Y, I7) in which the mapping I7, is ordinary composition in .Y/" with the
Fourier transform )7 of the operator y. Thus each operator can be thought of as a
special type of operational rule. More precisely, we can identify each operator y with
the corresponding induced composition Y in K and its Fourier transform )7 with the
corresponding composition I7 in ff’. In this way, Definition 3 for the Fourier trans-
forms of mappings becomes an extension of that for operators. The induced composi-
tion mapping Y in K with the operator y has a rather interesting property (observed
above for polynomials); itals maps the operator s/i to y itself, i.e. Y[s/i]= y,
because s=to and so Y[s/i]=;(to). Hence each operator y is automatically a
function Y[s/i] of the differentiation operator s and each function of s is an operator;
polynomials are but the simplest kinds of such functions.
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The next simplest kinds are infinite power series which converge in the entire
complex plane, i.e. entire functions. Composition in fit" with respect to such functions
can be considered to have "holomorphic extensions" to all of YL For example, the
ordinary sine function z --sin z z- z3/(3!)+ gives rise to the operator function
xy=Sin[x]=x-(x*x*x)/3!+..., where )7(to)=sin((to)) is a bounded
function. Thus y Sin [x] is always a tempered distribution, and it is unnecessary to
deal directly with the infinite series. The classical result here says that Sin Ix] is an L
function whenever x is [8]. On the other hand, this infinite series of convolutions will
actually converge, say pointwise, for many operators x which are ordinary functions
(certainly if x is continuous and has compact support and for which Sin [x](t)=
(1/(27r)) -oo e i’’ sin ((w)) do). In general, the specification of y Sin [x] through its
Fourier transform )7(to)= sin ((to )) could be used as a method of defining the con-
vergence of the infinite series of convolutions, i.e. the operational rule could be taken
as a definition for a generalized type of convergence. For example, one might say that
an infinite series of convolutions converges in K whenever the transformed series
converges pointwise a.e. on Yr. Such a definition might also be used for the con-
vergence of any series (not necessarily convolution ones)of operators. Note that as
with polynomials, it seems appropriate here to consider the sine function (and indeed
every entire function)symbolically as the same function in both the original and the
transformed spaces. (This is true also of any rational function, i.e. a ratio of two
polynomials.)

Meromorphic functions are, perhaps, the next simplest type of functions to
consider. For example, let ]’(to)= to/(1 + 0)2)2, which is the classical Fourier transform
of the function (operator) f(t)= it e-l’l/4. Now composition in Yd" with the function ]’ is
the mapping/" .,?(to)-+ 7(to)=)z .,?(to)= (to)/(1 + ((to))2)2, and can be "analytically
extended" to all those ] Y{ with (to)# +i for a.e. to . The inverse Fourier
transform of this mapping is the mapping F" x ,--> y F[x], and (for suitable x) can be
identified further using ordinary power series techniques. Indeed let be the special
meromorphic function (to) 1/(2(1 + to 2)), which is the classical Fourier transform of
g(t) e-1l/4. The power series expansion about the origin of )r is given by Y,,_->o (n +
1)(--1)nto 2n+1 and is convergent for Ito[< 1. But I (w)l < 1, so that

)7(w)=/[,a](to)=/ro oa(to) (n + 1)(-1)"((to ))2"+a
n-->_.O

:) .,:):):=8(1+to /(1+4(1+

holds for all (real)to. Thus y(t)=F[g](t)= ,>=o (n + 1)(-1)"[g(t)]2"+1 holds for all t,
n factors

where [g(t)]"=g * g ,..., g(t). This last series of convoltitions is uniformly con-
vergent on compact subsets of R, and sums to

1 I_ eiO,,8(1 + to2)3
y(t)= -- (1 + 4(1 + to2)2)2 dto,

the classical Fourier inverse of the composition )7 g. The operational rule (F, ),
composition with the function , is thus "identified" by the power series of )r about the
origin. Of course, one could identify it also by the power series of/r about any other
point of . Here one seems to need a concept of "induced analytic continuation" of
operator functions.
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As a nonholomorphic example, we might consider the simple step function
to ---iTr sign to in Y{’, which, through induced composition, gives rise to the operator
function x-- y pv-l[x], where 17(o9)= -iTr sign ((to)). We have chosen to label this
particular operator function as Pv -1 since the Fourier inverse of -iTr sign to is the
principal value function (distribution) pv 1/t. In this example, 17(o9) is again a bounded
function, so that y is always a tempered distribution. In particular, if x(t)=e -Itl,

)then Y(to)=2/(l+to >0, and so -iTr sign((to))=-iTr holds for all to. Hence
Pv-[e-I’ll iTr6(t).

Of course, almost any complex-valued function (not necessarily a member of
which is defined on any nonempty subset of complex numbers gives rise, through
induced substitution, to an operator function. The above examples furnish but a
glimpse of the possibilities. Moreover, one obtains many other operator functions by
substituting real-valued functions zT Y{ into the Fourier transforms 7, i.e. (to)--
:(t;(to)). These operator functions may be thought of as originating from "changes of
variables" though the variable changes need not be one-to-one nor onto. Other
classical transform pairs arise in this manner.

DEFINITION 6. Let t7 e 5r be real-valued a.e. on and satisfy the condition that
the measure of the set {to ltT(o) M} is zero whenever the measure of M is zero.
The mapping 7 ,->,,? t7 )7, defined for all a7 Y{’, is called the change ofvariable in 37 by
iT. Its inverse Fourier transform xy, defined for all x K, is called the induced
change of variable in K by v. The associated operational pair of mappings (they are
ring homomorphisms) is called the change of variable by .

Like induced composition, the induced change of variable in K by v maps
the operator s/i to v itself. If )7(to)=(t(to)) is in La, then y(t)=
(1/(27r)) IS ei’((to))dto, and for suitable and t; with ’= (to) possessing the
inverse function tT(:)= to,

y(t) e’"(e)’(j)a’(tj) dtj -i" e * uO’) d" d.

In this last form, the mapping x - y is sometimes called a Fourier integral operator
[111.

As an elementary (non-L) example, consider the finite part function (dis-
tribution [30, p. 16]) fp 1/0rt:) whose Fourier transform is Itol. The induced change of
variable in K by fpl/0rt:) is, therefore, the mappin xy where )7(to)-(Itol), and
satisfies

y(t)=-- e (lol)&o (to)costotdto

for suitable x. This last is sometimes called the Fourier cosine transform [28] of .
On the other hand, the induced composition in K with the operator fpl/(Tr"2)
(Def. 5)is the mapping x--Fp(1-/Tr) [x]=w, where ff(to)=12(to)l. Thus,
fp(1-2/,r)[x](t) (1/(2zr)) I_oo e’O’[2(o)[ dto, for suitable x.

The special meromorphic functions 1 and g used earlier provide for an
example of an operational rule based on a change of variable. We shall consider the
change of variable in Y{" by/ In this case, we would be interested in the composition
/=o1 where /’’(to)=(?(to))=(l+to2)4/(2(to2+(l+to2)4)). In order to use the
power series technique here we need to subtract the limiting value 1/2 of/ at + oe and
invert the constant function 1/2 separately. We obtain (to) 1/2 2,_->o (- 1)"o92" for Ito <
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1, and since [f(o))l < 1, it follows that

1 ))2n 1 1
E (-1)" (hw))2"

holds for all o. Then h(t)=8(t)/2+1/2,_ (-1)"[f(t)]2", where the infinite series of
convolutions sums to

h(t)
8(t) 1 j_ ,,o,{- 2-7 e (](w))- 1/2} do.

Therefore, the induced change of variable in K by f(t)= it e-ltl/4 sends the function
(operator) e-ltl/4 to the operator h(t)= 8(t)/2 +1/2 En>__l (-1)"[it e-l’l/4] ".

Direct "changes of variable" mappings in the original (operator) space K can also
be defined (at least) for distributions in K if they map to other distributions in K. The
dilation mappings U, are examples which, however, have extensions to all of K
because they turn out to be ring automorphisms. Moreover, these turn out to be
induced changes of variables at the same time. The direct change of variable x(t)-
x(e’) for suitable operators has for its Fourier transform the function mapping (o9)--
[](io9), where A/ is the Mellin transformation [28]. Other examples of direct
changes of variables (given for functions) appear in [29].

it has been suggested above that the convergence of an infinite series of operators
might be defined as that induced from a.e. convergence of the transformed series. In
view of the makeup of the transformed space Y{ of functions, it does seem that this is
an appropriate definition to use not only for the convergence of operator series, but
also for other limit processes in K. Indeed, starting with some (any) classical a.e. limit
process from and to some functions in the ring Y/" one always obtains a corresponding
induced limit process for some operators to operators. One might well call these
"generalized convergences" in K, and attempt to characterize them intrinsically in K.
There seem to be many interesting possibilities for investigations along these lines,
developing an "analysis" for operators. For example, the classical Fourier transform
of the function (operator)e-H(t) (p >0)is the function 1/(ko +p), and the pointwise
limit as p 0 of the latter exists for every o 0 and yields the Fourier transform in .9’/"

ofH(t). Another example is the lime_,0 (o + 5)-(o9)/: (x)(o)) a.e. on , for any
absolutely continuous function e Y/", as an extension of the algebraic derivative D in
K. If the Fourier transform of an operator x is continuous at a, then with respect to
a.e. convergence,

lim U,, e-’"tx(t)

since the Fourier transform of the left member is 2(oo/n + a). (See Corollary 6 of Part
I.) If x is in L, then with respect to a.e. convergence,

x I_ e-S’x(z) dr,

where e is the translation operator f(t-z)/f(t)= 15(t-z), since the Fourier trans-
ion,form of this (formal) integral s Loo e x(’) d’r (to). Mikusifiski [14] has obtained

an analogous result for locally integrable functions on the half-line _-> 0.

6. An extension of the Fourier transiorln. Regarding if/" as the collection of all
(nonpathological) functions of a real variable, we can (and shall) define transforms for
arbitrary functions in analogy with the classical Fourier integral formula, where the
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Fourier transform of a function is 27r times the inverse Fourier transform applied to
the reflected function. To this end, let us first recall that an operator is said to be a
function if it is a tempered distribution and, as such, it is regular. Thus the functions in
K are all those regular distributions (i.e. locally integrable functions)whose Fourier
transforms (as tempered ultradistributions) are also regular. These functions can
simultaneously be considered also as elements of Y{ (by simply changing the variable
to the to variable). Indeed the functions in K can be considered to constitute precisely
the intersection K Y{ of the operator space K and the function space Y{, i.e.
x eK flYfiff t-x(t) is a function in K and to -x(to) is the "same" function in YL
With this in view, we introduce a new mapping FT from (ostensibly) Y{ onto K.

DEFINITION 7. Let f be a measurable, finite-valued function defined for a.e. real
number. The operator x e K whose Fourier transform satisfies 27rjC(/r(to)= f(-to))
is called the FT off and is denoted by FT {f}. The mapping

(13) FT: f+FT {f} x (where Y 2rr[)

from measurable, finite-valued functions onto K is called the FT.
If f and its classical Fourier transform are both L1 functions, then f(t)=

(1/(2rr)) -o eit() d, and so

2rr]-(to) 2 7rf(-to) 2r e’e(-’))(:) a e-’e’/(e) d: ].(to /"

Hence, according to Definition 7, FT {f} jr. Moreover, t.his same conclusion applies
for any function in K, since the Fourier formula 2r/r(to) =/r(to) also holds for tempered
distributions [30, p. 189]. A direct, elementary proof of the following is included in

[26].
PROPOSITION 4. Let ]’ be an operator which is also a [unction (i.e.,

Then 2r= holds and FT {]’} =/r is the distributional Fourier trans[orm
As an illustration, let us consider the Heaviside step function H(t), which is

represented by an operator in K, but is not a function in K. On the other hand by
Definition 7, FT {H(t)} x is the operator satisfying ,(to) 2rrH(- to). Recalling that
pv(1/t)= -ir sign to and 6= 1, we write 27rH(-to) (1/i)(-iTr sign (-to)+ iTr), and
conclude that FT{H(t)}-- (1/i)(pv(1/t)+iTr6(t))=pv(1/(it))+Tr6(t). This last, of
course, is the distributional Fourier transform of H(t), as a tempered distribution.
Other simple illustrations of Definition 7 are polynomials (whose distributional
Fourier transforms are linear combinations of the delta function and its derivatives).

Proposition 4 implies that whenever a function f is also considered an operator,
then Definition 7 for the FT of the function [ is consistent with Definition 2 for the
Fourier transform of the operator f. This consistency allows us to extend the Fourier
transform to the vector sum St’ K + ?7{ of the vector spaces K of operators and Y{" of
functions. This is not a direct sum, since K and Yg" have many elements in common,
and the Fourier transform must be the same for the common part K flY{. Now
Xl q-fl X2q"f2e Qg, with xieK and f/egg iff XI--X2--f2--fl eK NY{, and for arbitrary

x+f and X2+A of 9 their sum is given by (Xl+fl)"l-(X2nt’A)--(Xlnt’X2)"(fl"l-f2).
Because of Proposition 4, we can thus extend (unambiguously) the Fourier transform
as a linear one-to-one mapping of ,5/’ onto itself by the rule x +f--FT{f}+. Here
x e K and f e Yg’, while 2 e Yg" and FT {f} e K. Let us formalize these considerations with
the following definition and proposition.

DEFINITION 8. The vector space sum of the spaces K of operators and 5/{ of
functions is denoted by K + ,9’g’. If u x +f(x e K, f e 27{) is an element of ,Se, then
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the Fourier transform of u is the element t7 FT {f} + of 5e. The mapping u t from
6e onto 6e is called the Fourier transform.

PROPOSITION 5. The Fourier transform defined in Definition 8 is a linear extension
to 6t’ of the Fourier transform (Def. 2) on the space (ring) K of operators. It is one-to-one
and onto 5, and is compatible with the distributional Fourier transform.

The main advantage of extending the Fourier transform to the vector sum
5e= K +Y{" is that we can then include as members of the original space, classical
functions such as H(t), t"H(t), polynomials and periodic functions; they are not
operators though the former two are represented by operators. Thus the extended
Fourier transform should be of increased utility (encompassing the concept of
Fourier series, for example [2]). However, the enlarged space is no longer a ring
and the extended Fourier transform is no longer a ring isomorphism. On the other
hand, the concept of an operational rule readily extends to the enlarged space. For
example, the extended algebraic derivative mapping x +f(t)--D[x]-itf(t) has for its
Fourier transform the mapping f(to)+ (to)f)(to)+ d/dto, where/to) is the (ultra)
distributional derivative of 1 Here, if [(t) is the polynomial aifl, then a)(w)=

(-i)iait3i+l) (to ). More generally, an operational rule on 5e is a pair of mappings
(M, 2f), with nonempty domains J, ]

_ , for which u x +f--v M[u] iff
Fr(f}+ =[].

We shall conclude with an interesting application of the Fourier transform on the
enlarged space .. Let C denote the collection of continuous, right-sided functions
(vanishing to the left of some number) on R. It will be considered an algebraic ring
under pointwise addition and ordinary convolution; as such it is equivalent to the
convolution ring used by Mikusifiski to obtain his right-sided operators [20]. Using the
Fourier transform of Definition 8, we can map this convolution ring Cr onto another
ring C,, in which convolution corresponds to pointwise multiplication (Def. 4). In this
situation, the Fourier transform actually performs as a ring isomorphism (extending
that one referred to in Definition 2, since some elements of C are not operators). Now
the quotient field of the convolution ring C (it has no zero divisors) is essentially the
Mikusifiski field of right-sided operators. Thus through the Fourier transform (further
extended in the obvious way to the quotient field), the Mikusifiski field becomes
isomorphic to the quotient field Q of the multiplicative ring C,,. Many of the elements
of Q are ordinary arithmetical fractions (functions), but some are merely formal
fractions. In any case, the extended Fourier transformation yields an alternative
procedure for obtaining (isomorphically) the Mikusifiski field. (See [5] for the case
where the right-sided functions have ordinary Laplace transforms, and also for
another approach to the Mikusifiski field using arithmetical functions.)
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EXPANSIONS OF GENERALIZED COMPLETELY CONVEX FUNCTIONS*

DAN AMIRS" AND ZVI ZIEGLER,

Abstract. The concept of a generalized completely convex function is extended and a unified presen-
tation is developed for expanding such functions by Taylor-Lidstone series. It is shown that these expansions
are in fact tantamount to representation theorems for the elements of the cone of generalized completely
convex functions in terms of the extreme rays.

1. introduction. Classes of functions such that an infinity of requirements on their
derivatives are imposed have been investigated by many authors. The simplest
instances are the absolutely monotone and completely monotone classes. These have
been studied by Bernstein, Widder and Hausdorff (see e.g. Widder [23]), and analyticity
properties of functions of such classes were derived. The concept of absolute mono-
tonicity on a finite interval has been generalized by Karlin and Ziegler 10] and by Amir
and Ziegler 1] to include a class of functions obeying an infinite sequence of differential
inequalities of the form

D,-I"’’ Dof>-_O, n =0, 1,. .,
where the D’s, i_->O, are first order differential operators of a special form (and
D-lf=-f). Functions of this class, under appropriate conditions on the D’s, admit of a
convergent series expansion

E aiui(x)
i=0

where the {ui} is the Chebyshev system associated with the Di’s.
In another vein, the analyticity of f was shown to be a consequence of a weaker set

of restrictions. In fact, Bernstein [2, p. 197] proved that it suffices to impose conditions
of the form

ekf(""(X)>--_ O, k 1, 2,’’" x (a, b)

where {e} is a sequence of signs, and {nk/x/n,} is a bounded sequence.
An especially important class of functions that fits into the above category is the

class of "completely convex" functions.
Widder [22] defined the "completely convex" functions on [a, b] as those f e

C([a, b] satisfying (-1)"/(2"(x)-> 0 for all a <_-x _-<b and n =0, 1, 2,.... He showed
that the completely convex functions on [0, 1] are exactly the functions which have a
uniformly convergent series representation"

(1.1) f(x)= . (a,,A,,(x)+b,A,(1-x))+c sin rx

where (- 1)"a, >-_ 0, (- 1)nb >_- 0, n 1, 2,. , c >_- 0 and A,, (x) are the "Lidstone poly-
nomials"" Ao(x) x and A,,(x) is the unique solution of A(2 Ao, Ak(0) Ak(1)
0, k =0, 1,..., n-1. In this representation, a. =f(2"(0), b =f(2"(1) and c is the
maximal such that f(x)-c sin rx is completely convex.

Widder showed that every completely convex function is the restriction to [0, 1] of
an entire function. Extensions of this result were obtained by Boas and Polya [4],
Protter [20] and Leeming and Sharma [16]. Pethe and Sharma [19] defined the

* Received by the editors September 30, 1977. This work was supported in part by the Israeli Academy
of Sciences.

" Tel Aviv University, Tel-Aviv, Israel., Technion-Israel Institute of Technology, Haifa, Israel.
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"completely convex*" functions on [a, b] to be those completely convex functions
satisfying also" (-1)"/1f(2"/l)(a)---0, n=0,1,2,.... They found an analogous
representation formula:

77"X
(1.2) fix ., (b,,I.z,, (x) a,,,, (x)) + c cos.

Buckholtz and Shaw [5] showed that both results are particular cases of a more
general result" Given a second order Sturm-Liouville differential operator"

Lf=-(pf’)’+gf, pCl[a,b], gC[a,b], p>0

and regular homogeneous linear separable boundary conditions B,,f B,f 0 such
that the fundamental solutions (Lfo=0, Bafo=0, Bb/0 1 and Lfl =0, B,,fl= 1,
B,fl 0) are nonnegative, and such that the eigenvalues A (Lf hf, B,f B,f O,
f : 0) are all positive, Buckholtz and Shaw defined the "LB-positive functions" as those
infinitely differentiable functions [ satisfying L"f(x)>= O, B,,L"f>= O, Bd.."f > 0 for all
a -<_ x <- b, n 0, 1, 2, . Their representation formula is:

(1.3) f(x)= Y (a,,f,(x)+ b,,h,,+1(x))+ cyo(x)
n=0

where a,,, b,,, c >-0, Lf,, =f,-2, B,,f,, Bbf,, =0 for n _>--2, and Y0 is the normalized
eigenfunction corresponding to the first eigenvalue Ao, chosen such that y0 >--0. In this
representation a,, =BbL"f, b,, BaL"f, and c is the largest such that f(x)-cyo(x)is
LB-positive. Note that the classical case corresponds to Lf -f’, with f(0) f(1) 0. A
related result not contained in the Buckholtz-Shaw treatment is due to Leeming
and Sharma [16]" They defined the "W-convex" functions as those satisfying
(-1)"f("}(x)->0 and (-1)f"+(a)_->0 for all a<-x<-b, j=l,...,p-2 and n=
0,1,2,....

Shaw [21 studied the possibility of extending the LB-series expansion of functions
in C[a, b] to series related to an nth order linear differential operator Lf=
Y.i=oP(x)f-’, p C"-[a, b], p0>0 and linearly independent boundary conditions

Bf O, 1, , m, such that the eigenvalue problem Lf Af, Bf 0, 1, , m is
self-adjoint. He characterized those functions f for which the corresponding LB-series
converges to f.

We present in this paper a unified approach to the theory of such series expansion
and to the analysis of the concept of generalized complete convexity. In 2 we
introduce the Taylor-Lidstone series with respect to a linear operator L with an m
dimensional kernel and associated linear functionals, We discuss conditions for the
convergence of such series. In particular, we consider the case where L is a differential
operator and the functionals involve boundary conditions.

In 3 we generalize the concept of complete convexity, and use the associated
convex cones and their extreme rays to obtain representation theorems generalizing
the classical Lidstone series representations. The general framework developed in this
section is utilized in 4 to establish the corresponding representations for a general
class of factorizable differential operators with certain types of boundary conditions.
Using the powerful method of total positivity (see Karlin [9]) it is established that the
conditions for the validity of the expansions are satisfied in such situations. Particular
examples include the Rod equation with two types of boundary conditions, as well as
the Sturm-Liouville operators discussed by Buckholtz and Shaw [5] and by Pethe and
Sharma [19]. We close with the incorporation of the recent results of Leeming and
Sharma [16] into our framework.
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2. The Tayior-Lidstone expansion. Let L be a linear operator in a linear space E,
defined on a linear subspace D of E, with an m-dimensional kernel N. We assume that
D c LD, hence N c D. Let B1, , Bm be linear functionals on E which are total over
N, i.e. such that Lu O, Bi(u)= O, 1, , m implies u 0. Where L is a differential
operator and {B;} are boundary conditions, then they are total iff there exists an
associated Green’s function.

The functionals BI,""",/m determine a basis uT,..., u,, of N biorthogonal to

B1 B,, (i.e. with Bj(ui )= 6j). Set Z 71" -a
,’" =1 B 0. The operator L restricted to

Z fq D is one to one and carries Z (3 D onto LD. Thus its restriction has a right inverse
G, G: LD Z (3 D possessing the explicit form

(2.1) GLu u- Bi(u)u’, u D.
i=1

Since Z (q D D c LD, GnLnu is well-defined for all u D. In particular, uk

Gku’ are defined for k =0, 1, 2,..., i= 1,..., m and we call them the Taylor-
Lidstone (TL) sequence corresponding to L, {B}’. We observe that the u/k are linearly
independent: if Cjlii) 0, we may assume k (1) k (r) > k (r + 1) ->. =>
k(n), i(1) < i(2) <. < i(r) and that c1 : 0. But applying La) we get i= iuii) O,
which implies c1 0 since the system u 1," ", u" is linearly independent.

Denoting by D" the domain of definition of L" (D" L"-ID-1 ("lO) and setting
D= (3n_-1 D" we get from (2.1) by induction"

(2.2) G"L"u u B(L’u)u , V u D".
k=Oi=l

The induction step is" L"u "i=1 Bi(L"u)ui + GL(L"u); hence G"L"u
Y’.’= Bi(L"u )u’ +

We call =102i=1Bi(Lku)ui the TL-expansion of u 6D"-1 and
Y’.,--o Y’.=l B(Lu)uk the TL-series of u .D. Observe that this represents a general-
ization of Taylor’s expansion in C[a, b], where D Ca[a, b], L/C=[’, m 1, Ba()c)
[(a), ux=l, G[(x)=](t)dt, ukl=(x--a)/k! and the expansion of [ is thus
,=o ([)(a)/k!)(x-a) The Lidstone series fits also as a special case of the present
discussion. Here we choose D=C/)[0, 1], L/=/’’, Ba]’=/(0), Bz)C=[(1), so that
u 1- x, u 2 x. In general we can take any linear differential operator L of order m
on C[a, b], L[(x)= ,io Pi(X))"-)(x), with the linear homogeneous boundary condi-
tion {Bx, , B"}. Assume that the boundary value problem L/" 0, Bi()c) 0,

1, , m admits of the trivial solution only, and let u 1, , u" be the fundamental
solutions. Set G/C(x)=b G(x, t)[(t)dt where G(x, t) is the corresponding Green’s
function. It is readily seen that this fits into our formal framework.

An example in an abstract setting is obtained by taking L S where is the left
shift operator on the sequence space E, i.e., (,u)(n)= u(n + 1), and where B e*
(i 1, , m) are the coordinate functionals. In this case u ’ e (i 1, , m) are the
unit vectors, and G K where is the right shift, viz., (flu)(1)= 0, (u)(n + 1)= u(n).
The corresponding TL sequence is u/k e"i+i (k 0, 1, 2, 1, , m) so that
the TL expansion is the formal expansion of u in terms of its coordinates
U 2k=02i=1 U (ink + i)emk +i.

If E is any linear space, then the linear subspace spanned by the TL sequence of
L, B1,.." ,B" is the subspace N= k=l N(Lk) of generalized eigenvectors of the

""eigenvalue 0 of L, and L, Ba, , B" act on it as S el*, , e" act on the sequence
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space. On the other hand, if u is an eigenvector corresponding to another eigenvalue
h 0, then L’u h nu 0 ’qn; hence u N.

If we have a linear topology on E, the following questions arise naturally"
(i) Find the subspace C {u D; G"L"u converges} of elements for which the

TL series converges, and its subspace Co {u D; G"L"u 0} of elements which can
be expanded as a TL-series.

(ii) The analogous question when we consider the ungrouped TL-series, i.e. the
series i=1 ai(u)vi where Pmk+i uki and Omk+i(U)’-" Bi(Lku), 1,..., m.

(iii) Does the TL sequence constitute a basis in Co, i.e. does 0 possess only the
trivial representation i=i 0. vi?

In the case of "-" *S e’,..., em in Co or /p(l<-p<oe), we know that the TL-
expansion is just the expansion with respect to the basis consisting of unit vectors, so
that the TL sequence is a basis in Co E. The same of course applies to any space with a
basis represented as a sequence space with the unit vector basis (e,,). In the case S
e *,..., e* is in c or m, the unit vector sequence is basic in its closed span Co Co.

In the Taylor case, the TL sequence ((x- a)"/l,.) is basic in the subspace Co of
analytic functions in D C[a, b ], both in the supremum norm and in the topology of
uniform convergence of all derivatives.

In order to obtain more structure in the general case, we assume that in the given
linear topology G is continuous, and that a seqtience of eigenvectors of G, (yi)i_-0,
corresponding to the eigenvalues (tzi)io such that Iol-Itzl] I.l>lo/l-->
Ip+21 >=’’" (P >- 0), forms a basis for LD, with the coefficient functionals (oi). In this
case, Gu G(i=o qi(u)yi)= Yi=o oi(u)Gyi i=o i0i(u)yi; hence oi(Gu)= taqqi(u),
V u LD. In particular, u Gku i=o/Xqi(u)Yi. We have, therefore,

(2.3) . o u qgi(u] )yi E txi qgi(u] )yi.
i=o i=p+l

If we know only that (yi)i=o is a basis in Z 71LD we get instead of (2.3):

(2.3’) o ui qi(u))yi E tz k-1

;(u )y;.
j=0 j=p+l

Under additional assumptions, e.g. that (yo) is an unconditional basis, or that the
{yi} is bounded, {oi} is equicontinuous, and {/xi} I,.Jp lp, the right-hand side of (2.3) (or
(2.3’)) tends to 0 when k-ee. Thus, if txo =/xl ,=-/Xr/l /x, we

-2k 2k + P 1-2k 2k-1have o ui ui i=oi(ui)yi, while o u -u i= (u)yi
i(U)yi. U[ and u vanish only if i(u)=0 for ]=0,.. ,p. If r p, then

u[ u is either 0 or an eigenvector of o.
If Lu Z for all k and for all ] > p there exists ci such that [i(Lu)[ clwo(Lu)[

for k N ko, then

I(u)l Ii(Gtu)l I11i(tu)l
cll Io(tu)l

=c I(u)l0.

Hence, under the former assumption on (yi), u GLu 2=o (u)y.
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A case when assumptions of this type are fulfilled is when L is a differential
operator on C[a,b] as mentioned above. The integral operator Gf(x)=
b G(x, t)f(t) dt, is known to be compact in both the Lz-norm and the maximum norm of
C[a, b l, so that its eigenvalue counted with multiplicities and arranged according to
decreasing absolute values form a countable set with 0 as the only possible limit

If Lf O, Bif O, 1, , n is a self-adjoint boundary value problem we know
that (yj) can be chosen to be an orthonormal (hence unconditional)basis of LZ[a, b ], and
the corresponding Fourier series converges uniformly for every fD Z (Naimark
[18, p. 82]).

In the nonselfadjoint case, if the boundary conditions are "regular" in the sense of
Tamarkin (see Naimark [18, p. 56])and the adjoint differential operator exists, and if
the eigenvalues of G are simple poles of G(, t, ,), then there is a basis (yj, z.) for
LZ[a, b] consisting of the eigenfunctions (y.)corresponding to the eigenvalues (i) of G,
and the eigenfunctions (zi)corresponding to the eigenvalues (/2j)of G* (in the ordering
[fi[,0[ [/t,l[ "" ")such that for fD(-]Z, f=i=o (f, zi)Yi uniformly (Naimark [18, p.
89]).

If the boundary conditions are "strongly regular" (Mihailov [17]) the eigen-
functions of G form a basis for L2[a, b] equivalent to an orthonormal basis (hence
unconditional) (see Mihailov [17], Kesselman [14] or Naimark [18, p. 80]).

We next turn our attention to the nonregular separable boundary conditions. The
theorem of Khromov [15] guarantees uniform convergence of the eigenfunction
expansion of functions f of D satisfying the "L-analyticity condition", on (0, a),
0 < a < 1, namely

(2.4) [[(d/dx)iLkf(x)[] 1/(kn+i) C, 0 < k" 0 < < n 1
(kn + i)!

......
for x [a,/3], where [a,/3]c (0, a), and c depends only on L, f and [a,/3]. The
eigenfunction expansion converges uniformly in every interval [0, b l, b < min (R, a)
where

1-1 - (X)’-[k/l ]l/kL[k/nlf(x)(2.5)
R -, x=O

We note further that, by a theorem of Keldysh 13], the i’s are eventually distinct,
and/xj--- 1/(]n) for large ], where n is the order of the equation. Hence {/xi} 6 Lip= lo
and the analysis following (2.3’)applies.

These observations will assist us in establishing the convergence in the Leeming-
Sharma case in 4.

3. Generalized completely convex elements. Suppose that E is a partially ordered
linear space, and that L, N, N {Bi}, {u’}, Z, G, {u/k} are as in 2. Then the set

K ={u eD; Lu >=0, Bi(Lu)>-O, k =0, 1, 2,. 1,..., m} is a proper convex

cone in E which we call the cone of completely convex elements (with respect to (L, )).
Clearly LK K.

>0),i=l m, thentheu areextremalWhen we assume that u7 K (i.e. u
in K. Indeed, if u’ v + re, vi K ( 1, 2), then necessarily Lvi 0 and B(vi)= 0 for
j= 1, 2 and k : i, so that vj=B(vi)u. The expansion u -",im__l B(u)u’;, u N, shows
that these are the only extreme rays of K belonging to N.

Assuming also that G -> 0, i.e. that u >= O, Lv u, v Z implies v -> 0 (which with

the assumption u =>0 means that: u >=0, Lv u, B(Lo)>-O, 1,. ., m = v >-0),
we have GKcK, hence LKLGK=K and LK=K. For uK we have
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n-1 ku nL uu k=O i= Bi(L G e K thus the TL expansion of u is nondecreasing and
bounded by u.

If u e K is extremal, then either Lu 0 and then, as observed above, u aug for
some 1 =< -< m, or B(u)= 0 for 1, , m, i.e. u Z. Moreover, Lu and Gu are
extremal too. In fact, if Lu Vl + v2 O, vj K, then since u Z we have u GLu
GVl + Gv2, Gv K; hence Gvi aiu and v LGvi + a.;Lu for ] 1, 2. If Gu Vl + v2,

vj K then necessarily vi Z and thus u LGu LVl + Lv2, Lvi K implying Lvi aiu
and vi=GLvi=aiGu for ]=1,2. In particular, all the elements u (k=
0, 1, 2,. 1,. , rn) of the TL sequence are extremal in K.

The other extremal elements u K must satisfy Lku :0 /k, in which case
Lku Z f k, i.e. u belongs to the extremal subcone K Ylk-_o GkK of K. Thus the
extreme rays of K are those generated by the TL-sequence and the extreme rays of the
extremal subcone Ko, which we have to study in order to get extremal ray represen-
tations of the elements of K.

if y K is an eigenvector corresponding to some positive eigenvalue Ix of G, then
obviously yK. These are the only eigenvectors of G in K (/x =0 is not an
eigenvalue).

If we assume that the system (Yi) of eigenvectors of G satisfies the conditions
specified in 2, and that for every/" > p there exists a constant c. such that

(3.1) I(u)lclo(u)l, u O

then for every uK we have Lku e Z V k. Hence u 7=o qvi(u)Yi, and thus Kc

span {yo, ya,""", yo}. This facilitates the task of finding ext K. In particular, if p 0
and Cl, c2," exist, then K is either 0 or span yo, and we know all of ext K.

In the case of a self-adjoint linear differential operator L, B, , B as described
in 2, the additional assumptions we impose in 3 are that the fundamental solutions
u,..., u are nonnegative and that Green’s function is nonnegative. Under addi-
tional assumptions on Ba,..., B, which will be described in 4, and which are
satisfied in the Sturm-Liouville case, the Green’s function turns out to be a "nonneg-
ative oscillatory kernel" (cf. Gantmacher and Krein [6], for the relevant definitions and
properties of such kernels) endowing the associated eigenvalues and eigenfunctions
with substantial structure. In particular, the eigenvalues (i)satisfy o> >"" > 0
and the eigenfunction yo corresponding to o is strictly positive on (0, 1) and dominates
the other eigenfunctions in the sense that for every j there is c with

(3.2) [yi(x)lCyo(X), axb,

which clearly implies (3.1). Because of the orthogonality of the eigenfunctions, yo is the
only nonnegative eigenfunction so that in this caseK {ayo; a 0}. Since yo(x) > 0 on
(a,b) and uT0 we have also uu=aiyoO for i= 1,...,m. Choosing
Xo(a,b) with yo(xo)>0, we have Iguf(x)lM for i= 1,... ,m and axb, so
that OB(Lu)u(x)(M/T)Bi(Lu)u(xo) eventually V uK, where 0<<
ayo(xo).

Thus, the pointwise convergence of the bounded series of nonnegative terms

o i= Bi(Lu)u(xo) (u K)implies the uniform convergence of the TL expansion
"- u)u,)=of u. Since the same holds for Lu=v, we get L=oi=aBi(L

n--2=oi=1Bi(Lv)u converging uniformly to =oi=1Bi(Lv)u This guarantees
that the convergence of the TL expansion of u K is uniform in each derivative
(following the analysis of Cartan (see e.g, Protter [20])), so that its sum w satisfies
u w K, i.e. u w cyo.
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This family of examples can be extended also to nonselfadjoint operators, as will be
shown in 4.

4. Expansions associated with nth order differential operators. A class of examples
encompassing the classical results as well as the results of Pethe-Sharma and of
Buckholtz-Shaw may be obtained by using total positivity properties of certain kernels.

We start with self-adjoint operators of order 2n. We consider the sequences of first
order differential operators

(4.1)

d 1
Diu --u, O, 1,. , n- 1,

dx wi

1 duD.*, u =0, 1,..., n- 1,
Wi dx’

where the {w(x)}’2o are positive functions, such that wi isof class C"- on [0, 1]. Define
the 2nth order differential operator

(4.2) (Mu)(x)=(-1)"(D*o D*-ID,-a Dou)(x).

This is a formally selfadjoint operator. Adjoin to it the separable boundary
conditions

(4.3)

DI* *D,,-1D,,-I"" Dou(O)+(-1)"clu(O)=O
D D,,-1D,,-I* Dou(O)+(-1)"+aczDou(O)=O

D*,_ID,_ Dou(O)+(-1)z"-ac,,D,_2 Dou(0) 0

and

D* *D,_,D,,_,... Dou(1)+(-1)"d,u(1)=O

D* D._ O0u()+(-)"-’ d.D._: Dou()=0n--1

We assume here that

(4.4) O <-- Ck <--03, O <= dk o0, O < Ck + dk,

for all k. The case Ck O0 (or dk 03) is taken to mean that only the corresponding term
appears in that equation.

Karlin [8, Chap. 10] proved that the Green’s function G(x, t)of the operator M
coupled with the boundary conditions (4.3) is a nonnegative oscillatory kernel (see
Gantmacher and Krein [6] for the relevant definitions and properties of such kernels)
endowing the associated eigenvalues and eigenfunctions with substantial structure. In
fact, for the case at hand, more precise results are available, viz.;

For all k and all ordered sequences 0 < Xl <Z... Xk < 1, 0 < tl <-" <= tk < 1,
where the number of coalescences amongst the t’s or x’s is at most m, we have

(4.5) G*(x’’’" Xk) __-->0
tl, tk
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with strict inequality if and only if the relations

(4.6) xi < ti+,, ti < xi+n, 1, 2,. ., k- n,

hold.
Here

( ) det [[a(xi, ti)[[,i=l
sgn G*

X1, ’Xk
=sgn

(xg-x)I-I. (tg-t)tl, tk I-I>u >

in case all points are distinct, and is the sign of the limit of the right hand quotient as
points coalesce, whenever such coalescence occurs. Relation (4.5) implies that for each
k, there exists a power rk (in our case rk n + 1 for all k)such that the rkth iterate
G(’k)(x, t) is ETP of order k. Thus, by a theorem of Karlin [7, Thm. 4] the operator T
defined by

Tq(x)= | G(x, t)q(t) dt
Jo

has a countable set of simple positive eigenvalues

Ao>A1 >’’"

decreasing to 0. Moreover, the eigenfunction 0(x), corresponding to ,0, is strictly
positive on (0, 1). The boundary can be taken care of as in (Karlin [7, Thm. 5]), since the
vanishing at the end points is of finite order, as G(x, t) coincides with a solution of
Mu 0 near an end point. This ensures the fulfillment of condition (2.3). Hence the
generalized "Lidstone" expansion is valid for functions satisfying Mnu >=0, n
0, 1, , and (4.3) provided that the fundamental solutions are of one sign in (0, 1). We
summarize these results in the following theorem.

THZORZM 4.1. LetMbe a selfadjointfactorizable differentiable operator ofthe form
(4.2) coupled with the boundary conditions (4.3). A function q is said to be a generalized
completely convex function with respect to M and (4.3) if Mgu >= O, for all k, and if it

satisfies (4.3). Such q has a uniformly convergent Taylor-Lidstone expansion.
We will later show that these results are in fact valid for certain types of

nonselfadjoint operators; we first present some instances of this theorem.
We note that the boundary conditions are of the regular Sturm type (see Naimark

[18, vol. 1, p. 60]) and include, as a special case, the standard second order Sturm-
Liouville differential operators

(4.7)

d [p(x)L(Y)= -ux dx

O ly (0)’"/ lp (O)y’(O) O,

p(x)>0,

_y()+tp()y’()= o.

The generalized "Lidstone" expansion problem for such operators was discussed
by Buckholtz and Shaw [5]. Another example subsumed by our discussion corresponds
to the Beam (or "Rod")equation, where the operator is

(4.8) L(y [r(x )y"(x )], r(x > O,
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with the associated boundary conditions

(ry")’(0) + cly (0) 0,

(4.9)
(ry")(O)-c2y’(O)=O,

(ry")’(1)+ dly(1) 0,

(ry")(1)- d2y’(1) 0,

where 0 -< Cl, C2, dl, d2 <- o(3 and 0 < c, + d,, k 1, 2. Some concrete examples exhibi-
ting the explicit expansion corresponding to this case for a particular choice of r, ci’s and
di’s will be given at the end of this section (e.g. r(x)= 1, Cl=dl =ee, c2=d2=0,
produces Ao 7r, qo sin 7rx).

The above discussion can be generalized to nonselfadjoint operators with regular
boundary conditions, following an investigation initiated by Karon [12] and elaborated
by Karlin [9].

Let D, i=0, 1,...,n-1 be defined as in (4.1) and consider the operator
Ln-1--Dn-l"" Do, coupled with the homogeneous separable boundary conditions

(4.10)

n--1

Bo" aqDi-l" Dov(0)=0, i= 1,...,p,
/=0

n-1

BI" 2 [ijD-I D0v(1)-- 0,
i=0

1,..., n-p,

where D-iv-----V. Assume further that the coefficients appearing in the boundary
conditions Bo, B1 satisfy the following requirement

Assumption A. (i) The p x m matrix I1(-1)%11 is SCp (sign consistent of order
p) and has rank p (a matrix J is said to be SCp iff all p x p nonzero subdeterminants of J
have the same sign).

(ii) The (n-p)x n matrix B II/,;11 is $C,_ and has rank n-p.
An operator Ln-a with boundary conditions (4.10)satisfying Assumption A will

possess a Green’s function (or, equivalently, the only solution of L,-1.u 0 satisfying
the conditions (4.10) is the trivial solution) iff Assumption B is satisfied (see Karlin
[9, Thm. 3]), where this assumption is defined by

Assumption B. There exist increasing sets of indices {i,) and {]}"-’ in[0, n-1]
such that

(1, ..., p)o, B(;’ "’’’ n-P)oA
i,"’, i ,"’,

,, /x=l, ,p,

where {i’ ’}1 are the (ordered) complementary indices to {i,}’ in {0, 1,. , n 1}.
Karlin [9] proved that if the boundary conditions (4.10)satisfy Assumptions A and

B, then the Green’s function G(x, t)of (- 1)"-’L,,_ with the boundary conditions (4.10)
satisfies (4.5) with strict inequality iff

(4.11)
t, < x,+,_,, tz 1,2,...,k-(n-p)’,

=1,2,...,k-p.

Repeating the analysis following (4.6), we may now derive
THEOREM 4.2. LetLn_ and the separable homogeneous boundary conditions (4.10)

be given, satisfying Assumptions A and B. Assume further that the boundary conditions
are regular, and that the fundamental solutions are of one sign on (0, 1). Then a
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generalized completely convex function with respect to Ln-1 and (4.10) admits a
uniformly convergent Taylor-Lidstone expansion.

As concrete examples of the types of equations discussed here, we present the
vibrating rod. We start with the rod with clamped ends. This is the special case of (4.8),
(4.9) where r(x)-- 1, Cl=C2=dl =d2=oo, i.e. y(--0, y(0)= y’(0)= y(1)= y’(1)=0.
The eigenvalues {h,} here are the positive solutions of

cos h cosh h 1

and the corresponding eigenfunctions are

y(x) (sinh h-sin h)[cosh h,x- cos hx]+ (cos h-cosh h)[sinh hx -sin hc],

p=0, 1,....

The Green’s function has the explicit form (see e.g. [11]),

Gl(X,t)

t2(1 -x)2

[3x-t(2x + l)], O<=t<=x,

[(3 2x)t- x], x <= <- l,

and the fundamental solutions are

u (t)= (t- 1)2(2t + 1),

uz (t) t(t- 1)2,
u](t)=t2(3-2t),
u(t)=t2(1-t).

From the general theory, we know that yo dominates all y, v => 1, so that each
u e C(0, 1) satisfying

U(4n)(t)>=O, for

admits of the convergent series representation

(4n+l)(O)u (4nu(t)= Y [u(4n)(O)Ul(t)+U 2(t)+u )(1)u3(t)

+ U (4n+1)(1)U, (t)] + cyo(t)

where u "1 G"I (u ), 1, 2, 3, 4", n 0, 1, and c is the maximum value such that
u-cyo still belongs to the cone. Here Ga(’) is the integral operator with the kernel
Gx(x,t).

A similar analysis applies to the rod equation with r(x) 1, ca dl cx3, c2 de 0,
i.e. y(4)=0 with y(0)=y"(0)=y(1)=y"(1)=0, The eigenvalues {h} here are
(u + 1)7r, u 0, 1,. and the eigenfunctions are {sin ( + 1)x}. The Green’s function
has the explicit form (see e.g. [11]),

G2(x, t)=

X--1 3x(1-x)(2 x)t+ t,
6 6

x(1 -x)(1 + x)

O<_t<_x,

X

(1-t)+g(t-1)3, x<-t<-l,
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and the fundamental solutions are

uT(t)=l-t,

u(t)=t,

u (t) t(t- 1)(2- t),

u? (t)= t(t2- 1).

Observe that here u(t)<=O, u?(t)<=O.
From the general theory, we conclude that yo dominates all yv, v -> 1 (this is evident

in this case directly), so that each u C(0, 1) satisfying

U(4n)(t)>=O, forte(0, l), u(4n+2)(0)0, U(4n+2)(l)<--0
admits of the convergent series representation

u(t)= [U(4n)(O)uT(t)+ U4,)(1)u2(t)+n U(4n+2)(O)u n3(t)+u
n=0

(4n+2)(1)U(t)]+C sin 7rt

Where u -G2(ui), i= 1,2,3,4; n =0, 1,..., and c is the maximal value such that
u(t)-c sin zrt still belongs to the cone.

We close with an example of nonregular separable boundary conditions which fits
in the framework of the discussion in 3.

The example is due to Leeming and Sharma 16] who established the validity of the
expansion using different methods.

We start with a brief sketch of some of the basic properties needed for our
discussion, which can be found in the paper of Leeming and Sharma. The operator is
Ly =-y(") with the nonregular separable boundary conditions ={y()(0)=0,
0,1,...,n-2; y("-)(1)=0}. The Green’s function is nonnegative, and the
fundamental polynomials are

i= 0, 1,’’’, n -2; u-i (t)= ’-1.u(t)=(ti-t"-)/i[,

The first eigenvalue A0 is the smallest (in absolute value) solution of

(_l)kA (,,k +,,- )/,,

Y =0.
k=O (nk + n -1)!

It is positive, and the corresponding eigenfunction yo is positive in (0, Ao). The
biorthogonal elements are zv(t)=ay(1-t.), v=0, 1,.... We note also that Zo
dominates the otheroeigenfunctions.

Moreover, Leeming and Sharma proved that a completely convex function with
respect to this set-up, which they call a completely Wp-convex function, is entire (this
result in the even-order case is due to Boas and Polya [4]). Hence, we may apply now the
method based on the Khromov and Keldysh results (see 2) and conclude that each
completely Wp-convex function with respect to (L, ) admits of a convergent eigen-
function expansion.
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HEUN’S EQUATION AND THE HYPERGEOMETRIC EQUATION*

KATHRYN KUIKEN?

Abstract. The present investigation determines under which circumstances Heun’s equation can be
derived from the hypergeometric equation by rational substitutions.

The hypergeometric equation has precisely three regular singular points. Heun’s
equation has precisely four regular singular points. One can therefore pose the question
as to whether one of these equations can be transformed into the other via a rational
transformation. The purpose of this note is to derive the following surprising
conclusion" The hypergeometric equation can be transformed into a nontrivial Heun’s
equation via a rational transformation if and only if this transformation is one of six
quadratic polynomials. These polynomials as well as the conditions imposed on the
parameters for such a transformation to exist are tabulated explicitly.

Every homogeneous linear second order differential equation with four regular
singularities can be transformed into

du ( 6 e )du at-q
(1)

dt2
+ ++ + u 0

t-1 t- d - t(t-1)(t- d)

where

(2) a+/3-y-6-e+l=0.

This is Heun’s equation. It contains a large number of interesting special cases,
particularly Lam6’s equation [1, Vol. 3, Chap. 15, pp. 44-90, esp. pp. 57-62]. There
exist several theorems which provide expansions of the solutions of (1) in terms of the
solutions of the hypergeometric equation

(3) z(1-z) + [c- (a +b+ 1)z]-z-aby =0.

(For results and literature, see [1, Vol. 1, Chap. 2, pp. 56-119, esp. p. 56, and as cited
above].) Here, we shall answer the question: When can a hypergeometric equation be
transformed into Heun’s equation by a transformation

(4) z=R(t),

where R is a rational function of t?
We shall exclude the trivial case for which a/3 q 0. In this case, Heun’s equation

has obvious and elementary solutions. We shall prove the following
THZOREM. A hypergeometric equation (3) can be transformed into a nontrivial

Heun’s equation (1) by a rational transformation (4)/f and only if the points O, 1, c, d
form a harmonic quadruplet (that is, ifd has one ofthe values -1,1/2, 2) andR is one ofthe
following quadratic polynomials

(5) R 2, 1 2, (t- 1)2," 2t- 2, (2t- 1)2, 4t(1 t),

where the six parameters a, , y, 6, e, q of (1) depend in an explicitly computableform on the
three parameters a, b, c of (3).

* Received by the editors April 25, 1977, and in revised form December 19, 1977.

" Department of Mathematics, Polytechnic Institute of New York, Brooklyn, New York 11201.
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Proof. We show first that R must be a polynomial. The transformation of (3) into
(1) produces the condition

I 2 a q (I ft )(6) -ab
R (1 R )- t(t 1)(t d)

on R. Letting R 1- S, we see that

, Co Cl C2--+ +(7)
RS t-1 t-d

On the other hand, both t/R and /S are sums of terms of the form n(t-h )-1,
where n is an integer and h is a zero or a pole of R or of S. Suppose that h were a pole of
R. Then, it would also be a pole of S, and the left-hand side of (7) would produce a term
of the form re(t-h)-2, where m is an integer, which is impossible.

We now see from (7) that 0, 1, d must be the total collection of zeros of R and S. We
see immediately that a k-fold zero of R implies the existence of k distinct zeros of $ and
vice versa. Also, we see that R and S have no common zeros. Therefore, both R and S
must be of degree two and one of them must be a square of a first degree polynomial.

The polynomials of (5) with the corresponding values of d are simply obtained by
observing that 0, 1, d are the total collection of zeros of R and S. The values of d are
given as -1, -1, 2, 2, 1/2, 1/2 respectively.

The remainder of the proof of the theorem consists of elementary but tedious
calculations. We give below a list of the expressions for a +fl, aft, y, 6, e, q for the
various cases listed in (5) as functions of a, b, c. This list comes into existence by
substituting each R of (5) into the conditions (6) and

6 E[c_(a+b+l)R]=7__++(8) / t-R(1-R) t-1 t-d

produced by the transformation of (3) into (1) by (4) and by using (2). It should be noted
that in all cases the numerator of the right-hand side of (6)will cancel against one of the
linear factors in the denominator to give (at- q)/[t(t- 1)(t d)] 1/(At2 + Bt + C).

R t2: R 1 t2:
a+fl 2a +2b a+fl 2a +2b
aB 4ab aB 4ab
y =-1+2c y 1-2c +2a +2b
6=l+a+b-c 6=c
e=6=l+a+b-c e=6=c
q =0 q =0

R (t 1)2: R 2t- t2:
a+fl =2a+2b a+fl=2a+2b

aft 4ab aft 4ab
y=l+a+b-c y=c
6 =2c- 1 6 1+2a +2b-2c
e=y=l+a+b-c e=y=c
q =4ab q =4ab
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R (2t 1):" R 4t(1 t):
a+/3 =2a+2b a+=2a+2b
a 4ab a 4ab
y=l+a+b-c y=c
6=y=l+a+b-c 6=y=c
e =-1+2c e 1+2a +2b-2c
q 2ab q 2ab.

This concludes the proof of the theorem.
Note. Although Heun’s equation has the easily obtained solutions

Ul --C, u:= exp A whereA=3’+ 4---i- a
in the trivial case, we observe that a hypergeometric equation (3) can be transformed
into a trivial Heun’s equation (1) for which aft =q 0 if and only if R is one of the
following thirty rational functions of order two

2 2 2(t 1/2) (t 1)z
2(/-1/2)’ (t-l)2’ 2(/-1/2)’
(t-1/2) 1 1

t(t- 1)’ 4t(t 1)’ 4(t 1/2)-’
1 (t- 1)(t + 1)

(t- 1)(t + 1)’ 2

(t + 1)2 4t (t + 1)2
4t (t+ 1)2’ (t- 1)2’
2 2 (t-2)2

4(t-l)’ (t-2)2, 2

t(t- 2) 1

(t-l)2’ (t-l)2

2(t- 1/2) (t- 1)2
(t- 1)2’ 2

t(t- 1) 2

(t- 1/2)2, (t 1)(t + 1)’
1 (t- 1 )2 (t- 1)2
2’ 4t (t 4- 1)2’
4t (t- 2)2 4(t- 1)

(t- 1)2’ -4(/- 1)’ (t- 2)2’
4(t- 1) (t- 1)2 1

2 t(t-2)’ t(t- 2)’

and the points 0, 1, c, d form a harmonic quadruplet. Again, the connection between
the values a,/3, y, 6, e, q 0 of (1) and the parameters a, b, c of (3) can be calculated
explicitly by use of (2), (6) and (8). One of these cases appears in the book by C. Snow [2,
Eq. (9d), p. 911.
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A ONE-PARAMETER FAMILY OF SEQUENCE TRANSFORMATIONS*

JEAN-MARC VANDEN BROECK]- AND LEONARD W. SCHWARTZf

Abstract. A one-parameter family of sequence or series transformations is presented which includes the
Pad6 and the iterated Aitken’s (Shanks) tables as special cases. The transformation table elements are rational
functions with polynomial coefficients in the parameter that, when expanded for small argument, are

asymptotically equivalent to the highest order partial sum from which they are formed. Numerical examples
using some standard series demonstrate dramatic acceleration of convergence and the ability to move branch
cuts by choosing the parameter appropriately.

1. Introduction. Summation of power series is a topic of wide interest in applied
mathematics. When the general term in a power series is known, the search for efficient
and powerful summation techniques falls within the realm of approximation theory.
Alternatively, solutions to nonlinear differential equations arising in mechanics or
elsewhere can be expressed as perturbation expansions in an independent variable or
parameter. Here the general term is not known but typically 10 to 100 terms can be
found using a computer. The computation of additional terms is precluded by time and
storage limitation or by the accumulation of roundott errors. In the happiest of
circumstances, the high-order series coefficients are nearly proportional to the
coefficients in the expansion of a standard function. Thus the remaining unknown
coefficients can be replaced by those derived from the standard function. This method
of "series completion", as advocated by Van Dyke (1974) and Guttmann (1975), can
yield accurate approximate solutions over much of the range of interest.

Often, however, no such simple structure is apparent and a more automatic
method of series summation is required. We also need a method which can analytically
continue the solution into regions where the original series is divergent. Consider the
formal power series expansion of a function f(x)

(.l) f(x).-- E
i=0

and its associated sequence of partial sums

N

(1.2) au Y ax=-[N, 0], N= 0, 1,....
i=0

By applying a succession of nonlinear transformations a table of approximants to f(x)
can be generated where the original sequence forms the first column. Thus

(1.3)

[0,0]

[,0][a, ]

[2, 0] [2, a][2, 2]

[3,01 [3, 1]

[4, 0]

* Received by the editors January 31, 1978. This work has been supportedby the Australian Research
Grants Committee.

5" Applied Mathematics Department, University of Adelaide, South Australia.
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where, hopefully, each column is more rapidly convergent than its predecessors or, if all
columns are divergent, sequences of diagonals will be convergent.

The Pad6 table is the most widely-studied transformation of the type (1.3). The
IN, M] element, now usually represented by the "mnemonic" notation IN/M], is a ratio
of two polynomials in x where the degree of the numerator is no greater than N and that
of the denominator no greater than M. The coefficients are determined by the
requirement that each rational fraction, when expanded for small x, agree with the
original series to order xM+N. The coefficients for a given approximant can be found as
the solution to N +M/ 1 linear equations or by the computationally more efficient
algorithms of Rutishauser (1954)or Wynn (1956). Pad6 approximants have been
studied extensively and convergence of the table or certain subsequences extracted
from it has been established for restricted classes of functions. Much of the recent
theory is summarized in the book by Baker (1975). The theory as developed, however,
is of little use when only a limited number of coefficients are known. Then (1.3) is a finite
triangular array and "convergence" refers to the numerical agreement between table
elements and their neighbors.

Another table of the form (1.3) can be generated by the iterated Aitken’s or Shanks
transformation. Each table element is formed from its three adjacent predecessors
according to the formula

(1.4)
IN, M]2- IN- 1, MI[N + 1, M]

[N, M+ 1]
2IN, ]--i---iM-]--- ]i r]"

Virtually all the theory concerning (1.4)can be found in the papers by Lubkin
(1952) and Shanks (1955). Its use is motivated by the observation, that if the original
sequence elements are in geometric progression

IN, O] B + cq, q O, 1,

then one application of (1.4) to any three successive elements will yield the "correct"
answer B by "filtering out" the "transient" cqu. Thus if the columns
IN, 0], [N, 1],...are "nearly geometric" sequences the table can be expected to
converge rapidly. Note that the first derived sequence IN, 1] is identical to the Pad6
sequence [N/l]. If [N, 0] are the partial sums of a power series, then the elements
IN, M], M 2, 3,.- are rational functions of x but with numerators and denomina-
tors of higher order than in the Pad6 table. The paucity of theoretical results notwith-
standing, the Shanks transformation has been used successfully to accelerate the
convergence of series solutions to a number of physically motivated problems. See, for
example, Fenton (1972) and Schwartz (1974).

In the next section we introduce a generalized sequence transformation which
includes the Pad6 and Shanks tables as special cases. A fundamental property of this
transformation is established concerning the order of agreement of the table elements
with the original power series. The following section contains several numerical
applications.

2. The tamily o[ transiormations. Let the table of approximants (1.3) be
generated, column by column, by the formula

(2.1)
[N,M+ll-[N,M] +[N,M-1I-[N, MI

1

IN + 1, M]- IN, M] [N-1, M]-[N,M]
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subject to the auxiliary condition [N, 1] c. For a 1, (2.1) becomes Wynn’s (1966)
five-term identity which is an efficient method for generating the Pad6 table. If a 0, on
the other hand, (2.1) reduces to (1.4), the Shanks transformation. We consider now
arbitrary values of a and for definitiveness will use the notation

IN, Ml()f(x)
to signify a table element formed from the series expansion for f according to (2.1) with
a given value of a.

A number of properties of the approximants can be readily established. In each
case existence of the relevant portion of the table is assumed.

(1) If [N, 0] are the partial sums of a power series in x, each element IN, M]( will
be a rational function of x with coefficients that are polynomials in c. This property
follows immediately from the observation that (2.1) involves only the four elementary
arithmetic operations.

(2) If IN, 0] are the partial sums of a power series in x, the element [N, M]
involves the knowledge of only the first column members [0, 0] [1, 0], , IN + M, 0]
and, subject to a "normality condition", when expanded for small x, [N, M] t") agrees
with the original series to order xM+u. This property may be established by induction.
Note first that the elements in the IN, 0] and [N, 1] are independent of a. Hence these
elements are identical to [N/0] and IN/I] respectively and possess the required
property by definition. Assume now that elements in the (M- 1)th and Mth columns
have the Taylor series expansions

(2.2)

N+M-1

IN, M 1 aixi "31- 2 Ui""
(N,M-- 1)X

0 N+M

N+M

[N, M] 2 aix i+ Y’. cU’x
i=0 i=N+M+I

where ai are the coefficients in the original series. The denominators of the 2nd, 3rd and
4th terms in (2.1)become

IN, M- 1]-[N, M] (c N’M-’)1v+M aN+M)xN+M + O(XU++I ),
(N, M) )XN+M+ )(2.3) [N+ I,M]--[N,M]=(aN+M+I --CN+M+, "I-O(xN+M+2

and [N- 1, M]-IN, M] (cN-’’)N+M -au+)xU+M + O(x++ ).

Provided now that
(N- I,M) (N,M-- 1)(2.4) CN+M CaU+M and CU+M CaN+M,

substitution of (2.3) into (2.1) yields

[N,M+ I]=[N,M]+(aN++ ..N,M) )XU+M+I )t,N+M+ "O(xN+M+2
(2.5)

N+M+I

Z aixi+ O(x "+M+2))
i=0

which is of the required form (2.2). The restrictions (2.4) are the normality conditions.
When a 1, they are equivalent to the normality conditions for the Pad6 Table,
discussed by Baker (1975, p. 24) which ensure that every Pad6 approximant formed
from a given series exists. It is sufficient for our purposes to realize that (2.4) would only
be violated in exceptional circumstances since the table elements IN-1, M] and
IN, M-1] are not functions of a N/. The result (2.5) implies that an approximant
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IN, M](f) is no worse an estimate of f than the highest-order partial sum from which it
is formed, and that any improved convergence for large values of argument is not
purchased at the expense of reduced accuracy near the origin. In the case of the Shanks
Table IN, M]’=, this important property does not appear to have been recognized
previously.

(3) The series transformation IN, M](’)(f) is nonlinear in the sense that

[N, M]’(f+ g) IN, M]’(f)+ [N, Ml’(g)

for any two series f and g. However, the rules

(2.6) IN, M]’(f+ C) C + IN, M]"(f)
and

(2.7) IN, M]"(Kf): K[N, M]’(/)

where K and C are arbitrary constants, are valid for any value of c. Observe that (2.1) is
invariant under either transforxnation. On the other hand, two Pad6 diagonal invariance
properties, namely the reciprocal formula

1
N/Nl(1/f(x ))

[N/N](f(x))
and invariance of the [N/N] under the Euler transformation

Ay
X--

1.+By

are not valid for any value of a other than 1.
(4) Let [N, 0] be the partial sums of a power series with real coefficients a. If c is

also real, the approximants have the property

(2.8) IN, Ml"f(.f) [N, Ml’f(x),

where the bar signifies complex conjugation. Any eventual limit must also have this
property. Thus, for example, the table of approximants formed from the Maclaurin
series expansion for either log (k +x) or /k +X, k>0 cannot be expected to
converge on the portion of the real axis -eo < x <- k. The high-order approximants
will simulate this choice of branch cut by placing many poles and zeros along this line.
With another branch cut, not lying along the real axis, either function is regular, albeit
complex-valued, for -oo<x <- k. In the next section we will present numerical
evidence to illustrate that, by taking a complex value for a, the cut can be moved off the
real axis for such functions.

It is interesting to note that the validity of the above properties is unaffected if the
transformation (2.6) is made more general. A different value of a may be used to
generate each column in (1.3). The general table element can now be represented as

(2.9) IN, M]’2’ ’3""’")f(x),
where ck is used to form the kth column. For example, Shanks (1955)shows that rapid
convergence for certain infinite sequences can be obtained by repeated use of the Pad6
[N/2] transformation. In the notation of (2.9) the superscript, specifying the order of
procedure, would be (1, 0, 1,--., 0, 1) where M is necessarily an even number.

A form of (2.1) more suitable for automatic computation can be formulated as a
generalization of Wynn’s (1956) "e-algorithm". A new column is inserted between
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each column of approximants so that the augmented table, replacing (1.3), is

[o, Ol
EO0

EIO Ell

(2.10) [2, 0] [2, 1] [2, 21
E20 E21

Here the elements are generated by the formulas

(2.11 a) e N,M aeN,M- +

(2.11b)

[N+I,M]-[N,M]’

IN, M+ 11 IN, MI +
E N,M EN-1,M

subject to the initial condition eN,-1 0. Relations (2.11) are equivalent to (2.1). This
e-algorithm formulation reduces computation time by about one-half at the expense of
increased storage requirements.

3. Numerical examples. A dramatic example of rapid convergence may be
obtained from the famous series for st(2)

1 1 1 rr
(3.1) 1 + +-7+-5+ ---= 1.64493406

This series is slowly convergent; in fact the sum of the first 61 terms in (3.1) agrees with

rr2/6 to only 2 places. A standard asymptotic analysis, using the integral form of the
generalized Riemann zeta function, reveals that 60 million terms would be required for

8-place accuracy. Neither the Pad6 (a 1) or Shanks (a 0) tables converge well; the

[30, 30] approximants formed from 61 terms in the expansion are correct to only 3 and
4 places respectively. Sihce the IN, M]= are more rapidly convergent than the

IN, M]=, however, negative values of a are suggested. Table 1 is the array of
approximants to (3.1), with a =-1, constructed from the first 11 partial sums. Note
that the [4, 5] element is already correct to 8 places. Aside from the second column,
which is common to all tables, the array converges rapidly to the correct answer.

Our second and third examples are derived from the divergent expansion

(3.2) 1-1z+2!z2 +(- 1)nz" + e/E1
Z

where E1 is the exponential integral function as defined by Abramowitz and Stegun
(1964, p. 228). The diagonal Pad6 approximants formed from this series can be shown
to converge to the right side of (3.2) for real positive z (Baker, 1975, p. 72). Numerical
tests show that the low-order approximants in the Shanks table also converge and much
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TABLE
The table of approximants (a =-1) formed from the first eleven partial sums of (3.1).

1.0000000
1.250000 1.4500000
1.361111 1.503968 1.6470970
1.423611 1.534722 1.6459065 1.6451849
1.463611 1.554520 1.6454554 1.6450669
1.491389 1.568312 1.6452462 1.6450131
1.511797 1.578464 1.6451358 1.6449850
1.527422 1.586246 1.6450720 1.6449688
1.539768 1.592399 1.6450325
1.549768 1.597387
1.558032

1.6449342
1.6449341
1.6449341

1.6449341

more rapidly. For real values of ce between 0 and 1, the convergence improves more or
less continuously as c decreases. As a specific example, for z 1, the series (3.2) should
converge to eEl(l)= .596347362 In Fig. 1 we plot the common logarithm of the
error for the diagonal approximants with z 1 versus the parameter ce. Note that the
succession of approximants [2, 2], [4, 4], [6, 6],. would appear to converge to the
correct answer for any c in this range. Values of c near zero appear to give about twice
the accuracy of the Pad6 approximants. Because this calculation involves the
differences of very large numbers, accuracy is ultimately limited by computer roundoff
error. In general, negative values of c produced "disorderly" tables; however the
choice a -1 + produced a table which converged slightly faster than any real value
tested.

The diagonal approximants IN, N], c el0, 1] appear to converge to the sum
indicated in (3.2) so long as larg z nr, n 1, 3, 5,- .. However, for negative z and
real values of c, the approximants will be real while El(-x), x >0, is necessarily
complex. That is the c-real approximants choose the branch cut of the exponential
integral function to lie along the negative real axis. Thus the divergent series

1
(3.3) 1+1!+2!+... +n!+ E1(-1+/-i0)’--.69717+i1.1557,

e

if summable, will have a positive or negative imaginary part according to whether the
branch cut lies below or above the negative real axis. Table 2 shows the diagonal
approximants found from (3.3) for 3 imaginary values of ce. Each column appears to
converge to -e-lEl( 1 + i0) indicating that the branch cut has been moved into the
third quadrant. The convergence seems best for a i; the element [14, 14] "=i, for
example, is correct to within one part in 1000. In general the convergence is much
poorer than for the alternating-sign series. The cut has only been moved a short distance
from the real axis; proximity to the cut as well as the roundott error limitation precludes
greater accuracy. According to property (4) of the last section, replacing c by its
conjugate would move the cut into the second quadrant.

The final example illustrates the amount by which a "natural" branch cut can be
moved by selecting an imaginary value of a. Consider the simple series

(3.4) 1Oge Z (Z 1)
(Z 1)2 (Z 1)3

2 3

and the approximants formed from it on the circle z 4 ei. The approximants may be
expected to converge to IOge 4+ iO if 0--< 0< 0* and to 1Oge 4+ i(0-- 27r) if 0* < 0--< 27r,
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o
/

IS, S] o

\ /

FIG. 1. The error of diagonal approximants to Y,, =o (- 1)"n vs. (x.

TABLE 2
Diagonal approximants to the series Y’,,,=o n !.

[N, NI ’=’5i [N/N] ’=’8i [N, N] 1.oi

0+i0 0+i0 0+i0
2 +6.0i + i3,75 + i3,000
3 .8867 + i.5003 .7835 + i.6902 .73090 + i.77631
4 1.0214 + 1.7240 .9579 + il.2748 .9144 + il. 1402
5 1.1418 + 1.5615 .9388 + i1.1698 .8500 + 1.1021
6 1.5083 + 1.1358 .7355 + i.9746 .6623 + il. 1067
7 .7384+ i1.1898 ..6979+ i1.1057 .6913+i1,1192

8 .8333 + 1.1845 .7018 + 1,1127 .6828 + 1.1455
9 .7361 + il.2037 .6772 + i1.1518 .6938 + il. 1478
10 .7366+ i1.1741 .6961 + i1,1509 .6951 + i1.1537
11 .7318 + i1.1769 .6995 + i1,1519 .6944 + i1.1513
12 .7192 + il. 1588 .6994 + i1.1553 .6993 + il. 1552
13 .7193 + il. 1594 ,6995 + i1.1561 .6976+ i1.1563
14 .7051 + il. 1533 .6965 +.i1.1558 .6977 + i1.1565
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where O* specifies the angular position of the branch cut of loge z when [z[ 4. In Fig. 2
we plot the imaginary components of typical approximants to the series (3.4) versus
0 arg z. For a 0.5i, values are shown for the imaginary parts of the [10, 10] and
[20, 20] elements. Convergence is good, and the elements lie close to either the upper or
lower branch values (dashed lines), except near the cut which lies at 0" 3.0. For
purposes of comparison, values of the Shanks element [20, 20] ’-- are presented. These
points lie close to the dashed lines except near the cut, 0"= zr. Thus the branch cut
appears to have been moved about 8 degrees from the negative real axis. Similar
calculations, made for other values of [z I, indicate that the branch cut is not a straight
line, but curves away from the real axis as [zl.is increased. The location of the cut is
determined by the value of a, but the functional dependence is unclear.

4 Im[N, N]

-1

-2

-3

-4

o

o

2.8 30 rr 3.2 0

o

Oun--O-’om0 2r - -,-o --9-0 n
o

o

FIG. 2. Imaginary part of [N, N]" (loge 4 e i0) vs. 0. O a 0.5 i, N 10; O- a 0.5 i, N 20; l a

0, N=20.

4. Concluding remarks. The family of transformations discussed should serve to
supplement the arsenal of techniques available to the analyst who chooses to solve
nonlinear problems by perturbation series expansions. To the extent that each trans-
formation element IN, M]" reproduces the series from which it is formed to appro-
priate order when expanded for small argument, it would appear worthwhile to
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investigate various choices of a in order to secure optimum convergence in a given
problem. Choosing a to be complex so as to move the branch cut, is an attractive
possibility where the natural cut of the Pad6 or Shanks tables leads to physically
unacceptable discontinuities. For example, in the recent work of Vanden Broeck and
Tuck (1977)on the near-stern flows past barge-like bodies, use of the Shanks table
yielded converged but discontinuous free-surface profiles.

Other areas of application include the efficient approximation of known functions;
our first example suggests that [N, M]=-1 applied to sums of reciprocal powers may
provide good approximations for the zeta function. Secondly, the use of iterative
methods in large scale computation yields sequences of approximations to solutions,
often at formidable cost. Convergence-acceleration techniques based on the simple
Shanks transformation (1.4) have been applied to transonic aerodynamics calculations
by Martin (1976) and others. The present work may provide a useful generalization.
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SOME ASPECTS OF OSCILLATION AND BOUNDARY PROBLEM
THEORY FOR HAMILTONIAN SYSTEMS IN A B*-ALGEBRA*

WILLIAM T. REID"

Abstract. For linear self-adjoint Hamiltonian differential systems in a B*-algebra the topics treated
include an extension of the well-known generalized polar coordinate transformation for the finite dimen-
sional matrix case, and the derivation of two oscillation criteria for systems that may be written as
self-adjoint linear differential equations of the second order. The determination of a Green’s matrix for an
incompatible boundary problem involving two-point boundary conditions is discussed, and, in particular, the
established results are applied to reduce a certain type of vector boundary problem in a Hilbert space to
known results for symmetrizable compact linear transformations in an associated Hilbert space.

1. Introduction. Within recent years there have been various extensions of oscil-
lation theory for finite dimensional differential systems to corresponding vector and
operator equations in abstract spaces--notably in Banach spaces [6], [7], [8], [11], [12],
and particularly in the context of B*-algebras, [3], [4], [5], [10], [19]. For linear
self-adjoint Hamiltonian systems it is the purpose of the present paper to survey some
of the difficulties that have been encountered, to establish some related criteria for
oscillation, and to discuss some associated two-point boundary problems.

Section 2 is devoted to presenting some of the basic properties of Hamiltonian
systems, and in 3 there is given an extension to such systems of the generalized polar
coordinate transformation initially established for finite dimensional matrix systems by
Barrett [1] and the author [14]. For systems that may be written as self-adjoint linear
differential equations of the second order there are given in 4 two oscillation criteria
based upon the fact that the set of such equations for which the corresponding Dirichlet
functional on arbitrary compact subintervals is nonnegative forms a nonnegative cone
in a certain function space. The first criterion is essentially one considered by Etgen and
Pawlowski [4] and Etgen and Lewis [5], while the second criterion involves the
application of certain linear transformations corresponding to those considered by the
author [17] in the case of finite dimensional matrix problems. For a self-adjoint
boundary problem involving a Hamiltonian differential system and two-point boundary
conditions the determination of a Green’s matrix is discussed in 5, and the obtained
results are applied in 6 to reduce the consideration of certain vector boundary
problems in a Hilbert space to known results on symmetrizable compact linear
transformations in an allied Hilbert space.

2. Basic properties ot Hamiltonian systems. Let be a complex B*-algebra with
unit E and conjugation (.)*, (see [18; Ch. IV, 7, 8, 9] and [10; Ch. 4]), and for I an
interval on the real line consider the self-adjoint Hamiltonian differential system

LI[U V](t)---V’(t)+C(t)U(t)-A*(t)V(t)=O,
(2.10) tI.

La[U, V](t)-- U’(t)-A(t)U(t)-B(t)V(t)=O,

Throughout the subsequent discussion it will be supposed that the following hypothesis
is satisfied.

* Received by the editors July 6, 1977. An elaboration of the third lecture in the series of John Barrett
Memorial Lectures, The University of Tennessee, Knoxville, Tennessee, May, 1977. We regret to report the
death of Professor Reid in September, 1977.

" Department of Mathematics, University of Texas at Austin, Austin, Texas 78712.
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(o) A, B and C are (strongly) continuous -valued functions on I, with B (t) and
C(t) herrnitian (symmetric) for e L

In terms of Y" I - x with Y(t)= (U(t); V(t)), system (2.1) may be written as

(2.1)

where

L[Y](t)=-Y’(t)+(t)Y(t)=O, teI,

0 -A(t) -B(t) J’ teI,

are elements of the matrix algebra ffff2() over . For Z (Xl, X2)e x , the norm
[]Z[] is defined to be [[IXll12/llX2[12] 1/2, and if M= [Mo], (a, fl 1, 2), belongs to 2()
then we set

[IMII sup {llmgll’llgl[ 1}

sup {[IIMI,X + M12Xz[I + [IMzxX1 + Mz2X2[I2] 1/2" ]Xl[I2 + IIx2ll= a}.

In particular, Y(t) (U(t); V(t)) is called a solution of (2.1) if U and V possess (strong)
derivatives which are (strongly) continuous and satisfy this equation on I. If Uo and Vo
are elements of and z L then by well-known existence theorems (see, for example,
[9, 3.4], [10; Ch. 6]) there exists a unique solution Y(t)= (U(t); V(t)) of (2.1) on I
satisfying the initial condition Y(z)= (Uo; V0). Moreover, if Y(t)=(U(t); V(t)),
(a 1, 2), are solutions of (2.1) then

{YI; Y2}(t) Y (t)Yx(t) V (t)Ux(t)- U (t)Vx(t)

is constant on I. If the value of this constant is 0, then these solutions are said to be
(mutually) conjoined or conjugate; in particular, a solution Y is self-conjoined if
{Y; Y}=0. For z6I special associated self-conjoined solutions are Y(t)=
(U (t); V7 (t)) and Y (U (t); V (t)) determined by the initial conditions

(2.3) Y: ()= (0; ); Y ()= (; 0).

Frequently one of the following additional hypotheses will be assumed.

B(t)>=O for el; that is, Sp B(t)c [0, ), where "Sp B(t)" denotes the spec-
trum ofB (t).

B(t)> 0 for e I; that is, Sp B(t)c (0, o) for e L

(2.1) is identically normal on I; that is, if Io is a nondegenerate subinterval ofI
and Y(t)= (U(t); V(t)) is a solution of (2.1) with U(t)=-O on [o then also
V(t)=-0 on Io, and hence Y(t)= (0; O) on L

In particular, (,)implies ()and (,).
One may consider the linear second order differential equation

(2.4) [R(t)U’(t)+O(t)U(t)]’-[O*(t)U’(t)+P(t)U(t)]=O, teL

as a special instance of (2.1) whenever the coefficient functions satisfy the following
condition.

R, P, O are -valued functions on I which are (strongly) continuous, with R (t)
and P(t) hermitian while R (t) > 0 for e L
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Indeed, with V(t)= R (t)U’(t)+ O(t)U(t), under (0’) equation (2.4) is equivalent to a
system (2.1) with

(2.5) A(t)= -R-I(t)Q(t), B(t)= R-l(t), C(t)= P(t)-Q*(t)R-(t)Q(t),
and hypotheses (o), (,) are satisfied.

In the finite dimensional matrix case, for a system (2.1) satisfying hypotheses (o),
(g)), (,)one has the following property.

(9) For " I there exists a 6 6 >0 such that the U(t) belonging to Y(t), as
specified in (2.3), is nonsingular on ([’-6, ’)l..J 0", -+6])(3L

That this property does not hold for general systems satisfying the hypotheses given
above is illustrated by the following example. Let H be the Hilbert space H 2,
I (--oO, oO), B the Banach algebra of bounded linear transformations L[H, H],
and, as usual, identify the transformation with its matrix in terms of the canonical
unit elements et)=(6,). Then for B(t)=-[(Tr/n)6,,,,]=-C(t), and A(t)=-O, the
solution Y(t) of the corresponding (2.1) has U,(t)= [&,,, sin (Tr/n)(t-’)], V.(t)=
[&,,, cos ((rr/n)(t- r))], and for all we have 0 e Sp U,(t) so that U,(t) is singular for all
t. This example is essentially that of Example 1.1 of [5], and attributed therein to R. T.
Lewis and S. C. Tefteller. As given in [5], however, it is presented as an example for the
second order equation with R (t)= E, O(t) O, P(t) -[(’n’2/nZ)6,m], and in the context
of the above discussion it is to be emphasized that the above determined
[6n,, sin (Or/n)(t-’))] is not the matrix U,(t) of the solution Y,(t)= (U,(t); V,(t)) of
the corresponding system (2.1) with coefficients given by (2.5). Rather, for this system
the corresponding Y(t) has U(t)=[6,,,,(n/r)sin ((Tr/n)(t-’))], V(t)
[6,,,, cos ((Tr/n)(t-’))], and in this case U,(t) is nonsingular for all such that t-" is not
an integer, and for " + k, k a positive integer, one has that the null space of U,0" + k)
is one-dimensional with basis vector e). The significance of these two considerations of
systems which at first sight may be thought to be equivalent will be further highlighted
by the result of (2.17) below.

It is to be noted that the theory of (2.1) is no more general than the theory of such
equations wherein A(t)=-O. Indeed, if " I and Z(t) Zl(t; ’), Zz(t)-- Zz(t; 7") are
solutions of the respective initial value problems

Z’ (t)-a(t)Zx(t)= O, Zx() E,
(2.6)

Z’2 (t)+ Z2(t)J(t)= 0, Z20") E,

then fx(t)= Zl(t)Z2(t) and f2(t)= Z2(t)Zl(t) are solutions of the respective systems
f’l(t)+ a(t)A(t)-A(t)fl(t)= O, f10") E and lq(t) 0, 1q20") E, so that in view of
the uniqueness of solutions of such systems we have Z2(t)ZI(t)=E=-ZI(t)Z2(t).
Consequently, under the substitution

(2.7) U(t) Zl(t)Uo(t), V(t) Z (t)Vo(t)

system (2.1) reduces to

(2.1o) L[Yo](t)-=Y’o(t)+So(t)Yo(t)=O, tel

where Sgo(t)= [ C(t) O ]0 -Bo(t)
with Co(t)= Z*l (t)C(t)Zl(t) and Bo(t)=

Z2(t)B(t)Z (t). In particular, hypothesis (o) for (2.i) implies (o) for (2.1o), and an
individual hypothesis (), (,)or (,) holds iff the same hypothesis holds for (2.1o).
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Moreover, if Y,(t), (a 1, 2), are solutions of (2.1) and Yo(t) are the corresponding
solutions of (2.1o) satisfying (2.7) then Y1; Yz}(t)-= Yol; Yoz}(t); in particular, Y1 and
Y2 are conjoined solutions of (2.1) iff Y01 and Y02 are conjoined solutions of (2.10).

Two distinct values tl, t2, (ti < t2), on I are said to be (mutually) conjugate with
respect to (2.1) if there exists a self-conjoined solution Y(t)=(U(t); V(t))of this
system such that U(t)O on [tl, t2], while U(tl) 0= U(t2). Correspondingly, (2.1)is
termed discon]ugate on a nondegenerate subinterval Io of I provided no two distinct
values on Io are conjugate with respect to (2.1).

If [a, b] is a nondegenerate compact subinterval of L then a function H: [a, b]-->
is said to be of class @[a, b] if on this subinterval H is continuous and possesses a
piecewise continuous derivative which satisfies with a piecewise continuous Z: [a, b l->

the differential equation Lz[H, Z](t) 0 at each point of differentiability of H; this
relationship will be denoted by the symbol H[a,b]: Z. Also, @,o[a,b] and
@o,[a, b] are used to denote the subclasses of H @[a, b] satisfying the respective
end-conditions H(b)= 0 and H(a)= 0, and @o[a, b] @0,[a, b] f3 @,0[a, b].

For H, D[a, b]: Z, (a 1, 2), the "Dirichlet function" integral
b

I. {Z’(s)B(s)ZI(s)+ H’(slC(slH(s)} ds

is well-defined, and is an element J[H1, H21a, b] of which on @[a, b]x@[a, b] is
hermitian in the sense that (][H1, H21a, b])*=J[H2, Hlla, b]. As is customary, the
symbol J[H, H[a, b is abbreviated to J[Hla, b ]. If Ha @[a, b ]: Z,, (a 1, 2), and Z1 is
continuous and has a piecewise continuous derivative on [a, b], then an integration by
parts yields the relation

b

][H1, H21a, b]-- H2*Zl[ba’+ fa H(s)LI[H1, Zx](S) ds.

If Y(t)= (U(t); V(t))is a solution of (2.1) and H 6 @0[a, b]: Z, then ,I[U, H[a, b] 0; in
particular, if Y(t)-(U(t); V(t))is a solution of (2.1) and U(a)=0= U(b), then
J[Ula, b]=0. Finally, if Y(t)=(U(t); V(t))is a self-conjoined solution of (2.1) and
H @[a, b]: Z, while there exists a Y: [a, b]--> 2 which is continuous, with piecewise
continuous derivatives, and satisfies H(t)= U(t)Y(t) for [a, b], then

b

J[Hia, b] H* VY[+ | [Z- VY]*B[Z- VY] dt.(2.8)

In particular, if Y(t)=(U(t); V(t)) is a self-conjoined solution of (2.1) with U(t)
nonsingular on [a, b], then for H e @0[a, b]: Z one has H(t)= U(t)Y(t) with Y(t)=
U-l(t)H(t) and Y(a) 0 Y(b), so that from the above relation we have

b

J[Hla, b] | [Z- VY]*B[Z- VY] dt.(2.9)

For [a, b] a nondegenerate compact subinterval of /, each of the following
conditions is of importance.

N[a, b]

J+[a, b]

There exists a self-confoined solution Y(t)= (U(t); V(t)) of (2.1) with U(t)
nonsingular on [a, b ].

][Hla, b] is positive definite on @o[a, b].

A[a, b] (2.1) is disconugate on [a, b].
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In view of the above indicated relations, as in Theorems 5.2 and 5.1 of Williams
[19] one may show that for systems (2.1) satisfying hypothesis (H0) we have the
following"

(2.10) J+[a, b] A[a, b];

(2.11) (e),N[a, b]+J+[a, b].

Also, Theorem 4.1 of [19] yields the result:

(2.12) (,),N[a,b]- U(t)nonsingularon (a,b].

In the finite dimensional matrix case one may show that A[a, b]N[a, b] for
systems (2.1) satisfying (0) and (), so that for such systems the three conditions
N[a, b], J+[a, b] and A[a, b] are equivalent. That this equivalence no longer persists in
the general case considered here, however, is illustrated by the following example of
Heimes [7]. Again, let H be the Hilbert space H 2, [ (--cx3, cx3), the Banach
algebra of bounded linear transformations L[H, H], and consider the equation (2.4)

=- k nnm ], wherewith R(t) E, O(t) 0, and P(t) the transformation with matrix [- 2

k, nrr/(n + 1). Then for 7. I the corresponding solution Y,,(t) (U; (t); V; (t)) of the
associated system (2.1) with coefficients (2.5) is such that U;(t) has matrix
[6,,,k2 sin k,, (t 7. )] If 7. e [0, 1] then U; (t)is readily seen to be one-to-one if 7. and

[0, 1], so that (2.4)is disconjugate on [0, 1]. On the other hand, for 7.= 0 the
transformation U;(1)is not onto, since ,,(1/n)e( is not in its range. Consequently,
U;(1) is singular, and in view of (2.12) the condition N[0, 11 does not hold for the
equation, although A[0, 1] is satisfied.

For systems (2.1)satisfying (S)0), other properties established by Williams [19] are
as follows.

(2.13) (,)-+ (), [19; Thm. 4.31;

(2.14) (9,), U(t)nonsingularon (a,b]-N[a,b], [19; Thm. 4.4];

(2.15) (S)m), (), N[a, b]-+ U; (t) nonsingular on [a, r)U (r, b] for
r [a, b], [19; Thm. 4.5];

(2.16)

(S)), (), N[a, b -/f 7"1, 7"2 are distinct values on [a, b ],
U, 90, (a 1, 2), then there is a
unique solution Y(t)=(U(t); V(t))
of (2.1)satisfying U(7",)
(a 1, 2), [19; Thm. 4.81.

An element W is said to be compact if for each bounded sequence {X,,} in 3 the
sequence {WXn} contains a convergent subsequence. If Tw:3 is defined by
Tw(X)= WX for each X e , then W is a compact element of 23 iff Tw is a compact
operator. The following result is of significance in connection with the discussion of the
following 4.

If (2.1) satisfies (g)o), (g),), and [a, b] is a nondegenerate
(2.17) compact subinterval of l on which C(t) is compact for [a, b],

then the conditions N[a, b], J+[a, b] and A[a, b] are equivalent.

Williams [19; Thm. 5.4] established this result for (2.1) under the additional require-
ment that A(t) and A*(t) are compact for [a, b]. This additional requirement is not
needed, however, in view of the possible transformation of (2.1) into (2.10) by a
substitution (2.7).
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3. Polar coordinate transformations. Another pertinent question is the extension
to differential systems (2.1) in a B*-algebra of the generalized polar coordinate
transformations established for finite dimensional matrix problems by Barrett [1] and
Reid [14], [15]; see also, [16; Probs. VII.2: 6, 7, 8; VII.5: 14, 15; V’II.7: 3, 4]. For A, B,
C satisfying hypothesis ((C)o)on/, and elements , of 3, let

(3.1) Q(t; , )= B(t)* + A(t)cb* +A*(t)*-cbC(t)*,

(3.2) M(t; , ) A(t)* +C(t)cb* +dB(t)*-A*(t)*.

In the finite n-dimensional matrix problem, if -I and Y(t)=(U(t); V(t)) is a
conjoined basis for (2.1) (i.e:, the column vectors of Y(t) form n linearly independent
solutions of (2.1) which are mutually conjoined) satisfying Y(z)= (Uo; V0) we have

(3.3) (i) U’Uo+ Vo*Vo>0; (ii) V*oUo-U*oWo-O.
Moreover, there exist o, qo, Ro satisfying

(3.4)
(i) R*oRo U*o Uo + V*o Vo,

(ii) Uo- o*Ro, Vo- qo*go,

and for any such set o, o, Ro we have

(3.5) (i) oo* /oo* E, (ii). oo*-oo* 0,

and the solutions (t), (t), R (t)of the differential systems

A[, ](t)---’(t)-Q(t; (t), (t))(t)= 0,
(a)

(3.6) A_[, ](t)= ’(t)-Q(t; (t), (t))(t)= 0,

(b) (-)= o, q(r) qo,

(3.7)

are such that

(a) A[, , R](t)=-R’(t)-M(t; (t), (t))R (t)= O,

(b) R (z)= Ro,

(3.8) U(t) *(t)R (t), V(t) *(t)R (t) for 6 I.

Conversely, if z I and (t), (t), R(t) are solutions of (3.6), (3.7), where Ro is
nonsingular and o,o satisfy (3.5), then U(t), V(t) defined by (3.8)is a conjoined basis
for (2.1) with

(3.9) R*(t)R (t)= U*(t)U(t)+ V*(t) V(t).

Now for (2.1) in a general B*-algebra setting not all of the above statements
remain true, and we shall proceed to diagnose the needed alterations to obtain a valid
representation theorem.

Consider a self-conjoined solution Y(t)= (U(t); V(t))of (2.1)satisfying Y(z)=
(Uo; V0) for a given z e L Then (3.3ii)is a consequence of Y(t) being self-conjoined,
and as a partial extension of the concept of a conjugate basis we postulate that (3.3i)
holds. Then the positive hermitian element Uo*Uo+ V Vo of possesses a unique
positive hermitian square root/o that commutes with all elements of 3 that commute
with U’Uo + V’Vo (see [10; p. 486], or [18; pp. 183,231]; the power series expansion
used in [14] to obtain the corresponding result for matrices may also be adapted to
obtain the stated result) and the most general solution of (3.4i) is R0-K/0 where
K is such that K*K E. Any such determined R0 is nonsingular and conditions
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(3.4ii) determine uniquely o and o. Moreover, with o, o, Ro thus determined,
relations (3.3), (3.4) imply (3.5).

Now in view of the specific form of O(t; , ) defined by (3.1) it follows that this
function is Lipschitz in , on any set [a, b] x r x r, where r {X: X E , IIXII r},
and consequently by well-known existence theorems (see, for example, [9; 3.4])
there exists locally a unique solution (t), (t)of (3.6a, b). Now if a solution
((t); (t)) of (3.6a) exists on a subinterval I0 of I containing z, then on I0 the functions
G(t)- (t)*(t)+(t)*(t) and H(t)- (t)*(t)-d(t)*(t) satisfy G’(t)-
O(t)H(t)-H(t)O(t), H’(t)= a(t)Q(t)- Q(t)G(t), G(z) E, H(’) 0, where for
brevity we write O(t) for Q(t; (I)(t), (t)), and consequently in view of the uniqueness of
solution of this linear system we have G(t)=-E, H(t)=-O for EIo. In particular,
O<--(t)d*(t)<-E and O<-(t)*(t)E, so that Sp[(t)cI)*(t)]m[0,1] and
Sp [(t)*(t)] m [0, 1] for E Io. As the spectral radius of an hermitian element is equal
to its norm, we then have [](I)(t)]]2 [[(t)*(t)l] <_- 1 and [[(t)[I2 I[q(t)q*(t)l] _-< 1, so that
][(t)[[<_-1 and I[q(t)]]<_-1 throughout Io. As a result of this uniform boundedness of
norms of (I)(t) and (t) throughout an interval of existence, the usual continuation
argument for finite-dimensional systems (see, for example, [16; Thm. 1.5.7]) remains
applicable to conclude that the solution (t), (t) of (3.6a, b) is uniquely extensible to
the entire interval I. For the special case of the generalizations of the sine and cosine
functions, i.e., for (Uo; V0) (0; E) or (E; 0), this type of argument has been noted by
Kreith and Benson 11]. Another procedure for the proof of this result is to consider an
arbitrary compact subinterval [a, b] of I containing r, and on [a, b] determine the
solution of (3.6a, b) by iteration, starting with o(t)---o, o(t)---qo, and consider
successively

--xIZ;+l(/)-- Q(t; di(t), xIYi(t))dPi+l(t)= 0,

(I)+l(t)-- Q(t; i(t), i(t))i+a(t) 0, Y]+ (T) I3’0

After solutions (t), qt(t) of (3.6a, b) have been obtained, R (t) is uniquely determined
by (3.7a, b). Moreover, R(t) is nonsingular for EL with inverse S(t)= R-a(t) the
solution of the corresponding linear problem S’(t)+ S(t)M(t; (t), (t))= 0, S(-)=
R1. In particular, we have

(3.10) (t)dP*(t)+(t)*(t)=-E, (t)cb*(t)-dP(t)qt*(t)-----O, El.

Now if (t), (t), R(t) are differentiable functions satisfying systems (3.6) and
(3.7), the functions U(t), V(t) defined by (3.8) are differentiable on I, and one may
verify readily that

(3.11)
LI[U V]--(hT[(I), I3’]):R + Gl[CI), q]R-*A[, ,R],

L2[U, V] (A[, ])*R + G[, ]R +*A[, , R],

where

(3.12)

with

GI[(I), air] M[C*_A*qt*]+N[A* +B*],

O2[cI), ] N[C*-A**]-M[A* +B*],
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In the finite dimensional matrix case the conditions (3.10) imply that the matrix

o(t) -.(t)]
(t) O(t)J

is unitary, and hence also that theM and N defined by (3.13) are also equal to 0. In this
case, for (t), (t), R(t) solutions of (3.6), (3.7) we have that Y(t)= (U(t); V(t))
defined by (3.8) is a solution of (2.1), and in view of the relations (3.4ii) it follows that
Y(t) has initial value Y(-)= (Uo; Vo). For the general B*-algebra case the fact that
(; )is a solution of (3.6a) implies that the functionsM andN defined by (3.13) satisfy
M’(t)=- 0, N’(t)=- O, so that these functions are indeed constant, although they need not
be 0. For example, let H be the Hilbert space/2, the B*-algebra L[l2,/2], and as usual
identify functions on I to 3 by their matrices. Let A 0, B E, C(t)=- [C (t)] a real
symmetric matrix with C12(t) 1, and for r=0 let Uo= [6,+], (a, fl 1, 2,...),
V=0. Then U*oUo+ VVo=E, and (3.4)is satisfied by Ro=E, o Uo* [6,+x],
o=0, in which case M(t)--E-*oo-*oo [66] and N(t)--O. In particular,

the element in the first row and first column of the matrix of G[, ](z)is Cx2(z)= 1, so
that for U(t), V(t) defined by (3.8) in terms of the solutions (t), (t), R (t) of (3.6),
(3.7) we do not have LI[U, V](7-)- 0.

In view of this example it is clear that in order for solutions of (2.1) to have a
representation (3.8) in terms of solutions of systems (3.6), (3.7) one must augment the
hypotheses beyond those which suffice in the finite dimensional matrix case. In
particular, the following result is valid for systems (2.1) in the B*-algebra context.

THEOREM 3.1. If r I and Y(t)= (U(t), V(t)) is a self-conjoined solution gf (2.1)
such that Y(z) (Uo; Vo) for which (3.3i) is satisfied, and there exist elements o, o, Ro
of 8 satisfying conditions (3.4), (3.5) and

(3.14)

then in terms of the solutions (; ; R) of (3.6), (3.7) we have the representation (3.8);
moreover,

(3.15) U*(t)U(t)+ V*(t)V(t)>O fortI.
Conversely, if (t); (t); R (t) are solutions of (3.6), (3.7) where Ro is nonsingular and
o, o satisfy (3.5) and (3.14), then Y(t)=(U(t); V(t)) defined by (3.8) is a self-
conjoined solution of (2.1) and U*(t)U(t)+ V*(t)V(t)= R*(t)R(t)>O.

4. Related criteria for equations (2.4). In this section we shall consider an equation
(2.4) with coefficients that satisfy hypotheses (9’) on a noncompact interval I (c, ). If
[a, b] c L then for an equation (2.4) the class [a, b] is the set of continuous functions
H: [a, b] which have piecewise continuous derivatives; moreover, for such H we
have

(4.1)
b

;l[Hla, b] I, {H*’(t)[R(t)H’(t)+ O(t)H(t)]+ H*(t)[O*(t)H’(t)+ P(t)H(t)l} dt.

For such equations we shall be concerned with the condition J/[a, b J, or the weaker
condition .l:[a, b] that J[Hla, b] => 0 for arbitrary H @0[a, b ].

Now let denote the class of positive linear functionals F on ; see, for example,
Rickart [18, Ch. IV, 5]. In particular, such an F is hermitian in the sense that
F(X) F(X*) for arbitrary X , and F(X) >= O, {F(X)> 0}, if X ->_ 0, {X > 0}. Also, if
the coefficient functions R, P, O satisfy (S’) then the related functions RF(t) F(R (t)),
PF(t)=F(P(t)), Qv(t)=F(O(t)) are continuous on I with Rv(t)>0. If [a, b]c I and
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rt(t) is a continuous complex-valued function which has piecewise continuous deriva-
tives on [a, b], and r/(a) 0 rt(b), then H,(t) l(t)E is an element of o[a, b] and

b

F(,I[H,Ia, b])= Ja {l’(t)[RF(t)rl’(t)+ Ol(t)q(t)]
(4.2)

+ l(t)[((t)rl’(t)+ P(t)q(t)]} dt.

Now by the classical oscillation theory for second-order scalar equations (see, for
example, [16; Chs. V, VI for real coefficients, Ch. VII for complex coefficients]) a
necessary and sufficient conditions for the disconjugacy of the scalar equation

(4.3) [Rv(t)u’(t) + O(t)u (t)]’ Ov(t)u’(t) + P(t)u (/)] 0

on a subinterval [Co, oo) of I is that for arbitrary nondegenerate compact subintervals
[a, b] of [ao, oo) the integral (4.2) be nonnegative for arbitrary scalar functions rt
which are continuous, have piecewise continuous derivatives on [a, b], and r/(a)= O=
rt(b). Consequently, we have the following result.

THEOREM 4.1. If hypothesis (g’) is satisfied on I (c, ), and for arbitrary ao I
there is an F such that the scalar equation (4.3) is not disconugate on [ao, c), then
there is no nondegenerate subinterval Io [ao, c)oflsuch that l[Hla, b] >= 0 for arbitrary
H 6 o[a, b]. In particular, ifP(t)- O*(t)R-a(t)O(t) is a compact element of for L
then there does not exist a subinterval I0 [ao, c) (c, c) on which (2.4) is disconfugate
whenever there exists a functional F such that the scalar equation (4.3) is not
disconjugate on arbitrary [a0, )= (c, c).

In the context of the C*-algebra of bounded linear transformations in a Hilbert
space, results of the character of the first sentence of this theorem are to be found in the
papers of Etgen and Pawlowski [4], and Etgen and Lewis [5].

We shall now consider another class of related criteria for equations (2.4)satisfying
hypothesis (’) on an interval I (c, c). If Io [a0, c), where ao /, and 6 > 0 is such
that also ao- 6 /, then for s [-6, c) the elements Rs(t) R (s + t), Ps(t) P(s + t),
Q Q(s + t) of also satisfy hypothesis (’) on [a0, ). Moreover, if [a, b] Io and
Ho[a,b], then H(t)=H(t-s), t[a+s,b+s] is of class o[a+s,b+s], and a
simple change of variable yields the relation

b

,l[Hla + s, b + s] J,, {H*’(t)[R(t)H’(t)+ Qs(t)H(t)]
(4.4)

+ H*(t)[Q* (t)H’(t) + P(t)H(t)]} dt.

For a given H @o[a, b] the right-hand member of (4.4) defines a continuous element
J[Hla, b] of B on [-, ), to which one may apply continuous linear transformations
corresponding to those considered for the finite-dimensional matrix case in Reid [17].
For simplicity, however, attention will be limited to the case of transformations
generated by a nonnegative piecewise continuous real-valued function g with compact
support on [-6, ) and

_
g(s) ds 1. A particularly important instance is the integral

mean transformation determined as follows. Let 0x(t) 0 for It[> 1, 01(/’) 1/2 OI1[--1, 1],
and for 0 < h < 6 set Oh (t) h -O(h- t). Then g Oh (t) is a function of the desired type.
Another important example is that of a Friedrichs mollifier function of class S, with
support on [-1, 1], and

_
01(t)dt= 1. Then whenever R, P, O satisfy (H’)on

I=(c,c), aoL and 6>0 is such that also [ao-6,)L the functions R(tlg)
_

g(s)Rs(t) ds, P(tlg)

_
g(s)Ps(t) ds, O(tlg)

_
g(s)O(t) ds are elements of
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for [ao, oo) which satisfy (’). Moreover, if [a, b c [ao, oo) and H o[a, b) we have

rb

I g(s)][Hs[a + s, b + s] ds / {H*’(t)[R (tlg)H’(t)+ Q(tlg)H(t)]
(4.5) aa

+ H*(t)[O*(tlg)H’(t)+ P(tlg)H(t)]} dt,

and therefore we have the following result.
THEOREM 4.2. If hypothesis (’) is satisfied on I (c, ) and for arbitrary ao I

and 6 > 0 such that ao 6, c I there exists a g ofthe above described sort with compact
support in [-6, ), and such that the functional ]g[Hla, b] defined by the right-hand
member of (4.5) fails to be nonnegative for arbitrary H @o[a, b] and [a, b] [ao, ),
then there is no nondegenerate subinterval [ao, ) oflsuch that J[Hla, b] => 0 for arbitrary
H @o[a, b] and [a, b]c [ao, c). In particular, ifP(t)-O*(t)R-l(t)O(t) is a compact
element of for I, then there does not exist a subinterval I [ao, c)c (c, o) on which
(2.4) is disconugate whenever there exists a g of the above described sort such that
]g[H[a, b] fails to be nonnegative for arbitrary H Do[a, b] and [a, b] c [ao, ).

5. Green’s functions and seif-ad]oint boundary problems. For a system (2.1)
satisfying hypothesis (9o) let Y(t)=(U(t); V,(t)), (a 1, 2), be solutions of this
system which individually are self-conjoined and { Ye; Yx} YI*ff;Y2----’. For exam-
ple, if z I such a system is given by Yl(t) YI (t) and Ye(t) Y (t) as defined by (2.3).
If we write in matrix form

(5 1) (t)= [Yl(t) Y2(t)] [ Ul(t)V(t) Ve(t)J’
then the above specification of Y1 and Ye may be written as *(t)(t)=-jL If
S: I is continuous, then for the consideration of the solvability, of the non-
homogeneous equation

(5.2) Y’(t)+ l(t)Y(t)= S(t), I,

the method of variation of parameters involves seeking solutions of the form Y(t)=
(t)T(t), where T: ! 2. Upon substitution in (5.2) it follows that if such a
solution exists, then eg(t)T’(t) S(t), so that T’(t) *(t)S(t), T’(t) -,,*(t)S(t),
and hence there exists a To such that

T(t)= To-- #*(s)S(s) ds +- #*(s)S(s) ds.

That is, if there exists a solution Y(t) of (5.2) of the form Y(t)- (t)T(t), then

(5.3) Y(t)= (t)To-- (t)*(s)S(s) ds +- (t)*(s)S(s) ds.

In the finite dimensional matrix case the above steps are reversible, and (5.3)
provides the general solution of (5.2). In the B*-algebra context, however, additional
consideration is needed. For Y(t) given by (5.3) direct computation yields

(5.4) Y’(t)+ (t) Y(t) -(t)*(t)S(t),

and consequently for this equation to reduce to (5.2) we need -(t),,*(t)-- or
(t)*(t)=o, where g rY2()is the matrix representation of the identity trans-
formation on x . Again, in the finite dimensional matrix case this result is a ready
consequence of the given relation *(t)(t)=. In general, the condition
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*(t)C(t)=- implies that lg’(t)=(t)C*(t) is such that 7g’(t)C(t)=
(t)C*(t)C(t)= (t)2= -(t)=cz(t), so that [Tg’(t)-C]c(t)--0. In partic-
ular, if there exists a z I at which 0") has a right-hand inverse, then
Moreover, from (2.1)it follows that 7#"(t) [s(t)] W(t) W(t)[se(t)], and from the
existence and uniqueness theorems for linear equations (see, for example, [10; 6.1])
it follows that if there exists a single value z I at which W0-)= then 7#’(t)--- on/.
Consequently, we have the following result.

THEOREM 5.1. If Y(t) (Us(t); V(t)), (a 1, 2), are self-confoined solutions of
(2.1)satisfying Y_; Y1} -E, and there exists a z Iatwhich (z)*(z)=, then the
general solution o]’ (5.2) is o[ the form (5.3). In particular, this condition holds if we have
Yl(t) y1, (t), Y2(t) Y (t) for some - I, since in this case 0-) .

Now associate with (5.2)two-point boundary conditions

MaY(a)+MbY(b)=O,

where Ma and Mb are elements of JJ2(); that is,M and M0 are matrix representations
of continuous linear transformations on 23 into 3 23. Moreover, if for a function
Y" [a, b] we denote by f" the boundary element (Y(a); Y(b)) of Y(t), then (5.5)
may be written as

(.’) ?=0,
where denotes the 1 2 matrix [M,, M0]. If Y(t) is a solution of (5.2) given by (5.3),
then

(5.6) f" OTo + - ooj*(s )S (s ds,

where @ is the 2 2 matrix diag {g’,-g’} of ’2( ), and consequently condition
(5.5’) becomes

(5.7) 0 [0lTo+ t@*(s)S (s ds.

THEOREM 5.2. If the matrix yPl of 12() has a reciprocal [///]-1 satisfying
(0)([0]-1) g,, ([0]-a)(0) g,, then for arbitrary S: [a, b] 23 23 the equation
(5.2) has a unique solution satisfying (5.5), given by

b

(5.8) Y(t)= J, cg(t, s)S(s) ds,

where

c(t, s)= -1/2(t)[ +[ll-lJ/t]#*(s), a <=s < t<=b,
(5.9)

_1/2(/)[_ + [j//0]_ j//@0],(s) a<=t<s<=b.

As in the case of finite dimensional matrix differential equations, the (t, s)of (5.9)
is called the Green’s matrix associated with L[ Y] subject to the boundary conditions
(5.5). In view of the specifications of the Y(t), Yz(t)entering into the above derivation,
we also have the characteristic discontinuity along the line s,

(5.10) (s+, s)- (s-, s)= -(s)C*(s) -, a < s < b.

Moreover, as in the finite dimensional matrix differential equation case (see, for
example, [16, 8 of Ch. VII]) if one has satisfied the "self-adjointness" condition

(5.11) MoM* MbM’ O,
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then it may be established that

(5.12) (t, s)-[(s, t)]*.

In particular, if (t, s) is written as an element of ))s(),

[Gl1(/, s) a12(t,
(5.13) (t, s)=

Gzl(t, s) Gz2(t, s)

in view of (5.10), (5.12) the all(t, s) and G2z(t, s) may be defined on [a, b] x [a, b] as
continuous elements of which are hermitian in the sense that Ga(t, s)=- [Ol(s, t)]*,
G22(t, s) G22(s, t)]*.

Consider, in particular, the case of boundary conditions

(5.14) U(a)= 0,

which may be written as (5.5)with

M’-
0 O’

U(b)=0,

If it is supposed that Ya (t) (Ua (t); Va (t)) defined by Ua (a) O, Va (a) E is such that
Ua(b)is nonsingular, then for Y(t)= (U(t); V(t)) a self-conjoined solution of (2.1)with
U(b)= Owe have { Y; Y,,}= Y*Y=-E iff V(b)= U,*-1 (b), in which case U(a)=-E
and V(a)= V*(a). In this instance, if Yl(t) Ya(t) and Y2(t)= Yb(t)U*-1 (b), then
(t)=[Yl(t) Y2(t)] satisfies -.Y*(t)(t)=, (t)o*(t)=-, and

has inverse

u,(a) u,(b)J u(b) o

0 U1

(b)][’////]- [-E 0

satisfying []-1[] ’ [][]-1. In this case we have [if(t, s)]* q3(s, t) for
(t, s) [a, b] [a, b], # s, and

Uz(t)U*I (s) Vz(t)V (s)](5.15) (t,s)=- Vz(t)U* (s) V2(t)V*l (S)J’
a<-s<t<=b"

Moreover, for arbitrary continuous S1: [a, b]-> 8 the unique solution of the boundary
problem

LI[U V](t)=S(t), L2[U, V](t)= 0,
(5.16)

U(a)= 0, U(b)= 0,

is given by

(5.17) U(t)= Gx(t, s)S(s) ds,
b

V(t)= Ia G21(t, S)Sl(S) d$,

where Gll(t, s)=-Uz(t)U*I (s), G2a(t, s)=-Va(t)U (s) for a _-<s < t_-<b, and
Glx(t,s)=-Ul(t)U(s), G2(t,s)=-Vx(t)U(s) for a<-t<s<-b. In particular,
G1 l(S +, s)- Gl(S-, s) 0 for s (a, b), and. consequently along s the element
G(t, s) may be defined in a unique manner to be continuous in (t, s) on [a, b] [a, b]
and hermitian in the sense that all(t, s) [all(S, t)]*.



OSCILLATION AND BOUNDARY PROBLEM THEORY 679

It is tO be emphasized that the above discussion of the Green’s function involves
most intimately the self-adjointness of the system, and thus for second order linear
differential equations with null end-conditions does not possess the generality of
Heimes [7], [8, 2], wherein no assumption of self-adjointness is made. Also, in our
discussion there has been no consideration of systems wherein the coefficient functions
are assumed to be merely closed linear operators, as in Heimes [8; 3].

On the other hand, as will be discussed in the following section, the above
determination of the Green’s function and its hermitian character enable one to reduce
the consideration of certain boundary problems in Hilbert .space to known results on
symmetrizable compact (completely continuous) linear transformations on an allied
Hilbert space.

6. Boundary problems in Hiibert space. Now a B*-algebra is isometrically
*-isomorphic to the C*-algebra of bounded linear transformations on a complex
Hilbert space H, (see, for example, Rickart [18; Ch. IV]), and in this section will
denote the C*-algebra of such transformations T: H -> H. The coefficient functions A,
B, C of (2.1) are supposed to satisfy hypothesis (S)0), and in addition to the operator
equation (2.1) we consider the vector equation

(6.10)
LI[u, v](t)---v’(t)+C(t)u(t)-A*(t)v(t)= O,

L2[u, v](t)-- u’(t)-A(t)u(t)-B(t)v(t)= O,

where a solution of (6.10) is a pair of vector functions u, v on I to H which possess strong
derivatives satisfying (6.1) on L By the usual existence theorem (see, for example, [10;
6.1]) for given initial values u0, v0 and arbitrary - I there exists a unique solution

y(t)= (u(t); v(t)) satisfying y(r)= (u0; v0).
If y,,(t)=(u,(t);v(t)), (a=l,2), are solutions of (6.1), then {yl;y2}

--(Vl(t), u2(t))H + (Ul(/), v2(t))H is constant on L and if this constant is zero the vector
solutions yl and y2 are said to be mutually conjoined or conjugate. Also, corresponding
to (2.2), the system (6.1) may be written as a vector equation

(6.1) y’(t)+ C(t)y(t)= O,

where y: I --> H2 H H, and as usual the inner product (., )n2 for y (u, v) and
sr= (:, r/) is (y, st)n2 (u, :)H +(v, rt)H, while ,, and (t) are bounded linear trans-
formations on H2 with matrix representations (2.2).

For [a, b] a nondegenerate compact subinterval of L let H denote the class of
functions f: [a, b] --> H such that for arbitrary s H the scalar function (f(t), )n .is
(Lebesgue) measurable and (f(t.), f(t))n is (Lebesgue)integrable on [a, b]. If for f and g
elements of H we set (f, g)n , (f(t), g(t))ndt, then H is a Hilbert space E[a, b] with
inner product (f, g)n, (see Bourbaki [2; Ch. IV, 3-6; in particular, Cot. 3 on p. 209]).

Now consider the two-point vector boundary problem

Ll[U, v](t)= AK(t)u(t), Lz[u, v](t)= 0,
(6.2)

u(a)= 0, u(b)= 0,

where K: [a, b]--> is strongly continuous and hermitian for [a, b]. Moreover, for
Ya(t) (Ua(t); V(t)) and Yb(t)= (Ub(t); Vb(t)) solutions of the corresponding opera-
tor equation (2.1) as determined by initial conditions (2.3), suppose that Ua(b) is
nonsingular. As in 5, in terms of Yl(t) Y(t) and Y2(t)= Yb(t)U*a-1 (b) the cor-
responding Green’s function has the form (5.15), and hence in view of (5.17)we have
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that (u(t); v(t)) is a solution of (6.2) iff

(6.3)
b

U(t)----- A I, Gll(t, s)K(s)u(s) ds,

(6.4)
b

v(t)= A Ia G21(t, s)K(s)u(s) ds.

Now forf I-I we have that (Tlf)(t)--" K(t)f(t) and (T2f)(t)= a G11(t, s)f(s) ds for
[a, b] define bounded hermitian linear transformations on I-I into I-I. Moreover,

Tf= T2Tlf is symmetrizable by T1 in the sense that (TxTf, g)rl (f, TTg)rI for f and g
arbitrary elements of I-I. In particular, if T1 is compact, (completely continuous), then T
is also compact, and if in addition T1 is nonnegative then the theory of the integral
equation (6.3) is a particular instance of the theory of symmetrizable completely
continuous linear transformations as treated by Zaanen (see [20; Ch. 12], and his
original papers in Indagationes Mathematicae) and Reid [13]. In particular, the
spectrum of (6.3) consists of only real eigenvalues, each of finite multiplicity, and with
no finite accumulation point. Moreover, there exists a set of eigenvalues ha and
associated eigenelements u,, such that for arbitrary elements x and sc of H we have
(Tx Tx, )n Y_,,,h, (x, Txu,)n(Txu,, )n; that is,

b bI,Ia (G11(t, s)K(s)x(s), K(t)(t))Hdt ds

Z,A,{ f (x (t), K(t)u(t))ndt}l Iab(K(t)U(t), c(t))ndt}.
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SINGULARITIES OF SOLUTIONS TO EXTERIOR ANALYTIC
BOUNDARY VALUE PROBLEMS FOR THE HELMHOLTZ EQUATION
IN THREE INDEPENDENT VARIABLES. II: THE AXISYMMETRIC

BOUNDARY*

R. F. MILLAR

Abstract. A method is developed for locating singularities of solutions to exterior boundary value.
problems for the axisymmetric Helmholtz equation. Through the theory of characteristics, these real
singularities are related to complex singularities in the Cauchy data on the boundary. The singularities in the
unknown data are found by extending into the complex domain an integral equation satisfied by the data.
Results are obtained for axisymmetric Green’s functions for a sphere, and for oblate and prolate spheroids.
Singularities are found at the image points of the prescribed singularities. For spheroids, the results are
believed to be new.

1. Introduction. The singularities of a solution to an analytic partial differential
equation play a fundamental role in determining its properties. Moreover, in the
computation of the solution to a boundary value problem, knowledge of the location of
the singularities (if not of their precise character) is often advantageous.

Recently, a procedure was developed for locating a priori the singularities of
solutions to boundary value problems for second order analytic elliptic differential
equations in two independent variables [8], [9]. Subsequently, the method was extend-
ed to three-dimensional, planar boundary value problems for the Helmholtz equation
[10].

In the present paper, we consider a second special type of three-dimensional
problem for the Helmholtz equation, namely the class of axisymmetric problems. With
respect to a cylindrical coordinate system p, qb, z, with z as the axis of symmetry, their
solutions satisfy the axisymmetric Helmholtz equation

(1) uoo + Uzz + p-uo + k2u O.

The regularity properties of axially-symmetric, exterior (i.e., radiative)solutions to
the Helmholtz equation have been studied by Colton [2], who obtained information
about the singularities of a solution from the scattered far-field pattern. In particular, he
determined domains that were free of singularities. Points on the axis of symmetry
necessarily were excluded from consideration; this axis is a source of difficulty in the
present work also. Colton’s analysis was extended to the general three-dimensional
problem by Sleeman [11], who reduced the problem to a sequence of axisymmetric
problems. The domains of regularity thereby obtained are axially symmetric. The
gerieral, three-dimensional, vector (i.e., electromagnetic)problem has been discussed
by Weston, Bowman, and Ar [15].

As in the earlier work, we are faced here with two problems. One is the
determination of the singularities in the boundary datathe solution u-and its outward
normal derivative Ou/Ounot both of which are known. This is accomplished by using
an integral equation that relates the data, and extending it analytically into the complex
domain. The second problem lies in relating singularities in the data to the real
singularities of the solution. Here we use the fact that singularities are borne by the
complex characteristics of (1).

* Received by the editors August 3, 1976, and in revised form August 8, 1977.
f Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1. This work

was supported by the National Research Council of Canada under Grant A-8808. A more detailed version of
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The remainder of the paper is organized as follows. After some preliminary
discussion in 2 of notation and symmetry properties of the boundary and the data, we
introduce in 3 the integral equation satisfied by the data. The analytic continuation of
this integral equation into the complex domain of the arclength parameter is performed
in 4 and, in the following section, singularities of the data are found. In 6 and 7,
singularities are located for some specific cases (sphere and spheroids); in particular,
image singularities in the spheroids corresponding to an exterior axisymmetric Green’s
function are located. Some concluding and summarizing remarks are made in 8. A
brief discussion of several functions, and the effect of a change from arclength to
another parameter, will be found in the appendices ( 9).

2. Preliminaries. We consider radiative solutions (i.e., solutions that satisfy the
Sommerfeld radiation condition) to the three-dimensional Helmholtz equation in the
unbounded region D exterior to a smooth, closed, analytic surface Y_, that possesses axial
symmetry about the z-axis. The solution u is analytic in D LI Y_,, and is axially symmetric.
Thus we need only examine u in some meridian plane II.

The plane II cuts Y_, in a simple, closed analytic curve 3", which is symmetric With
respect to the z-axis. A point on 3’ may be specified by its arclength s. We choose a
coordinate origin inside E, and we measure s in the positive sense from the point where
the negative z-axis meets 3". A generic point in space will be specified by cylindrical
polar coordinates (p, ,b, z), 4 being measured from the meridian plane H. In this plane,
a point will be specified by Cartesian coordinates (p, z) and, for a point on 3", we have
p p(s), z z(s). We shall denote the part of 3" in p > 0 by tr. If 21 is the length of 3", the
functions p(s) and z (s) have period 2l and are holomorphic for real s; p(s) is odd and
z(s) is even; we shall assume that p(s)> 0 for 0 < s < l. Denote u and Ou/Ou on 3" by u(s)
and v(s) respectively. Then u(s) and v(s) are even, holomorphic for real s, and have
period 21.

3. Integral equation tor the data. For some common boundary conditions--
Dirichlet, Neumann, or linear--we are able to locate singularities in the boundary data
without first determining the unknown, by using an integral equation that is satisfied by
the data.

Let T denote a point in H, exterior to 3", with rectangular coordinates (po, Zo),
po --> 0. Let P be a point in E with cylindrical coordinates (p, b, z), v be the outward unit
normal vector to Y_, at P, and let R be the distance from P to T. We suppose that u
corresponds to a scattered field that satisfies the three-dimensional Helmholtz equation
and has associated with it the time-dependence factor e -’. Then we may represent u at
T by Helmholtz’s formula ([1, Chap. 1, 4.2]):

(2) 4zru(T) J [u(P)O/Ou-v(P)l eikR/e dE.

Here eikR/R is the fundamental solution to Helmholtz’s equation that is outgoing for
kR >> 1.

Since R > 0, we may write the integral in (2) as a repeated integral:

47ru(T) f, [u(s)H(S, T)-v(s)G(S, T)]p(s) ds,

where S: p p (s), z z (s), is a point on

(3) G(S, T)= 2 e ’kn/R
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0
(4) H(S, T)=- 2 -(e’kR/R) d&,

and we have written the surface element on ,E as dE p(s)dc ds.
If neither S nor T lies on the axis of symmetry, and if T approaches S, we find that

G behaves logarithmically, like a fundamental solution in two dimensions.
Consequently, if T approaches a point on tr specified by arclength t(0 < < l), we have

(5) 2rru(t) Jo [u(s)U(s, t)-v(s)G(s, t)]p(s)ds.

Here G(s, t) denotes G(S, T) for S (p(s), z(s)) o’, T (p(t), z(t)) o’, and similarly
for H(s, t). The integral is improper, but convergent, at s t. Moreover, for 0 or we
again obtain (5) which therefore is valid for 0 -<_ _-< I.

On employing an appropriate boundary condition, (5) yields an integral equation
for the unknown data on [0, l]. We shall assume that this equation has been solved so
that u(s) and v(s) are known on [0, l], although precise knowledge of these is not
needed.

Our next object is to find analytic relations in Im > 0 and in Im < 0 that reduce to

(5) when Im 0. From the given fact that the boundary values are analytic (and
therefore continuous) on r, or from a direct examination of the continuity properties of
(5), it follows by a well-known result ([12, 4.51]) that these analytic relations are
analytic continuations of each other, and of (5).

4. Analytic continuation of integral equation.
4.1. The function G. This is given by (3), with R defined for real s, in [0, l] as the

nonnegative root of R 2 )2=-p(s +p(t)2+[z(s)-z(t)]2-2p(s)p(t)cos&. If we let
a(s, t)=-2p(s)p(t), /3(s, t)=p(s)2+p(t)2+[z(s)-z(t)]2, st(s, t)/3(s, t)/a(s, t), then

R2=/3-a cos 4’
=,(-cos 4,).

As defined above, R is not an analytic function of s and t. To facilitate the
continuation of (5), we introduce the analytic function r:

(6) r ( a COS )1/2,
where, for all real or complex s and t,

(7) r Jr] e,
with

(8) 0 1/2 arg (fl a cos &),

and

(9) 0=0 for O<s<t<l.

Then we define a function L, for 0 < s < < by

io(10) L(s,t)--2 ek/rd&.

In a complex neighborhood of (So, to)with 0< So< to < l, r does not vanish, and is
analytic in s and t; consequently L is analytic in this neighborhood. By definition
L(s, t)= G(s, t), 0 < s < < I, but we shall find that L(s, t) # G(s, t) if 0 < < s < 1.
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Equations (7) to (10) may be used to continue L(s, t) analytically into the complex
domain from an initial point (So, to) with 0 < So < to < l. Singularities of the first kind
occur in L at the singular points of p(s), z(s), p(t), or z(t). Then, in continuing the
integral (10), it may be necessary to deform the integration path (F, say) away from the
real 4-interva! (0, -) to avoid singularities of the integrand. Singularities of the second
kind may arise when F becomes pinched by singularities of the integrand; see, for
example, [4, Chap. 1, 3]. If a --> 0 and sr becomes unbounded, we find singularities of
the third kind. Singularities of the first kind are easily found, and we shall not consider
them further.

We discuss now a few properties of L(s, t); for continuity of exposition, a fuller
examination of L and other functions that arise is relegated to the appendices ( 9).

As a function of 4, the singularities of r are branch points located where

(11 cos b ’.
When (s, t) (0, l), we have sr > 1 since a (s, t) > 0. We define O(--- O(r)) to be the root of
(11) that is negative imaginary when 0 < s < < I. Then the solutions to (11) are

(12) +/-O(()+ 2nzr, n 0, +/- 1, +/-2,. .
The b-plane is cut along the line segments that join to -, and other corresponding
pairs of solutions (12).

If s and vary in a sufficiently small neighborhood of an initial real point (So, to),
with 0 < So < to < l, the solutions to (11) move in a corresponding fashion. The contour F
may be deformed to avoid a singularity unless a branch point approaches an endpoint of
F. Thus we find possible singularities of the second kind if r =+1, that is, if [p(s):
p(t)]2+[z(s)-z(t)]2=O. In each case, one endpoint of F is pinched by two branch
points, and it may be shown that L(s, t) is singular; see 9.3.1.

We may also show that L(s, t) G(s, t), 0 < < s < l, and in particular that

(13) L(s,t+/-iO)=mIaeikr/rdd+G(s,t), O<t<s<l.

Here A is a closed contour enclosing the cut between and -cI:,, which is described in
the anticlockwise sense. The result may be established first for in a neighborhood of s,
and then extended to 0 < < s. Its proof requires a careful study of the loci of +/-, and
makes use of the fact that r is an odd function of b.

4.2. Analytic continuation of oV(S)G(s,t)O(s)ds. Consider the function E,
defined for small but nonzero Im by

E(t)--- | v(s)L(s, t)p(s) ds, 0< Re < I.
Jo

Since L(s,t) is only logarithmically unbounded at s=t (see 9.3.1) this integral
converges uniformly in t. Thus ([12, 2.85]) E is analytic for 0<Re t</ if Imt is
sufficiently small but not zero.

By letting Im 0 and ’0 in turn, we find

E(t iO) | v(s)G(s, t)p(s) ds | v(s)M(s, t)p(s) ds, 0 < < l,
ao

where

(14) M(s, t)= Ia e ikr/r d(
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is analytic for s and in complex neighborhoods of the real interval (0,/); see 9.1. Thus
the continuation of Io v(s)G(s, t)p(s) ds for 0< Re < and for Im sufficiently small is

/,

(15) Jo v(s)L(s, t)p(s) ds + Jt v(s)M(s, t)p(s) ds, Im <> 0.

The path of integration from the complex point to is arbitrary, except that it must not
sweep across any singularities of the integrand as varies.

4.3. Analytic continuation of o u(s)H(s, t)p(s) ds. We compare H(s, t), given by
(4), with the analytic function N(s, t), where

N(s, t)=- 2 -(e/r)d

(16) 2

[z’(s) O/Op(s)-p’(s) O/Oz(s)IL(s, t).

In the previous manner, we find that N(s, t) H(s, t), 0 < s < < l, and

fA ikr/N(s, + iO) q: -- (e r) dc + H(s, t), 0 < < s < 1.

N(s, t) has an integrable singularity at s t; see 9.4.1. We find that the continuation of

o u(s)H(s, t)p(s)ds near the real axis is

(17) fjo u(s)N(s, t)O(s) ds + u(s)P(s, t)O(s) ds, Im <> O;

here

(18)
P(s, t)= -u (eikr/r) dc

[z’(s) c3/Op(s)-p’(s) O/Oz (s)]M(s, t).

4.4. Analytic continuation of u(t) and v(t) near 0< t < I. By using (15) and (17),

(19)
2zru(t) Io [u(s)N(s, t)-v(s)L(s, t)]p(s) ds

+ i [u(s)P(s, t)-v(s)M(s, t)]p(s)ds, Im t<>0.

When v(s) is prescribed, this becomes a linear Volterra integral equation for u(t) in the
complex domain. It is also useful in connection with the more general linear boundary
condition: v(s)=A(s)u(s)+B(s). For a Dirichlet boundary condition, we obtain a
suitable relation by differentiating (19). Then

(20)

2zru’(t)+/-p(t)[u(t)P(t, t)-v(t)M(t, t)]

Io [u(s)Nt(s, t)-v(s)Lt(s, t)]p(s)ds

+ It [u(s)Pt(s, t)-v(s)M,(s, t)]p(s) ds, Im t0.

we see that the continuation of (5) is
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The differentiation is justifiable because P(s, t) and M(s, t) are suitably well-behaved
near s t; see 9.1.1 and 9.2.1. When s (:0 or l), we have c =/3 2p(t)2 and
r 2p(t) sin 1/2. The integral (14) may be evaluated by the method of residues to yield
M(t, t)= 27ri/p(t); likewise (18) gives P(t, t)=-Triz’(t)/p(t)2. Then (20) becomes

(21)

27r[u’(t) iv(t)] 7riz’(t)u(t)/p(t)

Io [u(s)N,(s, t)-v(s)L,(s, t)lp(s) ds

+ I [u(s)Pt(s, t)-v(s)M,(s, t)]p(s) ds, Im t<>0.

If u(s) is prescribed, we obtain from (21) a linear Volterra integral equation for v(t) in
the complex domain.

The foregoing results are summarized in the following theorem.
THEOREM 1. Let u and v denote the analytic boundary data for a radiative solution

to the axisymmetric Helmholtz equation (1) in the region exterior to an analytic,
axisymmetric boundary surface whose trace in a meridian plane is 3’: (p(s), z(s)),
O<=s <= 2l. Then the analytic continuations of u and v satisfy equations (19) and (21) in a
complex neighborhood of 0 < < I.

5. Singularities of the boundary data. For brevity, we shall cgnfine attention to the
Neumann problem; the other linear boundary conditions introduce no essentially new
difficulties. Then v(t) is prescribed and analytic, and u(t) is determined in some
neighborhood of 0< < by (19), which we re-write as

(22) 27ru (t)+ u(s)P(s, t)p(s) ds A(t)+/- B(t), Im 0.

where

(23)

and

(24)

A(t)=- Io [u(s)N(s, t)-v(s)L(s, t)]p(s) ds,

B(t)=- v(s)M(s, t)p(s) ds.

Since u(s) is assumed to have been determined from (5) for 0 <- s =< l, A and B are, in
principle, known.

We may continue A (t) out of the neighborhood of 0 < < by standard means. It is
convenient to keep s real. The representation for A (t) may differ from (23) in different
regions of the t-plane, because poles and other singularities of N and L may produce
additional terms. The function/3 may be analytically continued in a similar manner,
except that here the path of integration is not real, and the value/3 (t)may depend on the
choice of contour. Thus A and/3 may be multi-valued. Consequently, A +/3 can be
continued in Im > 0 on a Riemann surface Y/, and A -/3 can be extended in Im < 0
on a Riemann surface _.

Consider now the integral equation (22), in Im > 0. The right-hand side is known
and holomorphic on Y/. Since the sets of singular points of M(s, t) and P(s, t) coincide,
and because the integration path in the integral in (22) is identical to that in (24), P(s, t)
is holomorphic for s on the integration path and /. Consequently, the general
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theory of such integral equations in the complex domain (for example, [13, p. 11, 3])
and uniform convergence of the integral at s allows us to conclude that u is
holomorphic on Yt/. And similarly, u is holomorphic on

_
in Im < 0.

It is possible to show that u and v have period 21 and other properties mentioned in
2. Thus the singularities of u and v are distributed with period 2l.

The above general discussion may be specialized to determine the possible
singularities of u in a given situation. We shall now apply these considerations to a few
specific problems.

6. Singularities for a sphere.
6.1. Singularities of the data; Green’s function. For a sphere of radius a, we have

(25) p(s)= a sin (s/a), z(s)= -a cos (s/a),

and there are no singularities of the first kind. All singularities of the third kind are real,
and do not correspond to singularities in the data. The singularities of the second kind,
which correspond to sr +/-1, are given by s +/-t+2nrra, respectively, where n
0, +/- 1, +/-2, . Consequently A (t) may be continued indefinitely into Im > 0, and into
Im < 0. Moreover, M(s, t) has singularities of the second kind only for sr 1, and the
path of integration in (24) is never pinched if Im 0. Thus, if v is entire, B(t) may be
continued indefinitely. From (22), we conclude that u(t) is holomorphic in Im > 0 and
in Im < 0. On the real axis, u(t) is known to be analytic by other considerations; or
arguments like those in the last paragraph of 3 can be used to prove analyticity. Thus
u(t) is entire and, since u(t + 27ra) u(t), any singularities are at infinity in Im >0 and
in Im < 0.

If v is not entire, B will generally be singular at the same points as v, and u will be
singular at these points also. For example, consider an exterior Green’s function of the
second kind, with singularity at p po(>0), z Zo, and poz + z> a 2. We express this
function as U + u where

U(p, z)= e R d&,

andR

_
2p + p2o + (z Zo)2 2Opo cos &. The normal derivative of the Green’s function

vanishes on the sphere, so

(26) v(s)= 2 e(ikR 1)R-3{[z(s)-zo]O’(s)-[O(s)-oo cos b]z’(s)}

This integral is quite similar to that which defines N(s, t) in (16), and its singularities in
the finite plane may be located in like manner. We conclude that possible singularities of
v occur at those s for which R 0 when b 0 or b rr; that is, when

(27) O(s)2 + OZo + [z (s)- Zo]2 +/-2pop(S).

We insert (25) into (27) and solve for s. The four sets of solutions are given by

(28)

and

(29)

Oo-izo ia exp (+/-is/a)

Oo+ izo= -ia exp (+is

For b 0 or rr (as the case may be), it is not difficult to see that the numerator of the
integrand in (26) does not vanish for those s determined by (28) and (29). These,
therefore, are singularities of v; u will be singular at the same points and at infinity.
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6.2. Real singularities of the solution. Here we employ the theory of charac-
teristics in the complex domain (see, for example, [3, Chap. 16]) to relate complex
singularities in the data to real singularities of the solution. We make use of the property
that a singularity in data that are independent is borne by the characteristics of (1) that
emanate from the singular point. This result has only been proved locally for analytic
equations, the data for which are singular on an analytic manifold imbedded in the
initial analytic manifold; see [14] for recent work and references. However, for (1) the
characteristics are parallel complex hyperplanes, and the coefficients are holomorphic
except on p 0. Consequently, the local results may be extended step-by-step at least
up to p 0. The data at each step will be related in such a manner that a singularity will
be carried forward only on the appropriate characteristic. Similarly, because the data
for a boundary value problem are not independent, a singularity in the boundary data
may not be borne by every characteristic emanating from it; in a given case, we shall use
plausibility arguments to decide whether or not a characteristic is significant in this
respect.

Singularities in the solution may also arise if the initial manifold is characteristic at
some of its points [5], [7]. It has been shown [9, p. 119] that these circumstances do not
prevail at nonsingular points of the manifold obtained if the boundary curve is
parametrized by its arclength.

The boundary is specified by (25). The characteristics through (p(s), z(s)) are

(30) p + iz p(s)+ iz(s).

They meet the real p,z-domain in (p/,z/) and (p_,z_), where p+=
a sin (sl/a) exp (+s2/a), z+=-a cos (sl/a) exp (+s2/a), ands Sl + isz. These points
are inverse (or images) with respect to the circle (25). When u and v are entire, there are
no singularities in the data for finite s, and the interior of the sphere is singularity free,
except possibly on p 0. In fact, there is such a singularity, since a nontrivial radiative
solution that is C2 on and outside the sphere must be singular at some interior point.

In the case of the Green’s function, u and v have singularities at points determined
by (28) and (29). By solving (30) with these, we find that the only significant solutions
are the real points (:tzpa, ZX), where PX--a2pO/(P+Z20), Z1 a2zo/(p2o+Z2o). These are
the image of (po, z0) in the circle, and its reflection in the z-axis.

7. Spheroids. The treatment of the problem for a spheroid is similar to that for a
sphere. However, it is inappropriate to take arclength as the parameter; the changes
occasioned by introduction of a new parameter are described in 9.5. We shall omit
details, and content ourselves chiefly with a statement of results.

7.1. Oblate spheroidal boundary. A point on tr is (p(0), z(0)), where

(31) p(0)= a cos 0, z(0)= b sin 0,

with a > b and -7r/2 < 0 < 7r/2. For a Neumann problem, the continuation of u is
performed with the help of (A.12). In general, w (defined by (A.14)) and u will be
singular where p’(O)2 + z’(0)2 0, for which

(32)

and

(33)

=0,+/-1,+2,...,

--tanh-l(b/a).

The singularities of L, M, N and P, and their effect, may be determined as before. If
w is singularity free with exception of the points (32), we find that u is holomorphic in
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the strip [Im 0[ < r/. There are singularities in Jim 0[ > rt and, in particular, on Im 0
+2ft. For our purposes, the strip IIm 0] < r/ is of most interest.

For the exterior Green’s function of the second kind with singularity at (po, Zo), we
find singularities in v (and in u) for values of 0 that satisfy any of the following four

(34) e iO {po- izo + [(po- izo)2- c211/2}/ (a b ),

(35) e i {po+ izo+ [(po+ i2;o)2-- c2]/2}/(a + b),

(36) ei {-Oo- izo+/- [(po + izo)2- c2]/2}/(a b),

(37) e i {-po + izo+/- [(po- izo)--c2]l/z}/(a + b),

with c 2 a 2 b2.
The characteristics through (p(0), z(O)) are

(38) p +/- iz a cos 0 +/- ib sin 0.

We confine attention to the strip $" -7r/2 <_- Re 0 < 37r/2. For the upper sign in (38),
Im 0 < 0 maps into the exterior of the ellipse (31) and 0< Im 0 < r/ maps into the
interior. The p +/z-plane is cut from -c to c. Points in S for Im 0 > r/map into another
sheet of a Riemann surface on the cut plane. The mapping for the lower sign in (38) is
obtained from this by reflecting 0 in the real axis.

The relevant real singularities that correspond to (32) are the focal singularities at
p +/-c, z =0. Since (32) also determines points on the initial manifold that are
characteristic, the focal points are branch points of the solution in the real domain; the
solution will be multi-valued across the disc 0 _-< p -< c, z 0. Singularities in the data for

IIm 0[ > r/will correspond to singularities in the continuation of the solution across this
disc.

We write po ao cos 0o, Zo bo sin 0o, ao c cosh bo, bo c sinh bo, a c cosh b,
b c sinh b, with -rr/2 <_- 0o <-- 7r/2, bo > 0, b > 0. Then the significant real singularities
that correspond to (34) to (37) are found at (+/-pl, Zl), where

(39) p a cos 0o, z bl sin 0o,

with

(40) a c cosh (2b- bo), ba c sinh (2b- bo).

The points (po, Zo) and (+/-pa, Zl) lie on the hyperbola
2 2 2 2(41) p sin2 0o- z cos2 0o c sin 0o COS

2 00.

These results seem to be new.

7.2. Prolate spheroidal boundary. Here p (0) and z (0) are given by (31), with a and
b interchanged. The singularities that correspond to (32) are

(42) 0 +in + (n + 1/2)Tr, n 0, + 1, +/-2, ,
where rt is defined by (33). For the exterior Green’s function, the solutions for e i may
be found by interchanging a and b in (34) to (37).

The real singularities that correspond to (42) are at the foci p 0, z +/-c. Again,
(42) determines points on the initial manifold that are characteristic. Thus we are led to
expect multi-valued behavior of the solution near the foci. Since these lie on p 0
where the differential equation is singular, the actual behavior is logarithmic; see, for
example, [6, p. 56]. Our present procedure does not enable us to verify this singular
behavior.

equations"
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For the Green’s function, the additional real singularities at (+pl, Z1) may be
obtained by interchanging a and bl in (39):

(43) pl bl cos 00, Zl al sin 00.

Evidently (p0, z0) and (+pl, Zl) lie on the hyperbola conjugate to (41).

8. Concluding remarks. We have developed a method for locating the real
singularities of axisymmetric solutions to exterior boundary value problems for the
three-dimensional Helmholtz equation. We have shown that the image singularities in
oblate and prolate spheroids of an axially symmetric, exterior Green’s function of the
second kind are given by (39)and (40), and (43)and (40), respectively. These results are
believed to be new. Our analysis is incomplete with regard to singularities on the axis of
symmetry. Their presence or absence cannot be established without further study.

No attempt has been made to extend the analysis to n (>3) dimensions; certainly
for k 0 this should not be difficult. Nor have we examined the form of the boundary
data in the neighborhood of a singular point with the aid of (19) and (21). We note that
these representations could be used as the basis for a stable procedure for performing
the analytic continuation of the unknown data into the complex domain.

Finally, we observe that even apart from the possibility of singularities on the axis
of symmetry, the existence of singularities of the third kind (p(s)=0 or p(t)=0)
distinguishes an axially symmetric boundary problem from the corresponding strictly
two-dimensional problem for the Helmholtz equation. For example, if the boundary is
determined by p p(O), z z(0), where p(0)= 5 cos 0-cos 30, z(0)= sin 0 for
-or/2-< 0 -< or/2, we find singularities of the third kind at 0 nTr- log (x/+ 1),
n 0, +/-1, +2,. ., in addition to solutions on the real axis of 0. These give rise to
possible real singularities at the interior points (+/-1, 0); there are no corresponding
singularities in the two-dimensional problem.

9. Appendices.
9.1. The tunction M. Of the four functions L, M, N, and P, the most simple is M,

and we shall first describe some of its properties. It is defined by (14)with r determined
by (6), (7), and (8).

In general, M has singularities of the first kind at points where any of p(s), z(s),
p(t), z(t) are singular; these are found in a straightforward manner. Singularities of the
second kind occur when A is pinched. Finally, if a (=- 2p(s)p(t))= 0, a singularity of the
third kind occurs.

9.1.1. Singularities o the second kind. If sr -1, the branch cut enclosed by A runs
from -Tr to or, A is caught between coalescing pairs of singularities at 4 +or, and
M(s, t) is singular. We estimate the integral along segments of A that are pinched. For
a : 0, fl : 0, we find

(A1) M(s, t)----2i[p(s)p(t)]-1/2 log {[p(s)+p(t)]2+[z(s)-z(t)]2}
as r __>- 1. There is no singularity as sr --> 1.

9.1.2. Singularities ot the third kind. Here a --> 0. If/3 -> 0 and sr --> 1, (A 1) again
gives the singular behavior. If fl -->0 and ’(-1) remains bounded, we find

-1/2E(A2) M(s, t)= a (s, t)+ F(s, t),

where E and F are analytic. If/3- 0, then sr is unbounded. We find

(A3) M(s, t)----2i[3 -1/ cos (k31/) log a,

as a-O, fl O.



692 R.F. MILLAR

9.2. The function P. This function is defined by (18):

(A4) P(s,t)=[z’(s)O/Op(s)-p’(s)O/Oz(s)]M(s,t).

We use (A4) to determine the dominant singular behavior of P from corresponding
results for M.

9.2.1. Singularities of the second kind. Here neither a nor/3 vanishes, and sr -> 1.
From (A1), we find that

4i z’(s)[p(s)+p(t)]-p’(s)[z(s)-z(t)](A5) P(s, t)----
[o(s)o(t)l /- [o(s)+o(t)l+[z(s)-z(t)]-

Terms that are logarithmically singular at r -1 have been omitted. The second factor
of the denominator in (A5) vanishes when " -1. In general, P(s, t) has a pole, as well
as a logarithmic singularity. But if z(s)= z(t), the pole disappears; in particular, this
occurs on s -t.

9.2.2. Singularities of the third kind. If/3 --> 0 simultaneously with a, and if sr --> 1,
(A5) describes the singular behavior; if (- -1, then (A2) and (A4) give the behavior of
P(s, t). When c --> 0 but/37 0, we find that P(s, t) has log c behavior.

9.3. The function L. Here

L(s, t)= 2 Iv eilCr/r dck,

where F runs between 0 and

9.3.1. Singularities of the second kind. If --1 (a 0), the situation resembles
that for M(s, t). We find

(A6) L(s, t)--- C[p(s)p(t)]-1/2 log {[p(s)+ p(t)]2 + [z (s)- z (t)]2},
as r __>_ 1. Here C is a constant. If r ._> 1, we obtain

(A7) L(s, t)----[O(s)p(t)] -1/2 log {[p(s)-p(t)]2 + [z (s)- z (t)]2}.

9.3.2. Singularities of the third kind. If/3 -> 0 with a and sr -> 1 or 1, then (A6) or

(A7) again is valid. If/3- 0, sr becomes unbounded and the branch points recede to

infinity. In circumstances such that F may be taken to be the real interval (0, rr), we find
that

(A8) L(s, t)--> 27r/3 -1/2 exp (ik3/2),
and L is not singular. On the other hand, when F winds around the cut, L(s, t) is a
multiple of M(s, t) plus an integral on (0, 7r). In this case, the singular behavior of L(s, t)
is given by the appropriate multiple of (A3).

9.4. The function N. In accordance with (16), we have

(A9) N(s, t)= [z’(s) O/Op(s)-p’(s) O/Oz(s)]L(s, t)

and properties of N follow from the appropriate results of 9.3.

9.4.1. Singularities of the second kind. When a 0,/ 0, and sr ->- 1, (A6) and
(A9) give

4C z’(s)[p(s)+o(t)]-p’(s)[z(s)-z(t)]
(A10) N(s,t)’--

[p(s)p(t)]/ [p(s) + p(t)]z + [z (s)- z(t)]2
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Here terms involving log (sr + 1) have been omitted In general, N(s, t) has a pole at

" -1 but, in circumstances that have already been noted after (A5), this pole dissolves
and the logarithmic terms dominate. In case r + 1, we find that

(All) N(s,t)----
2 z’(s)[p(s)-p(t)]-p’(s)[z(s)-z(t)]

[p (s) p (t)l2 + [z (s) z (t)]2
plus terms in log (’-1). A solution to r 1 is s t; here, too, the pole vanishes, and
N(s, t) is only logarithmically singular.

9.4.2. Singularities of the third kind. Here a->0. If B->0 and r-->-l, (A10) is
again appropriate. Similarly, if r __> 1, (A11) is valid. If fl 7* 0, and F is the real interval
(0, ,r), (AS) and (Ag) show that N(s, t) is not singular. Finally, if F winds around the cut,
then N(s, t)is a multiple of P(s, t) plus the integral from 0 to 7r. The singularity of N(s, t)
is this multiple of the logarithmic terms occurring in P(s, t).

9.5. Change of parameter. Here we shall note the changes that are necessary when
a parameter (0, say) different from arclength is introduced.

Since no confusion with p (s) and z (s) should arise, we assume that a point on the
boundary curve y is given by p p(O), z z(O). We suppose that 0 ranges between
-7r/2 and 7r/2 as s runs from 0 to on % and that p (0)and z (0)have period 2 7r as well as
other appropriate properties. At a point on y specified by the parameter 0, we shall
denote u and Ou/Ou by u(O) and v(O), respectively. Let N(O, X) denote the function
obtained from N(s, t) by formally replacing p(s), z(s), p’(s), and z’(s) by p(O), z(O),
p’(O), and z’(O), respectively, and p(t), z(t), p’(t), z’(t) by P(X), z(x), P’(X), z’(x),
respectively; and similarly for L(O, X), M(O, X), and P(O, X). Then the analogue of (19)
is

(A12)

r/2

2rru (X) [u(O)N(O, X)- w(O)L(O, X)]p(O) dO

+ [u(O)P(O, X)- w(O)M(O, x)lp(O) dO, Imx<>0,

and the analogue of (21) is

(A13)

2rr[u’(x) q: w (x ) q: rr z (x )u O( /p O(
rr/2

i [u(OlNx(O, X)- w(OlLx(O, XI]p(O) dO

r/2

+ Ix [u(OlPx(O, X)- w(OlMx(O, xllp(O) dO,. Imx<>0.

Here

(A14) w(O)= [p’(0)2 + z’(O)Z]l/Z,v(O).
In general 0’(0)2+z’(0)2 1, and v(O) may have singularities additional to those of
w(O) at points where 0’(0)2 + z’(0)2 0.
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A SINGULAR SINGULARLY-PERTURBED LINEAR BOUNDARY
VALUE PROBLEM*

R. E. O’MALLEY, JR.f

Abstract. We consider the asymptotic solution of boundary value problems for the vector system

2 A(t, e)x + B(t, e)y +C(t, e),

e E(t, e )x + F(t, e )y + G(t, e

as e-0 under the assumption that the matrix F(t, 0) is singular. A full set of asymptotic solutions is
constructed assuming that F(t, 0) can be block-diagonalized, the reduced problem is consistent, and a new
stability condition holds. Boundary value problems are then solvable if an appropriate "boundary" matrix is
nonsingular for e 0. Such problems arise in optimal control theory, among other applications.

1. Introduction. Let us consider a linear system of the form

(1)
2 A(t, e)x +B(t, e)y +C(t, e),

ef E(t, e)x +F(t, e)y + G(t, e)

for vectors x and y of dimensions n and m, respectively, for a small positive parameter
e, and for a finite interval, say 0 -< _-< 1. It is natural to consider (1) subject to a list of
n + rn linearly independent boundary conditions of the form

(2) E (Ri(e)x(J)+ Sj(e )y(j )) c(e)
j=O

and study the asymptotic solution of (1), (2) as e 0.
We recall that rather classical methods can be used to solve asymptotically the

"regular" singularly-perturbed problem (1), (2)when F(t, 0) satisfies an exponential
dichotomy, i.e., its eigenvalues have either a positive or a negative real part throughout
0-<t -< 1 (cf., e.g., O’Malley [16], Harris [9], or Ferguson [5]). When F(t, 0) is every-
where stable, for example, they show that the initial value problem for (1) has a unique
solution which converges as e - 0 for > 0 to the solution of the reduced system

20 A (t, 0)X0 +B (t, 0) Y0 + C(t, 0),
(3)

0 E(t, O)Xo + F(t, O) Yo + G(t, O)

subject to the initial condition X0(0)= x(0). For the analogous terminal value problem,
however, the solution would then be exponentially large as e 0 for < 1. More
generally, boundary layers (regions of nonuniform convergence) of thickness O(e) must
be expected at each endpoint for regular problems when the limiting solution within
(0, 1) is bounded, and this limiting solution must satisfy the reduced system (3) and n
boundary conditions determined by an appropriate combination of the original condi-
tions (2) evaluated at e 0. Because such limiting solutions involve only n boundary
conditions, m linearly independent solutions of the homogeneous form of (1) are of
boundary layer type, i.e., they are asymptotically negligible away from the endpoints.
Considerable progress, then, has been made in, determining which regular singularly-
perturbed linear boundary value problems have limiting solutions as e 0, what
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t Department of Mathematics and Committee on Applied Mathetnatics, University of Arizona, Tucson,

Arizona 85721. This work was supported in part by the Office of Naval Research under Contract
N00014-C-0326.
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boundary value problems these limits satisfy within (0, 1), and the nature of the
endpoint boundary layers. The results are, however, more complicated than for scalar
problems (cf. O’Malley [17] and O’Malley and Keller [21]). In addition to its direct
utility, that information is useful in analyzing nonlinear problems (cf. Hoppensteadt
[10]) and in designing numerical algorithms (cf. Flaherty and O’Malley [6]).

Here, we shall consider "singular" problems where F(t, 0) is singular and of
constant rank throughout 0-<t-<l. (The double use of the word singular is
unfortunate, but there seems no more natural alternative.) Their analysis and the
behavior of their solutions are considerably more complicated than for regular prob-
lems. Specifically, we shall find that the asymptotic analysis of singular problems
involves a consistency condition which did not occur for regular problems, a new
stability requirement, and the occurrence of other (thicker) boundary layer regions of
nonuniform convergence. These singular problems are less complicated, however, than
turning point problems where F(t, 0) is singular at isolated points (cf. Levinson [14],
Wasow [29], and Olver [15]). Fundamental matrices for homogeneous systems (1)
without turning points can be constructed as in Turrittin [25], and they could, in theory,
be used to solve asymptotically nonhomogeneous problems via variation of parameters.

Our interest in such problems arose in analyzing nearly singular optimal control
problems (cf. O’Malley and Jameson [20]) and in devising methods for the numerical
integration of stiff differential equations (cf. Flaherty and O’Malley [6], [7]). The
technique we use generalizes that developed for singular arc computations (cf. Goh [8]
and Robbins [22]). Closely related methods are given in Vasil’eva [26], O’Malley and
Flaherty [19] and O’Malley [18] for certain nonlinear problems.

The simplest control example is given by

=-y, x(1)-- 0,

e) -x, y(0)= -1.

Here, -x/e represents an optimal control and y, the corresponding state of a nearly
singular control problem (cf. O’Malley and Jameson [20]). The solution is

x(t)= -4 (e -’/’/--e-1/ e--/)/(1 + e-2/)
and y =-:, so the limiting solution

(x(t), y (t))----(x/e, 1)e -t/’/-

is asymptotocally trivial for > 0 and features an O(x/e) boundary layer at 0. Note, in
particular, that the corresponding control acts like an initial delta-function impulse.

2. A transformed problem and the corresponding reduced system. Under rather
mild assumptions, the singular matrix F(t, 0)can be block-diagonalized (cf. Sibuya [23],
[24] and Chap. VII of Wasow [29]). We shall simply assume

H1 that there ex&ts a smooth nonsingular matrix P(t) such that

O 0 0 ](4) P-l(t)F(t, 0)P(t)= 0 Fs(t, O) 0

0 0 F9(t, O)

where -F5 and F9 are stable matrices (i.e., their eigenvalues have negative real parts)
throughout 0 <- <= 1 of dimensions m2 m2 and m3 m3, respectively, with rn

ml + m2 + m3, m >0.
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Hypotheses guaranteeing the existence of P are given in Wasow [28] and else-
where. (We note that an analogous trichotomy was used by Hoppensteadt and
Miranker [11 ], except that they allowed F(t, 0) to have purely imaginary, but nonzero,
eigenvalues.) In analogy with the parallel situation in singular optimal control (cf.
Jacobson [12] or Anderson [1]), we might call problems where m ml totally singular
and those where rn >mx partially singular. (If either m2 0 or m3 0, it may be more
convenient to use a singular value decomposition F= UDV where U and V are
orthogonal and D is diagonal with the eigenvalues of x/F’F. One then uses the
transformed variable x U’y (cf. O’Malley [18]).

In general, we introduce

(5) p-ly=(y y. y),

in (1) (with the prime denoting transposition) and obtain the equivalent system

(6)

?i A(t, e )x + Bl(t, e )Yx + B2(t, e )Y2 + B3(t, e )Y3 + C(t, e ),

E))I El(l, E)X +eEl(t, E)yl-I- EF2(/, E)y2-l- EF3(t e)y3+ Gl(t, e),

ez E2(t, e )x + eFn(t, e )Yx + Fs(t, e )Y2 + eF6(t, e )Y3 + Gz(t, e ),

eye3 E3(t, e )x + eFT(t, e )yx + eFs(t, e )y2 + F9(t, e )y3 + G3(t, e ),

where, in blocks compatible with (4),

EF1 eFa
p-1(FP el3) IeF4 F5

LeFT eF8
BP= [B1 B2 B3], P-XE [El E E]’, and p-1G [Gi G’2 G’31’.

(Appropriate smoothness conditions on P and (1) will imply such for the coefficients in
(6).) Experience with singular perturbation problems leads us to expect that the limiting
solution to (6) within (0, 1) will satisfy the reduced system obtained by setting E 0 in
(6), i.e.,

]io AoXo +Blo Ylo +Bo Y2o +B30 Y3o + Co,

0 EloXo + axo,
(7)

0 E2oXo q- Fso Y2o + G2o,

0 E3oXo + F9o Y3o + G3o,

where, e.g., Ao A(t, 0). For any solution of (7),

Yzo -F- (EzoXo+ G2o),
(8)

Y3o -Fo (E3oXo+ G3o)

and there remains the system of mx linear equations

(9) EloXo -Glo

and the n th order system of differential equations

(10) Xo HoXo +B o Yxo + Jo

to determine the rnx-vector YlO and the n-vector Xo. Here Ho=
Ao-B20FE20-B30F-E30 and Jo Co-B20F-G20-B30FG30. For the regular



problem m =0, neither the constraint (9) nor the Y1 components occur, i.e., the
solution of the reduced problem is obtained through the n th order system of differential
equations (10).

In order to solve (7) when n => ml > 0, we must be assured that (9) is consistent and
that we can obtain Yo. Thus, we will assume

H2 Go is in the range of Elo for 0 <- <- 1
and

H3 -EloBlo is stable throughout, 0 <- <-_ 1.
(The nonsingularity of EoBlo would suffice for now, but the boundary layer structure
appropriate for (6) requires H3. If n < ml, (9) might overdetermine Xo and (10) would
underdetermine Yo.) Differentiating (9), we obtain

E10fl0 -loXo- 1o,

so (10) and H3 imply that

(11) Yo (-/1oBlo)-1[(Jono +/xo)Xo + (JoJo + llo)],
and there remains a nonhomogeneous system for Xo, namely (9), (10), and (11). To
determine Xo, it is convenient to introduce the projection

(12) =In--ElO
where

(13) 2 Bo(EoBlo)-.
We note that Eog’ 0 while ElO2 I, and g’Blo g 0. Moreover, ElO and Blo
have rank rn since/lOBO has (full)rank rnl. Thus, g has rank n-rn ->_0. Indeed, 22 is
nearly a generalized inverse of Eo (cf. Campbell, Meyer and Rose [2] and Campbell
and Rose [3] who use such inverses more explicitly in a singular perturbations context).
The use of (9), (1 2) implies that

(14) Xo Xo-Go
and (10), (11), and (14) imply the linear system

15 g’Xo)" 3’"(g’Xo) +

for g’Xo where 3’{= ’no-/lO and =-3’/’Glo+ g’Jo+Glo. Under hypotheses
H1-H3, then, the solution Xo of the reduced system (7) will be completely and uniquely
determined up to later specification of a boundary value for g’Xo. It is perhaps most
natural to use the condition

(16) g(j)Xo(j) (j)x(j), /=0or 1,

presuming a boundary value (16) is supplied by (2). Other possibilities should also be
considered, however.

Note that our manipulations allowed us to determine EoXo from the linear
equation (9) and the remaining "component" g’X0 of Xo from an end value problem like
(15), (16). The alternative problem character of the solution for Xo (cf. Cesari [4]), with
an algebraic equation in the range of ElO and a differential equation in its orthogonal
complement, makes it quite different from the more straightforward solution of regular
problems. There, no analogue of the constraint (7)occurs, and hypothesis H1 suffices.

If H2 fails, the reduced system (7) is inconsistent, but irrelevant (cf. O’Malley 18]).
A simplified example is provided by e3) 1, y(0) 0 where the limiting solution for > 0
is unbounded like t/e. For regular problems, the reduced problem (3) is necessarily
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consistent, but inconsistency of (3) would occur in the present problem if H2 failed. The
stability assumption H3 is generally needed in order for a limiting solution to exist.
A simple example is provided by -,y, 83)=x, x(1)=0, y(0)= 1 which has the
solution (x, y)= (-/ sin (t//-), cos (t//-)) for which there is n6 limit as 8 -->0. We note
that by changing the sign so that 8)) -x, EloBlo < 0, and we have a limiting solution, if
ExoBlo-0, further differentiation of (9) might allow one to determine Ylo, just as
singular arcs of higher order are obtained in control (cf., e.g., Robbins [22]). The
structure of the asymptotic solutions (i.e., the asymptotic expansions of the exact
solutions) will then differ considerably from when H3 holds. An example, arising in
optimal control, is

31 --yl -1- X2, Xl(1)-- 0,

-2 --Xl, x2(1)= 0,

8))1----- 8y2, yl(0)-- 1,

83)2-- --X2-- 8y1, y2(0) 0,

(cf. O’Malley and Jameson [20]). ere, the asymptotic solution is given by X ---’2 and
Y2 ))1 where x2 2/ Im [c e -’’//] and ya 2 Re [c e-t/] for

c (1- i/(l + iv )/(1- iv))-a and w ei=/4/l + ix/-.

Thus, the boundary layer thickness is O(4e). Finally, if EoBo is singular, but nonzero,
progress generally might be made through preliminary algebraic manipulations (cf.
Anderson [1] for an analogous control problem).

3. Construction of asymptotic solutions. A linear nonhomogeneous boundary
value problem can be solved by variation of parameters once a complete set of linearly
independent solutions of the corresponding homogeneous system is known. For the
asymptotic solution of (1), we would need n +m linearly independent asymptotic
solutions. Alternatively, one could seek an outer solution of (1) (i.e., a regular
perturbation of an already obtained solution of the reduced system (7)) and modify it by
adding appropriate boundary layer corrections which satisfy the homogeneous version
of (6) (cf. O’Malley [17] which solves corresponding scalar problems). Since we can
supply n ml boundary conditions (like (16)) for the reduced system, we can expect an
outer solution under hypotheses H1-H3 to be of the form

(17) (X(t, x/-e), Vl(t, x/e), V(t, x/-e), Y3(t, x/-e))--- E (X.(t), Yai(t), Y2i(t), Y3i(t))8 i/2

/=0

being an asymptotic solution within (0, 1) which converges to a solution

(Xo, Yxo, Y20, Y30) of the reduced system (7) as 8 --> 0. It would be formally determined
termwise by the boundary values

(18) (j )X(j, /7), j 0 or 1,

since higher order terms will satisfy a system of the form (7) with successively known
nonhomogeneous terms. (Details of the process are not given, because it is completely
analogous to the preceding calculation of the zeroth order terms. The expansion is in
powers of 8 anticipating the boundary layer corrections obtained below.)

Since g has rank n- ml, the outer solution is (through (18)) parameterized by
n m vector functions of x/-e, and there is need for m + n -(n m1)= m + m linearly
independent boundary layer solutions which are asymptotically negligible within (0, 1).
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For the regular problem with m2 + m3 m, there would be m3 boundary layer solutions
which are decaying functions of the streteched variable : tie and mE which are
decaying functions of O =(1-t)/e (cf., say, Harris [9]). For our singular problems,
however, we shall also find m boundary layer solutions depending on each of
the stretched variables r t/x/e and tr (1- t)/xe. These thicker (x/e >> e) boundary
layers (upon matching) now require all our asymptotic expansions to be power series in

(19) /, x/,

rather than e. In order to generate these asymptotic solutions, we’ll assume the
coefficients in (6) to be infinitely differentiable, though finite approximations could be
obtained under less smoothness.

We shall construct formal asymptotic solutions to (6) of the form

(20)

aZ(q. ).. /3+1 +2r(p, )+tz+h(t, ),x (t, e ) X t, + p, t.e tt w tr, ) + I,Z I

+2/1(t, ),yl(t, e): Yl(t, t.t,)+lx -lpl(’r,/z)+/z/3ql(tr,/z)+/z 3’+2s1(/9,/.)--/./,
8+212(/, ),y2(t, e) Y2(t,/z)+/x p2(r, tx)+ tx3+q2(o’, Ix)+ tx’/s2(p, lx)+ tx tx

y3(t, e)= Y3(t,/,)+/zp3(r,/x)+/x+q3(tr,/z)+/x V+2s3(p,/-/,)+ /,8/3(K, /-/),

where the functions of the stretched variables

2, t/2(21) r t/tz, o" (1 t)/lz, p (1 t)/lx and

tend to zero as the appropriate variable tends to infinity. The outer solution (17), then,
provides the asymptotic solution within (0, 1). The scalings/x ,/x /x v, and/x for the
boundary layer corrections remain free to meet various boundary conditions (2), while

-1 2the remaining/2, ,/x, and/x factors are simply used to prevent calculation of trivial
coefficients. Since the full solution (20) and the outer solution (17) both satisfy the
nonhomogeneous system (6), the boundary layer corrections (with their different decay
rates) must separately satisfy the corresponding homogeneous system.

Let us first seek rn boundary layer solutions of the homogeneous system (6) of the
form

(22) z,- Pl, P2, P3 Zk(r),
1

k=0
Plk (’r), P2k (’r), Pak (r))/x

(cf. (20)). Thus, we’ll have

(23)

1 dz 1
Az +-- BlPl + B2P2 + B3P3,

d"g EIZ q" IzFlPl +/z 2F2P2 +/z 2F3P3,

dp2
tz E2z + tzF4pl + FsP2 + 2F6P3,

dp3- E3z + ZFTPl +/z 2F8P2 + F9P3.
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When/z 0, this reduces to the limiting problem

dzo
dT"

Blo(O)PlO,

(24)

dplo
dT"

-Io(O)Zo,

o Eo(O)zo +Fo(O)po,
o Eo(O)zo + F.o(O)po,

SO

(25)

while

(26)

Pzo(7.) =-Fo (0)Ezo(0)Zo(7.),

p30(7.) -Fo (0)E30(0)Zo(7.),

d2zo
-d-- Blo(O)Elo(O)zo.

Since ’(0)Blo(0)= 0, (d2/dT.2)((O)zo) 0 and the only solution which decays to zero
together with its first derivative as 7.- c is

(27) (0)Zo(7.) 0.

Furthermore, multiplying (26) by Elo(0) uniquely implies the decaying solution

(28) Elo(O)zo(7.) exp (- X/Elo(O)Blo(O)’r)Elo(O)zo(O).

(For the square root of an unstable matrix, we shall use the principal (unstable) square
root of the diagonal entries in its Jordan form.) The definition (12) of g then implies that

(29) Zo(7.) (0) exp (-’,/]UlO(0)Blo(0)7.)Elo(0)Zo(0).

Finally, the differential equation for plo has the decaying solution

(30) po0) -(4Eo(O)B1o(0))-1E1o(O)z0(7" ).

Since plo(0) and ElO(0)Zo(0) are arbitrary, we are able to provide rn linearly indepen-
dent solutions to (24) by specifying either. Higher order coefficients in (22) satisfy
nonhomogeneous forms of (24)with successively known, exponentially decaying terms.
The decaying solutions (22) are thereby completely determined up to specification of
either

(31) pl(0,/z) or Elo(0)z(0, p,).

This possibility of a choice of boundary values makes the boundary layer corrections
with O(/z) boundary layers more flexible than those with O(e) layers (cf. (40)).

The classical boundary layer correction

(32) 2 2 k(/./,2f, /2, ll, /.t,2/2, /3) 2 (Iz2lk, t-2llk, -1" 12k, 13g)
k=0
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must satisfy the homogeneous form of (6), so

dj
dr

=/x2Aj + IX2BI/1 + IX2B2/2 + B3/3,

(33)

dll
Ed q- IX2FI/1 -t- Ix2F2/2 q- F3/3,

d

dl---2 E2j + IX2Fnll + F512 + F613,

dr Ix E31 -t- Ix4FTl + Ix4Fsl2 -b- F913.

The resulting limiting problem

(34)

dllo-"---v- Bo(0)/o,
d:

Elo(0)fo + F3o(0)/3o,

d12o d13o
E2o(0)jo + F5o(0)/2o + F6o(0)/3o,

dK dK
F9o(0)/3o

has the unique decaying solution

/3o(K) eF9()"13o(O),

(35)
]0(:) B30(0)Fff (0)/30(x),

110(/ ) (Eio(O)B30(O)F- (0) + F30(0)Fo (0))/30(), and

/zo() eF(>(-> (E20(O)B30(O)F-( (O) + F60(O))130(s ds

up to selection of/3o(0). Higher order terms satisfy nonhomogeneous forms of (34) and
are completely determined up to the m3-dimensional initial vector

(36) /3(0, Ix).

This procedure, then, allows m3 linearly independent boundary layer solutions (32) to
be constructed formally, just as for the regular problem.

The terminal boundary layer solutions are found in a manner analogous to those at
0. Thus, the leading terms of the thick terminal boundary layer correction

(37) (Ixw, q, Ixq2, Ixq3)" E (IxWk, qlk, Ixq2k, Ixqak)Ix k

k=O

are

(38)

q20(o’) =-F (1)E20(1)Wo(cr),

q30(o’) =-Fo (1)E30(1)Wo(O’),

qio(tr) exp (-x/Elo(1)Bao(1)o’)qlo(O),
Wo(Cr) Bo(1)(’,/Elo(1)Bo(1))-lqlo(o’).

We note that (12) implies that

(39) g’(1)Wo(cr) 0
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so that Wo(O-) (1)E10(1)w0(o’) and these leading terms are therefore determined up
to the initial value qlo(O)=(/Eio(1)Blo(1))-lElo(1)wo(O). Analogous work suc-
cessively provides the higher order terms in (37) up to specification of either

(40) ql(0, ix) or E10(1)w(0, ix).

Finally, the leading terms of the (usual) terminal boundary layer correction

are given by

S2o(P) e-Fs(1)S20(O),
ro(p ) Bo(1)Fo (1)So(p ),

(42)
Slo(P) (Elo(1)Bzo(1)Foz (1)+Fzo(1)F (1))Szo(p ),

S30(P) It eFg(1)(’-)(E3o(1)U2o(1)Flo (1)+Fso(1))S2o(t)dt,

and the solution is completely specified up to the initial m2 vector

(43) s2(0, ix).

We could prove the asymptotic validity of the formal series solutions (20) which
we’ve constructed by integral equations methods (cf. Harris [9] or Vasil’eva and
Butuzov [27]). Although that proof would differ somewhat from the classical (regular)
ones, we regard the construction of the solutions as the most challenging aspect of this
study and shall not discuss further the details of proof. Alternatively, we could base a
proof on the set of linearly independent solutions to the homogeneous problem
constructed (and shown to be asymptotically valid) by Turrittin [25]. The formal series
solution (20) should thereby be interpreted as an asymptotic expansion of an exact
solution to (6).

4. Fitting the boundary conditions. Since our construction of the outer solution
(17) and of the thicker boundary layer corrections (22) and (37) distinguishes between
components of gx and Eox, it is natural to write

(44) x x +x2

for the n and rnl dimensional vectors

(45) xl g’(t)x(t, e) and xz=Exo(t)x(t, e).

(We experienced a similar separation of components in solving the reduced problem (7)
where we had a differential equation for Xxo gXo and a linear algebraic equation for
Xo EoXo.) Instead of the x representation of (20), then, it will be more convenient to
use the further decomposition

+1 ("r, )+ t+2
W (r, )-F V+2rl(p, )+ 8+2/1(K, ),x (t, e ) Xl(t, ix ) + ix z1 ix ix ix ix ix ix ix

(46)
xz(t, e)= Xz(t, ix)+ ixzzO’, ix)+ ix’+wz(r, ix)+ ix V+Zrz(P, ix)+ ix+z]z(u, ix)

where, e.g., Xl(t, ix) g’(t)X(t, ix) and za(’, ix) (1/ix)(ix’)z0", ix) O(1) by (27).
We note that E0’ -0 implies that we must have

(47) Eoxl =0.

2 2 2 k(41) (ixZr, ix $1, $2, ix2S3)"" E (ixZrk, ix Slk, SZk, ix S3k)ix
k=O
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Now note that the solution (x’ y’)’ of the original system (1) is of the form

(48) (x)= T(t)u(t)
Y

where

{49) r(t)=(I. O 0 0 o)0 0 P P2 P3
for

P=(P1 P2 P3),

where each Pi is m x rni dimensional, and u is the n + rn + rn dimensional vector

(50) u(t)=(X’l x yl y y;)’.

Furthe:more, the expansions (46) imply that all solutions (20) of the transformed
problem (6)are given by

(51) u(t)= U(t, tx)k(la,)

where the square matrix U is

/x(t,.)
x(t, , )

(52) U(t,

Y2(t, tx )
Y(t, , )

with fixed boundary values

2 2 2. \/./,Zl(7", /Z) /./, WI(O’, /d,) /.1, /’1(0,
z(, ,) ,w(,, ,) ,r(o, ,) h(, ’)
1

p(7", /.6) qx(O’,/z) /Z2Sl(p,/./,) /.t,2/1(,

pE(r,/x) /xq2(o’,/x) s2(p,/x) /x /2(r,/x)
.q(,..) s(o..) t(..)

Xl(j, [,1, ) In,
(53)

s(O, ,)= tm,

/=0or 1, z2(O, Iz )= Im ql(O, lz ),

and /3(0, ) Im:,
and the n + m + m vector k (/x) is partitioned as

(54) k(tx)=(ki(/x) tzk(tx) tzk;(tx) txVk(tz) txk;(tx))’.

We note that the boundary values (53) imply that plo(O)=-(/Eo(O)Bo(O))-1, and
W2o(O)=(x/Exo(1)Blo(1))-1, so both px(0,/z) and W2(0,/A,) are nonsingular for e

sufficiently small. Also note that U(t, Ix) would be an asymptotic expansion of a
fundamental matrix if the corresponding n + m + ml dimensional system were homo-
geneous. We shall select a,/3, 3’, and 8 so that the k(0)’s are O(1) as e - 0 and nonzero if
the particular k is not identically zero.

Putting (48) and (51) together, the boundary conditions (2) imply the n / m linear

equations

(55) m (/./,)k (/2,)-- c(

for the unknowns k(/x) where

(56) Al(/d,) Y. (Ri(lx 2)
j=O

Si(Ix2)) T(j) U(j, tx ).
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An additional m boundary conditions result if we impose the end condition

(57) A2(IX)k(IX)= Ex0(j )xl(j, IX2) 0, j 0 or 1,

required by consistency with (47). (Note that El0 has rank ml.) Thus, the boundary
value problem (1), (2) will have a unique asymptotic solution of the form

(58) (X(t, E))) r(t)U(t, IX)A-I(IX)(C(IX2)y(t,e 0 ]

provided
H4 the (n + m + ml) x (n + m + rex) matrix A(IX) (A’I(IX) A(IX))’ is nonsin-

gular for e sufficiently small.
Because the boundary layer correction terms are asymptotically negligible away

from one endpoint, we can considerably simplify the asymptotic calculation of A(IX).
Thus, up to asymptotically exponentially small terms,

T(O)U(O, tt)

Xl(0,/./,)/..(0)X2(0,/.) /./,Zl(0,/.)/(0) 0 0 22j1(0’ it/’)/(0)j2(0’ its’)
0 0

P(0)Yt(0,/z) --Px(0)pl(0,/z)/ P(0)pt(0,/z) , g2pk(O)lk(O,g)+P3(O)]
/=1 it /=2 k=l

and likewise for T(1)U(1, Ix). These imply that

(59) A(IX)=(Ak), k=l, 2; l=1,...,5

where

Al1"" Ri(XI(j, IX)+,(j)X2(j, IX))+Si E Pl(j)Yl(j, ix)
1=o /=1

1 (
3

)A12’Ro(IXZl(0, IX)+*(0))+--So PI(0)pl(0, IX)+IX E Vl(O)pl(O, IX)
/-6 /=2

(
3 )A13"R1(IX2w1(0, IX)+IX(1)w2(0, IX))-’[-Sl Pl(1)ql(0, IX)+IX Y’. P(1)q,(0, IX)

l=2

(
3

)A14"-’IX2R1(rl(0, Ix)+(1)r2(0, IX))+Sl IX 2pI(1)s (0, Ix)+ . Pl(1)st(O, Ix)
1=2

A15"-Ro(IX2j1(0, IX)+(0)]2(0, Ix))+So /.62 Pk(O)lk(O, IX)+P3(0)

A21 ElO(j)XI(j,/-6) with j determined in (57),

and

IXE10(0)(ZI(0,/-6), 0, 0, IXjl(0,/-6)) if f 0,
A24, A25)---, IxEglo(1)(0, wi(0,/-6), rl(0,/-6), 0) if/’= 1.

Because A12- O(1//-6)(=O(1)only if SIPI(O)PIo(O)= 0), the matrix A(IX)will have an
asymptotic series expansion

(60) A(IX)...1 E 8.
It will therefore be nonsingular if the limiting matrix 8o is nonsingular, although A()
can still be nonsingular for e 0 if 8o O. If 8 is the first nonsingular coecient in (60),
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A-I(tz) will be O(tzl-l), so the solution (58) of the given problem will generally be
unbounded like O(tz-l). In particular, note that a bounded solution will result if 0
and that the powers a,/3, y, and 6 in (54) are integers. Further, the limiting solution
within (0, 1) depends only on kl(tX), so we might say which boundary conditions are
appropriate for the reduced problem (7) (cf. Harris [9]). We might also consider the
possibility of nonunique solutions under appropriate orthogonality assumptions if A(tz)
is singular.

To summarize our principal results, we have the following theorem.
THEOREM. Under hypotheses H1-H4, we obtain a unique solution (58) of the

boundary value problem (1), (2).

5. Natural boundary value problems.
Sample problem 1. Suppose we are given a problem in the transformed form (6)

with prescribed boundary values

(61) x(0), y1(1), y2(1), and y3(1).

Instead of actually obtaining A-’(/z), we can apply the boundary conditions in (51) to
obtain a solution with

(62)

kl(0)= ’(0)x(0) for XI(0,/z)= In,

X --0,

y=O,

=0,

k2(O) Eo(O)x(O)-X20(O)k(O),

k3(O) y(1)- Ylo(1)k1(O),

k4(O) y2(1)- Y20(1)k(O),

ks(O)= y3(O)- Y30(O)k(O)-P30(O)k2(O).

In particular, the limiting solution within (0, 1) will satisfy the reduced problem (7) and
the initial condition (16)with j 0.

Sample problem 2. Suppose our problem is of the transformed form (6) with
prescribed boundary values

(63) x(1), yl(0), y2(1), and y3(0).

Again, the unique solution is readily found to be of the form (51) with

kl(0)= ’(1)x(1) forSl(1,

a 1, k(0) =-4Eo(0)Blo(0)(yl(0)- Ylo(0)k(0)),

(64) fl =--1, k3(O) x/Elo(1)Blo(1)(Elo(1)x(1)-X2o(1)kl(O)),
3’=0, k4(O)= y2(1)- Y20(1)k(O)-g20(O)k3(O),

8 O, ks(O)= y3(O)- Y3o(O)k(O),
and the limiting solution within (0, 1) satisfies the system (7) and the terminal condition
(16) with j 1.

The general problem. As our special problems suggest, we can seek a solution (51)
of the transformed system (6) plus boundary conditions. That problem will be uniquely
solvable provided the reduced system (7) can be uniquely solved subject to appropriate
boundary conditions. We must suppose that E10(0)x(0, e)or yl(0, e), E10(1)x (1, e)or
y(1, e ), y2(1, e ), and y3(1, e) can be obtained in order to determine uniquely the initial
values (31), (36), (40), and (43) for the various boundary layer corrections of the
solution (20), (46). In order to solve the reduced problem (7), separated boundary
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values for d(j)X(j,e) need not be given (as in the sample problems). However,
if the prescribed boundary values for x are coupled at 0 and 1, existence
of the solution to the resulting reduced two point problem is not a priori guaranteed.
One must always be able to solve the given conditions for y2(1, e) and y3(0, e). Knowing
y3(0, e), for example, one would solve

y3(0, e)--- Y3(0,/z)kl(/Z)+/-tp3(0,

to obtain k.
Further, it is essential that at least rn + rn3 boundary values be obtainable at 0

and at least rn + m2 boundary values be obtainable at 1 because these are the
number of linearly independent boundary layer corrections decaying at those end-
points. In particular, we cannot expect to solve asymptotically initial value problems or
terminal value problems for (1) unless we artificially restrict boundary values to
appropriate lower dimensional manifolds (cf. Hoppensteadt [10]).

Since the solution of general problems (1), (2) relates crucially to the solution of
simpler transformed problems (like our sample problems), it is convenient to solve
general problems in terms of simpler "natural" ones. This generalized "shooting"
method has been somewhat developed by Keller and White [13] and Ferguson [5].
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ON CONTINUOUS TRIANGULARIZATION OF MATRIX FUNCTIONS*

H. GINGOLDf

Abstract. This article is concerned with the continuous triangularization of matrix functions which
depend continuously on several variables. By use of an algorithm analogous to the one employed for the
reduction of a A-matrix to a diagonal form, we find a continuous similarity transformation which produces the
triangularization of a given matrix.

Let there be given a singular system of differential equations whose coefficient matrix depends solely on
several small parameters. Then, our method may be applied to obtain the complete asymptotic expansion of a
fundamental matrix solution of the singular differential system at its singular point.

1. Introduction. Let A (e) be an n n continuous matrix function on De where
e (eX, e2," era) and De {el0< ei < e/0, 1, 2," ", m}, (/ is the closure of
Consider the problem of taking A(e) into a Jordan canonical form J(e) via a nonsin-
gular transformation T(e) such that

(1.1) T(e)A(e)T-(e) J(e).

Apparently the problem is solved by linear algebra. (See for example, [6, p. 200].)
Practically (1.1) falls short of many purposes.

(i) The matrix J(e) is not necessarily a continuous function of e on/.
(ii) The transforming matrices T(e) and T-(e) need not be continuous matrix

functions of e on
This statement can be easily verified by considering the example: (See [15, p. 138])

(0 e) withe=el.A(e)=
0 0’

For a theorem that will guarantee that a holomorphic matrix function will be taken
into another given holomorphic matrix function by a nonsingular holomorphic matrix
function in a neighborhood of e e 0 the reader is referred to Wasow [14].

The remark above leads us to look for canonical forms for a matrix function A(e)
other than the Jordan canonical form. In case that part of the eigenvalues of A (e) are
separated from their complementary set of eigenvalues it was shown by Sibuya 13] and
Hsieh and Sibuya [9], that A(e) may be transformed via a continuous nonsingular
transformation into a blockdiagonal form. Sibuya and Hsieh also showed by a global
analysis how smoothness properties of A(e) are inherited by the nonsingular trans-
forming matrix T(e). Similar results by using a different method may be found in
Coppell [5] and Gingold [7]. A normal form to which a family of matrices which depend
smoothly on parameters of endomorphisms of a complex linear space can be reduced is
discussed by Arnold [1].

The subject of this note is to determine conditions under which a certain matrix
function A(e) which is continuous in a domain De will be transformed into a triangular
matrix via a nonsingular continuous transformation P(e), such that P(e)A (e)P-l(e) is
triangular.

Describing those conditions and a proper algorithm, one understands why tri-
angularization of a matrix function A(e), of one variable, is successful when A(e) is
analytic in e e in De. By examples in 2, it will turn out that our results are best
possible. Our algorithm will be described in 3 and 4. As a corollary we will obtain
Braaksma’s result [3] and a weaker form of Rellich [12].

* Received by the editors June 29, 1976, and in final revised form January 13, 1978.
? Department of Mathematics, University of Utah, Salt Lake City, Utah 84112. Mailing address:

Harimonim 8, Rechasim, Israel.

709



710 H. GINGOLD

It is well-known that triangularization of matrix functions plays an important role
in the theory of differential systems. See Perron [10], [11] and Braaksma [3]. However,
Perron’s method is not practical for singular linear differential systems with unbounded
leading coefficient matrices and Braaksma’s result applies only to linear differential
systems whose coefficient matrix is a meromorphic function in one variable. Our
method, for example, may produce complete information about the asymptotic
behavior of a fundamental solution of the differential system qb(t, e)Y’=A(e)Y
depending on the parameter e for e- 0, where b(t, e) is a continuous mapping on
[0, a] D, and b(0, 0)= 0.

2. A counter example. Schur’s theorem tells us that for every n n matrix A there
exists a unitary matrix T such that TAT-1 is upper triangular, (see [2, p. 202]). If A (e) is
a continuous function on D the corresponding unitary transforming matrix T(e) may
not be continuous on D. Since the eigenvalues and the eigenvectors of a matrix A(e)
play the fundamental role in constructing the unitary transforming matrix T(e), we will
focus our attention on them. It is well-known (see [8, vol. I, p. 267]) that if A(e) is
continuous in a domainD then there exist n continuous functions hi(e ) such that hi(e),
i= 1, 2,. , n are the eigenvalues of A(e).

PROPOSITION 2.1. For every N O, 1, 2, and N oo there exists a 2 x 2 matrix

function A(e ), e el, whose entries belong to CN[0, el such that no continuous vector

function X(e) on [0, e] can be an eigenvector of A(e) corresponding to any of its
eigenvalues ii(E ), 1, 2.

Proof. Consider the matrix functions
-1

(2.1) A(e) gN(e)
sin e - 0

where
2N+1

(2.2) gN(e)=
e if N 1, 2, ,
exp (-e -) if N

It is easily verified that AN(e) cN[0, e]. The eigenvalues of AN(e) are
-1Al(e)=-AE(e), AE(e)= gN(e)x/(CO e-1)(sin e ).

Assume that

X(e)=\x2(e
is a continuous eigenvector corresponding to A2(8). Then

(2.3) -1-1 (E)4(COS e )(sin E-l),X2(E) COS E Xl

(2.4) --1 --1 --1).x(e) sin e x2(e)/(’o e )(sin e

It is easily verified that x2(e,,)-- 0 for ev 1/(uzr), u 1, 2,. and

2
Xl(ev)=O for e= u=l,2,...

(2u- 1)Tr’
We let u +oo and we obtain Xl(0)= x2(0)=0 which is a contradiction. A similar
argument holds for X l(e).

PROPOSITION 2.2. There exist 2 2 matrix functions of one variable Ar(e)
cN[0, el], N 1, 2,... and N oo, such that for no continuous invertible matrix
function T(e) on [0, el], T-l(e)A(e)T(e) has lower (or upper) triangular form.
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Proof. Assume that the proposition is false. Consider again AN(e) given by (2.1)
and (2.2). Let

r(e)=[ t11(e)

be a continuous nonsingular matrix function on [0, e ]. Then

(2.5) g(e)=
sine_ 0 t(e) t(e kt(e) ta(e k d(e) 1(e)

where I (e) and 1(e) are the eigenvalues of A(e) and d(e) is a continuous unknown
function on [0, e].

We observe that

X(e )
t(e

must be the eigenvector corresponding to 1(e). In view of Proposition 2.1 our result
follows for lower triangular matrices. Using the transpose of A (e) one easily verifies the
statement about upper triangular matrices in our proposition.

We observe that
(1) the entries of A(e) vanish infinitely many times on (0, e],
(2) the quotient of some of two elements in A(e) is not continuous on any

interval (0, e) where e is arbitrarily small.
This observation leads us to the next section.

DEFINITION 3.1. We say that a finite set of continuous functions on D is
comparable if the following hold.

(i) Each element of the set is either nonvanishing on D or is identically zero on

(ii) If 1(e), 2(e) are two elements of the set such that [(e). (e) 0 on D then
either there exists lim0 [(e)/[(e)] or there exists lim0 [(e)/(e)].

The proof of the next proposition will be omitted since it is trivial.
Poeoso 3.1. Let P be a given comparable set on D. In P-{0} define the

relation R by (e)Ra(e ) iff lim0 [(e)/(e)] 0. Then
(i) this relation is an equivalence relation which induces a partition o the set

P-{0} into equivalence classes which will be denoted by [P], such that
i=l

e {0} [el;
i=1

(ii) in the set o equivalence classes, the ollowing defines an order relation

[P] < [P] i lim
(e
0=0

whenever [i(e)e [Pi] and .(e)e [P], ];
(iii) corresponding to the order relation in (ii) the setoequivalence classes possesses

a minimal element which we will denote by [P] and a maximal element which
we will denote by [P,].

The element [P] is characterized by the fact that [P] < [P] for 1,..., l, i.
The element [, is characterized by the fact that [P] < [P,] for 1,. ., l, 6. By
relabeling the indexes of [P], 1,. , we may assume from now on that i 1 and
i I.
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(3.3)

We now attempt to describe a process of triangularization and a process of
diagonalization of a matrix function A(e). The processes are analogues of the
algorithms described in [6, pp. 131-139] which produce canonical forms of polynomial
matrices by elementary operations.

Let E denote the n x n identity matrix. Denote by Eii the n x n matrix which has all
of its elements zero except one element, which is one and which sits in the (i, ) place.
Also denote by Sk a matrix of the form

(3.1) k E +
or of the form

(3.2) k E + b(e )Eij

where bk(e) is a continuous function on D,, nonvanishing on D,.

Description o[ a triangularization process. Let A (e) be an n x m matrix function
such that the elements in its first column are comparable. By Proposition 3.1 we have
that S-{0}, the set of elements on the first column of A(e), (if not identically zero)
possesses an element f(e) 0 on D, f(e) [P]. By multiplying A(e) on the left by
matrices of the form (3.1), one brings [(e) [Pt] into the (1, 1) place. Since f(e) [Pt]
every element al(e ) on the first column 6f A(e) may be written as a l(e ) f(e )b (e),
k 1, , n. Thanks to the comparability of the elements of A(e) on the first column,
b(e) are continuous functions on D. We continue to multiply with matrices of the form
(3.2) on the left and thus we find say kl continuous matrices $1, $2, , S onD of the
form (3.1)or (3.2)such that

-f(e) bx2(e) blm(e
0

S Sz SA(e)
A(e)

0

Therefore the matrix function on the right of (3.3) is continuous on D. A(e) is an
(n 1) x (m 1) continuous matrix function on D. Notice that the b (e) which appear in
the matrices of the form (3.2) are quotients of continuous functions that sit on the first
column of the matrix A (e), where the functions in the denominators may vanish at the
point e 0.

Assume now that for u < min {n, m} there exists k matrix functions $1, , S.,
each of them of type (3.1) or (3.2) and such that

(3.4) S,.," $2" SxA(e)=

ax,(e) am(e)
0 azl(e) az,n(e)

0

0

"aii(E)
0

0 0

Ai+I(E)
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where the set of elements of the first column of Ai+l(e) is comparable on De, then there
exist kv/l matrix functions, S1,’’’,Sk,,/I each of type (3.1) or (3.2) such that
Sk,,/l Sz" S1A(e) has the form (3.4) with replaced by + 1.

If in each step, Ai/x (E) will have the set of elements of its first column comparable
on De one will get via a reduction process described above a canonical form of the
matrix A (e) which will be either

or

all(e) aim(e)
0 a22(e)

0

0 0 0 a,,,,(e). a,,,,,(e)

(if n <_- m)

(3.6)

all(8)
0

azz(e)
0

0 0 0

0

(if m <= n).

A similar result holds for A (e) by operating on A(e) with elementary operations from
its right.

Our goal now is to describe a process by which the canonical form obtained for the
matrix A(e) will be a diagonal matrix function. This will be achieved by operating on
A(e) by right and left elementary operations.

Description of a diagonalization process. Let A (e) be an n x rn continuous matrix
function. Assume that the set of all elements of A(e) is comparable on De. By
Proposition 3.1 we know that if the set S of elements ofA (e) does not consist only of the
element 0, then S-{0}= i=i [S] and there exists a maximal element [St].

(1) Choose an element f(e) [St] and multiply A(e from the left and from its right
by matrices of type (3.1) to make f(e ) appear in the (1, 1) place in the resulting
matrix function.

We multiply the new matrix thus obtained by matrices of type (3.2) from its left and
from its right to obtain a new matrix function all of whose elements in the first row and on
its first column (except possibly the element in the (1, 1) place) are 0.

So far we proved that there exist kl matrices 1, kl of the type (3.1) and (3.2)
and ]1 matrices 1," , Jl, of the type (3.1) and (3.2), such that
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k=l \k=l

-()
0

A2(e)

We adopt an inductive procedure. Assume that for every < min {n, m} there exist ui
matrices 1,’" ", , of type (3.1) or (3.2) and ui matrices 1, , 6f type (3.1) or
(3.2) such that

[t,=i’ k]A(e )[kkOI’ k]

b11(6) 0

0 b22(e)
0

0 0

bii(E)
0

Ai+l(E)

where the set of elements of Ai+I(E) is comparable on De. Then, there exist (N1 + N2)
invertible matrix functions 1," , N1, 1," , N2 each of the form (3.1) or (3.2) such
that

-b11(e) 0

0 b22(e)

bll(E)
0

0

o-

< min {n, m}, and bii(e), for 1, 2,. , l, are nonvanishing on

4. Continuous eigenvectors and canonical forms.
PROPOSITION 4.1. Let Ai(e ), 1, 2,. , n, be a continuous eigenvalue on De, of

the continuous n x n matrix function A(e ).
Let [A(e )-Ai(e )E] satisfy the assumptions in the diagonalization process. Then, to

Ai(e there corresponds a continuous eigenvector X(e on De.
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Proof. By the diagonalization process there exist two continuous invertible
matrices on D, namely L(e) and R (e) such that

all(e)

(4.1) L(e )[A (e )- li(E )E]R (e )

where k < n.

a(e)
0

From (4.1) it follows that there exists an n-column continuous vector function on

D, namely
0

(4.2) X(e)= Xk+l(E

_x.()

where Xk+l(E), Xn (E) are any (n k) continuous functions on D not all of them
vanishing simultaneously such that

(4.3) L(e )[A(e )- i(F. )E]R (e )X(e )= 0.

From (4.3) it follows that R (e)X(e) is the desired continuous eigenvector correspond-
ing to Ai(e).

THEOREM 4.2. LetA (e ) be a continuous n n matrix function on D. Assume also
[An+l-i(e)-Ai(e)En+l-i] to satisfy the assumptions of Proposition 4.1, where" E,+I-i,
i= 1, 2,..., n, are the (n + -i)(n + 1-i) identity matrices and A+l-i(e) are (n +
1-i) (n + 1-i) matrix functions to be obtained by an inductive procedure (to be
described later). Then, there exists a unitary continuous function on D which will be
denoted by U(e) such that u-l(e)A(e)U(e) is upper triangular.

Proof. We follow the proof of Schur’s theorem in [2, p. 202]. By Proposition 4.1
A(e)- A l(e)E possesses a continuous eigenvector R (e)X1(e) on D, where X1(e) is

given by (4.2) and R (e) is nonsingular.
We construct any (n- 1) continuous vectors on D, Xi(e), 2,. , n such that

Xi(e), 1, 2,..., n are linearly independent on D. This is always possible by
choosing Xi(e) to have exactly one nonvanishing coordinate. Since Xi(e), i=

1, 2,. n are linearly independent, so are R (e)Xi(e), 1, 2,. n, since R (e) is

nonsingular.
We recall the Gram-Schmidt orthogonalization process from [6, Chap. IX]. Since

R (e)Xi(e), 1, 2,.. , k, 1 <_-k <_-n, are linearly independent on D their Gramian
does not vanish on/ and this is sufficient to produce n orthogonal, n-column vectors

Y(e), 1, 2,. , n, continuous on D and such that

(4.4) Yl(e ) R (e)Xl().
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We construct the unitary matrix Ui(e)

Yl(e) Y/(e)
(4.5) Ul(6)--

(Yl(e), YI(e)) (Y(8),

where (Y, Y) denotes the Euclidean norm.
The matrix. Ul(e) is easily observed to satisfy

(4.6) U]-1 (e)A (e)UI(e)

-hi(e) bz(e)
0

a.-l(e)

where An-l(e ) is an (n 1) (n 1) continuous matrix function on De with eigenvalues
(),..., a,().

If [A,_ (e) h 2(e )En- 1] satisfies assumptions of Proposition 4.1, we can repeat the
process described above, etc.:

(4.7) U (e)A(s)U2(e)=

- 1() b21:(e)
0 ,2(e)

0

0 0

b,()-
b3(e) b,,(e)

A,-z(e)

where A,,_z(e) is continuous on De and has the eigenvalues , 3(e),""", ,,(e).
Assume we have found a unitary matrix Ui(e) which is continuous on De and is

such that

(4.8) U (e )A(e )Ui(e )=

/ I(E) bz(e)
0 ,(e)

0

h iln (E )-
bi23 (e)o.o b 2n

ai()

0

0 0 0

bi,()

<n and [A,,-i(e)-,i+l(e)E,,-] satisfies the assumptions of Proposition 4.1.
Then by an induction procedure there exists a unitary matrix Ui+l(e)continuous

on De such that (4.7) is satisfied With replaced by + 1, and the result follows.
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It can be easily verified that in case e e and D is the interval 0 < e <= r < 1 then
the unitary continous matrix function on D,

takes the matrix

-e 1

/1+

L-77 /1 +

A(e)= [0 e]1 0

into an upper triangular matrix by a similarity transformation.
it is easily verified that U(e) is not ditterentiable at e =0. Thus, even if A(e) is

analytic at e 0 the transforming matrix U(e) is not differentiable at the point e 0.
We observe that by the algorithm of Proposition 4.1, the vectorX(e) given by (4.2) may
be taken to be analytic on De. This is true since the main restriction on
Xk+l(e),"’, x,,(e) is that they don’t vanish simultaneously on ES. However, the
smoothness of U(e) at the point e 0 is also determined by the matrix R (e) and by the
orthonormalization process.

We are ready now to point out some conditions that will guarantee the fulfillment
of the assumptions that Theorem 4.2 is based on.

5. Sufficient conditions. In what follows we describe conditions that will guarantee
the possibility of performing one or more steps of the algorithms proposed in 3, 4.

DEFINITION 5.1. We say that the set F0, F0 {fl(e), f2(8),’’" ,} is competent on
D, if"

i) ]](e), 1, 2,. are continuous on D,, and each fi(e) is nonvanishing on D, or
is identically zero;

ii) whenever fl(e),f2(e)eFo and Clfl(e(k))+c2f2(e(k))=O for some constants
cl, c2, and e(k), k 1, 2,- is an infinite sequence e(k)eD, with e(k)->O it is
implied that

1fl(e)+Zf2(8)=O onD.
PROPOSITION 5.1. Let Fo be a competent set of real functions on D,. Then Fo is

comparable on D,.
Proof. By Definition 5.1 it suffices to show that if fl(e)" f2(e)# 0 on D then

there exist

f1(8) f2(8)
lim or lim

Denote by

/’= lim sup
fl(e

f1(8)
lim inf

where l, ! are finite or infinite.
If we are done.
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If < - then for any 1,1 < < there exists an infinite sequence {e (u)}0, e (u) -> 0
such that fl(e(u))/fz(e(v))= or fx(e(v))- lf:(e())= O. By definition it is implied that

f(e) f:(e)l. Therefore ! and the result follows.
DEFINITION 5.2. Given a competent set of functions Fo on D, we denote by

EX(Fo) the new set of elements

(5.1) EX(Fo) e e 2 c = f(e)’ (e)eFo U{0},

whenever e can be made continuous on D. We have ct as complex numbers and l, r, N,
u, g, i, ], k are nonnegative integers. Actually, each e, is composed of all finite sums of
all finite products of functions of F0 or of all quotients of finite products of functions of
F0 whenever they determine a continuous function on D.

PROPOSITION 5.2. LetA (e ) be a matrix whose elementsform a competent set on D.
Denote this set by FA.

LetEX(FA) be a competent set on. Then the set {A (e)} EX(FA) is competent on
a closed subdomain of which contains the point O, where A (e) is a continuous
eigenvalue ofA (e) on D.

Proof. Given Cl, c2, any two numbers, we have to prove that if ClA(e(k))+
Czf(e (k )) O, where {e(k)}=0 is a sequence such that e(k)O for k, and f(e)
EX(FA) then cA (e)+ Czf(e )= 0 on some. Without loss of generality assume c 0.
Put

(5.2) u()= cX()+cf().

It is readily observed that

(5.3) x(e)= cu()-cclf()
and since

det [a(e)- A (e)E] 0,

then u (e) satisfies the algebraic equation

(5.4) u" (e) +p()u"-()+... + p. (e) 0

where pi(e) EX(Fa), i= 1, 2,..., n.
From this one obtains that u(e(k))=O implies p,(e(k))=O. But p,(e)EX(FA)

implies that p, (e)= 0 on D,. This implies that the polynomial in (5.4) splits into

(5.5) u()[u"-()+pa()u"-()+... +p.-()] 0.

If u(e) is not identically zero in a full neighborhood of 0 there exists a domain
-1 -1D , 0 D such that

(5.6) u"-()+p()u"-()+... +p._() 0

--1on De.
Since p,-I(e)EX(FA)one obtains again from p,-l(e(k))=O that it implies

p,_x(e)= 0 on a.
By an inductive procedure one obtains that p(e)=0 for 1, 2,..., n, on a

domain- which contains the point 0. This implies u" (e) 0 on1 and the result
follows.

PROPOSITION 5.3. With the assumptions of Proposition 5.2 assume also the ele-
ments of A(e) and A (e) to be real on D. Then, the elements of [A(e)-A (e)E] are

D containing the point O.comparable on some domain -"-
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Proof. By Proposition 5.2 the elements of [A(e)-A (e)E] are competent on/-1.
By Proposition 5.1 our result follows.

PROPOSITION 5.4. LetA (e ) be an n n real analytic matrix function in the domain
D={e =ell0<_-e _<-1}. Then, there exists an r>0, and a unitary continuous matrix

function U(e) on 1 ={el0-<_e <-r} such that u-l(e)A(e)U(e) has a triangular form.
Moreover, U(e is a differentiable matrix function in the variable e, on 0 < e <- r, and there

Uexists a number 6 > O, such that e ’(e) is bounded on 0 < e <= r.

Proof. Since A(e) is real analytic on D its characteristic polynomial has real
analytic coefficients on D.

It is well known (see [8, Chap. 12]) that every eigenvalue A(e) of A(e) has an
expansion of the form

(5.7) A,(e )= e pda’ E bie’/r’
v=0

where; pi, qi, ri are integers, bi0 # 0 and the series in (5.7) is absolutely convergent in a
disk lel_-< r < 1.

Moreover, for any two functions fl(e), f2(e), which have the expansion (5.7) there
exists either

lim
fl(e)

or lim
fz(e)

-.0+ f(e -.o+ fl(e )"
We observe that if f(e) has an expansion of the form (5.7) which is absolutely
convergent then f(e) and If(e)[ are differentiable functions of e for 0 < e <-r.

Since the elements of the unitary matrix are obtained by addition, multiplication
division and taking square roots of functions f(e) of the form (5.7) our result follows. In
particular we proved the following proposition.

PROPOSITION 5.5. With the assumption of Proposition 5.4 let A(e) be Hermitian
then u-x(e)A(e)U(E) is diagonal.

Proof. See [2, p. 202]. This proposition is a weaker form of Rellich’s result [12]. By
his result, the eigenvalues A(e) of a Hermitian matrix are real analytic on 0 =< e <_- r. This
in particular implies that in this case U(e) is differentiable on 0_-< e =< r, since all
elements involved in the algorithm which derives U(e) have an expansion (5.7) with

r 1 and p/q a nonnegative integer.
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PERTURBATION AND MAXIMUM NUMBER OF INFECTIVES
OF SOME SIR EPIDEMIC MODELS*

FRANK J. S. WANGf

Abstract. We consider a deterministic SIR model in which the daily contact rate is a constant a > 0, the
rate of an infected individual recovering from the disease depends only on how long it has had the disease, and
the recovered individuals are permanently immune from further attack. Let F(t) be the probability of an

infected individual staying infected for a length of time _->t; f(t) be the proportion of initial infectives who are
still infective at time and I(0), S(0) be the proportion of infectives and susceptibles respectively at time zero.
We examine the effects of perturbation of the initial condition fon the deterministic model which is given by a

system of integral equations and show that the solution of our system of equations is stable at if and only if
the Ll-norm of is not zero. We also prove that, under appropriate conditions, there exists a positive number
# depending only on the generalized relative removal rate p (cllFII)-1 such that when I(0)> 0 and $(0)> p,
the epidemic occurs and at the peak of the epidemic the proportion of infectives is at least 0. A numerical
example is given at the end of the paper.

1. Introduction. In an SIR model, the population or community under considera-
tion is divided into the classes of susceptibles S, infectives I and removed individuals R
who are isolated, dead or recovered and immune. The fractions of the total population
in these classes at time are denoted by $(t), I(t) and R(t) respectively ([1]-[3],
[6]-[10]). We assume that the population is uniform and homogeneously mixing with
daily contact rate or infective rate a > 0, that the probability of an infected individual
staying infected for a length of time =>t is F(t) for some nonincreasing function F(t)such
that F(0)= 1 and F()=0, and that at time 0, the population consists of only
susceptibles and infectives, i.e. $(0)+ I(0)= 1. The deterministic version of this model
is given by the system of equations

(1)
I(t)= f(t)+ a I(u)S(u)F(t- u) du,

S(t)= 1-I(0)- a I(u)S(u)du,

where f(t) represents the proportion of initial infectives who are still infected at time t.
For any integrable function f on [0, c), we shall use Ilfllt0, and Ilfll to denote the
L110, T] and L110, ) norm of f respectively, i.e.,

T t"

Ilfllto, a- | ]f(/)l dt, [[f[[ | If(t)l dt.
-o .0

Wang [9] proved that if I(0)>0 and both f(t) and F(t) are integrable then the
system above has a unique solution pair (I(t), S(t)) where I(t) tends to zero as tends to
infinity and S(t) tends to the unique root in (0, p) of the equation

1 S + p In (S/S(O))= t(o)-llfll/[lF[I

where p (allFII)-1 is the generalized relative removal rate. This implies that if S(0)> p
and I(0)> 0 the epidemic occurs and the proportion S(t)will drop below t9 as tends to
infinity. In case F(t) is exponential, it is known that I(t) first increases monotonically up
to a maximum value and then decreases monotonically to zero as tends to infinity. In

* Received by the editors July 25, 1977, and in revised form February 27, 1978.
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case the length of infection is constant, stronger initial condition [10] give the same
conclusion.

When F is exponential, it can be shown by examining the solution curves in the S-I
plane that the maximum value of I(t) is equal to 1-p+p lnp-p In S(0), which is
greater than 1 p + p In p for all p _-< S (0) < 1. Since in an actual epidemic the number of
original cases I(0) is usually a very small fraction of the total population, the value
S(0)= 1 approximates to reality and therefore, 1 -p + p In p approximates max0=<t I(t).
At any rate, max0=<t I(t) >- 1 -p + p In p as long as I(0)> 0. The facts that the peak value
of I(t) does not go to zero with I(0) and is always bounded from below by some positive
number depending only on p (not on I(0)>0), illustrate very well the common
observation that in many actual epidemics the peak value of the proportion of the
number of infectives is quite noticeable, i.e., at the "center" of the epidemic a
comparatively large proportion (compared with the size of the epidemic)of individuals
will stay infected simultaneously and this peak value of I(t) depends very little on how
small the initial number I(0)of infectives is.

In 2, we examine the effects of perturbations of the initial conditions on the
solutions of systems (1), and also on the total size of the epidemic y 1 S(). For each
given appropriate function fro, let I,,(t) and S,,(t) be the corresponding solution of (1)
with forcing function f f,. We show that whenf - in L110, ), IlI III- 0 as m
if and only if [1III - 0. In the last section, we extend the result concerning the maximum
value of I(t) to more general F. We prove that under the assumptions p (allFII)-1 < 1
and F(t + s) < F(t). F(s) for all t, s >_- 0, the maximum number of infectives, max0 I(t),
is bounded below by a positive number depending only on p for all I(0)> 0. Note that
the assumption F(t + s)<= F(t). F(s) for all t, s >_-0 is equivalent to the assumption that
an infected individual, who has been infected for a length of time s at time z, has a bigger
chance of being removed by the time + " than an infected individual who has been
infected for a length of time less than s at z. A numerical example is given at the end of
3.

2. Perturbations of the system of integral equations. Throughout this paper we
assume that the function F which represents the probability of an infected individual
staying infected for a length of time and the function f which represents the proportion
of initial infectives who are still infective at time t, are both nonincreasing, integrable
and satisfy 0<_-f(0)_-<l, F(0)=I, F(oo)=f(oo)=0 and p=(al]Fll)-<l. We first
examine the dependence of the total size of the epidemic y 1- S(oo) on the initial
conditions. We write I(t, f), S(t, f) to denote the solution of (1) with initial forcing
function f. Let y (f)= 1 S (oo, f) be the size of the epidemic, i.e., the proportion of the
population that finally contracts the disease. It has been shown in Wang [9] that if ][fl[ > 0
then y (f) is the unique positive solution in [1 -p, 1) of the equation

(2) y(f)+ c(f) e -y(f)/ 1 0

where c(f)-- (1 -f(0)) exp {f(O)/p-a. [If[[}. To see that the preceding equation has a
unique solution in [1- p, 1), consider the left hand side of (2) as a function of y and
denote it by p(y). Then p">0, p(f(0))<0 and p(1)>0 imply there exists a unique
solution in (f(0), 1). Since it follows from Theorem 2 of Wang [9] that S(oo, f)<=p,
y 1-$(, f)_-> 1-p. Thus the unique solution of (2)in (f(0), 1)is indeed in [l-p, 1).

We shall denote the set of all nonzero forcing functions f satisfying the above
hypothesis by M, that is, we define M {f: f is nonincreasing, 0 <_- f(0) _-< 1 and ][f[[ <
We know that when Ilfll 0, s(oo, f)<o. The next lemma shows that S(oo, f)is
uniformly bounded away from p for all f small (or large) in the sense of belonging to a
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set A (or B) defined in the lemma below. The proof of the last theorem in the next
section uses this lemma.

LEMMA 1. Let y(f) be the unique solution in [l-p, 1) of equation (2), A
{f: O<f(O)(1-O)/2, feM} and Be ={f: I[fll>-e, f eM}. Then

inf y (f) > 1 p, inf y (f) > 1 p.
fA fB

Proof. Since c(f)<= (1-f(O)) exp {f(O)/p}, by elementary steps we conclude that

sup c (f)
(1 + p)

exp
1 p

< P exp 1
leA T 2p -sup c(f)_<=pexp{1} {1}
fB --1 e-’<p exp -1

The lemma follows from the fact that the larger c (f) the smaller the corresponding y (f)
and that when c p exp {1/0-1}, y 1 -p.

Remark 2. Putting p* SUpA S(o, f) and pB sup S(m, f), the preceding lemma
implies p* < p and p < p. Note that p* depends only on p and p on p and e, and that

B1 -p* is the solution of (2) with c (1 +p) exp {(1-0)/20}/2 and 1-0 is the solution
of (2)with c =p exp{1/p-l-ae}. Thus p* is the unique solution in (0, p)of the
equation

X-p lnX-(l+p)+p In (1 +p =0.
2 \ 2 /

To examine the effects of perturbations of initial conditions on system (1), we first
show that I(t, f,)- I(t, f)in LI[0, T] if f,,, f in LI[0, T] and f,,,(0) f(0).

LEMMA 3. Suppose F is nonincreasing, integrable, F(0) 1, F(c) 0 and 0 < T <. Then [f,(O)- f(O)l+llf.-fll[o,Tl-->O as m-->c implies III(t, f.,)-I(t, f)ll[o,T]->O as
m --> oO.

Proof. For simplicity, let us write I(t, f), S(t, f), I(t, f,,,) and S(t, f.,) as I(t), S(t),
I.(t) and S.,(t) respectively. Since S.,(t)-(1-f.,(O))’exp{-allI.,[[[o,t]}, $(t)-
(1-(0)), exp (-lllllo,,, it follows from

[e -’-e-yl--<lx-yl for allx, y_->0,

that

IS,,.(t)-S(t)[<-_[f,.(o)-f(O)l+a [I,,(u)-I(u)[ du.

Setting

a(l= (ul du,

subtracting the two equations that are satisfied by I, and I, using the preceding
inequality and changing the order of integration, we obtain, after a series of manipula-
tions,

II,,, (t)- I (t)l----< If,,, (t)-f(t)l + c Ilfl[ If,,,

u )) du.+ [I,,(u)-I(u)[(aF(t-u)+aO(t-
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The basic theorem on integral inequalities (see [4, Chap. 5]) says that the solutions
II,,, (t)- I (t)[ of the preceding inequality are less than or equal to the solution J,, (t)of the
corresponding equation

J.,(t) If.,(t)-f(t)l +

2+ J,(u)" (aF(t-u)+a

Since the hypotheses about[ and implies (see e.g. [5, Thm. 5.4, p. 167])IIJ (t)l 0 as
m , this proves the lemma.
TOM 4. Suppose F is nonincreasing, integrable, F(O)= 1, F(m)= 0, and is

such that 0 (IIFIIY< 1. Let be a sequence 4 nonzero Nnctions in M which
converges in L[0, ) norm m aNnctiono in M. SupposeNrther that[(0) [0(0) < 1 0
and there exists a g e L[O, ) such that [ N g [or all m. Then I(t,)I(t, o) in
La[0, m) g and only g IIWoll e 0.

Proof. We use the same notation as in the preceding proof. If fo 0, then So(t) 1
and ][Io[ 0. Now [[f[[ 0 for m 1, 2,... implies

S()= S(O) e-l*lp < 1.

This shows [[Ill 0 as m, since f(o)f(o)=o implies s(0) 1.
II oll 0, then S S(, fo) (1 -/(0)). exp {-a[[Io[[} < p; thus there exists a

Ta > 0 such that So(T1) < (S + p)/2 p’ < p. It then follows from Lemma 3 that

S(T1)p’

for sufficiently large m. Without loss of generality, we assume that the preceding
inequality is satisfied by all m O, 1,.. . Let e > 0 be given. We translate the first
equation in the system (1) by T to obtain a new equation

I(t + T,)= f(t + T,)+ aI(u)S(u)F(t + T- u) du

+ I(r + u)S(r + u)F(t- u) du, m O, 1, 2,. .
Setting H(t)= I(t + T) and o’F(u)= L(u), and replacing the sum of the first two
terms in the right hand side of the preceding equality by its upper bound

h(t) g(t + T)+T F(t),

and S(T + u) in the last integrand by 0’, we obtain

H(t)N h(t)+ Jo H(u)L(t- u) du, m O, 1, 2,....

Again, the solutions of these integral inequalities are less than or equal to the solutionH
of the corresponding equation

H(t)= h(t)+ H(u)L(t- u) du.

Since h(t)is integrable and IL 0’llf= o’/o < 1, g is integrable and hence there
exists a T depending on T, e, g, , F but not on m, such that

r H(t) dt < el2.
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Putting T T1 + T2, then

II(t)l dt H,(t) dt <- H(t) dt < el2, m =0, 1,2,....

Now it follows from Lemma 3 that there exists an N depending on T and hence on e,
such that

This implies

T

llI -Iollto, a- Io [I.,(t)-Io(t)l dt <e/2 if m >N.

IlL,--Iot[<=lllm- I0llt0.7"l + Jr [I,,,t)[ dt + iT" II(t)l dt

_-<e if m >N,

completing the proof.

3. The maximum number of infeetives. Throughout this section we assume that F
and a satisfy the hypothesis in Theorem 4 and

F(t + s)<=F(t) F(s) for all t, s ->0.

That is, we assume that F(t + s)/F(s), the probability of an infected individual who has
contracted the disease for a length of time s staying infected for a length of time ->_t + s, is
less than F(t), the probability of an infected individual staying infected for a length of
time _->t. (Loosely speaking, the longer the time an infected individual has the disease,
the greater the chance it will be removed sooner.) Since F is not necessary exponential,
we need to specify the "class-age" structure of these initial infectives. By "class-age" of
an infective individual, we mean the length of time an individual has been in the
infective class. Let e(t) be the class-age density function of I(0), in the sense that the
number of initial infected individuals having class-age between a and b is given by

b

(the population size). | e(t)dt.

Thus, I(0)= I[(t)l[ and

(3) I) [F(t + u)] du’f (t) e (u)i_ T)
where F(t + u)/F(u) is defined to be zero if F(u)= O.

Since, as was pointed out earlier, in an actual epidemic the number of original cases
I(0) is usually a very small fraction of the total population, we shall examine the-model
when I(0) is small. We therefore make the assumption

0 < I(0) e --lie (t)ll (a )/2,

or equivalently,

1 > s(0)= 1 I(0)=> (1 + 0)/2.

Again, when no confusion arises, we shall drop the f in I(t, f) and S(t, f) and
write them as I(t) and $(t). It follows from Remark 2 that there exists a t* such that



726 FRANK J. S. WANG

$(t*) (p +p*)/2. Since

a simple calculation gives

and

S(t)= S(0). exp {- aI(u) du

( 2S(0)’I(u) du al. In
\O + O*]’

1
in
p +p* 1 p+p*

(4) I(u)du ->--. In
a 2s()- a 2p*

For -> t*, the first equation in (1) may be written as

I(t* + t) =L(t* + t)+ Io aI(u)S(u)F(t* + t- u) du

t*+t

+ f I(u)S(u)F(t* + t- u) du.
at*

Integrating this equation over and applying the inequality S(t*+t)<-S(t*)
(.o + 0*)/2 for _-> 0, we obtain, I(t’) dt i f(t*+t) dt+ i aI(u)S(u)(,_ F(t) dt) du

20
I(t) dt.

The assumption F(t + s)<= F(t). F(s) for all t, s ->_ 0 implies that the first two terms in the
preceding sum are less than IIFIbe (t*) and

IIFII Io aI(u)S(u)F(t*- u) du IIFIl[l(t*)-L(t*)]

respectively. This together with (4) gives us the inequality

I(t*)>=
p-p*

in
p+ P_____*

2 2p*

We summarize our results into next theorem.
THEOREM 5. Let F be a nonincreasing integrable function on [0, ) such that

F(O) 1, F(c) O, O (a IIFII)-1 < 1 and F(t + s) F(t). F(s)for all t, s O. LetO* be
the unique solution in (0, p) of the equation

l+p l+p
x p In x-+p In O,

2 2

and let I(t, f), S(t, f) be the solution of (1) corresponding to the initial condition f(t)
defined as in (3) where e(t) is such that 0<e =lle(t)ll<=(1-p)/2. Then

maxI(t,f)>P-P* *
o_-<t 2

In
p + p

2p*
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As an example, consider the case where the generalized relative removal rate- ( IIFII)--- 0.8. Then p* is the unique solution in (0, 0.8)of the equation

X-0.8 In X- 0.9843 0.

Thus p* 0.705 and

p--p* p+p*
ln 0.31%.

2 2p*

Our theorem implies that when I(0)> 0 and $(0)> 0.8, the epidemic occurs and at the
peak of the epidemic the proportion of the infective in the total population is at least
0.31%. However when F(t) is exponential, a better estimate

1-p+p lnp =2.14%

of the maximum value of the proportion of infectives is obtained.

Acknowledgment. The author is grateful to Professor Howard Reinhardt for
helpful suggestions.

REFERENCES

[1] N. T. J. BAILEY, The Mathematical Theory of Infectious Diseases, 2nd ed., Hafner, New York, 1975.
[2] H. W. HETHCOTE, Qualitative analysis ofcommunicable disease models, Math. Biosci., 28 (1976), pp.

335-356.
[3] F. HOPPENSTEADT, Mathematical Theories of Populations: Demographics, Genetics and Epidemics,

SIAM Regional Conference Series in Applied Mathematics, Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1975.

[4] W. LAKSHMIKANTHAM AND S. LEELA, Differential and Integral Inequalities: Theory and Application,
vol. 1, Academic Press, New York, 1969.

[5] R. K. MILLER, Nonlinear Volterra Integral Equations, Benjamin, New York, 1971.
[6] P. WALTMAN, Deterministic ThreshoM Models in the Theory of Epidemics, Lecture Notes in Bio-

mathematics, vol. 1, Springer-Verlag, New York, 1974.
[7] F. WANG, Limit theorems ]’or age and density dependent stochastic population models, J. Math. Biology, 2

(1975), pp. 373-400.
[8] ., Gaussian approximation of some closed stochastic epidemic models, J. Appl. Probability, 14

(1977), pp. 221-231.
[9], Asymptotic behavior of some deterministic epidemic models, this Journal (1978), pp. 529-534.

[10] F. WANG AND W. DERRICK, On deterministic epidemic model, Bull. Inst. Math. Acad. Sinica, 6 (June,
1978), pp. 73-84.



SIAM J. MATH. ANAL.
Vol. 10, No. 4, July 1979

1979 Society for Industrial and Applied Mathematics

0036-1410/79/1004-0006501.00/0

A NOTE ON THE ASYMPTOTIC BEHAVIOR
OF SOLUTIONS OF THE KPP EQUATION*

H. J. K. MOET]

Abstract. This note is concerned with the convergence (as oo) to travelling waves of solutions u to the
initial value problem of the KPP equation

u, uxx +f(u), x R and > 0.

A travelling wave bc is a solution of the form u(x, t)= c(x + ct). Estimates for the difference between u and
b, in a moving coordinate system x +ct, are given in a weighted supremum norm and in weighted
LP-norm (p -> 1).

1. Introduction. This note is concerned with the asymptotic behavior as eo of
solutions u(x, t) of the KPP equation

(1.1) u,--Uxx/f(u),

where f satisfies

(1.2)

x and t>0,

f: [0, 1] [0, oo), f C1([0, 1]);

f(0)=f(1)= 0, f(u)> 0 in (0, 1);

f’(0)=>0, /’()=-t <0;

f’(u)<-a in [0, 1].

In particular, we are interested in the convergence as oe towards a travelling wave
solution, i.e., a solution of the form u(x, t)= c(X + ct) for some c (the velocity) with
c(-oe)= 0 and (+oo)= 1. It is a classical result of Kolomogoroff, Petrovsky and
Piscounoff [6], whom we refer to as KPP, that with the above assumptions on f there
exists a unique classical solution u(x, t) of (1.1) departing at 0 from Uo(X)e [0, 1], if
Uo has at most finitely many points of discontinuity. They proved for each real c => 2/
the existence of a strictly increasing travelling wave and, further, they showed that the
solution starting from a step function converges to a shifted wave. The asymptotic
behavior of solutions of (1.1), (1.2) has attracted an increasing amount of interest in
recent years [1], [5],, [8], [9] and the references therein.

Aronson and Weinberger [1] studied, among other things, the approach of
solutions of (1.1), (1.2)towards the equilibrium solutions u(x, t)=-0 and u(x, t)= 1. For
example, they proved that either u(x, t)=O or limt_. u(x, t)= 1. Furthermore, they
showed there is a number c* >0 with the property that if for some Xo u(x, 0)= 0 in
(-oo, Xo) then for each x and each c > c* limt_oo u(x + ct, t) O.

Kametaka [5] considered the case in which f e C and the initial value u0 belongs
to CI(I)and is strictly increasing. Rothe [8] requires f e C2 and the initial value u0 to be
nondecreasing and continuously dilterentiable except for a finite number of jumps in
which Uo must be continuous from the right, moreover, 0 and 1 are the only values
allowed to be assumed more than once. Both, Kametaka and Rothe, obtain uniform
convergence to shifted travelling waves.

Sattinger [9] obtains his results on stability of travelling waves as a corollary of a
stability theorem for nonlinear parabolic systems. Let us recall his formulation of the
problem. A solution u(x, t)of (1.1) which at 0 is a perturbation of a travelling wave

* Received by the editors February 10, 1977, and in revised form January 26, 1978.
t Mathematisch Instituut, Rijksuniversiteit Utrecht, Utrecht, the Netherlands.
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, i.e., u(x, 0)= Co(x)+ Uo(X), can be written in the form

u(x, /)= c(x + ct)+ v(x, t; c),

whence, upon transformation to a moving coordinate frame x + ct, one obtains the
following problem for v

vt ve cve +f(c + v) f() [ and > 0

v (, 0; c) u0(’) e .
Let w($)= 1 + e -(/2)e act as a weight function on and let w.j (] 0, 1) be the Banach
spaces of continuous bounded functions v on , corresponding to the weighted norms

IlVllw,o sup

,0

Note that lime_, w()v() must exist, since w.a has to be dense in w,O. Then,
assuming f is C4, Sattinger finds for each c > 2x/,

fly(’, t; c)l[w,a<--ge-" as/oo,

for some K, to positive (cf. [9] for details). Observe that there is no wave shift.
The main purpose of this note is to prove the following
THEOREM 1. Every travelling wave , c >-2x/a, of (1.1), (1.2) is asymptotically

stable under perturbations Uo, having at most finitely many points of discontinuity, ]:or
which 0<=,:()+ Uo()<_-1 and e-(C/2)eUo() belongs to LP() for some p >-1, i.e., the
perturbation v satisfies, in the moving coordinate frame,

(1.3) 1e-/2%(, t; c)l-<- (47rt)-a/2 e-(CZ/4-a)t( e

]’or all (, t)e (0, oo ),

(1.4)

-q(c/2)elv(, t; c)]q d)a/, <= (47rl)-(a/2)(a/o-a/q) e-(C/4-a)t(I e-P/z)elu()lo d)
1/p

for any q >-p >- 1 and all > O.
We observe that there are no monotonicity requirements on the initial values

+Uo. Moreover, apart from 0-< +Uo -< 1 there are no restrictions on Uo in
neighborhoods of +eo. The requirement e-(/2)eUo()eLP(N) for some p => 1 restricts
the behavior of Uo in neighborhoods of -oo considerably. However, there is some
compensation in the fact that we can treat the case c 2x/. An interesting consequence
of this theorem is the following. Let u be the solution of (1.1) which satisfies at 0, for
e > 0 arbitrarily small but fixed,

elsewhere,

i.e., u(:, 0)is "almost" the Heaviside function. Then by our theorem the solution u(, t)
converges uniformly to ()on (-oo, A] for any A N.
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We conclude this section by mentioning (without proof) some results concerning
the asymptotic behavior of solutions towards constant equilibrium solutions of the KPP
equation. If the initial condition u(x, 0) is in LP(R) for some p => 1, then the solution
u(x, t) of (1.1) is in LP(R) for all >0. This implies uniform convergence on compact
intervals in to 1 is the best that can be expected. Sufficient conditions for uniform
convergence to 1 are:

i) the intial value is bounded away from zero outside some compact interval in ;
ii) the initial value Uo satisfies 1 Uo LP(R) for some p => 1.

In the above cases a rate of convergence can be established. In (i) it is O(e--)’) as
t- oo for any e (0,/3). In addition, if f’ is Dini continuous at 1 [2], then the rate of
convergence is O(e -’) as .oo. In (ii) one has SUpxa[1 u(x, t)l O(t-1/(2p) e -(-)’)
as oo for any e (0,/3) and Ill u(., t)l[L"(a)= O(t-(x/2)(1/"-1/) e -(-*t) as eo for
each q -> p -> 1. Again, if f’ is Dini continuous at 1 e can be dropped. Similar results hold
in the case of (n > 1) space variables. We observe that as a consequence of (i) the
solution u (x, t) of (1.1), (1.2) starting from

u(x,O)=16(x)F_,,

if x {x fflb(x) e}
elsewhere,

for e > 0 arbitrarily small but fixed and any c _-> 2/, converges uniformly to 1 as
This proves that in order to obtain convergence towards a travelling wave a consider-
able restriction is necessary on the behavior of the initial perturbation in some
neighborhood of -oo.

2. Convergence to a traveling wave. To prove our theorem on the stability of
travelling waves we need the undermentioned lemma on the asymptotic behavior of
solutions of the Cauchy problem for the heat equation.

Consider

(2.1) u, Uxx, x g and > 0,

(2.2) u(x, 0)= uo(x), x ,
where Uo is a bounded continuous function having at most a finite number of dis-
continuity points, which belongs to L (I) for some p -> 1. As is clearly seen, the function
u given by

(2.3) u (x, t) E(x y, t)u0(y dy,

where E(x, t)= (47rt)-1/2 exp (-x2/(4t)), solves this problem.
LEMMA 1. Let u be the solution of the initial value problem (2.1), (2.2) given by

(2.3); then u satisfies the estimates

(2.4) lu(x, t)l <- (4rt)-a/Zlluoll,.) for all (x, t) g (0, oo),

and

(2.5) Ilu(’, t)[[,.() (4zrt)-(1/z)(1/p-1/q)lluollL,() for all > 0 and any q >- p >- 1.

Proof. The proof of (2.4) is trivial. For (2.5) use H61der’s inequality.
Remark. Results similar to (2.4), (2.5) can be established for uniformly parabolic

equations in " x (0, m) having a fundamental solution which satisfies a certain estimate
(see [3, Chap. 9, 4]). This result seems to have been overlooked previously.
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Proof of Theorem 1. The perturbation v satisfies

vt V,,x +/( + v -/(), x and > O,

v (x, O)= Uo(X) x

We will obtain the desired result by comparing the function v with solutions to other
suitable initial value problems.

First, consider the solution p of

P Px +f( +P)-/(), x e and > 0,

p(x, 0)= max {u0(x), 0}, x

Then by theorem KPP 3 (Theorem 3 of [6]) we know p is nonnegative and

(2.6) v(x, t)<-_p(x, t) forall (x, t)e (O, ).

Secondly, consider the solution q of

q, qx,, +f( + q)-f(), x e and > O,

q(x, 0)= min {Uo(X), 0}, x

Then by Theorem KPP 3 q is nonpositive and

(2.7) q(x, t)<= v(x, t) for all (x, t)e R (0, ).

Since f’(u)<=a in [0, 1] and p(q) is nonnegative (nonpositive) we find

(2.8) f( +p)-f(6) <= ap, (f( + q) f() ->_ aq ).
Now let r be the solution of

(2.9) r, rxx + ar, x and > 0

(2.10) r(x, 0)= [Uo(X)l, x 6 I;

then using (2.6), (2.7), (2.8) in conjunction with theorems KPP 3, KPP 2 it is easily seen
that

Iv(x, t)l =< r(x, t) for all (x, t)

Transforming (2.9), (2.10) to a moving coordinate frame x + ct yields

r, ree- ere + ar, r(sc, o)- lu0( )l,
and after substituting w(:, t)= e-/)er(sc, t)

w, wee- (c2/4-c)w, sc e and > 0,

w(, 0)-- e-melUo()l,
from which (1.3), (1.4)easily follow.

Remark. With f given as in (1.2) KPP were able to prove the existence of a
half-line of velocities [2/, ) with minimal velocity Co 2/a. If f’ does not assume its
maximum value at u 0, then, although a half-line of velocities exists, the minimal
velocity need not be equal to 24a. Hadeler and Rothe [4] show that in this case
Coe [24, 24r], where o’=sup{f(u)/ulu 0, 1)}. It is easily seen that the proof of
Theorem 1 applies to waves with c >_- 243,, where y =max {f’(u)lu el0, 1]}.
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LIMITS IN L, OF CONVOLUTION TRANSFORMS
WITH KERNELS aK(at), a->0"

B. F. LOGAN]

Abstract. For f in L, and K in L1 define

Ka(t)=aK(at), a>0,

fa(x)= I_ f(t)Ka(x t) dt.

Then it is shown that

where

For the case p the result is

li Ifllo o provided < p < 00.

]’,(x)= f(t) dt K(x)+ e,(x)

lim Il 0.
a0

For functions f(z) analytic in the upper half-plane and uniformly bounded in L, norm on lines parallel to
the real axis (the Hardy class H, of the upper half-plane) it follows that

[f(x+iy)’dx =0, (l<=p<).lim

A function K in L1 may be taken as the kernel of a convolution transform on Lp;
l__-p_<- oo,

(1) )(x) f(t)K(x t) dt,

Then/, the transform of f, also belongs to tp with

(2) [Ifqlo --< Ilglll" Ilfll,.

(3)

Often one is interested in the behavior of the parameterized transform

fa (x) f(t)Ka (x t) dt

where

(4) K,(t) aK(at), a > 0

and a --> 0 (narrow-band filtering). In particular, for functions f(z) analytic in the upper
half-plane, uniformly bounded in L, norm on lines parallel to the real axis (the Hardy
class H, of the upper half-plane)we have (Hoffman [1, p. 128])

(5 (x + iyl= f(le, (x

* Received by the editors April 15, 1977.
f Bell Laboratories, Murray Hill, New Jersey 07974.
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where Py(t) is the Poisson kernel

(6) Py(t) =1 Y 1p1()2 2--
7r +y y

It is easy to show from (5) and (6) that for f in Hp, 1 p <,
(7a) lim f(x + iy) 0, (fixed positive y)

(7b) lim f(x + iy)= 0, (fixed real x)

(7c) i) }
l/p

IIf(x + iy)llp If(x + iy)lp dx is a decreasing
function of y.

However, judging from the literature, the useful result

(8) lim IIf(x + iy)[[o 0 for f in Hp (1 <= p <)
y--oo

is apparently not generally known. Of course (7) does not imply (8). Certainly (8) is not a
surprising result (obvious for p 2) since the Fourier transform of Py(t) tends to zero
everywhere except at the origin; i.e.,

I_ Py(t) e"’ dt e -yl’l y>0 (-c<to<c).

However, the unsurprising result, as is often the case, is surprisingly difficult (well,
say tedious) to prove, given the state of Fourier transform theory for Lp. So for the
convenience of future reference we prove the more general unsurprising result:

THEOREM. LetKbelong to L andf to Lp.for some p satisfying 1 <= p <. Then with
f,, defined by (3) and (4) we have

(9) lim Ilfal[ 0 provided 1 < p <
a0

(10)

In case p 1 we have

f,(x)= f(t) dt K(x)+ e(x)

where

(11) lim II alla 0.
a-0

The result (8) follows by setting

Ka(t) Py(t),
1

and noting that for f in H1

I_ [(t)dt=O

since we can show, using the analyticity of f(z) and the uniform bound on the norm of
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f(x + iy), that

F(to)=[ f(t)e -i’dt=O for to<0

and since f belongs to L1, F(to) is continuous; i.e., F(0)= 0.
Actually (9) is valid for special K not in L1. For example it has been shown, (Logan

[2]) that (9) holds for

sin
K(t)=

zrt
and hence for finite sums

sin hktK (t) ak
71"t

and then for functions of the last form convolved with a function of L1. That such
kernels carry Lp into Lp (1 < p < oo) is a simple consequence of the fact that the Hilbert
transform of a function of Lp is also a function of Lp, provided 1 p oo. It would be
very desirable to find a general characterization of convolution kernels which carry Lp
into Lp for all p satisfying 1 p eo. One could then probably show that (9) holds for
such kernels.

The reason that (9) is a bit harder to establish than (8) is the fact that the Poisson
kernel belongs to L1 f Loo and hence to Lp. Our proof of (9) requires approximating K
with a kernel k in L1 Lp. There are a lot of ways to do this: We may take

(12) k(x;A)=A s(At)g(x-t)dt, A >0,

where

(13)

So we have

sin 7rt/ 2s(t)=
zrt J

s(t) at Is(t)l dt- .
(14) Ilklll Ilglll

and

lim IlK klla 0.(15)

The last result is established by the standard "approximate identity" argument (see
Appendix).

Since s(t) belongs to L, for every 1 <_-p <= we have from (2) and (12)

[[kilo <--IIAs(At)l[o" Ilgl[
lip f_ }l/p

and since Is(t)l-<- 1, we have for p _-> 1,

I_ ls(t)lp dt [s(t)l dt 1.
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Therefore

(16)

Now we define

(17)

and

(18)

Then

(19)

and thus

(20)

r=l-l/p.

ka(t)=ak(at;h)

ba(x) f(t)ka(x t) dt.

fa(x)-b(x)= f(t){K(x-t)-k(x-t)} dt

Now we want to let h -+ oo as a + 0 in such a way that ll4,l[p - o. Then since

IlK- k[[1 0 as a - mwe will have

0 as a 0.

To obtain this result we first write for any T > 0

(21) f(t)= g(t; T)+ h(t; T)

where

g(t, T)= 0, [t[ _-> T,

h(t; T)= O, It[ < T.

That is, g is simply f truncated to the interval (-T, T)’and h represents the "tails" of f.
We have

(22)

(23) lim Ill- g[I. 0 (1 <- p < oo)

(24) lim Ilhllo o (1 -<_ p < oo).
T-+oo

Now we want to use the fact that g also belongs to L1 although its norm in L1 may
tend to c as T- m. We have from H/51der’s inequality

(25) Ig(t)l dt [g(t)[ G(t) dt <-_

where

1 _--,1 G(t)
1, Itl < T,

p q 0, It[_-> T
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and

(2T) I[GII.
Next we define

(26) ga(x; T,A)= k,,(t)g(x-t)dt

and think of k in Lp and g in L1, interchanging the roles of the function g (--f) and the
kernel k,, (-K,). We have

I dt}l/pI]k[[p =/, ]ak(at)]
(27)

at| Ik (t)[ p a*ll/llo

where r 1- 1/p. Thus we have, using (2), (16), (25), and (27),

[[gallo <--Ilka[lo" ]lglll allk]lo Ilgl[1
(28)

<- (2aA T)IIKII1 Ilh [l; r 1

Now

1

(29)

where

qb,(x)= g,(x)+ h(x)

ha=h@k,

and since Ilkalll Ilklll <--Ilgll we have

I111 -< Ilgallo +llklll. Ilhll
(30)

<_- {(2ah Tf. Ilfl[o / [Ihllo}"
where r 1- 1/p.

Now we may, for example, set

A --a -u,
so that

T=a (0< u<1/2)

(31) lim(2ahTf=0 forp>l
a--0

and since

lim Ilhllo o for 1 =< p <
Tc

we have

(32) lim I111 lim IILIlo 0 for 1 < p <.
a-O a-O

Thus we have established (9). It should be noted that this result (or proof) ultimately
depends on the property of the Lo norm, which offhand seems rather freakish: if k (t) is a
bounded function of L1 then ak (at) tends to zero in Lp for every p > 1 as a - 0 but not
for p 1 (cf. (27)).
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Also we note that if f belongs toL and lim,_+/- f(t)= 0 then Ilhll- 0 as T - so
that in this special case lima-o IILII-0.

The conclusion of the theorem for the case p 1 is easily established. For f in La
and

we define

(33)

and then write

fa (X) aK(at)f(x t) dt, a>0

lfa() I_ lf()K(x t)dtF(x; a)=
a a

l__a, ](-){K(x t)-K(x)} dt(34) F(x; a)-cK(x)= I
c= dt

where

f(t) dt.

Then we use the "approximate identity" argument (Appendix) to conclude that

(35) lim IIF- cK[ll 0.
ao0

fa(X) aF(ax; a)= c{aK(ax)}+ ea(x)

"--Cga(x)+Ea(X )

lea(x)[ dx [aF(ax; a)-cKa(x)l dx

Thus

(36)

where

and from (35)

(37) lim IIal[x 0.
a0

Appendix. A convolution kernel K in L1 satisfying

(A.1) K(t) dt 1

is said to be an "approximate identity" (Hoffmann [1, p. 16]) for L, in the sense that f
defined by

(A.2) B (x)= A g(Atff(x t) dr, A > 0, f in

tends to f in L, norm as A - eo (1 _-< p < oo).
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Actually, Hoffmann imposes additional constraints on K which we do not require
to obtain convergence in Lp. One should recognize that a convolution transform is to be
regarded as mapping functions into functions or, here, elements of Lp into elements of
Lt,. The integral in (A2)does not generally make sense pointwise unless K also belongs
to the complementary space Lq, 1/p+ 1/q 1. Strictly speaking the convolution
transform on Lo should be interpreted as the limit in Lo of convolution transforms
defined by a sequence of kernels Kn in Lq (say bounded kernels of compact support)
tending to K in L1. We omit this intermediate step required for full rigor in the
following argument (which is also required to rigorously establish that K carries L into

We assume that K belongs to L1 and replace (A. 1) by

(A.3) g (t dt c

since we may be interested in the case c 0. Then we write

(1.4) B(xl-c(xl= (a){(x tl-(xll= e.(xl

(A.5) lea (x)[ A IK (At)l [f(x t)-f(x)[ dt.

Now ex belongs to Lp and its norm is equivalently defined by

(A.6) I1.11 sup, e, (x)g(x) sup dx
g g

hcr the suprcmum is taken over unctions g o norm 1 in the complementary space, q p/(p- 1). We thn have from (.6) and (.)

(1.7) I1.11 [g(At)[. (t)dt

where is the Lp modulus of continuity of f,

I t)-f(x )[O dx}
l/p

(A.8) ,.(t) .(; t)= If(x-

For f in Lo for some p satisfying 1 N p <, (t) is an even continuous function of (see
Achieser [3, pp. 162-163]) with

(A.9)

(A.10)

Then

(A.11)

where

(A.12)

T

T tl>T
IK (At)[ dt

<=M(T) f_ IK(t)l dt + 2ll/ll IK(t)[ dt
AT t[>AT

M(T)= sup p(t).
-T<t<T
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Since/xp(t) is continuous and/zp(O) O,

(A.13)

So if we take, for example,

(A.14)

we have

(A.15)

(A.16)

and

(A.17)

lim M(T)= 0.
T0

T =/ -1/2

lim Ile, lip 0

A(x)=cf(x)+(x)

lim IIA cfll o (1 _-<p < eo).
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INEQUALITIES AND MINIMUM NORM KERNELS
FOR THE HARDY CLASS /-/,*

B. F. LOGANf

Abstract. Functions f(z) analytic in the upper half-plane and uniformly bounded in Lp norm on lines
parallel to the real axis are said to belong to the Hardy class Hp of the upper half plane. It is shown that

f(x + iy)<=Aoy-1/ If(t)l dt f in H,, p >= l,

holds for

Ao (47r)

with equality possible for x 0, y b > 0, if and only if

f(z)= C(z + ib)-2/p.

The best constant A, was previously known only for p 2, .
The inequality is obtained by replacing the Poisson kernel Py(t) in the representation

f(x +iy)= f(t)Py(x-t)dt, finHp

by a kernel Ky(t; p) of minimum Lq norm, q=p/(p-1),

(21- + iy), 2
where tz 1.Ky(t; P)=

2cr + iy p

The Fourier transforms of the kernels Ky(t;p), <p=<c are given in terms of the incomplete gamma
function. Also it is concluded that

If(x+iy)l-o{y-1/}, y->D, finn, (l=<p<).

Functions f(z) analytic in the upper half-plane and uniformly bounded in Lp norm
(for some p satisfying 1 <= p <- )on lines parallel to the real axis are said to belong to the
Hardy class Hp (of the upper half-plane). This class of functions arises naturally in
Fourier theory, since the Fourier transforms of these functions can be said, in a
meaningful sense (cf. Logan [1]) to vanish over (-, 0) whether or not (i.e., for p > 2)
their Fourier transforms are defined in the ordinary sense. Functions g(z) analytic and
of exponential type A in the upper half-plane, belonging to L, on the real axis, may be
brought into H, by the simple transformation f(z)= eiXZg(z). H is just the special case
A 0, which is, owing to the norm-multiplying property of the exponential function, a
sufficiently general class to consider of functions of exponential type A, analytic in the
upper half-plane and belonging to L, on the real axis. We should note that functions
analytic in the upper half-plane and belonging to L on the real axis do not necessarily
belong to Lp on any other line parallel to the real axis, but for functions f(z) of
exponential type A we do have (Boas [2, 6.7.7, p. 98])

]f(x + iy)l dx IILI[ <-- e Ilfll, y > 0.

Hence follows the above correspondence with Hp.

* Received by the editors April 15, 1977.
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We will understand here and in the following that flip is the norm of f on the real
axis, i.e.

[I[[[o If(t)[ dt 1 <- p < o,

II IL ess sup I 1- su,p de

where the supremum is over functions g of L1, Ilgll- 1.
For f in H, (1 _<-p _<-oo) we have (Hoffman [3, p. 128])

(1) f(x +iy)= f(t)Py(x-t)dt

where Py(t) is the Poisson kernel

1 y
(2) Py(t) t2 2.

7r +y

We have, applying H61der’s inequality to (1),

M.

where

(3a)

(1 + t2)

=I{B(1/2 q_1/2)i1/q (Beta function)

(4@) l/P{ [’(2q--1)} 1/q

F2(q q p/p 1,

1 1
M1 =--, M2 M 1.

rr /2"rr

Actually, the Poisson kernel does not allow equality in (3) except for the case
p oo, f(t)= constant. Here we wish to determine the smallest number Ap such that

Ap
(4) If(x + iy)l-<---lifllo, f in Ho, (y > 0).

Y

That A (p, y) in the best inequality

If(x + iy)l =< A (p, y)llfllo

is of the form
Ap

A(p, y)= lip
Y

where Ap depends only on p follows from a simple change of variable argument. That is,
it is sufficient to determine the best inequality for a fixed value of y, say y 1, and a fixed
value of x, say x 0 (since any translate of f also belongs to Ho):

If(i)l < Apllfllp, f in Hp.
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Then if we set

we have q in Hp and

Then

and hence

(z) f(6z), 6 > o,

IIl[. f(bt)l dt

Ap
If(ib)l =< -llfll., f in Ho.

In order to determine Ap in (4) we have to use more general representations:

f(x + iy)= f(t)Ky(x t) dr, f in

which we may derive by analytic function methods (contour integrals)or equivalently,
since the Fourier transform of (t) vanishes over (-m, 0), in the sense detailed in 1 ], by
replacing P(t) by a function K(t) whose Fourier transform agrees (sense of [1]) with
that of P(t) over (0, ), or formally

(6) Ky(t) e -it dt =e y>0, w>0.

The integral may not make sense, but formally the problem is that of extrapolating the
Fourier transform (for a given fixed y)to (-, 0)so that Ky(t; p) has minimum norm in
the complementary space L,, q p/- 1). Of course the case p =q 2 is simple; the
Fourier transform of Ky(t; 2) must vanish for negative arguments giving

(7) A2 2
cf. M2

The corresponding kernel is called the Cauchy kernel

1 1
(8) Ky(t; 2)= Cy(t)

2rr + iy

and in fact we have, not only for Hz, but

(9) f(x + iy)= f(t)Cy (x t) dt

(We will establish a more general result later.)

(10)

forfinH (y>O)

1 <=p<c.

Thus applying H51der’s inequality to (9) we obtain

c.]f(x + iy)] <-_ -ll/ll., 1 =< p < c,
Y

Sometimes (1/(27ri))(1/(t-iy)) or (+i/rr)(1/(t + iy))is called the Cauchy kernel.
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where

(11)

Ct,
(1 + t2)/2

1 {B( q-l)} l/q_ 1

2rr 2 (47r)1/p

1 1
C1 , C

27r 2","

/r(q- 1)r(e/2)}
1/q

So the Cauchy kernel gives a better inequality than the Poisson kernel for p <_-Po for
some po satisfying 2 < po < eo (po-’ 3.2). Now we would like to prove the following"

TI-IEOIFM. Let f belong to Hp of the upper half-plane, where p satisfies 1 <- p <
Then"

(12) f(x +iy)= f(t)Ky(x-t;p)dt, y>0

where

(13) Ky(t; p)=

and
2zr + iy

1
(14)

with equality possible in (14) ]:or y b, c O, if and only if
A

(15) f(z)=(z+ib)2/p (b > 0).

Furthermore, in (5) we have

1
(16) IlK, l]. (4ry)/o, q=p/(p-1),

with equality holding only ]:or Ky(t) given by (13).
Actually the theorem is simple to prove, given the conclusions. In solving the

extremal problem one has to guess either the extremal f or the extremal kernel and then
the other is quite simple to obtain from the conditions for equality in H61der’s
inequality. It seemed easier here to guess the extremal f. One seeks an f in Ho which
maximizes, say If(ib)[, for Ilfll 1. A natural candidate is

(b/ zr)1/(17) [(z b)
(z + ib )2/ b > 0,

which gives (conveniently)

b
(18) If(t; b)l

7r (t + bZ) Pb(t), Ilfll. 1

and

(19) [f(ib; b)[ (b) 1/’.
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Then (16) follows by applying Hblder’s inequality to (5) with y b, x 0 and f
given by (17). We should remark that candidates f should be zero-free in the upper
half-plane; for if [(y)= 0, Im y > 0, f in Hp, then the function

fo(z)
z v, f(z)

belongs to Hp and Ilfo[[p Ilfllp with

Ifo(x + iy)l > If(x + iy)l for y > 0.

As far as seeking candidates for the extremal kernel the contour integral approach
is simpler than the Fourier transform approach since we do not have a direct way, except
for p 2, to determine the norm of the kernel from its Fourier transform. Also the
contour integral approach allows us to try to match the kernel with the extremal f.

So suppose f belongs to Hp and g is analytic in the upper half plane, g(ib)= 1, and
such that g(z)/(z +ib)belongs to Hq, q=p/(p-1). Then we have

f(z)g(z)
in Hx(20) q(z)

27ri(z + ib)

and hence the related function

f(z)g(z)
(21) h (z

2 7ri (z ib ),
which has a simple pole at z ib, belongs to L on lines parallel to the real axis excluding
the line y b, and is analytic and uniformly in L1 for y _-> c > b; i.e.,

(2 la) h (z + i) belongs to H1 for > b.

Now suppose 0 < a < b < c and consider the rectangular contour formed by the
lines y a, y c, x T, x + T. We have by Cauchy’s integral theorem

T T

f(ib): | h(t + ia) dt- | h(t + ic) dt
.1_ T .1-T

() b b

+ila h(T+iy)dy-iIa h(-T+iy)dy.

Now we have for a function f in Ho (Hoffman [3, p. 125])

(23) lim f(x + iy) 0 for y > 0.

Thus for q given by (20) we have

lim 0 (x + iy) 0, y>0

but

lim q (x + iy) lim h (x + iy) 0,
+ :t:OO

y>0.

Thus, taking the limit asT in (22)with h(t+ia)and h(t+ib)in L1 we have

(24) f(ib)= h(t+ia)dt- h(t+ic)dt, 0<a <b<c.
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(25)

Now since h (z + ic) belongs to H1 we have

I) h(t + ic) dt O.

To establish this we can use the above contour integral argument to conclude that
for f in H1

I) f(x + iy ) dx const. for y >-0

and we have ,established elsewhere [4] that for f in Hp, 1 <= p < oo,

(26) lim If(x + i)l’ dx O.

(We could also obtain (25) by appealing to the one-sided Paley-Wiener theorem for H2
(Hoffman [3, p. 131]), since h(t + ic) belongs to H2 H1.)

Now we can let a 0 in (24) using the fact that (Hoffman [3, p. 128])

lim I_ Io(t+iy)-o(t)ldt=O
0+

and hence that

lim f_ Ih (t + iy)- h (t)l dt 0
0+

to obtain

f(t)g(t)
(27) f(ib)

2 zri (t ib)
dt, b > O,

or replacing f(z) by f(z + a) (a real), and by a,

(28)
f(a + ib)= f(t)

g (t a) dt

2ri(t- a ib)

f(t)Kb(a t) dt

where

g(-t)
(t+ib)’(29) Kb(t)

2rr
b>0.

So here we have valid kernels for H,. We recall the requirements on g:

g(ib)-- 1,

(29a) G(z)
g(z)

(z +ib)
belongs to Hq of the upper half-plane,

q=p/(p-1) (b >0).

(Obviously b in G(z)can be replaced by any positive number.)
In particular, for g 1, G belongs to Hq for every q > 1. The corresponding kernel

is the Cauchy kernel which then is a valid kernel for Hp, 1 -< p < (proving (9)).
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Now let us return to f given by (15) or (17),

f(z)=
(z + ib )a/v

and make an appropriate choice for g in (21). In order to obtain equality throughout in

If(ib)l=ll h(t)dt]<=I_ Ih(t)ldt

If(t)l"
2or(t-ib)

27r ib I1,
we need

[f(t)lV c] g(t)14 b
ib 7r(t2 q- b 2)

and

f(t)g(t)] iof(t)g(t)
t- ib

e
t- ib

oF

where tz 2/p- 1; i.e.,

We require

So we have

f(t)g(t)
t-ib

c’lf(t)l" If(t)l"/ c’lf(t)l,
g(t)=c’(t-ib)

f(t)

(t- ib )(t + ib )2/"
=k(t+ib)

g(z)=k(z+ib).
g(ib)= 1.

1 i_)"(30) g(z)= .-
Thus we have found the extrema! kernel,

(31) Ky(t;P)=27r t+iy
y>0,

where 2/p- 1 and it is the only function which will satisfy

f(ib) /()K,(-) de, f in H
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and will give equality throughout (as just argued) in

If(ib)l= f(t)K(-t) dt <- If()l" Ig,(-)l dy

with f given by (15) (A 0).
We have

(32)

(33)

2 ’/2
IKy(t; P)I

2r (/2+ y2)1/2 where/x
P

1 (y/Tr)a/q

(4ry)/p (t + y)/q, q p/(p 1),

(4Try)1/’"

So to summarize, the kernel given by (13) or (31) gives the inequality (14) and then
given by (15)gives the inequality (16), with the qualification of (14)and (16)justified by
the inequality argument following (29). The validity of (12)follows from (29) with g(z)
given by (30). Thus we have proved the Theorem.

Now regarding the Fourier transforms of the extremal kernels Ky(t; p) we have

(34)

gy(t; 1)-----
1 iy-t

4try iy +

1 ,(, 2iy 1)4try \iy +

1 1
Cy(t)-

27r(t+iy) 4ry 4Try

So for p 1 the kernel just differs from the Cauchy kernel by a constant term 1/(4Try).
So we may write formally

(35)

I_Ky (t; 1) e -i’t dt O, w<0,

1
=-8(w)+e-’y, w >0-

2y

where 6(w) is the Dirac "delta function".
We may write

(2y) 1 iy-t
(36) Ky(t;p)="

(y+it) 4Try iy+t

where u 2-2/p 2/q.
Note that

(y + it) Cy(t)--y-y

1
(37) Ky(t; p)==Kx(t/y; p)

Y
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which can be deduced directly by a scale change in the integral (12). If in (36) we set

(38) Fy(t; v)=
(2y)

(y + it

we can express/y(to p), the Fourier transform of Ky(t; p), as

(39) Ky(to;p)=-- IY(A;v)C(to-A)dA-Y’(to;v) (I<P--<)"

(40)

and

For v > O, i.e. for 1 < p = oo, and y > O, Fy(t; v) has a Fourier transform given by

2rr
(2Y)

O,

e ’y, to<0, y>0,

)l to >0, y
(41) dy (to

=e-’r
=0, to<0.

It is easier to establish (40) in reverse; i.e., to show that

1 f: e iootFy v)=- Fy (to v) do).

We observe (cf. (37)) that

(42) /(’y (to; p)=/x(toy; p).

The convolution in (39) can be expressed in terms of the incomplete gamma
function. We find that

(43)
g(u;p)

--e

where v 2- 2/p 2/q, 1 < p <= oe, and

+ellv(21ul), u <0,

u>0,

-1 e -t dt
(44) y(x)= lZ,(- x >0.

In (44) we can integrate by parts to obtain

(45) Ig;(u;p)=el"l_(12ul), u<0, u=2-2/p=2/q,

which is valid for 1 <-p -< c since

’]/o(X) V_I(X) 0, x>O.

(A delta function of mass 1/2 arises at the origin as p 1 .) Graphs of/1(u p) are shown
in Fig. 1 for 1/p 0, 0.1, 0.2,..., 1.0. Since

F(v-1)=F(1-2/p)

is negative for 1 < p < 2 and positive for p > 2, we have/’l(U; p) negative for u < 0 and
1 < p < 2, tending to -c as u 0- (cf. (43)), whereas for p > 2,/l(U; p) is everywhere
positive and also continuous with gl(u;p)- 1.
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Several concluding remarks are in order First it should be noted that the kernel
Ky(t; p), of minimal Lq norm, is bounded and satisfies Ky(t; p)- O(Itl-), --> where
u 2/q. So the kernel actually belongs to Lq, for q’> q/2 which for 2<-q < c gives
additional validity for (12), i.e., Ky(t; p), 1 < p _-< 2, is a valid kernel for Ho,, 1 <p’<
p/(2-p). On the other hand, for p > 2, Ky(t; p) belongs to LoL1. Hence for p > 2,
K(t;p), like the Poisson kernel, is a valid kernel for Hp, l<-p<=c. (The basic
justification goes back to (29)with g given by (30).)

Secondly, the inequality due to J. Korevaar (1949) given by Boas [2, p. 102], for
entire functions of exponential type h (h > 0)

(46) If(x + iy)[ < {/z,y

where/x < 1/zr for p > 1 and/-2 1/(2r) can be replaced by

(47) [f(x + iy)[ < e_____
147ry ]1/ IIllo

which for sufficiently large ]Yl is an improvement over (46) and is asymptotically sharp as
y.
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FIG. 1. Fourier transforms of the minimum Lq-norrn kernels for H,.
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Finally we note that the result (26) and the inequality (3) imply

(48) suplf(x+iy)l=o(y-1/P), f in H., l=<p<m.

To see this we have for b >-O, f(z + ib) in Ho and then

[(x + iy + ib)= f(t + ib)P,(x t) dr,

sup If(x + i + ib)l <-
)/o

If(t + dt
(4"n’y
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Setting b y we obtain the result (48) from (26). The result (26), that the norm of
in H, tends to zero as y provided 1 <= p <, is apparently not generally known
except for the case p 2 which is immediate from the Fourier integral representation
(the one-sided Paley-Wiener theorem).

Thus we also have the estimate for entire functions [(z)of exponential type A > 0
belonging to L, on the real axis (1 -< p <)

(49) sup [/(x +iy)l=o{ly[-1/0 eXlyl},

Acknowledgment. The author gratefully acknowledges the contribution of
Judith B. Seery in furnishing Fig. 1.
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NOTE ON CONSTRUCTION OF WEIGHT FUNCTIONS*

B. F. LOGAN,-

Abstract. It is well known that the zeros of successive orthogonal polynomials, associated with a

nonnegative weight function, are interlaced. Conversely, any two polynomials with interlaced zeros may be

regarded as orthogonal polynomials associated with a nonnegative weight function. A simple construction of
such a weight function is given.

It is well known that the zeros of orthogonal polynomials are interlaced. Now
suppose that Pn(X) and Pn-l(X) are given polynomials of degree n and n- 1 having
interlaced (simple) zeros. There are numerous ways of determining a nonnegative
function w(x) such that Pn and Pn-x are the orthogonal polynomials of degree n and
n- 1 associated with w(x). Here we note a simple construction.

For convenience we assume that the leading coefficients of Pn and Pn-1 are
positive. Then we set

(1) Pn+l(x) (anX bn)P,,(x)-Pn-x(x)

where an > 0, -< bn < c,

and are otherwise arbitrary.
Let f(x) be any nonnegative integrable function. Then we may take

1
(2) w(x)= z [{Pn+l(X)/Pn(x)}

Pn(x)

or a similar form, obtained by replacing f(x) by x-:Zf(x -),
1

(3) w(x)= 2 f{Pn(X)/Pn+I(X)}.
Pn+l(X)

This result, which is somewhat startling at first sight, is quite easy to obtain but, to
the author’s knowledge, has not been explicitly pointed out in the literature. The result
may be obtained readily from identities connecting orthogonal polynomials of the first
and second kinds but it is instructive to derive the result from first principles.

To obtain the result we first locate point masses at the zeros of the polynomial

(4) an+l(X -)= Pn+l(X)-’rPn(x)

where - is any real number, the masses chosen so that Pn and en-1 are the orthogonal
polynomials for the atomic distribution. Then we will average the atomic distributions
("--distributions") with weight [(z) dr to obtain the result.

Denote the zeros of An+l, en+l, and P,, by ak ak(’), k, and Yk, respectively,
ordered according to the index. We have

This interlacing follows from (1) and the fact that

(6)
Pn-(x)
Pn(x)

* Received by the editors February 3, 1978.

" Bell Laboratories, Murray Hill, New Jersey 07974.
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where

Pn- (’Ik ) > o(7) u p(y)

the positivity being a consequence of the interlacing of the zeros of P, and P,-1 and the
fact that their leading coefficients are positive (have the same sign).

Similarly we can establish from (4) and (5) that

(8)
flk<ak(Z)<Yk for’>0andk=l,2,...,n,

ln.l ( ffn+l(T)( (20 for r > 0,

Yk-l<ak(r)</3k forr<0andk=2,...,n+l,

(9) -c<al(r)</3 for r<O,

lim ak0") yk, k 1, 2,. , n
-I-

(10) an+i(7")--) q-CX3 as r +,

lim ak(z)= yk-x, k =2,..., n +1,

(11) a(r)--)- as ’--)-c.

Now we seek positive masses/k ,k(’/’) associated with Olk Olk(’r) such that

n+l

(12) ., AkPn(ok)Qn-l(Otk) 0

for any polynomial ()n-1 of degree n-1. Clearly the weights wk which annihilate
polynomials of degree n- 1 at the points ak,

n+l

(13) WkOn-l(Ok)-" 0,

must be

C
(14) Wk An+l(ak)
where c is some constant. This follows from the Lagrange interpolation formula or
directly from the fact that

lim f O,,- (Z) dz 0
r--, Jlzl=rAn+x(Z)

So we may set

1
(15) /k(z)= >0.

A’ )P,,(ak)n+l (Ok, T

Here the positivity follows from

(16) A n+l (X) Pn+l (x )- zP’,, (x ),

(17)
Pn+l(Ok)
p.()
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(18) A’.+(x)=

and then

p’.+ (x)e.()-e.+()p’.(x)

(19) P,., (ak )A+ (ak ) P’n+I (Otk )Pn (otk )-- Pn+ (k)P’n (Otk ).

Now use the fact that (cf. (6))
"+ c P. (t)P,,(x)_ 2 where Ck >0(20) P.+l(X)- X --k P’n+l(ilk)

so that

(21)

Hence

d Pn(x) P’n+I (x)Pn(x)-Pn+I(X)P’n(X)
Pn+x(X)dx Pn+l(X) 2

n+l Ck=E (x_t)> 0 (x t).

n+l P+ (x_____)(22) P’,,+l (X)P,(x)-P,,+l(X)P’,,(x)= Ei Ck(x --ilk)2>0.

Thus the positivity of k("/’) is established.
Now with Ak given by (15) we have (12) holding. It will then follow from (1) that

P,,_ is the orthogonal polynomial for the r-distribution. We have from An+l(Otk) 0,

and then from (1)

(23) Pn-l(ak ) (a,,ak b,, "r)P,, (ak ).

Hence for any polynomial 0,-2 of degree n- 2,

(24) E lken-1(Olk)On-2(Ok ) kPn (Olk)(a,,ak b,, r)O,,-Z(ak) O,

since (a,,x-b,,-r)Q,_2(x) is a polynomial of degree n- 1.
-,n+lNext we observe that ,.1 Ak(r) is independent of r. To see this we note that the

residues of the function

An+ (Z "r)Pn (z )

sum to zero. Thus

n+l n+l 1 1
Z a()= Y =-,2an+l(Otk, r)P,,(ak) a,+a(y, r)P;(y)

(25)

P.+I(y)P(Yk) P.-I(y)P(T)

where the second line shows the independence of r. Further, it follows from the fact that
P. and P._ are orthogonal polynomials with respect to the r-distributions

n+l

(26) Z a,(){x -.,()}. -< <.
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as well as the distribution based on the zeros Yk of P.,

(27) ’. tXk6(X Yk ) where
1

tXk P,.-x(/,)P’,.(W )’

together with the fact [cf. (25)],

n+l

(28/ E ak(r)= tZk,

that the distributions (26) and (27) have the same moments through order 2n-1
(independent of ’). (Note that (27) may be obtained by letting - - m in (26), using (10),
(15), (19), and (1).)

Now we average the distribution in (26) setting

(29) w(x)= x()(x -.())f() &.

We change variables in the integrals using

Pn+l{Olk (T)}

Pn+l {Ok}Pn (ooc )-- Pn+ (Otk )Pn (Otk )
dr dak,P(ak)

()=

and then from (19)we have the simple result

(30) A(’) d"
dok

Therefore, recalling (10) and (11), we have

(31)
hk(’r)6{X --ak(’r)}f(’r) d’r 6(x --Olk)f{Pn+l(Olk)lPn(Olk)} p2.(ak )

1
2 f{Pn+1 (X)/en (x)}, ’k-1 < X < k,

P,(x)

which is valid for k 1, 2,..., n + 1 if we set 3’0 =-co, ’Yn+l--"-t-OO. Thus we have
established the result. We note from (25)that

(32) w(x) dx f(x) dx {P,,-I(Vk)P’,,(Tk)}-
where Yk are the zeros of P,.

One can generalize the result in an obvious way by introducing additional
polynomials

P..+x(x)=(amx-b..)Pm(x)-P,.._x(x) m>=n. a... > O.
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and taking

w(x)= E l’{P’+’(x)/P"(x)}
P(x)

fk(X) dx < c, 1(x)>-o.
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THE ASYMPTOTIC EXPANSION
OF THE INCOMPLETE GAMMA FUNCTIONS*

N. M. TEMMEf

Abstract. Earlier investigations on uniform asymptotic expansions of the incomplete gamma functions
are reconsidered. The new results include estimations for the remainder and the extension of the results to

complex variables.

1. Introduction. We consider the incomplete gamma functions ratios P and O
defined by

1 ta_
_

(1.1) P(a, X)=F- e dr,

We suppose first that x and a are real with

(1.2) x_>0,

1 a-1 --tO(a, x)=_ e dt.
F(a)

a>0.

In Temme [4] we derived asymptotic expansions of P and O for a --> , uniformly
valid for x => 0. In this paper we reconsider these expansions. Our new results concern
the representations of the remainder in the asymptotic expansion, representations for
the coefficients of the expansion for numerical applications, numerical upper bounds for
the remainder in the case of real variables, and extension of the asymptotic expansions
to the case of complex variables. These problems are mentioned by Olver in [2].

To describe the expansions given in [4] we introduce the following parameters

(1.3) A x/a, /x A 1, r/= {2[tz -In (1 +/x)]}1/2,
with the convention that the square root has the sign of/z (/z > 1). As a function of/z, rt
is monotone and infinitely differentiable on (-1, ). Analytic properties of r/(/z) for
complex/x are considered in 5.

The asymptotic expansions of P and O derived in [4] follow from the represen-
tations

(1.4)
P(a, x)= 1/2 erfc [-rl(a/2)1/2] ga(r ),

O(a, x)= 1/2 erfc [n(a/2)1/] + R,,(q

with

(1.5) R,(rt).--.(2rra)-X/2e -(1/2)"’2 Y’. c,(n)a -"
k=O

for a-oo, uniformly valid with respect to rt ; erfc is the complementary error
function defined by

-1/2 I)(1.6) erfc (x)= 27r e -t2 dt.

The expansion (1.5) was derived by using saddle point methods. In 2 we use a
different method which yields recurrence relations for the coefficients Ck and a
representation for the remainder of (1.5). In 3 we discuss representations for Ck that
can be used for numerical applications. In 4 numerical error bounds are constructed

* Received by the editors May 31, 1977, and in revised form March 17, 1978.

" Mathematisch Centrum, Amsterdam, The Netherlands.
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for the remainder of the series in (1.5) when the first n terms in the series are used.
Bounds are given up to n 10. /ks a side result this section gives bounds for the
remainder of the asymptotic expansion of the reciprocal gamma function 1 IF(x) for real
x. In 5 the results are extended to complex values of a and x.

2. Recurrence relations for the coefficients and representations of the remainder.
First we remark that the asymptotic expansion for a-c, of dR, (r/ )/dr/ may be
obtained by formal differentiation of (1.5). This is not proved here, but it follows from
the representation of R, (r/) in our previous paper (formula (2.10) of Temme [4]). The
result is

(2.1)
dr =o

with

d)(n) -nco(n),
(2.2) dCk-l (r/ )cl)(r/) --r/Ck(r/)+ k => 1.

dr/

Secondly, we need the coefficients of the asymptotic expansion of the complete
gamma function. Let us define

(2.3) F*(a) (a/(2"rr)) 1/2 eaa-aF(a), a > O.

Then F* and l/F* have the well-known asymptotic expansions for a oo

r*(a)--- Y, (-1)wa-,
k=O

(2.4)
-k1/F*(a) Y ya

k=O

The first few coefficients are

1 1 139
o’0 1, ’/1 12’ Y=288’ Y3=51840

Further coefficients follow from Spira [3] and Wrench [5]. Wrench gives (--1)kyk up to
k 20 in rational form, Spira the remaining up to k 30. Decimal representations are
also given in both references.

With these preparations we have
THEOREM 1. Let {Yk} be defined by (2.4). Then the coefficients Ck Of (1.5) satisfy the

recurrence relation

(2.5)

1 1
co(n)

Proof. By differentiating one of the formulas in (1.4) with respect to r/and by using
(1.1) it follows that

d R,(r/)=(a/(2,rr))l/2( 1
1 1 _)_(1/2)a12(2.6) d- /x + 1 F*(a)

e
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From (1.3) we have

dz ( + 1)
(2.7)

dr tz

and substituting (2.1) and the second relation of (2.4) we obtain (2.5) by collecting equal
powers of a -1 and using (2.2). 13

As follows from [4], the coefficients Ck are holomorphic in a neighborhood of r/= 0.
In fact the singularities of 1/ix and 1/r/in Co cancel each other. So the limiting value of
Co for r/ 0 is well defined.

Owing to the presence of the derivative of ck-1 in (2.5) this formula cannot be
handled easily from a numerical point of view. Further, the above mentioned cancel-
lation of singular parts in Co occurs in all ck when working with (2.5). Therefore other
representations are given for these coefficients. In the next section we discuss some
aspects of the Taylor expansions for small Ir/l-values, while for larger It/l-values a
recurrence relation is constructed from which the coefficients can be computed directly.
But first we give representations of the remainder in the asymptotic expansion (1.5).

From (1.4) it follows that R,(oo) R,(-oo)= 0. Hence, integration of (2.6) gives

(2.8)
Ra(() (a/(27r)) 1/2 1

-(a/(2r))/2 1

r/ 1 ] _(1/2)arl

/z F*(a)
e dr/

rt 1 ] _(1/2)an2

tz F*(a)
e dr/,

where Ix as a function of r/is defined implicitly in (1.3). From these representations and
the recurrence relations for Ck a simple expression for the remainder follows. For this
purpose we introduce the notation

(2.9) R,(n)=(2zra)-X/Ze-/2)"2 c,(n)a -’ +a-NGu(r/; a)
k=0

a > 0, r/ ,N 0, 1, 2, . Furthermore, we need a notation for the remainder in the
asymptotic expansion of 1/F*(a), which is written as

N-1

(2.10) 1/r*(a)= , w,a -k +a-NHN(a), a >0, N=0, 1, 2,....
k=0

THEOREM 2. LetG andH be defined by (2.9) and (2.10). Then

(2.11)

-(1/2)a’2 dr/

+HN+I(a) I; r/la, e-(1/2)anz dn.

Proof. The proof follows immediately from substitution of (2.9) and (2.10) in (2.6)
(and by use of (2.5) and (2.7)).

The second integral in (2.11)can be expressed in terms of O(a, x). The first one can
be bounded if we have estimations for Ick (r/)l. From rep:esentations of ck given in the
following section it follows that [2 + (n)llc(n)l is a bounded function of r/e N, with
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K 1/2 if k 0, K 1 if k >- 1. For estimating the second integral of (2.11) we define

(2.12)
Ct sup [2 + tz (r/)] ICk (r/)[,

fork=0,
for k->l.

k=0, 1,2,...,

For numerical applications the following is important.
COROLLARY. Let Ck be defined by (2.12). Then ]:or N O, 1, 2,. ,

N--1

IO(a, x)-1/2 erfc [n(a/2)t/l-e-/"(2zra)-/ E c(n)a-l
(2.13) k=O

with

<= Qv(n a)(2rra)-l/2a-,

(2.14)
e-(1/2)an2

Qc(n; a)= (tz + 2)-’C
(2_ e-(a/2),-,=) + IHc+l(a)leaa-F(a)O(a, x),

where the upper term is ]:or q >- 0, the lower one for q <= O.
In 4 we give more (numerical) information on C and Hv. With numerical values

of C andH we have strict and realistic error bounds for the remainder of the uniform
asymptotic expansion of O(a, x). Similar results hold for the function P(a, x). For
N=0, 1, 2,... we have

(2.15)

with

(2.16)

N-1

IP(a, x)-1/2 erfc [-rt(a/2)a/Z]+e-(a/2)’’=(27ra)-1/2 2 c,(n)a-’l

<= Pr (r/; a)(2rra)-l/Za-t

e-(1/2)an2 )Pr (rt a) ( +2)-C e-(1/2)arl2 + [Hv+l(a)[eaa-"F(a)P(a, x),

where the upper term is for r/_-> 0, the lower one for r/-< 0.
Remark 1. The functions multiplying the constants C in (2.14) and (2.16) have

quite different behavior for r/< 0 and r/> 0. This, however, is in agreement with the
behavior of the functions P and O in the same formula. In fact, the bounds Pro and 0
give a measure for the relative accuracy for the error in the uniform expansions.

Remark 2. The asymptotic expansion (1.5) and the representation for the
remainder is easily obtained by partial integration of one of the integrals in (2.8) and by
using the recursions (2.5) andH(a) y + (1/a)H+l(a). To demonstrate this we write
in the second of (2.8) 1/F*(a) 1 + a-ilia(a)and we use the first line of (2.5). Then we
obtain

(2.17) Ra() (a/(2’))a/= nco(n) e -(1/2)arl2 drt

+ (2rra )- 2H (a ) I1; txrl e O 2)an drt

Writing the first integral as -a -1 Co(rI) d e -(1/2)an2, we obtain for this integral (after
partial integration and using the second line of (2.5))

-1 -(1/2)a2 -1 I -(1/2)art2 -1I’0 -(1/2)arl2a Co(’) e + a ncl(r/) e drl -yaa e dn.
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Combining the second integral of this expression with the second integral of (2.17) and
using Hl(a)- yl a-lHz(a ) we arrive at (2.9) and (2.11) with N 1. So the process can
be continued.

3. Representations of Ck. Using (2.5) with k 1 we obtain

and using (2.7)we have

1 l+tx+ 12
(3.2) C1(’0) 3 3

Computing higher order coefficients we notice the following structure

(3.3) Ck(r/) (_l)k{ O____f) ak }2k+1,

where Ok is a polynomial in/x of degree 2k and Ak 2k 2k F(k + 1/2)/F(1/2).
The first few polynomials are

Oo(/x) 1,

(3.4) Ql(/.t,)= 1 +
25 2 4Q2(/x) 3 + 5/x +i/x

In order to preserve accuracy near/z =-1 we write
2k(3.5) Ok(ix)= (1 +tz)Pk(tx)+(--1)k,/k/x

Pk is a polynomial of degree 2k- 2 (k >- 1). Writing
(k) 2k-2(3.6) Pk tx P (ok + p (lk )la,

We have the relation (which is easily obtained by substituting (3.6) (3.5) and (3.3) in
(2.5))

p (ok (2k --1)p (ok-l
_(k-)(3.7) p}k)=(2k_l_])[pk-)+Vi_x ], ]=1,2,’’’,2k-4,

k) (k-l) (k) )k-12k-3 Zpzk_4,

with as starting polynomial PI()= 1, or p(o1 1.
In Table 1 we give the coefficients

0, 1,. .,2k-2.

TABLE

k

2 3,2,1/12
3 15, 20, 25/4, 1/6, 1/288
4 105, 210, 525/4, 77/3, 49/96, 1/144,--139/51840
5 945, 2520, 9555/4, 1883/2, 12565/96, 149/72, 221/17280,--139/25920,--571/2488320

As remarked in the previous section, when computing Ck via (3.3) near r/= 0, One
must pay attention to the cancellation of the singular parts. It may be convenient (and,
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when using a fixed number of word lengths on a computer, even necessary) to use
representations which preserve the accuracy near r/= 0.

If Ir/I is small it is preferred to use expansions either in terms of r/or in terms of
We advise expansions in r/, since it gives better convergence properties. When expand-
ing Ck in powers of/x we need (among others) the expansion of r/in powers of/x. Owing
to the singularity of the logarithm in (1.3), the radius of convergence of this series is 1.
Other singularities for r/ are zeros of/x-In (1 +/z), but they are outside the domain

Il <- 1. This follows from straightforward analysis. The reader may also consult an
interesting note of Diekmann [1]. The expansion of/x in powers of r/ has radius of
convergence 2, 3.54. This follows from the analysis of 5. From the recurrence
relation (2.5) it is easily seen that the radius of convergence of the power series for Ck
either in/x or in r/ is the same for all k.

We conclude this section with some information on the construction of the
coefficients for the expansion of Ck in powers of r/. It is convenient to start with the
computation of the ak in

2(3.8) ,(n)=,n+,:n +...,

where/x is defined implicitly in (1.3). Substitution of (3.8) in (2.7) yields the recurrence
relation

k-1

j=2

k_->2.

The first few are O 1, O2--1/2, a3--3-, R4=--2ff0, O5=43--. With Ok we also have
available the ]/k Of (2.4), which are also needed in (2.5). The relation between ak and yu
is Yk (--1)kl 3" 5 (2k + 1)a2k+l, (k =0, 1, 2,’’" ).

The coefficients c(,,k) in the expansion Ck(r/)= Y’.,,= o ck)r/" follow now from (2.5).
For k 0 we have

C(o= -1/2, C(k= (k + 2)ak+, k _-> 1

and for general k ->_ 1 the recursion is

or, in terms of c),

(k) (no (k-l)
Cn ]/kC +(n +2)Cn+2 n O,

(3.9) c(,,k) ykC(,,) + Yk-l(n + 2)C ()n+2 "" "t- yo(n + 2). (n + 2k" (o)
)Cn+2k.

As follows from the rate of convergence of the series for Ck (with radius 2x/)
successive terms in (3.9) are decreasing in absolute value. Hence no instability problems

(k)arise when using (3.9) for the computation of c,

4. Bounds for the remainder in the asymptotic expansion. In Table 2 we give the
numbers Ck defined in (2.12). These bounds were obtained numerically by using
representations of Ck given in the foregoing section. From (3.3) and (1.3) it follows that

lim Co(r/) 1, lim [2 + ,u, (r/)]/Zco(r/) -2-/2
rl -t.-o0

lim [2 +/x(r/)lCk(r/) +/-Yk, k >- 1.
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TABLE 2

k C2k C2k+1

0 O.083
0.010 0.0027

2 0.0024 0.00092
3 0.0016 0.00083
4 0.0021 0.0014
5 0.0045

Next we give details for computing the bounds Hk (defined in (2.10)) for k
0, 1,. , 10. It is convenient to start with details for obtaining the asymptotic expan-
sion of 1/F(a). Again, a is a positive number. Our starting point is Hankel’s integral

1 1 I (+) tt(4.1) F(1- 27ri
e at.

This can be written as

1 .1-a -1 f_ -(1/2)au2

F(a)
a e r e g(u ) du

with

ut 2 f(u)+f(-u)
(4.2) f(u)= 1--t’ -su t- 1- In t, g(u)=

2i

where u N and follows the steepest descent line for (4.1) in the t-plane. More
information on the relations in (4.2) is found in our previous paper [4].

The asymptotic expansion of 1 IF(a) is obtained by expanding g(u) in powers of u
and integrating term by term. Let us define (for N 0, 1, 2,...) the functions gN by
writing

g(u)= E akU
2k + auuZngu(u), ak

k=O (2k)! g )(0)"

all ak are different from zero. Then the function HN of (2.10) is given by

Hu(a) (a/(2r))l/2aNa N I_ e-(1/2)aU2u2NgN(U du.

It appears that g, and hence gu, is bounded on [. Let us define the bounds

then a bound for HN is given by

Gu sup Igu(u
u[

(4.3) [n(a)l<=ImlG, a >0,

where yk are the coefficients in (2.10). Table 3 gives the value of Gu for N
0,1,..., 11.
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TABLE 3

N G2N G2N+I

0
1.95

2 3.33
3 5.05
4 6.95
5 8.90

For N 0, 1, 3, 5, 7, 9, 1 1 the maximal function values of IgN(u)} occur at u 0;
for N 2, 4, 6, 8, 10 the maxima occur in the neighborhood of u +2/. These latter
points are the points on the real axis marking the domain of convergence of the Taylor
series of g.

With the data of Table 2 and Table 3 and relation (4.3) the bounds ON and
defined in (2.14)and (2.16)are easily computed.

5. Extension to complex variables. In this section we will show that the asymptotic
expansion for P and O given by (1.4) and (1.5) are valid for a-->oo uniformly in
larg a <- 7r e x, larg x/a 1-< 27r e2 where e and e2 are positive numbers, 0 <
0<e2<27r.

The condition on the argument of a follows from the validity of the expansions in
(2.4), which are known to be uniformly valid when ]argal_-<Tr-e. As noticed in
Remark 2 of 2 the asymptotic expansion of R,(r/) can be obtained by partial
integration of one of (2.8). If we consider the second integral, one of the assumptions by
partial integration will be that exp (-1/2art 2) vanishes at infinity in a certain direction of
the B-plane. If ]arg a I< and if it is allowed to use B-values at infinity with arg (a/2)
zr/2 then the convergence of the integral is established for [arg al =< zr-el. From these
inequalities it follows that it is sufficient to show that for large 1/I we can take arg r/in
(-43-zr, 43-zr). A second aspect of using the second integral of (2.8) is the possibility of
joining the point r with oo such that the function Ix (r/)of the integral is holomorphic
along this path and such that the point r can be associated unequivocally with a point in
the/x-plane. In order to settle this we discuss the relation between r/and the parameter
tz (or A) for complex values.

It is convenient to consider

(5.1) r/= [2(A 1 In A )]/2.

For A > 0 the function rt is to be interpreted as drawn in Fig. 1. This implies a choice of
the square root.

We obtain a clear insight in the mapping A -> /(A) and its inverse if we draw images
of the half-lines 16 defined by

l, {A ]A p e i, > O}

where b is real, 14,[_-< 2r. Writing r/= c + i/3 we find that the image of 16 in the n-plane is
governed by the equations

1/2(a 2-/3 2) p cos b 1 -In p,

aft =p sin 4’- 4’.
Taking into account the convention about the choice of the square root in (5.1) we
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FIG.

obtain Fig. 2, which contains images of l for 0-< b-< 2r. The complete picture for
-2r <-b <-27r is symmetric with respect to the a-axis.

FIG. 2

The shown directions correspond to increasing values of p on 1. The half-lines 1:2
+3ri/42are mapped on part of the hyperbolae a/3 :r27r. The points r/ e are

singular points of the mapping. Other singular points are located in other Riemann
sheets of the r/-plane. Convenient branch-cuts for the function A (r/) are the parts of the
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hyperbolae
with the values of b outside the interval [-27r, 2rr] can be traced, but for our problem
this is superfluous.

It is concluded that any point in the finite r/-plane (not on the branch-cuts),
corresponds to a point in the A-plane with [arg 1< 2r. Consequently, if we integrate
the second integral of (2.8) along a path that avoids the branch-cuts in the r/-plane, the
function tx (r/) h (r/)- 1 is holomorphic. The conditions for allowing values of arg a in
(-Tr, 7r) are amply satisfied, since admissable directions in the r/-plane can be found in
the sector

Remark. Singular points of the mapping rt A (r/) can also be found by considering
the derivative dA!dr/=Ar//(A-1); A=l gives a regular point but A=

2"n’ine (n =+1, +2,...) gives (due to the many-valuedness of the logarithm in (5.1))
singular points r/,, satisfying 1/2r/2 =-2rrin, n + 1 +/-2,.

The integration by parts procedure leads eventually to (2.9)and (2.11). From the
properties of the coefficients Ck and by taking appropriate contours in (2.11) it follows
that for N=0, 1, 2,...,

uniformly in larg a
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REALIZABILITY THEORY OF CONTINUOUS LINEAR
OPERATORS ON GROUPS*

RAMENDRA KRISHNA BOSEf

Abstract. Let G and H be a certain type of locally compact (abelian) group. D(G) denotes the space of
regular functions with compact support on G and D’(G) is the corresponding space of distributions. Linear
mappings from D(G) into D’(G)(D’(H)) are the subject of our investigations. We have carried out some
systems-theoretic investigation in a distributional setting where distributions are defined on groups. Such
investigations in (Schwartz’s) distributional setting have been carried out by several authors. We have chosen
the distribution theory on groups as developed by F. Bruhat, K. Maurin and G. I. Kac. This choice is
motivated by the existence of Bruhat’s kernel theorem and the nuclearity of the space D(G). Properties such
as continuity, regularity, translation-invariance, causality, semipassivity and passivity (a certain positivity
property) are imposed on the linear mappings and their effects are studied.

Representations of continuous linear mappings from D(G) into D’(H) which are regular into C(H), of
continuous linear and translation-invariant mappings from D(G) into D’(G) and of linear and scatter-
semipassive mappings from D(G) into D’(G) are obtained. We establish one-to-one correspondence
between contractions in L2(G) and linear and scatter-semipassive mappings from D(G) into D’(G). We also
show that causality and semipassivity imply passivity in the scattering formalism and passivity implies
causality in the immittance formalism. A characterization of linear, scatter-semipassive, and real mappings in
terms of a positivity criterion is established.

1. Introduction. Classical realizability theory has been developed and studied by
McMillan [8], and Konig and Meixner [6]. In (Schwartz’s) distributional setting this
theory has been studied by Zemanian [18], Wohlers and Beltrami [17], Dolezal [2] and
Meidan [9]. Hackenbroch [4], and Freedman and Falb [3] have considered certain
aspects of this theory where the time domain has been replaced by a locally compact
abelian group. We want to give a limited exposition of the realizability theory as
applied to operators generated by abstract systems defined on a locally compact
(abelian) group.

Let G be a certain type of locally compact (abelian) group with + as the group
operation and 0 as the identity element. D(G) denotes the space of regular functions
with compact support on G and D’(G) denotes the corresponding space of dis-
tributions. We have carried out some systems-theoretic investigation in a distributional
setting. We have chosen the distribution theory on groups as developed by Bruhat 1],
Maurin [7] and Kac [5]. Properties such as continuity, regularity, translation-invari-
ance, causality, passivity and semipassivity are imposed on the linear mappings from
D(G) into D’(G) and their effects are studied. The concept of causality on abelian and
locally compact groups was first introduced by Freedman and Falb [3] and this concept
of semipassivity and passivity for linear mappings on locally compact and ,abelian

groups was first considered by Hackenbroch [4].
Representations of continuous linear mappings from D(G) into D’(H) which are

regular into C(H), of linear continuous and translation-invariant mappings from D(G)
into D’(G) and of linear and scatter-semipassive mappings from D(G) into D’(G), are
obtained. We establish a one-to-one correspondence between contractions in L2(G)
and linear scatter-semipassive mappings from D(G) into D’(G). We show that causality
and semipassivity imply passivity in the scattering formalism and passivity implies
causality in the immittance formalism. A characterization of linear, scatter-semipassive

* Received by the editors July 29, 1977, and in revised form March 22, 1978. The material presented
here is contained in the author’s doctoral dissertation written at the State University of New York at Stony
Brook. This work was supported by the National Science Foundation under Grant PO 33568-X00.

f Department of Mathematics, Birla Institute of Technology and Science, Pilani, Rajasthan, India.
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and real mappings in terms of a positivity criterion is established. These results are
generalizations of the results when G R’, which come out as special cases of our
results on G, a locally compact, separable and abelian group. Some of the results are
generalizations of the results of R. Meidan [9]. In the next section, we give a few
pertinent definitions from the distribution theory on groups as developed by Bruhat 1 ],
Maurin [7] and Kac [5].

2. Distribution theory on groups. Let G be a locally compact group and let be a
family of compact subgroups K of G such that the quotient group G/K is a Lie group.
We assume that the intersection of the subgroaps belonging to ’ is the subgroup {0}.
This is the case if the quotient group G/Go, where Go is the connected component of 0,
is compact. Furthermore, if G is metrizable, there exists a decreasing sequence {K,} of
such compact subgroups such that , K, {0}. The group is then canonically iso-
morphic to the projective limit of G/K,. We assume G to be separable i.e., metrizable
and countable at infinity. Maurin [7] has considered Yamabe groups (or a projective
limit of Lie groups) which are locally compact and second countable.

Let K be a closed subgroup of G. We designate by Ik the canonical map of G onto
the homogeneous space G/K, the left quotient group i.e., G g Ikg g +K G/K. If
E is any space, the mapping Jk [f] [f] Ik allows us to identify a mapping [f] on G/K
into E with a mapping f of G into E invariant to the right by K.

For K , the space D(G/K)of indefinitely differentiable functions with compact
support on the Lie group G/K is identified through Jk with a subspace Dr(G) of the
space Co(G) (the space of continuous functions with compact support on G). We always
consider Dr(G) as endowed with the topology that is carried by D(G/K). This
topology is finer than that induced by Co(G). For K, H with K c H, one has
Dn(G)cDr(G) and the topology of Dn(G) is induced by that of Dr(G), since
D(G/H) is identified as a topological subspace of D(G/K).

DEFINITION 2.1. We denote by D(G) the subspace of Co(G) which is
Dtc (G) equipped with the inductive limit topology, f D(G) is called a regular function
with compact support.

DEFINITION 2.2. We call a function f on G, of arbitrary support, regular if for
every x G, there exists a neighborhood U of x and a function q D(G)such that
f(y) q(y) for all y U, that is, f is regular if and only if pfD(G)forall p D(G)orf
is regular if and only if for all compact K of G, there exists one p s D(G) such that
f(y) q (y) for all y s K.

We designate by E(G) the space of regular functions endowed with the coarsest
locally convex topology such that for every qsD(G), the mapping E(G)f-->pfs
D(G) (i.e., the subspaces of D(G)) is continuous, that is, E(G) is the projective limit of
the subspaces of D(G) under these mappings.

DEFINITION 2.3. We refer to the continuous linear functionals on the space D(G)
as distributions. We designate by D’(G) the space of distributions on G, the dual of
D(G), endowed with the strong (weak) topology of the dual. The space E’(G), the
strong dual of E(G), is identified with the space of distributions of compact support.

For the definitions of the spaces D(G) and E(G) when G is any locally compact
group (i.e., when G/Go is not compact), please refer to Bruhat [1] or Maurin [Tb].

3. Translation-varying linear operators. Here we study translation-varying linear
mappings or operators which are continuous from D(G)into D’(H) where G andH are
locally compact topological groups which are metrizable and countable at infinity.
Meidan [9] has studied these mappings in a distributional setting where distributions are
defined on R’. Such a study of operators cannot be carried over to distribution theory as
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developed by Riss [11]. But such extension is possible to distribution theory as
developed by Bruhat [1], Maurin [7] and Kac [5], thanks to the existence of Bruhat’s
kernel theorem [1 ].

DEFINITION 3.1. C(H) is the space of continuous functions on H, endowed with
the topology of compact convergence. It is a Fr6chet space.

Co(H) is the space of continuous functions with compact support on H, endowed
with the strict inductive limit topology. It is an LF-space.

D(H) is dense in C(H) because D(H)is dense in C0(H) with the uniform topology
and Co(H) is dense in C(H). The space Co(H) is not complete under the topology of
uniform convergence. Its completion is Coo(H), the space of continuous functions
vanishing at infinity.

DEFINITION 3.2. We call an operator from D(G) into D’(H) regular if its range is
contained in either C(H), Coo(H), D(H)or Lz(H).

The following theorems show that by assuming regularity, nice characterizations of
operators are obtained. Here D’(H) is the weak dual of D(H).

THEOrEM 3.1. Let L be a continuous linear operator from D(G) inw D’(H). If the
range ofL is contained in C(H), then L is continuous from D(G) into C(H).

Proof. We prove this by using the closed graph theorem (Tr6ves [16, pp. 173]).
Since the domain D(G) of L is an inductive limit space, we prove the continuity of L
when L is restricted to Dj(G). Here the spaces Di(G and C(H) are Fr6chet spaces. Let
{pi} be a sequence converging in Di(G) to o, and such that the sequence {Lpi} converges
in C(H) to some . We have to show that Lq in order to prove that the graph is
closed. But {Lq} converges to also in the topology of D’(H) (which is weaker than
that of C(H)). On the other hand, due to the continuity of L as an operator from D(G)
into D’(H), {Lq} converges in D’(H) to Lq. Since D’(H) is Hausdorff, the limit is
unique and hence - Lo.

The above theorem is also true when we replace C(H) by Coo(H)or L2(H).
Raikov [10] has shown, in his "double closed graph theorem," that the closed graph
theorem is applicable for operators whose range is contained in an inductive limit of
Fr6chet spaces. Hence we have the following theorem.

THEOREM 3.2. LetL be a continuous linear operatorfrom D(G) into D’(H). If the
range ofL is contained in Co(H) (D(H)), then L is continuous from D(G) into Co(H)
(V(H)).

TI-IEOREM 3.3. Let Ky(x) be a family of distributions in D’(G) depending on
the variable y H. If y- Ky(x) is a continuous function, then the operator L, which is

defined by

(3.1)

where q(x) D(G), is a continuous linear mapping from D(G) into D’(H).
Proof. Linearity of the operator L is clear. We prove the continuity of the operator

from D(G) into D’(H) with the help of the Banach-Steinhaus theorem (Tr6ves [16, p.
349]). Let {0i} be a sequence converging to zero in D(G). The sequence {Oi(y)}
converges to zero pointwise in H.

Let A denote the following subset of D’(G):A={Ky(x):yB} where B is a
compact subset of H. For each oD(G), the function O(y)=(Ky(x), o(x)) is, by
assumption, continuous on H. Since B is a compact subset of H, b(y) is bounded on
B, for each pD(G). This means that the set A is weakly bounded in D’(G).
By the Banach-Steinhaus theorem, A is strongly bounded in D’(G). The sequence
{pi} is bounded in D(G). Hence the strong boundedness of A implies that
supi;yeB I(Ky(x), i(x))l <. By applying Lebesgue’s dominated convergence theorem,
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the weak convergence of {4’i} with respect to regular functions of compact support
follows.

COROLLARY. Let Ky(x) be a family o]’ distributions in D’(G) depending on the
variable yH such that ,(y)= (Ky(x), 0(x)) belongs to D(H). Then q 4’(Y) is a
continuous linear mapping ofD(G) into D(H) (Dolezal [2]).

Proof. By Theorem 3.3, 0 4’(Y) is a continuous linear mapping from D(G) into
D’(H). By Theorem 3.2, 0 ,(y) is a continuous linear mapping from D(G) into
D(H).

THEOREM 3.4. LetL be a continuous linear operator]’rom D(G) into D’(H) which
is regular into C(H) (D(H)). Then a family of distributions Ky(x) in D’(G) exists such
that (Lo)(y) (Ky (x), 0 (x)).

Proof. By Theorem 3.1 (3.2), L is continuous from D(G) into C(H) (D(H)) where
the latter is equipped with its initial topology. Hence, for every fixed y H, (L0)(y) is a
continuous functional on D(G). So a distribution K(x) exists in D’(G) such that
(L0)(y) (K(x), (x)).

The concept of regularity is also associated with the property of the extendability of
the domain of definition of an operator onto spaces of distributions.

THZORM 3.5. LetL be a continuous linear operatorfrom C’(H) into D’(G)for the
respective weak topologies. Then its transpose L is continuous from D(G) into C(H).
Furthermore, L’ is also continuous from C’(H) into D’(G) when they carry their respective
strong topologies.

Proof. The transpose of L’, L is continuous from D(G) into C(H) with respect to
their respective weak topologies (TrOves [16, pp. 197, 199 and 200]). But L is also
continuous with respect to Maekey topologies (Robertson and Robertson [12, pp. 62,
Prop. 14]). For a barrelled or metrizable locally convex Hausdorff space, the initial
topology is identical to the Mackey topology (Tr6ves [16, p. 372, Prop. 36.3]).
Consequently L is continuous from D(G) into C(H) for their respective initial
topologies. Now, the transpose of L is L and is a linear continuous operator from C’(H)
into D’(G) when these spaces carry all the topologies usually considered on the dual
(Tr6ves [16, pp. 199 and 200]).

THORZM 3.6. Let L be a continuous linear operator from .D(G) into D’(H). L is
continuously extendable onto C’(H) if and only if L is regular into C(H).

Proof. This follows from Theorem 3.1 and Theorem 3.5.
THeOReM 3.7. LetL be a continuous linear operatorfrom D(G) into D’(H) whose

range is contained in C(H). Let 6(y-z) denote the shifted impulse function in C’(H).
Then the transpose L’ defines the family of distributions Kz(x) by the shifted impulse
response

(3.2) Kz(x)=L’8(y-z).

The family of distributions Kz (x) represents the operator L by

(3.3) (L,c)(z) (Kz(x), q(x)), q(x) D(G).

Proof. By the assumption of regularity of L, L’ is continuous from C’(H) into
D’(G). Since the function z 5(y-z) is continuous from H into C’(H) and L’ is
continuous from C’(H)into D’(G), it follows that the composite function z Lt6(y z)
is continuous from H into D’(G). By Theorem 3.3, the family Kz(x) of (3.2) defines a
continuous linear operator from D(G) into C(H) by (3.3). This operator is in fact the
original operator L. Indeed, (6(y-z),Lo)=(Lo)(z). But, by the definition of the
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transpose operator, we have

(8(y -z), Lo)= (LtS(y -z), o (x)).

Therefore (Lp)(z) (Kz (x), q (x)).
THEOREM 3.8. Let L be a linear continuous operator from D(G) into D’(H). Its

transpose L’ is a continuous linear operator from D(H) into D’(G). L is extendible onto
C’(G) (D’(G)) if and only ilL’ is regular into C(G) (D(G)).

Proof. This follows from Theorem 3.6.

4. The convolutionai representation ot a translation-invariant continuous linear
mapping ot D(G) into D’(G) (C(G)). In the following G is a locally compact, abelian
and second countable group.

Here we make use of Bruhat’s kernel theorem and a theorem due to Maurin and
Girding [7b] to derive the convolutional representation of a translation-invariant
continuous linear mapping of D(G) into D’(G).

DEFINITION 4.1. The element T D’(G G) and bilinear separately continuous
forms B on D(G) D(G) are called kernels on G. A kernel B(. ,. is left-invariant if

B(Le,q, LgO)= B(q, O) for every g G and q, O D(G),

where Lgf(x)= f(-g + x). We denote Rf(x)=f(x + g). Since we are considering an
abelian group, we have adopted the following notation.

r,f(x f(x g) L,f(x R_,f(x ).

THEOREM 4.1 (Maurin and Grding [Tb]). Let Bbe a left-invariant kernel on a
Yamabe group G (not necessarily abelian ). Then there exist unique distributions T,
SeD’(G) such that B(p, 0)=(S, q**0)=(T, 0**b) for every p, 0eD’(G), where
*(g) tk(-g)A(-g) and

(f* q)(x) [/(y)q (-y + x) dy f f(x + y )o (-y) dy

J A(-y)f(-y)p(y + x) dy.

DEFINITION 4.2. A linear mapping F:D(G)D’(G) is called left-invariant if
(FLg, Lg0)= (Fp, if), , ff D(G); g G, i.e., if F commutes with Lg (LgF FLg) for
every g G.

THEOREM 4.2. Fis a continuous linear and translation-invariant mappingolD(G)
into D’(G)C:,F T*, T D’(G).

Proof. Put B(q, if)= (Fff, ). Then B is a uniquely defined separately continuous
and bilinear mapping of D(G) D(G) into C (the field of complex numbers), which is
also (left) translation-invariant. By Theorem 4.1 (F0, p) B(q, )= (T, if* .) where
T D’(G). Now a simple observation gives us the convolutional representation for the
operator F. We have

(* * q9 )(x ) Ia (y)q (y + x dy

since G is abelian (A(x)= 1 for every x G). Therefore

(F, q)= (T(x), [* * pl(x)) (T(x), (0(Y), q(x + y)))

(T*0, p).

Since this holds for every p D(G), we have Fd/= T, O, O D(G).
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Now let Ftp T q for all 0 6 D(G), where T D’(G). Linearity and translation-
invariance are clear. F is also continuous as a mapping from D(G) into D’(G). We
rewrite

(Fq)(x) (T q)(x) (O’x(t), o(t))= (Kx(t), q(t))

where Kx(t)= trx’(t). The proof follows from the Banach-Steinhaus theorem and the
Lebesgue dominated convergence theorem (proof is exactly as that of Theorem 3.7).

In the following we derive the convolutional representation of a continuous linear
mapping from D(G) into D’(G) which is regular into C(G) as a special case of Theorem
3.7. We shall make use of this simple lemma.

LEMMA 4.1. Let L be a continuous linear mapping from D(G) into D’(G). L is
translation-invariant if and only if L’ is.

THEOREM 4.3. Let L be a continuous linear and translation-invariant mapping
from D(G) into D’(G) which is regular into C(G). Then L has a convolutional
representation L Ko* where Ko is a distribution in D’(G) and L is regular into E(G).

Proofi From Theorem 3.7, we have Kz(x)=L’6(y-z)=L’o’(y)=o’zL’6(y)by
Lemma 4.1. Therefore K (x) trzto(X) where/o(X) L’6 (y). Now

(L0)(z) (Kz(x), q(x))= (rzIo(X), q(x))

(Ko(x), o (z x)) (Ko * q)(z).

q’his gives us the required convolutional representation. Since (Ko* q)(z) E(G), L is
regular into E(G).

5. Immittance tormalism. In this section and in the next section G is a locally
compact abelian group which is also separable.

DEFINIa’ION 5.1. A linear mapping L D(G)LI(G) which satisfies the condition
Re 6 (Lq)(t)(t) dt >=0 for all 0 6 D(G) is called semipassive.

Let P be a closed semigroup of positive Haar measure in the locally compact
abelian group G. Let

jq(t) iftt0-P,Etop(t)
0 if to P.

DEFINITION 5.2. A linear mapping L D(G)- Ll(G)which satisfies the condition
Re to_e(Lq)(t)(t)dt >-0 for every toe G and q D(G) is called passive with respect
to the semigroup P G.

DEFINITION 5.3. A linear mapping L D(G) LI(G)is called causal with respect
to P if for every to G, o(t) 0 for all to- P :ff (Lq)(t) 0 for all 6 to- P. A similar
definition holds for causal linear mappings from LE(G) into Lz(G), i.e., EtLq-
EtLEtq for all to 6 G and for all q LE(G).

THEOREM 5.1. If L is a linear passive mapping from D(G) into LI(G), then L is
causal.

Proof. To prove causality, let q(t)= 0 for all to-P. We want to conclude that
(Lq)(t)= 0 for all tto-P. Let O(t)=ctq(t)/ox(t), where 0 and ol belong to D(G),
a C and (t)= 0 for all to-P. By passivity, we have Re to_p(LO)(t)O(t)dt->0, i.e.,
Re o_p [a(t)+ O(t)][(t)+l(t)] dt >-0 where p(t) (Lq)(t) and l(t) (Lqa)(t).
As a is arbitrary, this implies that o_p(t)l(t)dt=O for all oxD(G) where
oLI(G). We want to prove that O(t)=0 almost everywhere on to-P. Let f(t)=
(E%O)(t). We have f(t)l(t) dt 0 for all q 6 D(G). Also f(t)(x- t) dt 0 for
allx G and q D(G), i.e., f(x-t)a(t)dt=Oforallx G and o 6D(G). Nowby
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Theorem 1.1.5 ([13]) and Proposition 2(a) of Bruhat [1] we choose a ql with support
contained in V, a neighborhood of 0, and satisfying the condition 1(t)dt 1. Now

So

If(x -t)ql(t)-f(x) I [f(x -t)-f(x)lql(t) dt.

<= Iq,(t)l dt Jo If(x-t)-f(x)l dx

at <

But, Ilflll < e =),f(t)= 0 almost everywhere, i.e., $(t)= 0 almost everywhere on to-P.

6. Scattering formalism. We now investigate the effect of certain energy con-
straints on linear mappings from D(G) into D’(G). These energy constraints are the
concept of semipassivity and passivity in the framework of the scattering formalism. We
restrict the range of the operator to La(G). By Theorem 3.1, the operator is continuous
from D(G) into La(G).

DEFINITION 6.1. A linear mapping L from D(G) into D’(G) is said to scatter-
semipassive if

(i) range of L is contained in Lz(G) and
(ii) IIollzz-IlL,oil22 => 0 for every q D(G), where [1" denotes the norm in La(G).
The linear operator L is said to be lossless if equality holds in the above definition

(condition (ii)).
DEFINITION 6.2. The linear mapping L is said to be scatter-passive with respect

to P if
(i) the range of L is contained in La(G), and

[2(ii) for each to G and for every o 6D(G) o-e[[0 -ILqlz] dt >-0.
DEFINITION 6.3. A linear mapping L D(G)- D’(G) is called causal with respect

to P if for every to G, and for every o 6 D(G), the support of Lo( D’(G))is contained
in (to-P)’ whenever the support of q is contained in (to-P)’.

THEOREM 6.1. Let L be a linear scatter-semipassive mapping from D(G) into
D’(G). Then L is continuous from D(G) into D’(G).

Proof. It follows directly from the scatter-semipassivity and from the facts that
D(G) Lz(G) D’(G) and that the initial topologies are stronger than the induced
topologies.

LEMMA 6.1. LetL be a scatter-semipassive linear mappingffom D(G) into D’(G).
Then, it is. uniquely extendable to the space Lz(G). The extended operator is a contraction
in L2(G).

Proof. Due to scatter-semipassivity, L is continuous from D(G) into L2(G), when
the domain is endowed with the topology induced by L2(G). Since D(G) is dense in
Lz(G), it follows that a unique continuous operator from La into La(G) exists, such that
its restriction to D(G)coincides with the given operator. From scatter-semipassivity, it
follows that the extended operator is a contraction.

LEMMA 6.2. LetL be a contraction in La(G). Then L, when restricted to D(G), & a
scatter-semipassive linear mapping from D(G) into D’(G).

Proof. As L is continuous with respect to the L2(G) topology, it must be also
continuous with respect to the stronger Bruhat-Schwartz topology on the domain D(G)
and the weaker D’(G) topology on the range.
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From Lemma 6.1 and Lemma 6.2 we have the following theorem.
THEOREM 6.2. There exists a one-to-one correspondence between linear scatter-

semipassive mappings from D(G) into D’(G) and the contractions in L2(G).
LEMMA 6.3. Let L be a linear mapping from L2(G) into L2(G). IfL is causal and

scatter-semipassive on L2(G), then it is scatter-passive on L2(G).
Proof. Assume that L is not scatter-passive. Then there exists a toe G and a

L2(G) such that ,o_,[Iq12- ILI] dt <0. Let (x)=(Etq)(x). Consider the ex-
pression 6 [1,1= -Itl=] dt I1 dt to-e ILI2 dt ,o-e)’ IL4’I= at where (t0 P)’
denotes the complement of to-P. Therefore

[1.1 [L*12] dt It [tp 12 dt- It lEtLEtq9 dt
o-P o-P

J<,o-P)’ [LI at.

Since for linear operators, causality is equivalent to the condition EtLEt EtL, we
have [112 -[t[1 at to-P [Iq 12 -[Zq 12] dt (,o-,)’ Iz l= dt J1 + J2 < 0 as Jx < 0 by
the above assumption and J2 < 0, i.e., L is not scatter-semipassive. This is a contradic-
tion. Hence L is scatter-passive.

Theorem 6.2 and Lemma 6.3 will be used now to prove that scatter-semipassivity
and causality imply scatter-passivity in the case of linear mappings from D(G) into
D’(G). When G R", Meidan [9] used a theorem proved by Saeks [14] in a Hilbert
resolution space to prove the above statement. However Saeks’ theorem is not
applicable here and we use Lemma 6.3 instead to arrive at the result.

TI4EOREM 6.3. Let L be a scatter-sernipassive linear mapping from D(G) into
D’(G). IfL is causal on D(G), then it is also scatter-passive on D(G).

Proof. From Lemma 6.1, a linear scatter-semipassive mapping is uniquely
extendable onto L2(G) along with the preservation of the scatter-semipassivity con-
straint on the extended mapping. We will show now that causality is also preserved for
this extended mapping. Let to be any element in G. L is causal on L2(G) if and only if,
for every q s L2(G) with support contained in (to-P)’, the support of Lq is also
contained in (to-P)’. But this follows from the causality of L on D(G) and from the
continuity of L with respect to the L2(G)-topology. Indeed, let q be any function in
L2(G) whose support is contained in (to-P)’. Then a sequence {q,} exists in D(G)with
support , (to-P)’, which converges to q in the L2(G)-topology. By the causality of
L on D(G), L, 0 on to-P for all n and by the continuity of L, L 0 almost
everywhere on to-P. From Lemma 6.3, it follows that the mapping is scatter-passive.

7. A representation theorem for linear scatter-semipassive mappings from D(G)
into D’(G). Here G is a locally compact and separable group.

THEOREM 7.1. Let L be a linear scatter-semipassive mapping from D(G) into
D’(G). Then, there exists a family ofdistributions Kt(z) in D’(G) where z, G such that

(L)(t)= (Kt(z), q(z)) for almost all G.

Proof. The continuity of L as a mapping from D(G) into L2(G) follows from the
linearity and scatter-semipassivity of L. Since the space D(G) is nuclear and barrelled
and LE(G) is a Banach space (hence quasicomplete), the mapping L is nuclear (Tr/ves
[16, p. 511, Thm. 50.1])and

k
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where the sequence {x,} is bounded in D’(G), the sequence {yk} is bounded in L.(G)
and {hk} is a complex sequence with Y’. I;t l < oo (Trbves [16, pp. 481 and 482, Prop.
47.2, Cor. 1]). Let Pn(t)= Y-=I Ay(t). Since the sequence {P,,} converges in L2(G),
there exists a subsequence {P,,,} converging absolutely almost everywhere. Let be one
such point and let P-,=Y-k=lAY(t)x,. Then the sequence of distributions {/5,,,}
converges weakly to a distribution in D’(G) as {(Pn,, p)} converges as a sequence of
numbers in C. Let us denote this distribution by the symbol Kt. Then

(L)(t) (K,(z),

for almost all G.
Incidentally this gives an alternative proof of the theorem proved by Meidan [9],

where the spaces D and D’ are the spaces in Schwartz’s distribution theory on R ’.
The above theorem also gives a kernel representation of a linear bounded mapping

from L2(G) into L(G) (where the domain is restricted to D(G)).

8. Realizability condition for translation-varying mappings from D(G) into
D’(G). The Bruhat’s kernel theorem [1] asserts that there is a one-to-one cor-
respondence between bilinear separately continuous forms B on D(G) D(G)and the
distributions fB on G G, i.e., to each bilinear separately continuous form B on
D(G)D(G) there exists a unique distribution fD’(G G) such that

(8.1) D(G)D(G)(q, 4/)---> B(q, 4) (f, q (R) ).

Clearly, every distribution f D’(G G) defines a bilinear separately continuous form
by the equation (8.1). The right-hand side of the equation can be used to define a
composition operator as follows"

Given fD’(G G) and any 4’ D(G), we define f. as a mapping on any
q D(G) by

(f 4, P)= (f(t, x), p (t)O(x)); x,tG.

Therefore f. maps D(G) into C.
THEOREM 8.1. Given f D’(G G), f is a continuous linear mapping of D(G)

into D’(G).
To get a converse, we need the following result.
LEMMA 8.1. Let L be a continuous linear mapping ofD(G) into D’(G). Define B

from L by B(p, )=(L, q), q, OD(G). Then B is a uniquely defined separately
continuous linear mapping olD(G) D(G) into C.

THEOREM 8.2. L is a continuous linear mapping olD(G) inw D’(G) ifand only if
there exists an f D’(G x G) such thatL4 f 4for all D(G). Here f is uniquely defined
by L and conversely.

The Volterra product of kernels has been introduced by Schwartz [15] where
G R". Meidan [9] and Zemanian [18d] have considered the Volterra product in
reference to scatter-semipassive kernels to obtain a scatter-semipassivity criterion in
terms of the positivity of a kernel. We shall study these in a distributional setting where
distributions are defined on topological groups, in a restricted form.

DEFINITION 8.1. Let fx and f2 be two kernels in D’(G G) and let L and L2 be
the corresponding mappings from D(G) into D’(G), i.e., L1 fl" and L2 f2 ". Assume
that the composition operator L2L exists and is a linear continuous mapping from

D(G) into D’(G) whose kernel is f. Then f is said to be the Volterra product of fl and f2
and denoted by f=f2f, L2Lv (f2f)" v.

It may be necessary to consider the mapping L2 in its extended form in order to

make the definition meaningful. This is precisely the case for linear scatter-semipassive
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mappings. The following result is a consequence of the one-to-one correspondence
between linear scatter-semipassive mappings and contractions in L2(G).

THEOREM 8.3. The Volterra product turns the subsetofscatter-semipassive kernels
in D’(G x G) into a semigroup. This semigroup is equivalent to the semigroup of
contractions in L2(G).

DEFINITION 8.2. Let L be a linear continuous mapping from D(G) into D’(G).
Then L’ denotes its transpose and is also a continuous linear mapping from D(G) into
D’(G). If f(x, y) denotes the kernel of L, then the kernel of L’ is f(y, x).

The adjoint L of the operator L (when L is scatter-semipassive) is the continuous
linear mapping associated with the kernel/r(y, x), where the bar denotes the complex
conjugate.

The following lemma establishes the existence of the Volterra product in a
special case.

LEMMA 8.2. LetL be a continuous linear mappingfrom D(G) into D’(G) such that
its range is contained in L2(G) andfis the corresponding kernel. Then the Volterra product
f’ f exists, where f’ denotes the kernel of the transpose operator L’.

DEFINITION 8.3. A kernel f in D’(G G) is said to be positive if, for all D(G),
(f. , ,)-_> 0.

We give the following theorems without proof.
THEOREM 8.4. LetL be a continuous linear mappingfrom D(G) into D’(G) which

is regular into Lz(G). Then, L is scatter-semipassive the kernel (i-fo f) is positive
where denotes the kernel of the identity mapping I.

The following is a converse to the above theorem in a restricted form.
THEOREM 8.5. Let L be a continuous linear and real mapping from D(G) into

D’(G) which is regular into L2(G). Then the kernel i-f’o f is positive L is scatter-
semipassive.
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ANALYTIC SOLUTIONS OF ALGEBRAIC DIFFERENTIAL EQUATIONS*

ROGER CHALKLEY

Abstract. For special polynomials f2(w), fl(W), fo(W) in w with analytic coefficients, the equation
f2(w)w’z+fl(w)w’+fo(w)=O has appeared many times in the literature. Frequently, the equation is
irreducible, deg fz 0, deg fl -< 2, deg/0-<4, and either 4f2fo-f has a multiple root or its degree is =<2.
Under these conditions, there is an algebraic transformation to simplify the equation. This paper motivates
the transformation and illustrates its effectiveness in diverse situations.

1. Introduction. Let the coefficients al(z),""", a9(z)of

(1)
al(z)w’2 + a2(z)w2w’ + a3(z)ww’ + a4(z)w’

+ as(z)w4 + a6(z)w3 + aT(z)w2 + as(z)w + a9(z)-- 0

be analytic functions of a variable z on a region 12 of the complex plane such that
al(Z)O and set

F(z, w)4al(z)(as(z)w4 + a6(z)w3 + a7(z)w2 + as(z)w + a9(z))

-(a2(z)w2 + a3(z)w + a4(z))2.
As in [4, 13.2, p. 305], one can solve for w’ and use a standard existence theorem to
deduce the following result.

THEOnEM. Suppose z, in f and w, are complex numbers such that al(z,) 0 and
F(z,, w,) O. Then, there exist distinct analytic solutions l(Z) and 2(z) of (1) on a
neighborhood ofz, which satisfy w, dl(z,) and w, 2(z,). Moreover, if dO(z) is any
solution of (1) analytic at z, for which w, (z,), then either 1 or 2 on some
neighborhood of z,.

The indicated proof suggests a means to obtain information about l(Z) and 2(z).
We proceed to motivate a condition on F(z, w) as a basis for a more effective method to
be given in 2 and 3.

Ninety-three differential equations are listed with solution techniques or solutions
in [5, pp. 355-372] and eighty-eight of these equations can be written in the form (1).
The five exceptions are Nos. 373, 392, 398,445, and 459. It is remarkable that: for
eighty-seven of these eighty-eight equations, F(z, w) has a representation

(2) F(z, w)=- (e(z)w sr(z))Z(A (z)w2 + I(z)w + ,(z))
with meromorphic coefficients on f such that e(z)w-((z)O. The exception is No.
372. Seventy-five of these eighty-seven equations also have

(3) (/x (z))2- 4A (z),(z) O,

and to each of them a transformation w (ct2 +/)/(’yt2 + ) developed in [3, p. 463] is
applicable to replace (1) by a simpler equation R(t, t’)= 0. As in [2, pp. 73-74], (3)
ensures that the left member of (1) is not reducible. The nonsingular solutions can be
specified explicitly for more than half of these seventy-five equations (including Nos.
400, 407, 433, 435, and 454) and, in each such case, R(t, t’)=0 reduces to either a
Riccati or Bernoulli or linear differential equation whose solutions are expressible in
terms of elementary functions. For others where implicit solutions are indicated,
R (t, t’) 0 may be separable or homogeneous or etc. Typical situations are illustrated in
Examples 1 through 5 of 2.

* Received by the editors April 10, 1978.
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Henceforth, we suppose (1)satisfies (2) and (3). When the transformation from [3,
p. 463] is applied to (1), it may not be possible to select a,/3, y, 6 and the coefficients of
R(t, t’) as meromorphic functions on f. However, when

(4) (z,)) 0,

we shall show in 3 that there is a neighborhood N. of z. relative to which the
transformation can be applied so a,/3, y, 6 and the ooefficients of R (t, t’) are analytic
functions on N,. Then, standard methods can be used to obtain local analytic solutions
of R(t, t’)=0 so that the transformation yields information about {I}l(Z) and {I}2(z).
Example 6 in 3 illustrates this where R(t, t’)= 0 reduces to a Riccati equation without
elementary solutions.

2. An algebraic transformation based on (2) and (3). The meromorphic functions
defined on form an ordinary differential field E0. As in [2] and [3], we use algebraic
terminology to avoid multiple-valued functions or Riemann surfaces. Let Eo be a
differential field extension of E0 which is also an algebraic closure of E0. Then, there
exist elements a,/3, y, 6 in Eo which satisfy

(5)

For example, we can select a,/3, 3’, 6 so that

(6) /a 2 +/za + t, 0, /3 -Aa -/z, 3/-- 1, 3 A.

We set M a3- fly. Then, (5) and (3) give

(7) M2 (a3 + fly)2_ 4ay3 ix
2 4At, O.

From [3, Thm. 2], the substitution w=(at2+[3)/(yt2+3) relates the nonsingular
solutions in Eo of (1) to the solutions in Eo of

(8) 4alMtt’ + 4t4 q- 3t3 q- 2t2 q- clt + Co 0

and (c3/3 + Clt)(yt2 + 6) # O, where c3 M(ae y(), cl M(fle 3),

C4 2al(a’y- aT’)+ a2a2 4- a3aT + a4T2,

Co 2al(fl’3 f13’)+ a2fl 2 h- a3f13 + a432,

c2 2al(a’3 a6’ + [3’7- fly’)+ 2a2afl + a3(a3 + fiT)+ 2a43"3.
Singular solutions of (1), as we observed in [3, p. 461 ], are the solutions of both (1) and
F=0.

Throughout, R (t, t’) denotes the left member of (8). To simplify computations, we
may select a,/3, 3’, 3, e, sr, A,/x, u as any elements in E0 which satisfy (2), (3), and (5). In
this section, z denotes an element of E0 such that z’= 1.

Example 1. We write No. 389 of [5, p. 358] as

(9) W’2--4WW’- W’+4W2+ W 0

and find F=-(4w + 1). This yields R=- 16t(t’-t+ 1) when a= 1,/3=-1, 3,=0, 3=4,
e 0, and sr -1. The root w0 - of F 0 is the only singular solution of (9). We set

1 + u to replace R 0 by u’- u 0. The solutions Uo 2Ce of u’- u 0 specify the
nonsingular solutions

at + fl t 1 u + 2Uo C2 eZZ q_ C eWo
3, +- -T- T-

in/o of (9), where C is any complex number (i.e., any constant in/o).
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Example 2. We write No. 397 of [5, p. 360] as

(10) W’2- 2Z3Wz W’--4Z2 W3 0

and find F=-(2zw)2w(-z4w-4). This yields R=--16t(t’+2z)when t=0, /3=4,
3,=1 6 --2’4 e 2z, and " 0. The roots w0 0 and Wo -4/z of F 0 are the only
singular solutions of (10). The nonzero solutions to -z2- 2C of R 0 and yt + 6 # 0
yield the nonsingular solutions

at +/3_ 1
Wo yt + 6 Cz2 -I- C2

in Eo of (10), where C is any nonzero constant.
Example 3. We write No. 456 of [5, p. 372] as

(11) z(z2-1)w’ + 2(1 zZ)ww’ + zw- z 0

and find F=4(z- I)(W2--Z2). This gives R =-4zpt(2zpt’-t2- 1) when a= z, fl =-z,
y 1, 6 1, e 0, " 2p, and p is an element in/o such that/92-- Z2- 1. We deduce
that 2pp’= 2z and p’ z/p. The roots w0 z and w0 -z of F 0 are the only singular
solutions of (11). For i2__--1, the equation izpv’-v =0 results from R =0 when
t= +(l/u) and u =(v- 1)/(2i). Its nonzero solutions in 0 are v0 K(p+ i)/z, for
each nonzero constant K. The nonsingular solutions in Eo of (11) are

Z(to-l) z(-2u + 2iuo+ l) z( o)w0 (t + 1---- (2 iuo + 1) - Vo + Cap + C2,

where C (K+ 1)/(2K), C i(K2- 1)/(2K), and C12 + C 1.
Example 4. We write No. 381 of [5, p. 357] as

(12) w’z-- 2;ZW’ W w O

and find F=-4(w-z2). This yields R=--2(2tt’-t-z) when a=-l, fl=z2, y=0,
6= 1, e =0, and sr=2. There are no singular solutions o (12). Here, R =0 is
homogeneous. Thus, an element Wo in Eo is a solution of (12) if and only if there is an
element to in Eo such that

t and (to z)(2to+Z) CW0-- Z

for some constant C. In particular, the elements to z and to =-z/2 correspond to
C 0 and specify solutions Wo 0 and Wo 3z/4 of (12). (The substitution to z Uo
yields the parametrization of I-5, p. 357].)

Example 5. We write No. 443 of [5, p. 369] as

(13) z 3 w’- 2zeww’- w’ + zw= 0

and find F =- -(4z2
W - 1). This gives R 8z4(2ztt’- (t + 1)(3 t- 1)) when a 1,/3 1,

y 0, 6 4z 2, e 0, and " 1. There are no singular solutions of (13). Here, R 0 is
separable. Thus, an element Wo in Eo is a solution of (13) if and only if there is an
element to in Eo which satisfies

Wo (t 1)/(4z2) and (to+ 1)3(3to 1)= Cz6

for some constant C. If C 0, then to =-1 and to =1/2 specify solutions Wo 0 and
w0: -2/(9zz) of (13).

In general, the field of meromorphic functions defined on a region of the complex
plane is the quotient field of the ring of analytic functions defined on that region. Thus,
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when (2) is satisfied by meromorphic coefficients on D, we can apply a corollary [6, p.
127] of the Gauss lemma to satisfy (2) with analytic functions e, sr, A,/x, u on .

3. Analytic coefficients for (8). We suppose al(z,)0, F(z,, w,)0, the
coefficients of (2) are analytic on f, and (4) is satisfied. As in [1, pp. 143-144], there is
an analytic function D(z)on a neighborhood N, of z, such that

(14) (D(z))e=(tz(z))e-4A(z)u(z)O, for each z in N..
This leads to meromorphic functions a,/3, /, 8 on N, which satisfy (5). Namely, when
h 0, set a (-ix + D)/(2A) and use (6); or, when h --0, set a =-u/tx and use (6). By
[6, p. 127], we can alter these definitions to obtain analytic functions a,/3, y, 6 on N,
which satisfy (5). Then, the transformation of 2 is applicable with 12- N, and yields
analytic coefficients on N, for (8). Moreover, (7) and (14) give M(z) 0 for each z in
u,.

Next, we relate cP(z) and (be(z) to power series solutions of (8). We have
M(z,)0; and, F(z,, w,)0 yields y(z,)w, a(z,) and 6(z,)w, (z,). Thus,
there is a nonzero complex number t, such that

w, (a(z,)t + fl(z,))/(/(z,)t, + 8(z,))
and 3,(z,)t + $(z,) O. Let U be a neighborhood of z, contained in N, and let V be a
neighborhood of t, to which 0 does not belong such that al(z) 0 and /(z)te + 8(z) 0
for each z in U and each in V. Then, we can solve for t’ in (8) to express t’ as an analytic
function of z and for z in U and in V. As in [4, pp. 281-284], there exist power series

P(z) and Pc(z) in z z, which are solutions of (8) and converge on a neighbor-
hood Iz z,I < r contained in U such that t, P(z,), -t, Pe(z,), and both Pl(Z) and
-P(z) map Iz z,I < r into V. This gives

(P(s>(Z) (a(z)(Ps(z))e + fl(z))/(’(z)(P(z))e + (z)),

where {Tr(1), zr(2)}={1, 2}, s= 1,2, and [z-z,[<r. By substituting power series in
z- z, for a(z), [3(z), T(z), and 6(z), we obtain power series in z- z, for l(Z) and
2(z) which converge on [z z,I < r.

Example 6. To illustrate this procedure for

(15) w’e + 2w2w’+ W4 +(3zw + 1)2w(zw 1)= 0,

z,=0, and w,=l, we find F(z, w)=-(3zw+l)2(4w)(zw-1) and select a(z)=0,
fl(z) 1, ,(z) 4, 6(z) z, e(z)= -3z, st(z) 1, and t, -1/2. We solve (8) for t’ to get
t’= t2+ z. Setting dl 1 and d,, 0 for n 1, we verify that

k=O

when P(z)= b0+ blz + b.ze+ is a solution of t’ re+ z. If Ibol=1/2, then (16) yields
Ib,, < 1 for n 0, 1, 2,.... Thus, for b0 -1/2 or bo 1/2, P(z) and Pe(z) are convergent
on Izl < 1. For Izl < , we deduce

14(Ps(z))e + z[ >- 1 21z[- Y 4(n + 1)[zl" >,
n=2

Ol(Z)-" 1 -[- Oz "[- -Z 2 -Z 3 "[- "Z4 -JI

and

dp(z)= 1-2z -1/4Z2-[--Z3--J’Z4-[
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Of course, one can solve (15) for w’ and substitute power series directly for (I)1(2’) and
@2(z); but, it is difficult by such means to obtain information about convergence.
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DECAY RATES FOR SOLUTIONS OF A CLASS OF
DIFFERENTIAL-DIFFERENCE EQUATIONS*

FRED BRAUER"

Abstract. We analyze the dependence of the asymptotic behavior of solutions which tend to zero of the
differential-difference equation y’(t)= ay(t)+ by(t-T) on the delay T. We show that if b < 0, the rate at
which solutions tend to zero increases for small T, but decreases for larger T.

1. To study the asymptotic behavior of solutions of linear systems of ordinary
differential equations with constant coefficients, it is sufficient to solve a polynomial
equation whose roots--the eigenvalues of the coefficient matrix--determine the
asymptotic behavior of solutions completely. For linear differential-difference equa-
tions with constant coefficients there is also a characteristic equation whose roots
determine the asymptotic behavior of solutions. However, the characteristic equation is
no longer a polynomial equation, and information on the location of its roots is more
difficult to obtain. In addition, the characteristic equation depends on the delay as well
as on the coefficients of the differential-difference equation.

The purpose of this paper is to analyze the dependence on the delay of the roots of
the characteristic equation for a linear first order differential-difference equation with
constant coefficients and a single delay term in the case that all roots of this charac-
teristic equation have negative real parts. This study can be applied directly to the
analysis of behavior of solutions of nonlinear first order differential-difference equa-
tions near a stable equilibrium, yielding results of interest in applications to some
biological and control problems. We plan to explore some of these applications
elsewhere.

2. We consider the first order linear differential-difference equation with constant
coefficients

(1) y’(t) ay(t)+ by(t- T).

We require b 0 to assure an explicit dependence on the delay T. Explicit conditions on
the coefficients a and b and the delay T which are equivalent to the asymptotic stability
of the trivial solution of (1) have been given [1, pp. 118-120, 444-446]. We are
interested in the asymptotic behavior of solutions of (1) when the trivial solution is
asymptotically stable, especially in the rate of return to the equilibrium y 0, and the
dependence of this rate on T.

The characteristic equation corresponding to (1) is

(2) (p-z)e +q =0,

where

(3) p=aT, q=bT.

If A < 0 is the real part of a root of this characteristic equation, then there is a solution of
(1) which decays like e x/r)‘ as . Asymptotic stability of the trivial solution of (1) is
equivalent to negativity of the real part of every root of (2). We define the characteristic
return time, or settling time, of a solution of (1) corresponding to a root of (2) with real
part A < 0 to be -T/A. We define the characteristic return time for the (asymptotically
stable) equilibrium y 0 to be T/A, where A is the largest real part of a root of (2).

* Received by the editors November 30, 1977, and in revised form June 2, 1978.
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A necessary and sufficient condition that all roots of (2) be in the left half plane has
been given.

THEOREM 1 (Hayes [2]). The roots of (2) are all in the left halfplane if and only if

(4) p < 1, p <-q <

where u is the root of the equation

(5)

in 0 < u < rr, with u rr/2 ifp O.

Ul

sin u’

u =p tan u

We will always assume that the trivial solution of (1) is asymptotically stable, or
equivalently, that p aT and q bT satisfy (4). The change of variable z sr-o’T
transforms the characteristic equation (2) to

(6) [(p + rT )- sr] e + q er 0.

If we choose tr to be the supremum of positive real numbers for which the transformed
characteristic equation (6) has all roots in the left half plane, then A =-trT, and the
characteristic return time TR for the equilibrium y 0 of (1) is 1/tr. By Theorem 1, we
must choose tr to be the supremum of positive numbers such that

(7) p + o-T (a + o-)T < 1,

(8) p + o’T (a + cr)T <-q e ’rT -bTe’T

(9) -q e’T -bTe’T<U2

sin u2’
where U2 is the root of

(10) u (a + tr)T tan u

in 0 < u < rr, with u2 rr/2 if a + o- 0.
It is convenient to reformulate (8) and (9). The condition (8) is equivalent to

(11) (a + tr)Te-(a+)T <-bTe-aT.

The function

U -u/tang(u)= e
sin u

is monotone increasing on 0_-< u < rr, with g(0)= l/e, g(rr/2) rr/2, lim,,_,, g(u)=
Because of (10), the condition (9) is equivalent to

(12) g(u2) > -bTe-’r.

It follows from (10) that u2 decreases when o- increases. Thus an increase in tr

produces a decrease in g(u2), and the maximum tr satisfying (12) is obtained by solving
the corresponding equality. By an analogous argument, since an increase in o- produces
an increase in the left side of both (7) and (11), the maximum o- satisfying each of these
inequalities is also obtained by solving the corresponding equalities. If any of the three
equalities corresponding to (7), (11), (12) has no solution for tr, then the corresponding
inequality places no restriction on o-. We may summarize our results as follows"
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THEOREM 2. Let O1, 002, 003 be the solutions of
(13) (a +00)T= 1,

(14) (a + 00)Te-(a+’)T -bTe-aT

(15) g(u2) -bTe-T, u2-(a +00)T tan us,

respectively, with the understanding that 00i if the corresponding equation has no
solution. Then the characteristic return time for the equilibrium y 0 of (1) is the reciprocal
of the smallest of 001,001,002.

In order to determine the dependence of the characteristic return time on T, we
must distinguish the cases b > 0 and b < 0.

Case I (b >0). If b >0, the only nonvacuous stability condition (4) is a / b < 0
(which implies a < 0), and there is no restriction on T. Since g(u) > 0 for 0 <_- u < zr and
-bTe-T <0 for all T, there is no solution of (15). The equation (14) is equivalent to

trT(16) a + 00 -b e

and it is easy to see that 0002<--a. Since 001=(1-aT)/T=1/T-a>-a, the
characteristic return time is 1/002. Implicit differentiation of (16)gives

efTd002 -b e
o.T < 0.

dT l+bTe

Thus 002 is a decreasing function of T, and the characteristic return time is an increasing
function of T. We have established the following result.

THEOREM 3. Ifb > O, a + b < O, the trivial solution of (1) is asymptotically stable for
all T, and the characteristic return time for this equilibrium is a monotone increasing
function of T.

Case II (b < 0). We begin with the assumption a > 0; if a <- 0 the treatment is quite
similar and will be outlined later. If a > 0, b < 0, all three of the stability conditions (4)
are relevant. In particular, the delay T is restricted to the interval 0_-< T < 1/a. The
equation (13) gives 001=(1-aT)/T. Thus if we plot 1/001 against T, we.see that the
characteristic return time T 1/00 lies above the hyperbola

T
(17) Tg

1-aT

through the origin with a vertical asymptote at T 1/a.
Since the function x e has maximum value 1/e for x 1, while g(u) has minimum

value 1/e for u 0, the equation (14)has no solution if -bTe-’T > l/e, and (15)has no
solution if -bTe-’T < 1/e. For b < 0, the function -bTe-’T is positive and monotone
increasing in T with maximum -(b/a)(1/e), which is greater than 1/e by (4), attained
at T 1/a. Thus there exists T* < 1/a such that

(18) -bT* e-T* l/e,

(14) has no solution for T>T*, and (15) has no solution for 0_-<T<T*. For
0-<_ T _-< T*, we regard 002 as a function of T given implicitly by (14). Differentiation of
(14) with respect to T gives

do" b00 eT b00 eT

dT l +bTeT 1-(a +00)T"

For T=0, 001 does no exis and 002 =-(a + b). If 002 <001 hen (a +002)T < 1, and
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der2/dT>O, while dera/dT < 0. For T T* and er era,

(a +er)Te-(a+>r 1/e =-bTe

Thus erl 0"2 for T T*, and 0"2 < erl for 0<_- T < T*. If we plot 1/0-2 against T, we see
that the characteristic return time TR 1/er lies above the hyperbola (17) for 0 _-< T <
T* and decreases as T increases for 0 _<- T < T*.

For T> T*, we examine (15). Since -bTe-’r increases as T increases and g(u)is
an increasing function of u, an increase in T produces an increase in u2. Thus er3
decreases and the characteristic return time increases. Since u2>0 for T> T*,
u./tan uz< 1, and (a +er3)T< 1. Thus 0"3 <01. If T is chosen so that the stability
condition (4) is satisfied, then

aT < 1, bT < (ua/sin ua).

Thus

g(Ul)
Ul _Ul/tanul e-Ul/tan -aTe > -bT -bTe

sin u

and u2 < Ul. Then

U2 Ul(a + o-3)T=>=aT,
tanu2 tan U

which implies 0"3>0. Thus for T> T*, the characteristic return time is 1/o"3, an
increasing function of T which remains finite so long as the equilibrium y 0 of (1) is
asymptotically stable.

If a _-<0, b < 0, the only relevant stability condition (4) is -bT< Ul/sin ua. The
hyperbola (17) has a vertical asymptote for T 1/a < 0 and a horizontal asymptote for
R =-1/a if a < 0. If a 0, the hyperbola (17) is replaced by the straight line TR T.
Except for these differences, the argument is identical to that for a > 0. We have now
established the following result.

THEOREM 4. If b < O, the characteristic return time for the asymptotically stable
equilibrium y =0 of (1) is a decreasing function of Tgiven by (14)for 0<= T < T*, with
T* given by (18), and an increasing function of T given by (15) for T > T*, remaining
finite for all Tfor which the equilibrium is asymptotically stable.

3. Consider the differential-difference equation

(19) y’(t) F[ y(t), y(t- T)].

Suppose that F(0, 0)= 0, so that y 0 is a solution. To study the stability of the
equilibrium at y 0, we consider the linear approximation

(20) y’(t) Fa(0, 0)y(t)+F2(0, 0)y(t-T),

where F1 and F2 are the partial derivatives of F with respect to the first and second
variables respectively, assumed continuous. If the solution y 0 of (20) is asymp-
totocally stable, then the same is true of the solution y 0 of (19) [1, p. 336], and the
results of 2 yield information on the asymptotic behavior of solutions [1, pp.
355-359]. If the solution y =0 of (20) is unstable, it has been shown for the case
F1(0, 0)< 0, F2(0, 0)< 0, in which instability arises if T is too large, that there is a
globally asymptotically stable periodic annulus [4]. It is natural to conjecture that
similar results hold in other unstable cases.



DECAY RATES FOR SOLUTIONS 787

A special case of interest in various applications, either directly or in forms which
can be reduced to it, is

(21) y’(t)=F[y(t- T)],

where F(0)= 0. If F’(0)< 0, we let r -F’(0)> 0. Then if rT < 7r/2, the solution y 0
of (21) is asymptotically stable, while if rT > r/2 the solution y 0 is unstable but there
is an asymptotically stable periodic solution [3]. We shall use the results of 2 to analyze
in more detail the case rT < rr/2.

The linearized equation for (21) is

(22) y’(t) =-ry(t- T),

where r=-F’(0)>0. Only one of the stability conditions (4) is relevant, namely
rT < Ul/sin Ul. Since Ul 7r/2, this condition is rT < 7r/2. The return time equations
become

respectively, and T* is defined by

trT= 1,

crT e -’r rT,

g(u2) rT,

rT*= lie.

Instead of the hyperbola (17), the equation o’T 1 gives a lower bound of T for the
characteristic return time. For 0 <= rT <- 1/e, the characteristic return time decreases as
T increases to a minimum of 1/er when rT lie. For T 0, the characteristic return
time is 1/r. For rT > l/e, the characteristic return time increases monotonically as T
increases. We may determine the delay T for which the characteristic return time is 1 ! r,
the same as for T 0, as follows. If tr-r, then since U2-" trT tan u2, the equation
g(u2) rT becomes

U2 _u2/tan u2 U2
e
sin u2 tan u2’

log cos//2
u2

tan u2

This may be solved numerically, to give u2 1.01125, and then

U2
rT==0.63336.

tan u2

Thus if 0 <-_ rT < 0.63336, the characteristic return time is less than for T 0. It may be
said that a delay in this range tends to stabilize the system, even though a larger delay
tends to destroy stability.

4. All the results of this paper are for first order differential-difference equations.
For systems, there are some special results on stability conditions, but these are strongly
dependent on the specific form of the characteristic equation. The methods developed
here can be applied to each of these specific forms to study the dependence of the
characteristic return time on the delay, but it is unlikely that there is any general pattern
to the results which can be obtained.
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POSITIVE SOLUTIONS OF THE EQUATION
(m(t)x’(t))’ + A(t)x(t) = O*

ALLAN L. EDELSONf

Abstract. Topological methods are used to show the existence of positive solutions to the n-dimensional
boundary value problem (m(t)x’)’+A(t)x =0, x’(0)= 0= x(T), where A(t)is an n by n symmetric matrix
with continuous entries. Criteria are given for the nonexistence of solutions, and using results from the theory
of positive operators, extremal properties of the solutions are proved. A comparison theorem is given,
generalizing results of Reid for the case of second order equations. These results are applied to special fourth
order nonselfadjoint scalar equations.

1. Introduction. This paper is concerned with the existence and general proper-
ties of positive solutions of the two point boundary value problem

(1.1) (m(t)x’(t))’ + A(t)x(t)= O,

(1.2) x’(0) x(T): 0,

where x (Xl," , x,,) and A(t)= (aij(t)) is an n n symmetric matrix with coefficients
continuous and positive on [0, ). The real valued function m(t) is also assumed
continuous and positive on [0, c). A solution to (1.1), (1.2) is positive if all coordinates
are positive on (0, T).

Section 2 will be devoted to a topological proof of the existence of positive
solutions to (1.1), (1.2), and by utilization of results from the theory of positive
operators, as in Schmitt-Smith [1], a proof that a positive solution realizes the given
boundary condition in minimum time. In 3 we will generalize comparison theorems
originally proved by Reid [2] for second order equations. Finally, in 4 we will give
applications of these techniques to fourth order scalar equations.

The following notation will be used throughout: x(t; x) is the solution to (1.1)
satisfying the initial condition x(0)= x x’(0)=0. I is the positive cone of R" i.e
I ={x R n; xi >0, 1_-< i_-< n}, and I is the topological closure of L Since we are
considering only nontrivial solutions to (1.1) we will normalize and assume Ix[ 1.

Regarding the form of the particular system under study, we note that if
dt/m(t) o, the transformation - =’ ds/m(s) transforms (1.1) into a system of the

form

(1.3) x"+A(t)x =0.

Examples for which this cannot be accomplished will be given in 4.

2. Existence and properties of positive solutions. For x /, let -(x) be the time at
which the trajectory x(t; x) first leaves I, if this is finite. Otherwise let -(x) .

LEMMA 2.1. If (m(x)u’)’ + aii(t)u 0 is oscillatory for some i, then ’(x)< for all
XG.

Proof. Assume the condition satisfied for k, and that x(t)6 1 for all > 0. Then
(m(t)X’k)’+Yj=lak(t)xi>--(rn(t)X’k)’+akk(t)Xk. It then follows from standard
comparison theorems that Xk(t) has a zero. Note that a zero in Xk(t) implies the
trajectory leaves/, since double zeros are precluded by the positivity of the aij.

* Received by the editors June 24, 1977, and in revised form March 29, 1978.
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The previous lemma provides a basic existence theorem for positive solutions to
the boundary value problem (1.1), (1.2). For the remainder of this paper we will assume
the hypothesis of Lemrna 2.1 to be satisfied.

THEOREM 2.2. There exists anx Isuch that x(-(x); x)= 0.
Proof. Let B" denote the unit ball in R ", with boundary the unit sphere Sn-1. The

set {x [; Ixl 1} is homeomorphic to B"-1, as is the set {x [-I; Ixl <- 1}. If P is
radial contraction of vectors of length > 1 onto S"-, then it follows from the continuity
of solutions in their initial conditions that x-P (x(’(x0); x0)) induces a continuous
function f: B"-1 - B"-. Furthermore, the condition x(-(x); x) x for x [- L
implies that f restricted to S"-1 is the identity function. It follows from the no retraction
theorem for B, S-1 that [ is onto, and hence there exists an xel such that
x(-(x); x) 0. This shows the existence of positive solutions to (1.1), (1.2).

We next show that the trajectory given by Theorem 2.2 realizes the boundary
condition in minimum time. If x(t)is a solution of Sg[x]=-(m(t)x’(t))’=A(t)x,
x’(0) x(’)= 0, then x(t) is also a solution of the integral equation.

(2.1)
o

T

x(t)= G(T; t, s)A(s)x(s) ds,

where G(T; t, s) is a Green’s function for the operator .
LZMMA 2.3. The Green’s function of [x]=-(rn(t)x’(t))’, x’(0)=x(T)=0 is

positive on (0, T) (0, T).
Proof. In this case the Green’s function is given by

(2.2)
m(:)’

G(T; t, s)=
d

O<=t<=s<= T,

O<=s<=t<__ T,

and the lemma follows from the positivity of m.
Let M=BC ([0, o), R") denote the Banach space of bounded continuous

functions [0,)R" with sup norm, and let K cM be the cone consisting of all x M,
x[0, c)c/. A bounded linear operator A: M M is positive if A(K) K. r(A) will
denote the spectral radius of A.

Following [1] we define a family of positive compact linear operators

(2.3) (Arx)(t)
G(T; t, s)A(s)x(s) ds, 0<= t<= T,

t>=T.

The following result, a consequence of standard theorems in operator theory is proved
in[1].

THEOREM 2.4. The mapping T r(AT-) is a continuous nondecreasing function of
T, and r(AT) 0 as T 0/.

THEOREM 2.5. Let T1 be the smallest T>0 for which there exists a nontrivial
solution to (1.1), (1.2). Then there exists a positive solution to (1.1) satisfying x’(0)= 0=
x(T1).

Proof. Let y(t) be a solution to (1.1), (1.2) with T T1, and set y(t) 0 for > T. It
follows that y =AT(y) and r(AT)>--I. Since r(AT) is an eigenvalue of AT with
eigenfuo_ction in K, the theorem is proved provided r(AT) 1. If r(AT)> 1, then it
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follows from Theorem 2.4 that there exists a T2 < Ta such that r(AT2)= 1. Hence there
exists a nonzero x K such that x AT2x, contradicting the definition of T1.

3. A comparison theorem. In this section we use the methods associated with
integral variational problems to prove a comparison theorem which generalizes to
second order systems, a comparison theorem for focal points of second order scalar
equations due to Reid. We assume all the hypotheses of 1, and note that if u(t) is the
solution of the initial value problem (m(t)u’)’ + a(t)u 0, u(0)= 1, u’(0)= 0, with re(t)
and a(t) positive, continuous functions, then u(t)>0 on [0, tl), where ta is the first
positive zero of u(t).

Let PC denote the class of piecewise C" functions on [0, T], and for x PC
define a functional

T

I[x; T] [m(t)x’. x’- x*A(t)x] dt,

where x* is the transpose of x. Let L be the left hand side of (1.1), so that L[x]
(m(t)x’)’ + A(t)x. Li will denote the/th coordinate of L.

THEOREM 3.1. The following conditions are equivalent, and each is necessary and
sufficient for the nonexistence of solutions to (1.1) satisfying x’(0)= 0 x(T1), for any
T1 (0, T].

(i) For all x I, the trajectory x(t; x) satisfies Ix(t; x)l >0 for 0 <- t<--_ T.
(ii) There exists a nonzero function y(t) of class PC on [0, T] such that

yi(O)m(O)y (0) --< 0,

y(t)L[y](t)<-O,

yi(t)yj(t) :> O,

for 1 <- i, j <= n, and all [0, T].
(iii) If x(t) is a nonzero function of class PC on [0, T] satisfying x(T)= 0, then

I[x T] > O.
Proof. If (i) holds then the solution to (1.1) given by Theorem 2.2 satisfies (ii). Let

y(t) satisfy (ii) and define a function h(t) by xi(t)= y(t)hi(t). Then

m(t)(x’ x’)- x*a(t)x

m(t (yah2 2 t2 yihiaii(t)yjh+2yiYihihi +yihi
i,j=

hyL[y]+h ’)’(yim(t)yi +hiy 2
i=1

+ (yim(t)yh)’- m(t)(yy)’h m’(t)yiy

+ m(t)yh ’2 E yihiaij(t)yihi
i=1 i,j=l

--’. hyiLi[Yl+ ’. (yim(t)y,h)’+ , m(t)yh ’2 + 2 aq(t)Yiyi(hi- hi)2.
i=1 i=1 i=1 i<j

Calculation of the terms involving aq(t) uses the symmetry of A. Integrating we have
Y.(y,m(t)yh)’(t) dt--y,(O)m(O)y(O)h(O)>=O. The remaining terms are all posi-
tive, so that I[x; T]>0, and hence (ii)=), (iii).
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To show (iii) :::> (i) assume the trajectory x(t; x) satisfies x(sr; x)=0 for some
(0, T). Define y(t)by y(t)=x(t;x)forO<-t<-, y(t)=0for x>= Then I[y; T]=
[m(t)y’ y’- y*A(t)y] dt ffo [m(t)x" x’-x*A(t)x] dt= x*m(t)x’[o O, contradict-

ing (iii).
It is clear, in view of Theorems 2.2 and 2.5, that (i) is necessary and sufficient for the

nonexistence of solutions satisfying the given boundary condition, which completes the
proof of the theorem.

Our next result, a comparison theorem which is a consequence of Theorem 3.1,
generalizes Theorem A of [2]. For n x n matrices B(t)= (bo(t)) and C(t)= (co(t)), we
write B _-< C if bq(t)<= c0(t) for all 1 _-< i, j-< n, and all t _>- 0. Let T1 and T2 denote the least
T> 0 for which there exists a nontrivial solution to

(3.2) L,[x] (m(t)x’)’+ B(t)x 0, x’(0) x(T)= 0,

(3.3) L2[xl (M(t)x’)’ + C(t)x O, x’(O) x(T)= O,

respectively.
THEOREM 3.2. The following conditions are sufficient to guarantee that T1 <= Ta:

M(t),(i) ("m(t)] >=0,

(ii) m(t)C(t)- M(t)B(t) <= O,

for all 0<= t <= T2.
Proof. Assume that T1 > T2, and let x(t) be a solution to (3.2) which is positive

on [0, T2]. It follows that x. L2[x] x. ((M(t)x’)’+ C(t)x), and since Ll[X] 0, we
have x. L2[x] m(t)(M(t)/m(t))’x x’-(1/m(t))x*(M(t)B(t)- m(t)C(t))x <=0. The
theorem then follows from Theorem 3. l(ii).

4. Applications to fourth order equations. The results of the previous sections can
be applied to nonselfadjoint differential equations of the form

(4.1) (p2(t)x")" + (pl(t)x’)’ + ql(t)x’ +po(t)x 0

by the transformation given in the following lemma. The proof is an elementary
verification and will be omitted.

LEMMA 4.1. Equation 4.1 is equivalent to a system of the form (1.1) under the
transformation P2 -m2/aa2, Pl -mm’(1/a12)’- mm"(1/a12)-(m/a12)(a11 + a22),
ql m(aEE/a12)’, po aaz-[m(all/ai2)’]’ + allaEE/a12.

Example 1. axl(t) =0, axE(t)= a22(t)= 1, re(t)= lit gives the system ((1/t)x’)’/

(0 1) which is equivalent to the scalar equationA(t)x=O, A(t)=_l 1_’ ((-1/tE)x")
[(2/t4 + 1/t)x’]’+x =0.

Example 2. all(t)=0, al2(t) 1, re(t) 1/t, a22(t) t, gives rise to ((1/t)x’)’+

-(0 1),- which is equivalent to the scalar equationA(t)x O, A(t) =_1 ((-1/t2)x")’’-
[(2/t4 + 1)x’]’ +(1/t)x’+ x 0. In both Examples 1 and 2, the equation of Lemma 2.1 is
oscillatory by Leighton’s oscillation criteria.

( 1- ) is equivalent t theExample 3. The system (e’x’) + A(t)x O, A(t)=
e

nonselfadjoint equation (e2tx")"+ [(1 + e2t)x’]’+ x’- x 0. In this case, dt/m(t)<,
and the system cannot be transformed into one of the form (1.3). The methods of this
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paper do in fact apply since the equation of Lemma 2.1 becomes (etu’)’+ e-tu-0,
which is oscillatory on (0, ) by the oscillation criteria of Moore [3].
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SYSTEMS OF GENERALIZED ABEL EQUATIONS*

M. LOWENGRUBt AND J. WALTON

Abstract. Certain mixed boundary value problems arising in the classical theory of elasticity lead to the
solution of certain systems of generalized Abel integral equqtions. A method is presented where these
systems are reduced to uncoupled pairs of Riemann boundary value problems. Closed form solutions are
obtained. We also demonstrate how general systems of dual rlations (given in terms of Erd61yi-Sneddon
operators of fractional integration) may be reduced to these systems of Abel equations.

1. Introduction. As demonstrated in Lowengrub [3], certain mixed boundary
value problems arising in the classical theory of elasticity reduce to the problem of
determining functions (01 and q2 satisfying Abel type integral equations of the type,

ql(t) dt fx
b q2(t) dt

(1.1) a(x) (caZ-to), +(x) (tO_xO),
hi(x), a <x <b,

Ix Ia q2(t) dtb

ql(t)_d)t_,+6(x) (fc-S-t;)-=h2(x) a<x<b,(1.2) y(x)
(t -x

where 0 </x < 1, p => 1 and the real valued functions a(x), fl(x), y(x) and 6(x) have
derivatives satisfying H61der conditions on (a, b). It is also assumed that hi(x), 1, 2,
is H61der continuous on the interval.

In this paper we show that systems of the type (1.1) and (1.2)can be reduced to the
determination of a matrix function (z)= (l(Z), 2(z)) analytic in the plane cut along
the (a, b), satisfying certain growth conditions at c and along the cut, (a, b),

A(x)dP+(x) e’=iA(x)dp(x) + F(x)

where A(x) is a coefficient matrix with elements linear combinations of a,/3, y and 6.
The system (1.3) is a coupled system. We effect a linear uncoupling of this system by
introducing certain similarity transformations. The matrices associated with these
transformations are explicitly computed and hence exact solutions are derived. In
physical applications, such as the determination of the stress field in an inhomogeneous
body containing flaws, the relevant physical quantities are expressed in terms of the
matrix function cI)(z). One need not actually solve for ql and (,/92 in (1.1) and (1.2). The
functions l(z) and 2(z) are defined (say in the case p 1) by

1 I dt
dPi(Z R (z (t z

where R(z)= [(z-a)(b-z)] -)/2. These functions must be defined on appropriate
branches. Analogous representations are introduced for p => 1.

Section 2 of the paper thoroughly analyzes the case p 1 while in 3 we choose
p 2. These are the two cases of physical interest. In 4 we consider some explicit
examples" (i) a (x) a, fl (x) fl, y(x) y and 6 (x) 6 with z , p 1 and a, fl, y and
6 constant; (ii) a(x) fl, fl(x)= a/x, y(x)= a and 6(x)= -fl/x with , p 2, and a,
/3 constant. The final section demonstrates how general dual relations (given in terms of
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the Erd61yi-Sneddon operators of fractional integrationmsee Erd61yi-Sneddon [1])
may be reduced to systems of the type (1.1) and (1.2).

It should be mentioned that scalar Abel type equations have been studied by
several authors. In addition to Sakalyuk [6], the reader may wish to consult references
[7], [8], [11] and [12]. These authors investigate such equations in weighted LP-spaces.

2. The first generalized Abel system. In this section we consider the generalized
Abel system of equations,

fa ql(t) dt Ixb q92(t) dt
(2.1) a(x) -(-+B(x) (t_x)=[l(X), x s (a, b),

Ixb ql(t))d/-6(x)Ia q2(t)dt
(2.2) V(x) (t" (x t)--A- f2(x), x (a, b),

where a,/3, 3’, and 6 satisfy conditions to be specified later. However, we do assume that

fl and ]’2 are H61der continuous on (a, b).
As in Sakalyuk [6], we define the sectionally analytic functions

1 faqi(t))’dt’_(t-z
j=a 2,(2.3) dPi(Z R (z )

where R (z) [(z a)(b z)]l-"/ and the function is defined by some branch. If q (t)
satisfies q(t) q’ (t)[(t a)(b-- t)] ’+-1 where e > 0 and 0’ (t)is HSlder on [a, b ], then
i(z) is analytic in the plane cut along [a, b]. Moreover, the boundary limits :(x),
where

and

-(x)= lim dPi(z ), a<x<b,

Im(z)>O

-(x)= lim .(z),
Ira(z)<0

are continuous. In addition,

(z)= O(Iz
(2.4) Oi(z) O([z bl(-)/=),

;(z)-- O(Izl-1),
A simple calculation verifies that

l [ ,,(t)dt(x_t)(2.5) O(X)=R(x) e

and

a <x <b,

xe(a,b),+
(t- x

(2.6) -(x)
R(x) (x-t)-------+e

It immediately follows that

qi(t) dt [e(2.7)
(x_t),

b

-n-i;(X)-" (I);(X)IR (x ),
e 2p’i I x’ (a. b.
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and

Ixbi(t))dt, [’(x)+e"i]-(X)]R(x), f=12(2.8)
(t x e 2"’i 1

Substitution of (2.7)and (2.8)into (2.1)and (2.2)yields the boundary condition on
a <x <b,

(2.9) a(x)e""((x)-C(x)(x)+a(x)-;(x)-B(x)e"=(x)=Fl(X),
(2.10) -/(x)(x)+8(x)e"=(x)-/(x)e""-(x)+6(x)(x)=F2(x),

where

F.(x ) .(x (e2i 1)/R (x ).

This substitution then reduces our problem to determining two sectionally analytic
functions l(z), 2(z)satisfying the growth conditions (2.4); that is, solving a coupled
Riemann-Hilbert boundary value problem. Once we have determined j(z), Q" 1, 2),
the functions 1 and 2 are obtained by solving the Abel integral equations (2.7) and
(2.8).

For convenience we introduce the following matrix notation; set,

(I)(z)-" ((I)I(Z), (I)2(Z))T and F(x)= (Fa(x), Fz(x))7"

so that the boundary conditions (2.9) and (2.10) may be written in the form

(2.11)

where

with

A(x)+(x) e "=iA (x)cb-(x) +F(x),

A(x) (aij(x)), i, f 1, 2,

a (X Ce (x e ’=i, a12(x) fl (x ),
(2.11a)

a21(x) --T(x) and az2(x)= 6(x)e

a <x <b,

If we require the condition

(2.12) det A(x)= a(x)6(x) e2- y(x)(x) O, a <x <b,

then the matrix A(x) is invertible and (2.11) is equivalent to the boundary condition

(2.13) +(x) e"=iG(x)-(x)+ g(x), a < x < b,

where

(2.14) G(x)=A-X(x)A(x) and g(x)=A-a(x)F(x).
It is necessary for us to determine conditions whereby the coupled Riemann-

Hilbert problem can be uncoupled. We shall effect a linear uncoupling of the system
(2.9) and (2.10) by finding a nonsingular matrix P(z), analytic in the complex plane
(except for perhaps a finite number of poles) with a pole at infinity and such that for
a<x<b

P(x)G(x)P-l(x) D(x)= (dq(x))

with d12(x)= d21(x) O.
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Let E(z)= (El(z), E2(z))T be defined as follows:

(2.15) Y-(z)= P(z)O(z).

Note that Y.(z) is analytic in the plane (except for perhaps a finite number of poles) cut
along a < x < b. In addition, Y-(z) satisfies appropriate growth conditions at infinity.

Substitution of (2.14) into the boundary condition (2.13) yields the uncoupled set
of conditions.

_,=i (x)Z7(x)+ ki(x), a < x < b,(2.16) Z;(x) -e u.i

j 1, 2 and k(x)= P(x)g(x). Thus, this procedure reduces our problem to the deter-
mination of two sectionally analytic functions El(Z) and Y-,2(z) satisfying appropriate
growth conditions at infinity and the boundary conditions (2.15). The solution to these
Riemann-Hilbert problems is well known (once the index is determined) (see for
example, Muskhelishvili [5]).

The main problem is to explicitly determine the matrix P. We first compute G(x)
from (2.14).

where T(x)= [tij(x)] with

G(x) [det A(x)]-i T(x)

and

ll t22 ce (x)8 (x)-/3 (x)3’ (x), t12 2iB(x)8(x) sin/xTr

t21 2ia (x )3"(x sin/xzr.

A nonsingular matrix, P(x), for which P(x)T(x)p-l(x)is diagonal exists if and only
if T(x) has two linearly independent eigenvectors. In this case, the matrix
P(x)T(x)p-l(x) has the eigenvalues of T(x) as its diagonal elements and P-l(x) has as
its columns two independent eigenvectors of t(x). If tlz(x)t21(x) 0 then the eigen-
values of T(x) are t11(x)+x/t12(x)t21(x) so that for the matrix P-l(x) we may take

l- t2 t12 ](2.17) P-l(x) C(X)[x/’t2t21 x/t12t21
where c(x) is any nonvanishing scalar function.

If txz(x)t21(x) 0, then T(x) has two independent eigenvectors if and only if both
t12(x) and t21(x) vanish. Since T(x) is nonsingular this can occur if and only if either
8(x) a(x)= 0 and 3"(x)(x) 0 or 3"(x)= fl(x)= 0 and 6(x)a(x) O. In this case, T(x)
is just a scalar multiple of the identity. For most applications, tE(X)tE1(X)# 0 except
perhaps at the endpoints x a and x b. Such exceptional cases are easily handled. In
order to simplify further work, we assume that tE(X)tE(X)# O.

Let P(x) be defined by (2.17.) so that

p(x)T(x)p_i(x) ( t11(X)+X/ti(X)t21(X) 0 ]
0 t11 (X)-- x/t12(X)t21(X))

which provides the desired uncoupling of the pair of coupled Riemann-Hilbert
boundary value problems. The scalar c(x) is chosen so that P(x) can be extended to a
matrix P(z) meromorphic in the plane with a pole at infinity. This enables us to
explicitly determine ’1 and ’2 and hence a and (II2 Inversion of (2.7), (2.8) yields our
original unknown functions ox and 0.2. An example of this analysis appears in 4.
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It should be emphasized that the key to the method illustrated above is the
extension of the matrix P(x) to a matrix P(z) which is meromorphic. This naturally
imposes strong conditions on the coefficients c (x ), / (x ), y(x) and 5(x). However, a
detailed analysis of this problem seems inappropriate since, in general, it is a simple
enough matter to resolve the question for individual cases arising in applications. As
illustrated later in the paper, this usually amounts to determining whether the
appearance of square roots in P(x) introduces branch points off of the cut (a, b).

3. The second generalized Abel system. We next consider the system

The interval (0, 1) is chosen rather than (a, b) in order to simplify the analysis. It is trivial
to extend to (a, b). The case/x 1/2 in (3.1)and (3.2)has been considered by Lowengrub
[31.

Analogous to the method used in 2, we introduce the sectionally analytic
functions (z)and 2(z)defined by

(3.3) Cj(z)= (z2-1)"-/2 I0 qj(t) dt
(z2_ t2),, j 1, 2.

If oi(t) satisfies o(t)=o(t)t’[t(1-t)]+- where e >0 and 0(t) is HSlder
continuous on [0, 1], then i(z) (/" 1, 2) is analytic in the plane cut along [-1, 1] and
satisfies the following conditions,

Oi(z)= O([z- II "-1/2) as z --> 1,

(3.4) Oj(z)= O<lz + II-1/2) as z->-l, and

di(z) O(Izl-) as z -+ oo.

Moreover, the limiting values O:(x) are continuous functions for Ix < 1 except
perhaps for x 0.

For each of the functions (z 1)"-1/2, (z + 1)’-1/2, (z t)-" and (z + t)-" we take
as the branch cut that line lying along the positive x-axis and restrict their arguments to
lie between 0 and 27r. The following limits, for 0 < x < 1, are easily computed:

(3.5) dp. (x,= _i(l_x2,,_,/2{ I o,(t’ dt i.tri l0 o,(t’ dt }(t2--X (X2-- t2)"2) We

(3.6) @7(x) i(1-x2)-1/2 *(t)
2). +e _t2).(t2-x (x 2

whereas for- 1 < x < 0

(3.7) dp.(X)=_i(l_x2)_l/2{ I q,(t)dt
xl (t2- X2)a "" e

(3.8) C)-(x) i(1-x2),-1,2{
1 (t-x)" t- e

I’1 qi(t) dt
(x2- t2)" }"
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It should be observed that for -1 < x < 0,

(3.9) :(x) -:(-x).

(3.10) rI,[(x)+[(x) 2 sin xr (1-x)-/ (t) dt
(x -t2)"’

and

,=i.-, 2),-1/2 Ix qj(t) dt
(3.11) e-"=idp[(x)+e q,j tx)= -2 sin/xTr (1-x (t2_x2),
for O<x < 1.

Substitution of the above into the original set of integral equations (3.1) and (3.2)
reduces the problem to the following: determine two sectionally analytic functions

l(z) and 2(z)satisfying the conditions (3.4)and the boundary values,

[a(x)(x)-(x) e-"=-(x)]
(3.12)

+[a(x)dP-(-B(x)e"=i(x)l=Fl(X), O<x < 1,

[-v(x) q-l (X)q- t (X )(I) -(X )]
(3.13)

+[(x)ep(x)-/(x)e"-((x)]=F=(x), O<x <1,

where

F(x) 2 sin tzzr (1-x2)"-l/2f.(x).
In matrix notation the system (3.12), (3.13) becomes

(3.14) A(x)dP+(x) -B(x)dP-(x)+F(x), O<x < 1,

where

with

a11(x)=a(x),

and

(I)(z) ((I)l(Z), (I)2(z))T F(x)= (FI(X), Fz(x))T,
A(x)=(aq(x))

a12(x)=-/3(x)e -"=i, a21(x)=-y(x)e-"i and a22(x)= 6(x),

(3.14a) B(x)=A(x).

In order to determine (z), boundary conditions for +/-(x) must be extended to all
of [-1, 1]. It is clear from (3.9) how this extension is to be performed.

In particular, we obtain the system

A(x)+(x) -B(x)(x)+P(x), -1 <x < 1,(3.15)

where

(3.16a)

A(x),
A(x)= -(-x),

B(x),
B(x)= ---/-x),

O<x<l,

-l<x<O,

O<x<l,

-l<x<O,
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and

F(x), 0<x<l,
(3.16b) /(x)=

F(-x), l<x <0.

As in 1, we assume that fi (x) is invertible for 1 < x < 1. The expressions in
(3.16) imply that it suffices to assume that A(x) is invertible for 0<x<l, or
equivalently, that

cr(x)(x) e2 V(x)B(x) : O,

This gives us the system,

(3.17) +(x) -d(x)Cb-(x)+ (x),
where

and

0<x<l.

-l<x<l,

d(x)= A-(x)B(x)= A-(x),4(X)

(x)=A-(x)P(x).
Thus, we must now find a sectionally analytic matrix, (z) satisfying appropriate
conditions at 1 and-1, a growth condition ,(z) O(Iz1-1) at infinity, and the boundary
values (3.17). We seek a linear uncoupling of (3.17); that is, a nonsingular matrix P(x)
such that P(x)d(x)P-(x) is a diagonal matrix for -1 <x < 1.

We first compute (x) on 0 < x < 1 and obtain,

(x)= [det (A(x))]-T(x)
where T(x)= [tij(x)] with tll(x) t22(x) 6 (x )a (x /(x) (x ), t12(x)
-2i sin/xTr 6(x)fl(x) and t21(x) -2i sin tzTr a(x)y(x). If we employ the arguments of

1, we see that

tl2(X) t12 )P-I(x)= c(x)(x/txz(X) --x/t2(X)t2(X)
(3.a8)

(x)/3 (x) (x)t (x)+2i sin tr c(x)\/a(x)8(x)y(x)6(x
(provided t12(x)t2(x) # O) produces the desired uncoupling of the boundary conditions
(3.17) for 0 < x < 1. In particular,

p(x)T(xlp_l(xl= ( te1(xl+ /t12(x)t2(x) 0 )0 tll (x)- 4/12(: )t21 (x)
on 0<x < 1.

Next we compute (x) for-1 <x < 0. Since (x)= (-x) for-1 <x < 0, we find
that

r(x)=[det(A(-x))]-T(-x), -l<x<0.

Moreover, since or(x),/3(x), y(x) and 6(x) are real, the columns of P-(x) are also
independent eigenvectors of T(x) for 0 < x < 1. Hence P(-x)T(-x)P(-x)-i is diagonal
for -1 < x < 0, and if P(x) is defined by

|P(x), 0<x<l, P(x), 0<x<l,
orP(x)=

P(-x), -1 <x <0, e(-x), -1 <x <0,
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then ’(x)(x)-l(x)is diagonal for -1 < x < 1. If in addition P(x) can be extended to a
function P(z) meromorphic in C with a pole at infinity, then (z)= P(z)(z) defines a
sectionally analytic function Y_,(z), satisfying properties analogous to (3.4) and the
boundary condition

:/(x) -Z3(x)y_.-(x)+ .(x), - < x < 1,(3.19)

where

Z3(x)= P(x)d(x)P-(x)
and ’(x) P(x)a(x). An example illustrating this analysis appears in the fourth section

4. Examples. As a first example, we consider the set of equations (2.1), (2.2) with
a(x)=a, fl(x)= fl, y(x)= y and 6(x)= 6. Here, a, fl, y, and 6 are all real constants.
Since this example appears in various applications, we display the appropriate matrices
and write out the solution. We assume that ay6 O.

The coefficient matrices needed in (2.13) and (2.14) are given by:

(4.1) A-l(x)
a6 e2"i 3,/3 3’ a "i

1 [ a6-/y -2i/6 sin/xrr](4.2) G(x)=a6e2’*"-y -2iay sin/xrr a6-y

(4.3) P(x)=-2i sin txrr -4ay6

while the diagonal matrix, D(x), used in (2.15) takes the form,

(4.4)
D(x)=a e2grri

[ aB fly + 2i sin tTr x/aBy
0

o
a6 -/33’ 2i sin/xrr lay8

The problem is then reduced to the solution of the uncoupled Riemann-Hilbert
problem" determine a(Z), and 2(z) analytic everywhere in the plane except along the
cut (a, b) where Y-.a and 2 satisfy the conditions

(4.5) Y_,-(x) --e(’+x)iP---,7(x)+ kl(X),

(4.6) E-(x) -e (a-’)ip-- Y’.-(x)+ k2(x),

x(Z)’-" 2(Z)-" O(IZ1-1) as z oo,

and v, A, p, o’, k(x) and k2(x) are given by"

(4.7) u= tan-I2 sin/x’rr /cq3ydi1& -,8,y

(4.8) a tan-l[-(a6 +-)tan/xTr]
(4.9) p =[(a-/3y)2 +4 sin2 p,rr (ay6)]1/2,
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(4.10) tr [(36)2 + (7/3)2 236,//3 cos (2/xTr)] 1/2,

where

(4.11) K(x)=
k2(x)J

[P(x)A-l(x)]
F2(x

For example, the solution of the coupled pair of equations

Ioql(t)dt Ixxz(t))ld/tz=fl, x 6 (0, 1),(4.12)
(x-t)/z+ (t-x

and

ql(t) dt Io qE(t) dt
(4.13) (;-"7-2-- (x_t)l/2=f2, X (0, 1),

(with fl and f2 constant) requires the determination of the sectionally analytic functions
El(Z), Ez(Z) with Y_, and Y-,2 vanishing at c and satisfying the boundary conditions,

(4.14) E-(x) Y_,-(x)+ k, x (-1, 1),

(4.15) Y_,-(x) E(x)+ k2, x (-1, 1),

where k and k2 are the complex constants

kl=(1-i)(fl+f2), k2 (1 + i)(fl-f2).

It is a simple matter to demonstrate that the solutions to the above Riemann-Hilbert
problems are given by

(4.16) l(Z) -(i- 1)(/1 +f2)
/(Z + 1)(z 1)

1

and

(4.17) Y_,z(Z)= --(1 + i)(fl-f2)In

so that

and

(z) -i[,(z )+ ,z(z )]

2(z )= [,E2(z)- ,El(Z )].

The unknown functions q and 0a are then determined from the Abel equations (2.7)
and (2.8)where R(x)=/(1-xZ). One can see that even in the simple case (4.12) and
(4.13) the results are quite complicated. Fortunately, for applications, one is usually
only interested in a(z) and a(z). For problems in the theory of elasticity, (see
Lowengrub [3]) the stress field is expressed in terms of these two sectionally analytic
functions.

Secondly, we consider the particular case of (3.1) and (3.2) with

/x =5, a(x)=/3, /3(x)=a/x, y(x)=a and 6(x)=-B/x,

where a and/3 are constants. We show that our methods yield the same result as in
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Lowengrub [3]. We consider the coupled system

A(x)O+(x)=-B(x)O-(x)+P(x), -l<x<l,

where A(x), B(x), and F(x) are given in (3.14a) while fi,/ and/ are defined by
(3.16a, b). It follows that the condition detA(x):0 implies that /-a)0. In
addition, if 0 < x < 1 we have

X
(4.18) G(x)= /2 -c 2

2

\ X X

2

2iafl -(
2 -I- O )x

(4.19) P-I(x)
1 -1

(- 0
(4.20) P(x)T(x)p-I(x)=

x 0 (fl +a)2

while if- 1 < x < 0,

( )2 )(4.21) P(-x) T(-x)p-I(-x) =1-- (fl-a 0

x 0 ( +)
and det A(-x) (1/x)(fla- aa).

Thus, the uncoupled Riemann boundary value problem becomes: determine two
sectionally analytic functions 1(z) and a(z) that vanish at infinity and along the cut
-1 _<-x <_- 1, satisfy the boundary conditions

(4.22)
(-2)Y-.,7(x)+kl(X),:i(x)=
t +

: )= (t-,)(x +
r,(x)+ k(x),

-1<x<1,

-l<x<l.

This is in complete agreement with Lowengrub [3], where the solution to the original
pair of Abel equations is given along with an application to elasticity.

5. Application to dual relations. In what follows, use will be made of certain
well-known operators of fractional integration, differentiation and Hankel transforms
which were introduced by Erd61yi and Sneddon [1]. Let $,,,, denote the Hankel
transform

(5.1) S.,{f(); x}= 2x-f l-’f()J2n+,(x) d,
o

and for a > 0 define the fractional integral operators I,. by

(5.2) In,{f(); x}
2x -a-a,

for(--3 (X 2 ’2)a 12)+1[() d,

(5.3) Kn’a{f(); x}= r() (2-x +lf() d.

For a < 0 the fractional derivatives I, and K, are defined to be the formal inverses of
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the operators I,+,,,_,, and Kn+,,,_,, respectively. Frequent use will be made of the
well-known identities relating these operators (see Sneddon [9, p. 274]).

We shall consider systems of dual relations of the form

(5.4)

0<x < 1,

where a, b, c and d are constants.
Systems similar to (5.4) have been discussed by various authors. Closed forms

solutions have been obtained by Lowengrub and Sneddon [4] for the cases a fl
1/2,/x 0, v 1 and a =/3 1/2, tx 1/2, v 1/2. In the former instance, the

system (5.4) was reduced to a system of Carlemann type singular integral equations
whereas in the latter the generalized Abel system (3.1), (3.2) was obtained. Westmann
[10] used similar techniques to construct solutions for a =/3 and Ix u 2, whereas
Erdogan [2] presented a method for reducing (5.4) to an infinite system of algebraic
equations.

The procedures developed for treating special cases of (5.4) have mostly been ad
hoc. We shall indicate a more systematic approach for analyzing (5.4) which in certain
cases reduces to the generalized Abel system (3.1), (3.2).

In operator notation the system (5.4) becomes

(5.5) S,/_,{[aqg()+bg/()];x}=Fl(X), O<x <1,

(5.6) S/_,.,{[cq() + b4()]; x} Fe(x), 0 < x < 1,

(5.7) S,/,o{o (c); x}= g(x)H(1-x), x > 1,

(5.8) S/2,0{0(:); x}= gz(x)H(1-x), x > 1,

where (:) A()/, () B()/, Fa(x) 22"f(x)/xz’, Fz(x) 22fz(x)/xZ and
gl(x) and gz(x) are unknown functions for 0 < x < 1.

Formal inversion of (5.7) and (5.8) yields

q(,) s./:,o{gx(x); }

(5.9)

and

SMX,O" K,/2,.v[kl]

2v-v Io xX-vJg+’(x)kI(x) dx

$()= S/2,o{g2(x); }

(5.10)
Su/2,0" K/2,6[k2]

=S/2,[k2]

2- | xl-k2(x)J+(x) dx
o
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where

kl(X) Ku,/2+,,-,[gl], k2(x) K,,/2+,.-[g21,

and /and 6 are parameters to be specified later. The manipulations involved in (5.9)
and (5.10) are well known and may be found in Sneddon [9]. It should be observed that
k (x) and k2(x) vanish for x > 1.

Substitution of (5.9) and (5.10) into (5.5) and (5.6), followed by an application of
appropriate fractional transforms, yields

I./+,xS./9.-,{[aq()+ b4,(:)]; x} Pl(X)
(5.11)

aSg/2-,,,,x+2o, Su,/,,[kl] + bSg/2-o,,x+2o, S,,/2,[k]

and

(5.12)

where

r./,+,,, s./_,,,{[c()+ ag,(:)]; x} P,(x)
cSv/2-,o+2/3 Su,/2,v[kl]+ dS,/2-/3,2/3 S,/2,,[k2]

Pl(X) Ig/2+o,,x[F1], J2(x) I,,/2+/3,o[F21

and h and p are parameters as yet unspecified.
There are two trivial cases of (5.11) and (5.12). If/x ,, let 3’ =6, h =-a and

p =-/3; then these relations become

aSg/2-a,a Sg/2,,[kl]-i- bSg/2-a,a Sg/2,v[k2] ff"l(X)
(5.13)

aK./E-.,+/[kl] + bK./E-.,+[k2]
and

cS/2-/3,/3 S,/2,,[k l] + dS,/2-/3,/3 S,/2,,[k] =/2(x)
(5.14)

cK,/2-/3./3 +, k + dK,/2-/3./3+, k2].

If we invert relations (5.13) and (5.14), one obtains a simple algebraic system for kl
and k2.

A second trivial case results if (,-tz)/2 +a-/3 0, since by choosing A + a
O +/3 y + a 6 +/3 0 we obtain

(5.15)

and

(5.16) cS/2-/3./3S/2.-,, + dS/E-/3,/3S/E,-/3[k2] J62(x) cI/2./3-[k l] + dk2.

Application of Iv/2,ot-/3 to (5.16)yields

(5.17) Ck + dI,,/2,,-/3 [k2] I/2,-/3 [/2].
It is now a simple matter to solve (5.15) and (5.17) for kl and kz.

In general the system (5.1 1) and (5.1 2) cannot be solved so easily. However, it may
be simplified in either of two ways. If, for A, % p and 6, we choose y =-a then the
system becomes

(5.18) aI/2,(-)/2 k + bK//2-a,(,-)/2+(ct -/3) k2] -if’l,
(5.19) cK /2-/3,(-)/2+(/3-)[kl] + dI/z,(,-)/2[k2] =/2;



806 M. LOWENGRUB AND J. WALTON

whereas by choosing , (u -/z)/2-/3, 6 (/z u)/2- a, p -/3 and h -a we
obtain

(5.20)

(5.21)

aK/2-t,(v-ta,)/2+(ot-/3)[kx] + blv/2,(,-)/2 [kz] F1,

cI,/2,(-,)/2 [kx] + dK/2-0,(,-)/2+o-)[k2] =/62.

The systems (5.18)-(5.21) may be regarded as generalized Abel systems. In most
applications c =/3 and hence we shall consider only this case for the remainder of this
section. It should be observed that when u-ix is an even integer the operators
appearing in (5.18)-(5.21) are not of fractional order. It is then a simple matter to
reduce either of the systems (5.18), (5.19) or (5.20), (5.21) to a single linear ordinary
differential equation. In particular, for the case considered by Westmann [10] (i.e.
v =/x + 2) the system (5.18), (5.19) reduces to a simple first order linear differential
equation.

If/x v is not an even integer then the operators are of fractional order, with both
fractional integrals and fractional derivatives appearing in both systems. However, in
certain cases it is possible to reduce the systems (5.18)-(5.21) to Abel systems of the
form (3.1) and (3.2). We might note that if tz u is one, then the Abel system obtained
will contain only operators of order 1/2, whereas in general, operators of different order
will occur within the same system. Provided neither of the unknown functions appears
in operators of different order, a straightforward extension of the technique presented
in 3 will treat such systems.

As an example, consider the system (1) with v 1, /x 0, a =/3 =1/2. If we let
A p -1/2, 6 -1 and 3’ 0 we obtain

(5.22)

(5.23)

aK-x/2,1/2 [kx] + bI1/2,-x/2 [k2]

clo,x/2 [kl] + dKo,-1/2[k2] =/62(x).

Since,

and

d
[1/2,-1/2[k2] (X2- t2)-1/2 -[tk2(t)] dt,

K’-x/z[k2]= -Ix (t2-x2)-1/2-[tk2(t)] dt,

kl(tl=gl(t)

kz(t)= K-1/2,1 [g2] 2t-1 It g2(u) du,

the system (5.22), (5.23) yields the generalized Abel system,

(5.24) ax Ix r()a(t2-xZ)-l/2tgl(t)dt_b (x2_t2)-l/2gE(t)dt=__rl(X),

Io I F(),2)-(5.25) Cx (x2-t2)-’l/2tgx(t)dt+d (t2-x 1/2gz(t)dt=---r2tx)’

0<x < 1,

0<x<l.
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SYSTEMS OF GENERALIZED ABEL INTEGRAL EQUATIONS
WITH APPLICATIONS TO SIMULTANEOUS DUAL RELATIONS*

J. R. WALTON

Abstract. A method is presented for solving certain systems of generalized Abel integral equations by
constructing an equivalent system of singular integral equations. An application is then given to a class of
simultaneous dual relations of a type arising in bimedia fracture problems in elasticity. The equations
discussed in this paper generalize those considered in an earlier paper of Lowengrub and Walton [SIAM J.
Math. Anal., this issue, pp. 794-807].

1. Introduction. In this paper a method is presented for solving systems of
generalized Abel integral equations of the type

fo a a(tP)l(t) fx 2(tP)2(t)
al(x p) (c--t--bi, dt+b2(xp) -=-i dt=fl(x),

(1) 0<x<l,

bl (X p) Ix l (tP)--qb-l-(t---
xp),l IO O2(tP)P2(t)l,X t.

dt + dt=

Since only the cases p 1 or p 2 occur in applications, we shall restrict the subsequent
discussion to those cases.

The equations (1) are a generalization of those analyzed in [3] for which tx /2

and al a2 =/31 =/32 1. That reference also includes a discussion of an application of
such systems to problems in elasticity. In particular, a method was presented in [3] for
reducing a simultaneous set of dual relations involving Hankel transforms to a simul-
taneous system of fractional integral and differential operators. Under certain condi-
tions the systems obtained in that way are equivalent to one of the systems of Abel type
equations for which closed form solutions were constructed in [3]. However, the
conditions that must be imposed upon such simultaneous dual relations to yield Abel
systems within the scope of the techniques of [3] are very restrictive.

In contrast, the method presented here is applicable to a very large class of
simultaneous dual relations. Although, in general, simple closed form solutions are not
obtained, it is demonstrated that the dual relations may be transformed into Abel
system (1) with p 2, which in turn is shown to be equivalent to a system of singular
integral equations with Cauchy dominant singular part. Such systems have been studied
extensively (see [2], [5]) and yield important theoretical information about the simul-
taneous dual relations. For example, the Noether theorems provide information on the
questions of existence and uniqueness. Moreover, it can be shown that the nature of
singularities exhibited by solutions of the resulting singular integral equations may be
deduced from the behavior of the dominant singular part of these equations. However,
this is the subject of a subsequent paper in which an application of equations similar to
(1) with p 1 to the study of certain bimedia fracture problems for power law
viscoelastic solids is presented. In particular, in that paper it will be shown that
knowledge of the singularities of solutions of the associated singular integral equations
yields information about the occurrence of singular stresses in the physical problem.
That generalized Abel type integral equations can play an important role in solving
realistic problems for power law viscoelastic materials has already been demonstrated
(see [9]).

* Received by the editors December 30, 1977, and in revised form April 26, 1978.

" Department of Mathematics, Texas A&M University, College Station, Texas 77843. This work was
supported in part by the United States Air Force under AFOSR Grant 77-3290.
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Very few theoretical results for simultaneous dual relations have appeared in the
literature. The method described in this paper provides a means of pursuing such
investigations and is useful for obtaining insight into the nature of simultaneous dual
relations. We do not attempt to present a rigorous analysis of the dual relations
considered here. However, it should be straightforward, albeit tedious, to do so by
justifying our formal manipulations within the distributional framework employed
in [7] and [8] or that developed by Braaksma and Schuitman [1], or that by A. C.
McBride [4].

In 2 and 3 we consider the reduction of (1) to a system of singular integral
equations for p-1 and p-2 respectively. Section 4 contains the application to
simultaneous dual relations.

2. First Abel system. In this section we consider the generalized Abel system (1)
with p 1. It is assumed that

(2)
ai(t)= a (t)t vi and

[3i(t) =/3 (t)(1 t)xi j=l,2,

where a (t) and/3 (t) are continuously differentiable on [0, 1] and nonvanishing at the
endpoints. It will prove convenient to introduce the following notation"

(3) u min (0, ui),

di(t) ai(t)t-v;(1 t)-;
(4)

i(t) =/i(t)t-;(1 t) -a;,
(5) &(t) qbi(t)t;(1 t)

ai(t)qbi(t)
Ii(bi)

(x t)"’
dt,

(6)
Ki(ci) Jx dt,

i(t)
dt,(7) hi(x)=

ci(t)
dt,(8) ki(x)

(t-x)"’

(9) Ri(z) [z(1 z)] (1-"’/a

and

(10) i(z)= [Ri(z)]-I Io qbi(t) dt.

We seek solutions i(t), ] 1, 2 such that

(t)(11) i(t)
[t(1 --/)]1-",

where b (t) is H61der continuous on [0, 1] and e is a positive number. It follows that
when a suitable branch is chosen for the multivalued function [Ri(z)(t-z)"-l], then



810 J.R. WALTON

i(z) is analytic in the complex plane cut along [0, 1] and satisfies the asymptotic
estimates

(12a)

and

(12b)

as z-oo

li(Z)--" O(Z (‘-1)/2) as z --0

Oi(z) O((1-z)(t’’-1)/2) as z --> 1.

We remark also that hi(0+) ki(1-) Ii(&i)(0+)= Ki(i)(1-) 0 and hi(l-), ki(0+),
Ii(i)(1-) and Ii(i)(0+) are all finite.

Let [(x) denote the following limits:

O]-(x) lim Oi(z),
I,, (z)>0

O[(x)= lim Oi(z),
Im (z)<O

0<x<l.

It is then readily verified that

(13) hi(I)= [e"i’i*[(x)+*-[(X)]Ri(x) and

(14) ki(x) -[*[(x)+e"’’i*-[(x)]
From lines (2)--(5) we observe that

(15) i(t) =sin/’/’]- IO h;(y)dy
"n" (t-y)-"’

(16)
sin tzi___ It k (Y) dy

"n" (y--t)1-i"

Moreover, substitution of (15) into (6) followed by an integration by parts, yields

(17) li(6i)(x hi(x )dzi(x)-
sin IoX hi(y)Kl,i(x, y) dy

where

Kl,i(x, y)= Io ai(s(x-y)+ y)ds
(1 --s)ta"-ls 1-ta’i

It should be observed that Kl,i(x, y) is continuous for 0 < y < x < 1 and integrable on
the triangle 0 <- y <-x -< 1.

Similarly, as a consequence of (16), we have

sin tziTr Ix(18) Ki(i)(x) ki(x)i(x)+ ki(y)Kz,i(x, y) dy

where

(1 S)z,-Is 1-z
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and K2,i(x, y) is continuous for 0 < x < y < 1 and integrable on 0-< x -< y 1.
Substitution of (13), (14), (17) and (18) into (1) yields the generalized Riemann

boundary equation

(19) A(x)O+(x)+ B(x)O-(x)+K(+)+H(O-) F(x)

where (1, 2)r, F (fl, f2)r and A =(aii), B (bii), K (kii) and H (hii) are
matrices given by

all----ial(x)tl(X)Rl(X)/(2 sin/x17r),

a ib2(x)2(x)R(x) e-2i/(2 sin aTr),

a21 ibl(X)l(X)gl(x)e-gli/(2 sin/x17r),

a22 =-iaz(x)z(x)Rz(x)/(2 sin 27r),

bll all e -u’lri b12 a12 e txz’ni b21 a21 e t’’ri b22 a22 e -u’2ri

kll(q)-- --al(x) & (y )R (y )KI.I (X, y) dy,

e_2r Ixk12()---bE(X) b(ylR2(ylKa 2(x, y) dy,

k2()=bl(X)e-" (y)RI(y)K2,1(x, y)dy,

k22(b) --a2(x) qb(x)R2(y)K1,2(x, y) dy,

hll kll e -’ri hi2 k12 e 2zri h21 k21 e zri and h22 k22 e -2ri

It is straightforward to verify that solving the Abel system (1) in the class (11) is
equivalent to solving the generalized Riemann system (19), i.e., to finding sectionally
analytic functions i(z), 1, 2, satisfying (12) and the generalized boundary equation
(19).

The generalized Riemann problem (19) may be transformed, in turn, into an
equivalent system of singular integral equations with Cauchy dominant singular part by
a method outlined in Gakhov [2]. In particular, define

1 f (t) dt
(20) Oi(z)=- Jo (t-z)’
and recall the Plemelj formulas [4]

1 1 fl d/i(t) dt
(21) i (x)= + .(x)+--:. (t-x)L L, 7"l"l

Substitution of (20)and (21)into (19)yields the system of singular integral.equations

(22) K(4,)+ k(4,) f,

where g, (4’1, {/2)T and f (fl, f2)T. The dominant singular part of (22), K(g,), is given
by

(23) K(4,) S(x)g,(x)+ T(x) l---: Io O(t) dt

(t-x)’
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where S (A -B)/2 and T (A + B)/2. The operator k(0) in (22) is easily seen to be
Fredholm. The theory of systems of the type (22) is well developed. (See, for example,
Muskhelishvili [5].) In particular it is known that (22) is equivalent to a system of
Fredholm equations of the second kind. In this sense we may regard the above analysis
as providing a solution of (1), although except for special cases, the solution is not
obtainable in closed form. We remark further, that when ix ix2, the dominant singular
part of (22), K(O), may be substantially simplified. Important theoretical information
about (1) may be obtained from (22). However, we shall postpone a consideration of
this until 4 when an application of (1) to dual relations is discussed.

3. Second Abel system. We next consider the system (1) with p 2. The technique
employed for this case is in the same spirit as that of the previous section, with only slight
modifications made necessary by the substitution of the nonunivalent function z 2 for z.

As in 2, it is convenient to introduce certain notation. Assumptions (2) and
definitions (3) and (4) are unchanged. Whereas, lines (5)-(10) are replaced by:

(24) i(t) i(t)t2/(1

(25)

a(tE)(t) dt
I() J0 (X2- t2)i

Ki(i) Ix i(t2)&i(t) dt
(t2__ X2)-/

(26) IoX i(t) dt
hi(x)= (x-_ t2),,,

(27)
;’(t) at

ki(x)= (t2_ x).,,

(28) Ri(z) [z 2 1] 1/2-g,

and

(29)
1 Io (t)dtdPi(Z)=Ri(z (z-_ t2)-,

Instead of (11), we now seek solutions $(t) such that

(30) i(t)t-**,
It(1 t)] 1-",

When a suitable branch is chosen for (Z 2- t2)-’/Ri(z), we see from (30), that Pi(z) is
analytic in the complex plane cut along [-1, 1] and satisfies

(31)
as z-+oo

*i(z) O((z 2 1)’-1/2)

and

as z-++/-l.
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Moreover, we may conclude that hi(O+)= ki(1-)=Ij(i)(O+)=Kj(&i)(1-)=O and
hi(l-), k(O+),/(i)(1-) and Ki(i)(O+) are all finite.

The limits @+/-(x) are defined as before, only now they are computed for -1 < x < 1.
It is easy to show that when 0 < x < 1,

(32) hi(x)= []-(x)+ ;-(x)]

and

(33) ki(x ) -[e-’’ (x) + e"’)-(x)]

and when -1 < x < 0

(34)

From (26) and (27) we obtain

(35)

(1 -x2)1/2-j
2 sin txiTr

i(t) .sin .tx!vr 2t hi(y) dy
"rr (t:z_

(1_ X2)1/2-t
2 sin/xivr

,1 k;(y) dy
(36)

sin tiTr2t t2)17r (y2

Corresponding to (17) and (18), substitution of (35) and (36) into (25) yields

(37)

and

(38)

where

(39)

and

i(6i) hi(x)a(x2)_sin txiTr hi(y)yKl,i(x, y) dy

sin tzivr IxKi(,bi) ki(x)i(x2)+ ki(y)yK2,i(x, y) dy

2 2)
K,i(x, y) 2 ai (o’(x y2) + Y dcr

(1 O’)tx/- 10" 1-/

~t 2)
(40) K2 i(x, y) 2 3i (o’(x2 y2) + do"Y

1--/zj(1

Substitution of (37) and (38) into (1) yields the Riemann boundary system, valid for
0<x < 1,

(41)

where

A(x)C,+(x) +B (x)’:I:,-(x) +K(’I+) +H(,-) f(x)

O(Z) ()l(Z), (I)2(z))T
f(x) (fl(X), h(X))T,
A(x)= (a,i(x)), B(x)=A(x), K (ki) and H=(ho)
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with

all(X)--
a (x2)dt (x 2)
2 sin

(1 --X2)1/2-1

alz(x)= bz(xZ)[z(x z)
2 sin/-.2"

(1 X2)1/2-tx2 e -wi,

and

a21(x)--
bl(X2)l(X 2)
2 sin/177"

(1--X2)1/2-1 e -txl"tri,

a2(x)
a2(xg-)d2(x 2)
2 sin/./,27"/"

(1 --X2)1/2-u’2,

kll(b)
al(x2) foX2zr & (y)(1 y2)l/2-lyKl,l(X y) dy,

be(x2) IXe-t2-ik2(4,)=
2"

2\1/2--2 K xb(y)(1 y ) y 2,2 y) dy,

k2(b)
bl(X 2)

27/- Ix 2)1/2--t1e -.i b (y)(1 y yK2,1 (x, y dy

k22(b)
a2(x2) Io2rr

4(y)(1 y2)1/2-2yK1,2(x, y) dy.

The kernel of the operator hij is conjugate to that of kij.
To establish the equivalence of (1) to a system of Riemann boundary value

problems it is necessary to extend the boundary equation (41) to all of (-1, 1).
However, from (34) and the fact that for 0<x < 1 K(/)+H(-) is real it is clear how
the extension should be effected. Specifically, if we define for -1 < x < 0

and

then

and

and (41) is valid for -1 < x < 1.

ai(x)=ai(-x),

b(x) 6(-x),

ki,(4 )(x ) ki,(& )(-x ),

(x) -(-x),

t;(x) -t(-x)

,.(x)=/,.(-x),

A(x)= -A(-x)

B(x)= -B(-x)



GENERALIZED ABEL INTEGRAL EQUATIONS 815

By an argument entirely analogous to that of 2, the introduction of 49(t) through

1 ( (t) dt
dPi(z) J- (t z)

transforms (41) to an equivalent system of singular integral equations with Cauchy
dominant singular part. In the next section we consider an application of (1) with p 2
to certain simultaneous dual relations.

4. Simultaneous dual relations. In this section we consider an application of the
analysis presented in 3 to simultaneous dual integral equations of the form

[aA(:)+ blB(:)l: J,(x) d F3(x ),
0<x<l,

fo [a2A()+ dsc F2(x),b2B()]-2J,,(,fx )
(42)

o
a (Sc)J. (x ) dj O,

l<x<oO,

) (,)L(,x) , 0,

where a, b, c and d are constants. As was remarked in [3], such systems arise in bimedia
fracture problems in elasticity. It was demonstrated in [3] that the system (42) may be
transformed into the system

a1K ta,/2--o,v--a. [’/’/1] + bll,/2,(w-v)/2 [2] fl(X),
(43) 0<x < 1,

a21/2.v-)/2 Jr + b2K/-,- [r/z] fz(x ),

where

a =-(-/),
2

fl(X) 22’IM2+o,,-o,{F1()-2’; X},

fz(x) 22I,42+o,-o {Fz(s:)-2t3 X}

and r/1 and r/2 are unknown functions which vanish on (1, oo). The operators appearing
in (43) are the modified Erdelyi-Kober operators introduced by Sneddon [6] and are
defined as follows: if a > 0 then I., and K,,, denote the fractional integral operators

2
r.,{f(:); x}= r()x X(X 2)a-l2n+lf() d,

2 2 Ix (2--X2)a-l-2n-2a+lf() d;

whereas, if a < 0, I.. and K,,.,, are the fractional differential operators inverse to
and K./,_,, respectively.

The system (43) may be regarded as a generalized Abel system. As was indicated in
[3], only special cases of (43) fall within the class of Abel systems considered in that
paper and for which simply closed form solutions are obtainable. In contrast, we show
here that the full problem (43) may be treated by the methods of 3. Although this
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approach does not provide, in general, closed form solutions of (42), it does offer a
means of obtaining useful theoretical information regarding the questions of existence
and uniqueness. Moreover, the system (42) is ultimately reduced to a system of
Fredholm equations of the second kind.

Two observations regarding the general character of the system (43) may be made
immediately. The first is that both fractional integral and differential operators appear
in (43). In particular, the four operators consist of two fractional integrals and their
inverses. The second observation is that only when a =/3 does it occur that the
unknown functions, "0i, appear in operators of the same order; i.e. in (43) the two
integral operators have the same order and thus also their inverses. As will become
apparent later, this greatly affects the tractability of (43).

Without loss of generality we may assume v >/x. Also, for simplicity we shall first
assume that a =/3 and v tz < 2, which still includes all the physically interesting cases.
Later, we shall indicate the necessary adjustments in the analysis to be made when these
assumptions are relaxed.

Given these restrictions, (43)becomes

a1Ktx/2-x.(v-tx)/2 [’01] + blI v/2.(tx- v)/2 [’02] fl (x),
(44) 0 < x < 1.

a2It/2.(v-t,)/2 [’011 + b2Kv/2-a.Ox-v)/2 [’02] f2(x),

Introduction of

&l(t) t2’x+*+1"01(t), hi, l-- 1- (v-/x)/2, o1(1)-- vl,

pl (/.g -+- p)/2 o

yields, in the notation of 3,

and /31(t)= 1

2x.-2
(45) K./2_,,(v_.)/2 [’011 Kl(bl)

r((-,)/2)

and

2X
(46) I,,/2,(-,,/2 [’01] I1(1).

r( {

It should be noted that ’1 and/1, defined by (4), are now only power functions and that
one of them is identically one. Moreover, the kernels K1,1 and K2,1 in (37) and (38) are
easily seen to be given by

(47)
sin IT/’KI,I(X, y)

{0, vl-<_0,

2Vl(1 --/Xl)X2(’-l) 2F1(1 vl, 2-g; 2; x2-yg/x2), pl >0, 0<x < y,

and

(48) sin/ 17"/" ,. (x,-.2.1 Y

)Y-2(’q+l)2Fl(1 + Pl /1 2" y2 2/--2Ul(1 /1 --X y2), O<x <y, Pl<O,

O, Vl>=0, 0<y <X.

Since solutions are sought for which the operators in (44) yield continuous
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functions, it follows that t"r/z(t) must vanish for x 0 and x 1. Hence we deduce that

X- fO(49) I/2,(-)/2 [.2]
F(1 (v -/x)/2)

(x2_ t2)(_,)/2 d
d-[t%lE(t)] dt

and

(50) K/2-,-)/2 Jr/z]
v-2c

--X fx (t2- xE)(w-v)/2 d t2_r/F(1 ( ,)/2) -7[ 2(tl] dt.

Define p2 (p +/)/2 a. If P2 0, we define

d
z(t) -[tr/z(t)], a2(t)= 1, fl2(t) 1 and /z2=

and observe that

(51) I/z,o,-)/z [r/2]
F(1 -/z2)

I2(b2)

and
v--2t

(52) K/z-,,,o.-.)/z [n] r(1 iz2)
Kz(cz)’

where I2(t2)and K2(t2)are given by (25).
If/"2 0, we define a2(t)= 2 and

bz(t) -22 d
[tr/2(t)]

and note that

tz’-gr/z(t) t-zzt"r/z(t).

Line (51) is still valid but (52) must be amended. From the obvious identity

d[t2-’r/z(t)] b2(t)- 2v2t-22-1[tr/z(t)]
dt

we obtain

(53) K/2-.o.-.)/z [r/z]
v-2a

--X

r(1-g)
K2((2)- 2v2 (t2_ X 2)/2 dt.

Moreover, it is straightforward to show that

[ It12y2(y)dy It L"I’(Z2)2ZKZ ](54/ t"r/z(t)= Slr/zzr az(tZ) (yZ_tz),-,2 - 2ykz(y) dy Zx--_--J.

We must now consider separately the two cases P2 >0 and P2 < 0. For u2 >0
substitution of (54) into (53) yields

v-2a
--X

K2((2)- Ix k2(y)g3 2(x, y) dy(55) K./2-,,,(.-.)/z [r/z]
F(1 -/xz)
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where

(56)

22v2 22_1X_2 2 sin R,27"/’b’ 2 v-2 2 2)K3,2(X, y)=F(I_2)y +
rrr(2-,2)

x (y -x

Io [x2 + r(y2- x2)]-2 ( r(y2-x2) )dr.7.t2"---’ (- : 7.-7 2El 1 +/"2, 1; 2 -/J,2, [x2i7i77y21
It should be noted that xUg3,2(x y)ELI(O, 1)x (0, 1) and is continuous for
O<x=<y=<l.

If v2 < 0 we obtain
u--2-x

K Ix(57) K./_.(._.)/ In2] 2) 2(&2)- k2(y)K4,2(x, y) dr

with

2 b’2X
v-2

((58) K4,2(x, Y)=F(1 t.2)
y-= 2& 1 + v2, 2; 1; y2-x

y

Moreover, we have x VK4,2(x, y ) E L (0, 1) x (0, 1) and continuous for 0 < x _<- y _-< 1. The
expressions I2(2) and K2(&2) appearing in (51), (52), (55), and (57) are given by (37)
and (38) with

0,

K1,2(x, y)= 2v2(1->2) 22-1)X 2F1 1-/2, 2- .2; 2"
sin/2,2’7/" \

X
2 y2)
X
2

v20, 0<X < y < 1,

v2>0, 0<y<x <1,

and

K2,2(x, y)= -2v_2(1- 2)7/’y_2,v2+l, 2Fl( 1 + t*2,/-62; 2;
sin 1-2gr

2 2

V2>--0, 0< y <x < 1,

v2<0, 0<x <y<l.

The subsequent observations are valid for all values of V2. However, for definite-
ness we assume v2>0. Substitution of (37) and (38) into (45), (46), (51) and (55) and
from there into (44) yields a generalized Riemann system of the type

(59) A(x)+(x)+B(x)-(x)+K(+, -) f(x), 0<x < 1.

Boundary equation (59) is then extended to all of (-1, 1) by the method of 3.
Alternatively, (59) may be transformed into the system of singular integral equations

(60) S(x)O(x)+ r(x) l---:qTl I-1 b(t) dt(t_x----+I(o)=f(x), -1 <x < 1,

by introducing

1 O(t) dt
(:I)(z) =/ J--1 (t-z)"

Examination of the dominant singular part of (60), or equivalently the principal
part of (59), yields important theoretical information about (44). For example, the
number of solutions of (59) (and hence (44)) is at least as large as the number of
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solutions of the dominant homogeneous singular equation

(61) S(x)(x)+ T(x)l--ZTrt I’x (t_x___0,4,(t)dt
or its corresponding Riemann problem

(62) A(x)dP/(x) + B(x)dP-(x) O.

Examination of (61)or (62)will this provide conditions necessary for the existence of a
unique solution to the dual relations (42). It therefore becomes necessary to compute
the index of the system (62), which from the general theory of Muskhelishvili [5], is most
easily determined by actually solving (62). This can be effected by transforming (62) in
the usual way [5] to a system of Fredholm equations of the second kind and then
iteratively constructing the solutions. However, in certain cases the technique presen-
ted in [3] for uncoupling systems of the type (60) into two ordinary uncoupled Riemann
problems will provide simple closed form solutions. To decide the applicability of the
method of [3] to (62) we must examine more closely the matrices A(x) and B(x), the
components of which are given by A (x) (aii(x )), B (x ) A (x ), A (-x ) -A (x ) and on
0<x<l

all(X) =-ax:"-"[1- X2]1/2-/-% F(/-/’l_._ e-U.li,

al(X) blX:Z"z-g [1- X2]1/2- F(271.2)

a:zl(X) ax"-’[1- X211/2-g 1-’(/’/’1)

azz(x) bzx2-"[1 x2]a/2-’ F(Ix2)
e -":=.

2zr

The first restriction to be placed on A(x) is that det (A)(x) 0 (except perhaps for x 0,
+/- 1). Hence it is assumed that

(63) aab2 e -i(g+gz) + a2ba O.

Recalling that/Xl +/xz 1, we see that (63) is equivalent to

(64) 6 =- a xbz- azbx O.

It follows that when (64) holds, the system (62) is equivalent to

1
(65) +(x) -6(x)-(x),

where G(x)-- A-I(x)A(X) (gij(x)), G(-x) G(xi and on (0, 1)

gll(X) azbl + axb2 e i"-":),

gz(x) blbzx-’[1-x]"-’F(Ix2) sin tzzzr,

g2x(x)--aa)x-[1-x2]-"lF(x)4i sin r,
F(t.)

g22(X) g11(X)-
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Uncoupling (65) requires finding a matrix P(z) analytic in the plane cut along
(- 1, 1) and such that

e-X(x)G(x)P(x)= D(x), -1 < x < 1,

where D(x) is diagonal. As is easily shown, P(x) must be of the form

gE(X)
P(x)= c(x)

rl- gll(X)
gE(X) )rE-g(x)

where c(x) is a scalar function and rl, r2 are the eigenvalues of G(x) given by

ra, r2 (gll + g22)/2 + x/(g11- g22)2/4 + gx2g21.

Since rl gll and r2- gll are constants, the matrix P(x) has an analytic extension to the
cut plane if and only if x"-v[1- x2]"2-’ has no branch point at infinity. Recalling that
/x l-/-*2 1- (v-/x) and 0 < v-/x < 2, we conclude that (65) can be uncoupled if and
only if v-/x 1. This condition is satisfied by the systems arising in applications to
bimedia crack problems in elasticity [3]. When the restriction 0< v-/z < 2 is with-
drawn, it becomes apparent that (65) uncouples whenever v- is an odd integer.
When v-/_, is an even integer, the original system (43)was shown in [3] to reduce to a
single linear ordinary differential equation. Hence, it is apparent that (43) is greatly
simplified when v -/x is an integer. Moreover, a simple closed form solution is obtained
whenever Vl= v2 =0. It now is a simple matter to compute the indices of the two
uncoupled Riemann problems and obtain conditions for the solvability of (44). In
particular, the indices provide necessary conditions for uniqueness to hold for the dual
relations (42).

It remains to consider how removing the restrictions 0 < v -/x < 2 and a =/3 affects
the analysis of (44). Maintaining a =/3 but allowing v-/x to be any positive number
does not affect the general character of (44) and requires only minor alterations in the
analysis presented above. Since the calculations involved are rather tedius we shall
dispense with a detailed analysis of this case. However, if a #/3 the behavior of (43) is
substantially different from that of (44). To illustrate the difference we shall consider
(43) with a >/3, and for simplicity we assume 0 < v-/x < 2. Note that in this case
v- A > 0, and we may define n to be the least positive integer greater than v- A, i.e.,
n 1 < v A <_- n. To avoid a case argument we shall assume n 1 < v A < n and n _-> 2.

The following identity is easily verified:

K/2-a,v-x (7]1)
4x"-a fl )--I(t2-x tdt

r(.v-/x)r(a-/3) Jx
2

(y2_ t2)(-,)/Z-1y2tS-+1r/1(y) dy.

Therefore, if we define Vl= (/x + v)/2-B, al(t)=t, ill(t) 1,/./,1 1-(v-/x)/2 and
,(t) n(t)t2-+ we obtain

2X
(66) I./2,o,-.)/z (’01)

F(1 --/1)
I1(1)

and

(67) Ktx/2-o,v-A (T/I)
4x "-2x ixF(1-j-)

(t2-x2)-o-tKl(Cl) dt
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where I1(1) and KI(&I) are defined as in (25).
Moreover, it is straightforward to show that

2(-1)" fx(68) K,/z_,x_(’02)=F(, v+ n)X
-z

and

(tZ- xZ)X-+"-I tD’/[t2-"’0z(t)] dt

2x---2
(69) I/z,(.-)/z (’02)- / (X2- tz)("-)/zt-’+lD,[t"+Zz(t)] dt,

F( tx-v+1)’2

where D,=[(1/2t)(d/dt)l. Now let &2(t)=tD’;[t2-"’02(t)], a2(t)= 1, /32(t)= 1 and
tx2 1-n + v-h, and let K2(Oz) and/2(Oz) be as in (25). We then have from (68)

(70) K/z-t,,- (’02)
2(-1)"x-2

K2(&z)

and after some manipulation (69) becomes

;o"(71) Iu/2,(g-u)/2 (’02) /2(t2)K2,1 (X, y) dy,

where

g2,1(x,

Once again a generalized Riemann boundary value problem equivalent to (42) is
obtained by substituting (32), (33), (37), and (38) into (43). However, in this case the
resulting system has a singular (or degenerate) principal part. In particular, the system
has the form

A(x)+(x)+B(x)-(x)+k(+, -)= F(x)

with A(x)= (aii(x)), B(x)= A(x), aaa(x) az(x) 0,

az1(X) azx-l(xz)(1-xZ)l/Z-"l/(F(1-lXl)sin lrr)
and

a22(x) b2(-1)"+1x -2t e-’2"i(1-x2)l/2-=/(F(1-lx2)sin/x2rr).
It is now apparent that A (x) and B (x) are not invertible and the methods of this section
do not effect a simplification of (43), or hence of (42). Hence, the behavior of (42) is
substantially different for a -/3 and a #/3. Evidently, this is due to the fact that when
a :/3, the function "01 in (43) appears in operators of different order, as does "02. For
a -/3 this does not occur. That this is important is easily illustrated by considering a
single generalized Abel equation of the type

Io &(t) dt Ix &(t) dt
(72) a(x) (x_t),+b(x) (t_x),---------=f(x), O<x <1.
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Applying the methods of this paper to (72) shows that (72) is equivalent to the singular
integral equation

A(x)*(x)+B(x) "I---,r Io (O(t) dt
,t_x------+ k(O) F(x).

If p, 2 ff, then

and

A(x)= tan tx(a(x)+ b(x)),

B(x)=(a(x)-b(x))

k(O)=-O.

However, if/x #/xa, say/x >/xa, then

A(x)= tan tx a(x),

B(x)=a(x)

and

k(.)O.

The integrals in (72) correspond to fractional integral operators of order 1-/Xl and
1 -/x2 respectively. Thus, if the orders of the operators in (72) are the same the essential
structure of the equation is governed by the functions a(x)+b(x) and a(x)-b(x);
whereas when the orders are different, the fundamental properties of (72) are deter-
mined only by the coefficient of the operator of lowest order. This is analogous to the
characteristic behavior of a differential equation being determined by the coefficients of
the terms of highest order.

REFERENCES

[1] B. L. J. BRAAKSMA AND A. SCHUITMAN, Some classes of Watson transforms and related integral
equations for generalized functions, this Journal, 7 (1976), pp. 771-798.

[2] F. D. GAKHOV, Boundary Value Problems, Pergamon Press, Oxford, 1966.
[3] M. LOWENGRUB AND J. R. WALTON, Systems of generalized Abel equations, this Journal, to appear.
[4] A. C. MCBRIDE, A theory offractional integration for generalized functions, this Journal, 6 (1975), pp.

583-599.
[5] N. I. MUSKHELISHVILI, Singular Integral Equations, P. Noordhoff, Groningen, The Netherlands, 1953.
[6] I. N. SNEDDON, Mixed Boundary Value Problems in Potential Theory, North-Holland, Amsterdam,

1966.
[7] J. R. WALTON, A distributional approach to dual integral equations of Titchmarsh type, this Journal, 6

(1975), pp. 628-643.
[8] The question of uniqueness for dual integral equations of Titchmarsh type, Proc. Roy. Soc.

Edinburgh Sect. A, 76A (1977), pp. 267-282.
[9] ,A. NACHMAN AND R. A. SCHAPERY, The sliding ofa rigid indentor over a power law viscoelastic

halfspace, Quart. J. Mech. and Appl. Math., 31 (1978), no. 3, pp. 295-321.



SIAM J. MATH. ANAL.
Vol. 10, No. 4, July 1979

1979 Society for Industrial and Applied Mathematics

0036-1410/79/1004-0017501.00/0

A METHOD OF GENERATING INTEGRAL RELATIONS BY
THE SIMULTANEOUS SEPARABILITY OF GENERALIZED

SCHRODINGER EQUATIONS*

DIETER SCHMIDTt AND GERHARD WOLFf

Abstract. One of the most important methods in the theory of special functions of mathematical physics
is that of generating integral relations for these functions by the simultaneous separability of the 3-
dimensional wave equation in different orthogonal coordinate systems. In the present paper it will be shown
that a consequent application of this principle of simultaneous separability to more general partial differential
equations and higher dimensions yields various types of integral relations for the solutions of a wide class of
ordinary differential equations which especially contains all second-order equations of Fuchsian type.

Introduction. Let D be a domain (nonvoid open connected set) in the k-dimen-
sional complex vector space Ck with k _-> 2 and let p (pK): D Ck and q" D - C be
analytic functions. In this paper we consider the generalized Schr/Sdinger equation

(1) Aw := Aw+p(x)’ grad w+q(x)w=O,

where A denotes the Laplace operator; grad, the gradient and p(x)’ the transpose of
p(x).

In 1 we introduce several orthogonal curvilinear coordinate systems, namely
ellipsoidal, sphero-conal and special forms of spherical and rectangular coordinates.
We give the representations of the operator A in terms of these coordinates, which
directly imply sufficient conditions for separability. The most interesting result of 1 is
that the "special" Schr6dinger operator A with coefficients

p,, (x ax,, + B,,/x,,, K. 1," k,

(2) k k

q(x)=3/" Y’. xz+6+ (e,,/x),
K=I K=I

where a, fl, y, 6, e are complex parameters, separates simultaneously in all four
coordinate systems specified above and that its separation yields a wide class of ordinary
differential equations especially containing all second-order equations of Fuchsian type
and some of their confluent forms.

Since the results of 1 can be readily verified, we have merely stated the facts and
omitted all the proofs. The proofs are essentially the same as in the 3-dimensional case
and can be carried out by direct computation or, more elegantly, by the use of Lie theory
([12], [18], [5], [10]). It also can be shown that the sufficient conditions for separability
and simultaneous separability stated in 1 are necessary, too.

In the first part of 2 we establish a general principle to obtain (k-1)-linear
integral relations for the solutions of k ordinary linear differential equations occurring
with the separation of a k-dimensional partial differential operator and which are thus
linked by k-1 separation parameters. Such theorems, in a more or less abstract
formulation, are well known in multiparameter eigenvalue theory ([1], [2], [16]). We
have restricted ourselves to a special formulation which enables us to meet the various
situations of 1. Furthermore, we have restricted our formulation of the integral
relations only to proper integrals, since, in this paper, we particularly want to point out
the more formal aspects of the method. The corresponding relations with improper
integrals can be obtained in the same way.
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In the second part of 2 the most important applications of the above stated
principle to different situations of I are discussed. Of course, one can always apply the
above stated principle whenever our general Schr6dinger operator separates in one
coordinate system; however, then there is the problem of finding suitable solutions of
the partial differential equation which can serve as kernels. In the case of our special
Schr6dinger operator this problem can be solved due to its simultaneous separability.
Separation in one coordinate system yields product solutions in terms of these variables,
which then may serve as nontrivial kernels for integral relations obtained by separation
in another coordinate system. This method yields various types of integral relations for
the solutions of the special ordinary differential equations (14), (22.1), (22.2), (29.1),
(29.2), and (34). Only the most interesting cases, especially those which lead to new
types of integral relations, are discussed here.

Explicit examples and applications of our integral relations, especially with regard
to special functions of mathematical physics, will be treated in a later paper.

The present paper was stimulated by a series of papers of Leitner and Meixner [7],
[8], [9] as well as by the papers of Erd61yi [4] and Sleeman [15].

In [7], [8], [9] Leitner and Meixner made an approach to a unifying concept for
generating integral relations for the special functions of mathematical physics by
studying the simultaneous separability of the 3-dimensional Schr6dinger equation (1)
with p 0. This concept was carried on in the thesis of Turner [17], which was initiated
by Leitner. Their investigations were restricted to those pairs of coordinate systems
which share a common coordinate to be separated out. Hence, their integral relations
were linear.

In earlier papers Lambe and Ward [6] and Erd61yi [4] obtained linear integral
relations and equations for Heun polynomials and Heun functions by the simultaneous
separability of the 3-dimensional special Schr6dinger equation (1) where q 0 and p is
given in (2) with a 0 in terms of sphero-conal and spherical coordinates, which share
the common coordinate r. Later on, Sleeman [15] obtained quadratic integral relations
and equations for the solutions of the Heun equation by the simultaneous separability
of the same Schr6dinger equation in terms of ellipsoidal and spherical coordinates.

1. Separability of Schr6dinger equations in k-dimensional orthogonal coordinate
systems.

1.1. General orthogonal coordinates. Let G be a domain in the k-dimensional
complex vector space Ck with 1 k >= 2 and

C G z (z)x (z)=((z))e C

be an analytic transformation. We call & "orthogonal" if

(3) "=,o," go, 0, ere{1 k},
10Zo OZo-

where 3o denotes the Kronecker symbol and the go are analytic functions satisfying

(4) go(z)O, zeG; g=l,...,k.

If w’D-->C is an analytic function with domain DeCk and ff := w o, our
SchrSdinger operator A in terms of the new variable z (Za,. , z) becomes

Aw= := --[...]+(q o). if,
K=I gK
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where

(5.11 qK=2 Y (poo), K=l,...,k.
o=l

On the other hand, the Po are expressible in terms of the 0K. The orthogonality relation
(3) directly yields

1 1 aCK(5.2) po=o=go Ozo
,o, 1,..,k.

1.2. Ellipsoidal coordinates. Let a (a,..., a)e C be a fixed vector with
a : ao (, : 0). Ellipsoidal coordinates : ($,. , ), which are related to rectan-
gular coordinates x (Xl,. , x) by

k X
2

(6) E =1 o=l ...,k,
=1 :O -a

can be introduced by

c =Gx ()= (())e C

where G c (C\{al, , ak})k is a domain and the . are analytic functions with

(7) (:): (:,-a). fi (..$o......-..a,, : 1,..., k.
O aO a,/

At each point " e G with :o : :, (P : o’), satisfies the orthogonality relations (3) with
k

(8) g(:)=f(:;a)-.1 H (:-:o),
0=1

where

(9)
k

f(t; ) := II (t :o).
=1

We now introduce the determinant

(10) P(:) := det

1 1

and assume for the following

1No’<,oNk

G {P() o}.

Furthermore, let : denote the (k- 1)-dimensional vector (q, .., K-1, :+1, , &).
Then by (5) the representation of our SchrSdinger operator A in ellipsoidal coordinates
becomes

(11)

1
A :Pk(:---,,I (-1 -lVk_l()"

4f(5 a) +1 k 1
+q, +0,

p ap
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where

)
(11.1) Y.

p=l : ap

and ,K are any functions with

k

(11.2) q o= 1
2 (-1 1pk-

Vk() g=l

If qK and 4’ depend only on the variable c, then may be written in the form

where is an ordinary differential operator with respect to K, which just means that
Pk(sc). A is separable ([13], [12]). We say" "A separates in ellipsoidal coordinates".

Especially, if p and q have the form (2), we obtain from (11.1)
k /30(13.1) a + Y

p=l K
If we choose

(13.2) 3’k + 7" ’. a + I-I (ao a),
p=l : ap o-=1

also (11.2) is satisfied. Therefore, our special Schr6dinger operator separates in

ellipsoidal coordinates. Now, using well-known facts on separated solutions of separ-
able operators, we can establish the following

PROPOSITION 1. For 1,..., k let v: G-C be analytic with domain GK c
C\{al, ak}, such that G c x k__ G. Furthermore, let w" D- C be analytic with
domain D c Ck, such that qb G) D. Finally, let w 0 and

k

(w )()= 1-I v().

Then w is a solution of our special SchrSdinger equation

Aw=O,

iffthere exist separation constants (h0, , Ak-2) Ck-l, such that the v, (K 1, k ),
are solutions of the ordinary differential equation

I-I (z-ao)" v"+ a+ v’
p=l p=l Z --do/

(14)
h- VI (ao-ar)h-’YZkff’t’Zk-l-t- Z ApZ v--0

o=l z-do tr=l o=0

where 8’= -r" Ek--1 ao.
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The differential equation (14) has the only singular points al," , ak and oo. The
2finite points aK are regular singular points with characteristic exponents v v deter-

mined by
2 1/2(1(15.1) V+V --/), VK V =Ze, 1,’’’, k.

If a 3’ 8 0, the point is also a regular singular point and the differential equation
is the most general second-order equation of Fuchsian type with k + 1 singularities 14,

2p. 136]. The characteristic exponents v, vo of the point are then determined by

2 1 k 12(15.2)
=1

The remaining k-2 separation constants Ao,’’ ",/k-3 are the so-called "accessory
parameters".

We would mention that in the case k 2 and a eK 0 equation (14) is a confluent
form of the Heun equation [6]. Thus, special cases are the Mathieu equation as well as
the spheroidal wave equation. In the case k 3 and a y 8 e, 0, (14) is the Heun
equation ([4], [15]).

1.3. Sphero-conal coordinates. As in the case of ellipsoidal coordinates let a
(a1,’", ak) Ck be a vector with a,, ao (K p). Sphero-conal coordinates sr

(st1, , Srk), which are related to rectangular coordinates x (Xl, , xk) by

x(16) "1-- 2 X2 E =0, 0=2 k,
K=I :=1 p aK

can be introduced by

Ck G r-x b(r) (b(r)) c Ck,
where G (C\{0}) x (C\{al, ., a})- is a domain and the b are analytic functions
with

(17) (b(r).=r. l- (’o+l--a). li (.(o-a,,)
0 =1 " " 0=+1 ao a; 1,..., k.

Using the notations of (9) we find that satisfies the orthogonality relations (3) with
1 1

gl()
4 ffl

(18)
k

g()= --f(; a)-1. . ( p), K 2,. , k,
0=2

at each point of a region G c {"P_( 0}.
Now by (5) the representation of our Schr6dinger operator A in terms of

sphero-conal coordinates becomes

g g+(c e-l(g))-1 E (-1)’-le-( c )A,
=2

(19) ,1 4r1---2 + 2(k +1)-+ 01,
o1 o41

K =2,""" ,k,
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where

(P )
(19.1) Z o" (Po 6), o, x =2,..., k,

p=l o=l ao
and ff are any functions with

=2

If and ff depend only on the variable , then may be written in the form

(20) fi 1
$ det

Pk-l(r)

where A is an ordinary differential operator with respect to r. Therefore, Pk-l()"
is separable and we say" "A separates in sphero-conal coordinates".

In the case of our special Schr6dinger operator with coefficients p and q of the form
(2) we obtain from (19.1)

(21.1) O1 ffl q- fl, = , K=2,... ,k,
o=1 k -ao

where/3 zok=l o. If we choose

k p k

(21.2) ///1 ’)/’1 + , O Z y (ao a,,), 2,..., k,
o=l ao =1

cro

(19.2) also is satisfied. Thus, our special SchrSdinger operator also separates in
sphero-conal coordinates. Hence, we can establish the following

PROPOSITION 2. Let vK: G-C ( 1,..., k) be analytic with domains G1 c
C\{0} and G c C\{al, ak} ( 2,. k), such that G )< Kk =1 GK. Further, let
w: D -.C be analytic with domain D C, such that &(G)c D. Finally, let w 0 and

k

(w )(-) l-I v(’).

Then w is a solution of our special $chr6dinger equation

Aw=O,

iff there exist separation constants (Ao, , AK-2) C-x, such that vx is a solution of

k--2(22.1) zv"+-(az +(k +fl))v + /z +6+ v =0

k
where fl = ilK, and the v ( 2,. k) are solutions of

[ 1( 1+o) ]1-I (z-ao) v"+ v’
o=1 2 o=l z-ao

(22.2)
+ 1--I (ao-a)+ hoz v=0.

o=l Z --ao o-=1 o=O
o’0
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The differential equation (22.1) has the only singularities 0 and oo. The point 0 is a
regular singular point with characteristic exponents/x ,/x determined by

1K,I 2 h(23) txl +tx 1- (1+/3), .1,1/./,1 k-2.

If a =3’ 6 0, the point oo is also a regular singular point and (22.1) is an Euler
equation. Equation (22.1)can always be integrated by confluent hypergeometric
functions.

The differential equation (22.2) is the general second-order equation of Fuchsian
type already obtained in (14) in the case a y 6 0.

1.4. Spherical and rectangular coordinates. Since we want the ordinary differential
equations obtained by separation to be in an appropriate "normal form", we use in this
paper an algebraic form of spherical coordinates "0 (’0, , "0), which are related to
rectangular coordinates x (x, , x) by

k X
2 k 2
K--1 E X(24) "01 Y xo, .=. =0, u=2,..., k.

O= ’0 "0 1

These can be introduced by

k

C G G "0 x (’0) ( (’0)) e C",

where G1 C\{0}, GK C\{0, 1} (K 2,""", k) are domains and the &K are analytic
functions with

4,(r) r. ra,

(25) &K(’0)2 15I (1-),. 2 < <k-l,’01 "0K+I "00 K
p=2

k

)k (’0 )2 "01 H (1-’0o).
0=2

From (5) we find, that our general Schr6dinger operator A in terms of spherical
coordinates has the form

,e=A1 +- Y’, (-1, (’00 1) ,K,
"01 =2 0 =2

3"021(26) -1 4"01 + 2(k + q1)7---+ 61,

where

(26.1)

k

(491 E O "(Pol),
o=l
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and 4K are any functions with

(26.2) q
’1"/1 <=2 0=2

If qg and 4’ depend only on the variable r/, then is separable and may be written
in the form

(27) A =det

1 0 0 0

1
0 1

r/2--1
1 0

1
0 0 1

T/k-- 1

where Ak is an ordinary differential operator with respect to r/. We say" "A separates
in spherical coordinates".

In the case of our special Schr6dinger operator with coefficients p and q of the form
(2) we obtain from (26.1)

k
-1 2p=(28.1) (491 OV01 "[-, p=+ =2,... ,k,
r/ r/ 1

k
where/ o=1/o. If we choose

(28.2) I/tl ]/1 q- 6, //tK --e-----2 (2_<-- _--< k 2), 4’k
e_ e

(26.2) also is satisfied. Thus, our special Schr6dinger operator separates in spherical
coordinates and we can establish

PROPOSITION 3. Let v: G- C (- 1,..., k) and w: D C be analytic with
domain D c C such that (G)c D. Further, let w 0 and

k

(wo )(n)= 1-I v(n).
=1

Then w is a solution of our special Schr6dinger equation

Aw=O,

iff there exist separation constants (h0, , hk-2) Ck-1 such that vx is a solutions of

(29.1) zv"+-2(az +(k +/3))v’+ yz +6+ v =0
Z Z /

with Y.o= Bo and the v ( 2,. ., k) are solutions of

z(z-1 v"+ +. v
z z-1

(29.2)

+ + +_ v =0
z z-1

where 1-1 ek.
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The differential equation (29.1) is identical with equation (22.1) and thus can
always be integrated by confluent hypergeometric functions.

The differential equations (29.2) are of Fuchsian type with the 3 singular points 0,
1, and oo and thus can always be integrated by hypergeometric functions. By use of
the Riemann P-notation, equations (29.2) may be symbolized by

f 10 l }(30)
P u_, tx’‘. -tx’‘-,z z < =2,"., k,

2 2where the , are determined by (15.1) and the by

2 1 .(30.1) +=1- (1+), ’:=h-i-, =l,...,k-1,

and

(30.2) 7, uT,, O 1, 2.

Finally, we give a simple transformation of rectangular coordinates, such that the
corresponding ordinary differential equations obtained by separation are also in an
appropriate form.

Let 0 (0, O,)X ’ G’‘ with domains G’‘ C\{0} be related to rectangular
coordinates x (xa,. , x)= b(0) by

(31) X
2 0"‘, 1," k.

Our general Schr6dinger operator in terms of the variable 0 then becomes
k

(32)

A’‘ 40"‘-;-- + 2(1 +

where the ’‘ are any functions with

k

(32.1) q b Y. 4"‘.
"‘----1

If q’‘ and $’‘ depend only on 0"‘, then ft. is separable and may be written in the form

A A2 A3 Ak-1 Ak
-1 1 0 0

0 -1 1
1

0 0 1

(33) ft. =det

where , is an ordinary differential operator with respect to
In the case of our special Schr6dinger operator we have

(33.1) 4)," (P, 4))= c0, +B,, < 1,...,k,

and with

(33.2) O’‘ := 3,0,, +6"‘ +e’‘/O’‘, : 1,..., k,
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where Ek_ B B, condition (32.1) is satisfied. Thus, our special Schr.dinger operator
separates in the coordinates 0 (01, 0k) and we can establish

PROPOSITION 4. Let v,‘" G,‘-> C (K 1,..., k) and w" D-> C be analytic with
domain D c Ck such that (G)c D. Further, let w 0 and

k

(wo )(0)= 1-I v(o).
,‘=1

Then w is a solution of our special Schr6dinger equation

Aw=O,

iff there exist separation constants (A 1," , Ak) Ck with Y.k AK 6 such that ]:or
K l, k v,‘ is a solution of

1 1( e_)(34) zv"+-(az+(l+flK))v’+- Vz +a,‘ + v=0.

The differential equations (34) are of the same type as equation (22.1) and thus can
always be integrated by confluent hypergeometric functions. Obviously, the indices v,
2

vK of the regular singular point 0 of the Kth equation (34) are determined by (15.1).

2. Integral relations.
2.1. A general principle ot generating integral relations. Let G,‘ c C (K

1,’’’, k) be domains and

(35) r,‘, p,‘, q,‘, c" x=l,...,k’, p=0,...,k-2,

be analytic functions. We then define second-order ordinary differential operators A,‘
(with respect to z,‘ e G,‘) by

(36) A,‘v,‘ := r,‘v’’ + p,‘v ’,‘ + q,‘v, K 1, k,

and with these the second-order partial differential operator A (with respect to
Z--(Z1, Zk)G :"-X k

,‘=1 G) by

(37) A:= det C
k-2 C-2 -: Y. (-1 dK(.)A.

O "O
,‘=1

L C1 Ck..J

Since A is separable, we can establish the following theorem.
THEOREM 2.1. Let

(i) w" G=)<
k G,‘ --> C be an analytic solution of

Aw =0;

(ii) for 1,. , k 1, v,‘" G,‘ --> C be an analytic solution of

A v + oY.o_ Aoc o v O,

where (,o, , hk-2)e Ck-l"

(iii) for 1,. , k- 1, toK" G,‘ --> C be an analytic function with

(w,‘r,, )’ p to,,;
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(iv) for tc 1,. , k- 1, (g’‘ be a path in G’‘, such that

 1_oo
Then v" G - C, dened by

Vk(Zk): dk(2)W(Z)" (w(z)o(z))dZl’..dzk-1,
k--I =1

is an analytic solution of

Proof. We consider

AkVk + IoC Vk O.
o=O

u L’‘u := A’‘u + _, ,o u.
cr=O

Condition (iii) implies that o’‘ L’‘ is formally self-adjoint

woo,, r W .--u
OZ

Since Lv 0 by (ii), we get

w v Lw r v v w

and therefore by (iv)

[e (z). v,(z,). (w)(z) dz 0

identically with respect to . On multiplying this by

k-1

&" (o’vo),
0=1

integrating (k- 2)-times and changing the order of integration, we find

(*) f f d,()k-1H (o(zo)o(zo)). (Lw)(z) ez ez-i 0
k--1 O =1

for x 1,. , k 1. On the other hand, (37) and (i) imply
k

2 (-aF-1 &((Z.w)(z)= (Aw)(z)= o.- (wovo), integrating (k-1) times and using (*) forOn multiplying this by O=1
1, , k 1, we see that (,) also holds for x k. Hence, by definition of v and by use of
the fact that differentiation may be carried out under the integral sign we finally obtain
Lv =0.

We have formulated Theorem 2.1 only for proper integrals. If we deal with
improper integralsne knows that these play the more important role in appli-
cationswe have to take care that all repeated improper integrals, which occur in the
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definition of Vk and also in (,), converge locally uniformly with respect to the remaining
variables and are independent of the order of integration.

A special case of Theorem 2.1 should be pointed out, since it yields a reduction
principle.

THEOREM 2.2. Let k >-3 and let the assumptions (ii) and (iii) of Theorem 2.1 be
given. Further, let

Then we can choose

and

c =0, p =0,... ,k-3.

d.(J) =: c- (Zl)" d( ),
:= A +hk_2C-2,

Now, let

z 2 Zk
k -3 k-3 k

fi-:= get c2

L C2 Ck_l

c =2,... ,k,

where

L c-2 (Z1)(’O1(Z1)lA1(Z1)2 dzx.

We notice that in the case of c-2 (.Ol /AI 0 one can always find a path (’1 in a
such that /: 0.

2.2. Integral relations tot sleeial tunetions. Let a 1, , ak be different points in C
and vK,1 v2 (K 1, k), a, % 8 and ho (p 0, k 2) be complex parameters. Let
$’=- =, go.

Our aim is to get integral relations for the solutions of the differential equation

(z-ao)" v"+ + v
o=1 o=1 Z ao

(38)

’ -+ (ao-al+ +wz

(i’) ff’:=Xk=2 GK - C be an analytic solution of
=o;

(iv’) ]:or 2,. , k- 1, f be a path in G, such that

and 1 be any path in G1.
Then w" G- C, defined by

W(Z) :-- Vl(Z1)" 1(),
satisfies (i) and (iv) of Theorem 2.1 and vk" Gk C, defined in Theorem 2.1, becomes

v(z)=/ &( )" ’(;)" H (,o(z)v(z)) dz. dz_,,
k--1 =2
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by applying the methods of 2.1 to the situations of 1.2 and 1.3 where (38) occurs in
connection with the separation of the special Schr6dinger operator in ellipsoidal and
sphero-conal coordinates.

As kernels for the integral relations we shall use the product solutions of the special
Schr6dinger equation in terms of spherical and rectangular coordinates to be found by
Propositions 3 and 4.

2 (: 1 k-1)be2.2.1. Kernels in terms of spherical coordinates. Let/x ,/z
complex parameters with

k
2 2(39) 1--tXK--K Y. (1--UO--UO), K=l,’’’,k--1.

The kernels in terms of spherical coordinates to be found by Proposition 3 are then of
the form

k

(40) V(r/)= R(r/1). K(O), K(O)= 1-I
=2

where R is a solution of

(40.1)

and

zv"+ z+(1-.l-z) v + Xz +4 + v =0,
Z

(40.2) KeP ’-1 /xK -p.-a z :-2,...
2 2 2

,k,

with x , ,, (O 1, 2).
The solutions of (40.1) may be written in terms of confluent hypergeometric

functions. We have to distinguish 3 cases. Let

k

(41)
0=1

Then one easily finds [3, vol. II], that the solutions of (40.1) are given by the following.
Case 1. & O.

(40.1.1) R(z)=exp z" lr;1 +(1+tI-12); l+/zl-/x2;--z
Case 2. O, g =: -r # 0.

(40.1.2)
R (z) exp (- 1/4az). z" exp (rz ,/2)

ll(1/2+/xl-tx; 1 +2tzl-2tx12 ;-2’z l/Z),
Case 3. d=g=0.

R(z)= exp (-1/4az). (c,z "I +c2z"),(40.1.3) C1, (72 E C,
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where 11(a ; z) denotes any solution of the confluent hypergeometric equation

zu"+(c-z)u’-au =0.

Obviously, the KK (K 2,""", k)are given by
plKK(z)=z (l-z)"(40.2.1) 2 2 "Z)

with tz vf, (0 1, 2), where (a, b; c; z) denotes any solution of the hyper-
geometric differential equation

z (1 z )u" + (c (a + b + 1 )z )u’- abu O.

2.2.2. Kernels in terms of rectangular coordinates. Let r. (K 1,’’’, k) be
complex parameters with

k
2(42) }-’. r +g=0

where g is given by (41). The kernels in terms of rectangular coordinates to be found by
Proposition 4 are then of the form

k

(43) W(0)= 1-I W(OK),

where WK is a solution of
2 2 2

(43.1) zv"+ -z+(1-vK-v v + z+
4

t-.
z /v=0"

In the same way as in 2.2 1 for (40.1) one finds that the W are given by the following.
Case 1. 0.

(43.1.1)

Case 2. O.

)W(z)=exp -z z

(43 1.2) .exp (r,zl/2) 2 2 1/2),11(1/2+ v- v; l+2v-2v;-2rKz r

()W(z)=exp -z (ClZ va .. C2Z v ), C 1, 2 C= C, "1" O,

where is given by (41) and ll(a; c; z) denotes any solution of the confluent
hypergeometric equation.

2.2.3. Two types of integral relations. Let GK c C\{al, , ak} (K 1,. , k) be
domains and

(44)
0=1

Application of Theorem 2.1 in connection with 1.2 then yields the next theorem.
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THEOREM 2.3. Let k >= 2.
(i) Let w" )< k GK -> C denote either the function V in (40) or the function W in

(43) in terms of ellipsoidal coordinates.
(ii) Let .v: G --> C (K 1,. , k 1) be solutions of (38).
(iii) Let for 1,. , k- 1, ( be a path in G such that

(z). 1-I (z-ao)" -::- (z)v(z)-v’(z)w(z)
p=l

identically with respect to .
Then v G - C defined by

I( I( k k--1

v(z) P._(). w(z). ((z)v(z))dz... dz_
k--1 =1

is an analytic solution of (38).
Special cases of integral relations of this type are for k 2 the well-known (linear)

integral relations for Mathieu and spheroidal wave functions ([11], [3, vol. III]), and for
k 3 the (quadratic) integral relations for Heun functions found by Sleeman [15]. It
should be noted that there is a mistake in [15]: the operator in (4.2) of [15] and
therefore the following kernels have to depend also on and e.

Application of Theorems 2.1 and 2.2 in connection with 1.3 yields the following
theorem.

THEOREM 2.4. Let k 3 and y O.
(i) Let" k

=2 G C denote the function K in (40) with A-2 in terms

of sphero-conal coordinates.
(ii) Let v: G C ( 2,. ., k- 1) be solutions of (38).
(iii) Let for r 2,. , k 1, be a path in G such that

(z) 1] (z-a,). z()v(z)-v (z)()
|,

identically with respect to .
Then v G defined by

v(z) P_2( Z )" (" (W(Z)V(Z))dz2" dzk-1
k--1 r=2

is an analytic solution of (38).
Special cases of integral relations of this type for k 3 are the (linear) integral

relations for Heun functions found by Erd61yi [4] and Lambe and Ward [6].
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ON A FREQUENCY DOMAIN CONDITION USED IN THE THEORY OF
VOLTERRA EQUATIONS*

GUSTAF GRIPENBERG"

Abstract. This paper studies a local frequency domain condition used by Londen and Staffans in the
existence theory for abstract Volterra equations with subdifferential nonlinearities.

1. Introduction and statement of results. This note considers the relationship
between various conditions on the kernel k in the nonlinear Volterra equation

(1.1) u(t)+ k(t-s)gu(s)ds (t), tR/=[0,

where k, g and f are given and u is the unknown function taking its values in a real
Hilbert space H. The nonlinear operator g is assumed to be the subditterential of a
convex, lower semicontinuous function o: H (-oo, oo], q +oe. A standard assump-
tion on the real-valued kernel k is that it should satisfy

(1.2) k is locally absolutely continuous on R/ and k(0)>0.

Barbu [1] studied the existence of solutions of (1.1) under the condition that the
kernel is of positive type, i.e.

T

(1.3) Io V(t) fo k(t-s)v(s) ds dt>-O

for all v C(R/; R) and all T>0. One could clearly obtain the same result if (1.3) is
replaced by the assumption that the kernel is of T-positive type for some T > 0, where
we use

DEFINITION 1. A function a is said to be of T-positive type, T>0 fixed, if
a LI(0, T; R) and 0r v(t) o a(t- s)v(s) ds dt >= 0 for all v C([0, T]; R).

Londen [2] studied the equation (1.1) when k satisfies (1.2) and

(1.4) k’ is of bounded variation on [0, T] for some T > 0.

Later Londen and Staffans weakened (1.4) to the condition that there exists To > 0 such
that

(1.5) sup sup to sin (tot)k’(t) dt < oo.
0_--<-r_--< To toR+

In order to investigate the implications of this assumption we need the following
DEFINITION 2. A function a is said to be of T-F-positive type if a L (0, T; R) and

’cos (nTrT-lt)a(t) dt >-0 for all integers n.
We will establish the following relationships between the definitions presented

here:
PROPOSITION 1. If T > 0 and the function a is of T-F-positive type, then it is of

T-positive type but the converse does not necessarily hold. If the function a is of T-positive
type, then it is of Tl-positive type for all Tf, 0 < T1 <- T but this statement does not
necessarily hold ]’or T-F-positivity.

Now we can state our main result.

* Received by the editors March 15, 1978, and in revised form July 24, 1978.
t Institute of Mathematics, Helsinki University of Technology, Espoo, Finland.
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(.6)

and

THEOREM. Assume that T > 0 and that

k is absolutely continuous on [0, T]

T

(1.7) sup to I0 sin (tot)k’(t) dt <
toR+

Then k kl + k2 where

(1.8) k is absolutely continuous on [0, T] and k’ is o] bounded variation on this
interval

and

(1.9) k2 is o] T-F-positive type.

Concerning the converse of this statement we have
PROPOSITION 2. For every T > 0 there exists a function of T-F-positive type that

satisfies (1.6) but not (1.5) ]or any To, 0 < To <-_ T.
It is not too difficult to see that if k satisfies (1.2) and if for some T > 0 we have

k kl + k2 on [0, T] where kl satisfies (1.8) and k2 is of T-positive type, then there
exists a solution of (1.1) (under appropriate conditions on the function ’) provided that

sup{clkl(t)-c is of r-positive type for some r(0, T]}>-kl(0).

To prove this statement one proceeds in the same way as in [2], but one has to use [2,
line (3.26)] (for the function kl) and Definition 1 (for the function k2-c) to obtain the
crucial [2, line (3.34)]. Note that this is a more general result than the one established in
[3] since an easy calculation using the definition shows that if a is of T-F-positive type
then a(t)- T- a(s) ds is also of T-F-positive type.

2. Proof of Proposition 1. Assume that v C([0, T]; R) and define

(2.1) v(t)=0, t(-T,O), v(t+2T)=v(t), tR.

When we also define for a L(0, t; R)

(2.2) a(t)=a(-t), t(-T,O), a(t+2T)=a(t), tR

then it follows from Fubini’s theorem that
T T To v(t) fo a(t-s)v(s)dsdt=2-l f_ v(t) I_ a(t-s)v(s)dsdt

T T

and hence an application of Plancherel’s theorem implies that

(2.3) v(t) a(t-s)v(s) dsdt =2-1(2T)2 a(n)l(n)[2

where we have utilized the definition
T

(2.4) a(n) (2T)- ] e-mu dt.
d_T

Combining (2.2), (2.3) and (2.4) we see that T-F-positivity implies T-positivity.
It is obvious that if a function a is of T-positive type then it is also of Tl-positive

type for all T1, 0 < Ta T, because if v C([0, Ta]; R) then we put v(t)= 0 on (T, T]
and use a standard argument.
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Let T>0 be arbitrary. The function a(t)=cos(zrT-lt) is obviously of T-F-
positive type. A calculation shows however that

f cos (27r(T/2)-at) cos (TrT-at) dt= -T(157r)-1 <0
a0

and hence a(t)= cos (zrT-lt) is not of T/2-F-positive type. This result combined with
the previous one shows that T-positivity does not imply T-F-positivity and the proof is
completed.

3. Proof of the Theorem. Let T > 0 be arbitrary and define

(3.1) b(t) c + Tt- tz/2, [0, T]

where cl is some real constant. A calculation shows that if n is an integer, n 0, then
T

(3.2) I0 cos (nTrT-at)b(t) dt =-(nTr)-2T3.

Define

(3.3) k(t) aT-lb(t) + k(T), [0, T]

where a supo,R+ w sin (ot)k’(t) dt. Clearly ka, thus defined, satisfies (1.8).
An integration by parts in (1.7) shows that we also have

2loT(3.4) o cos (oot)(k(t)- k(T)) dt >--a, w R+.

Let kz(t)= k(t)-ka(t) and let n be a strictly positive integer. Then we have by
(3.2)-(3.4) (putting w nrT-a)

T

0cos
(n’rrT-lt)kz(t) dt

(3.5) T T-Io T-l foCOS (nzrT-Xt)(k(t) k(T)) dt a cos (nTrT- t)b(t) dt >-O.

Finally we choose the constant ca to be sufficiently negative so that
T

(3.6) J0 k2(t) dt >= O.

Now (3.5) and (3.6) imply that (1.9) holds and the proof is completed.

4. Proof o[ Proposition 2. Let the sequence {qi}i=l be defined by

(4.1) ql 1, qi 28i, __--> 2.

Define the sequence {k,}n=0 by

ft.-7/4 if n 2ir for some r N, qi <= r < qi+l,
(4.2) kn =l 0 for all other n.

It follows directly from (4.2) that

(4.3) Ik.I <,
n=0
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and since (4.1) implies that 22i Y"nLq,/I-3/2 -< 2-i, _--> 2 we also have

(4.4) y [nk, < oe.
n=O

Let T > 0 be arbitrary and define the function k by

(4.5) k(t)= Y. kn cos(nTrT-lt), t[0, T].
n=0

In view of (4.3) the sum converges uniformly and we note that (4.4) implies that k is
absolutely continuous on [0, T]. It is obvious that k is of T-F-positive type. To establish
the conclusion of the corollary it is consequently sufficient to show that

2--rrtT

(4.6) sup to I0 sin (tot)k’(t) dt +oe, m O, 1,...

Fix an arbitrary nonnegative integer m and define

(4.7) h (t) Y’. k, cos (n.n’T-it), [0, T].
n=2m+lqm+l

Since k’(t)- h’(t) is of bounded variation on [0, 2-"T] it follows that

(4.8) sup to
R+

sin (tot)(k’(t)- h’(t)) dt] <
where we have defined T1 2-"T. Performing an integration by parts we get

(4.9) to sin (tot)h’(t) dt=-to cos (tot)(h(t)-h(T)) dt

and due to the uniform convergence on the right side in (4.9) when we insert (4.7), we
can integrate termwise with the result that

T
to sin (tot)h t) dt

(4.10)

y’. k,,((n,a.):z(toT)-2((nTr)(toT)-:z 1)-1
"-2m+lqm+l

sin (toT1) cos (n,rrT-T1)+(1-(nzr)2(toT)-:Z)-lnzrT-
cos (toTx) sin (n’rrT-1Ti)).

Next we define the sequence {hi}i=o by

{7/4 iff=2irforsomerN,q,+i<-r<q,+i+l,i>-l,
(4.11) h =.

for all other/’.
We note that when n _>- 2"+1q,,/1 then k cos (nzrT-1T1) k, and k, sin (nTrT-1T1) 0
since by definition k, =0 if nT-1T10 mod 2. Consequently we have by (4.10) and
(4.11) that

T

(4.12) to sin (tot)h’(t) dt rT-i , h(j/)2((j/fl)2-1)-1/ sin (r/)
/=0



A FREQUENCY DOMAIN CONDITION 843

where/3 toT17r-1. Let >- 1 be arbitrary and choose w so that

(4.13) =2i+1qm+i+1--3/2.

Then we have

(4.14)
Z hi(fffl)E((j/fl)2-1)-1/3 sin (Trfl)

j=2i+lqm+i+l

>= 2i+l (1-- ()(2i+lqm+i+l)-l)qm+i+
r=qm+i+l

since (ff/)2((ff/)2_ 1)-1 >= 1 when ]>=2i+lqm+i+l and since sin (Trfl)= 1 by (4.13). It is
easy to see that

(4.15)
qm+i+l

r=qm+i+l

l’-7/4qm+i+l fqm+i+l -7/4 dt

()ql/4m+i+l.
On the other hand a simple calculation shows that (4.11) and (4.13) imply

(4.16)

2i+1q --1re+i+1

1=0
hi(fffl)2((j/fl)2-1)-lfl sin (Trfl)

()(2i+lq,.+i+1)-1(1 ()(2i+lq,.+,+1)-1)-1
2i+lqm+i+l--1

1=0

since hi((j/fl)z- 1)-1 >=-())hi when j <2i+lqm+i+l. But we also have

(4.17)

2i+lqm+i+ l--1 qm+i+l--1
’. j2hj <= 22i ’. r2-7/4
/’=0 r=qm+l

j2hi,

qra+i+l
,’4\2i 5/422i 1/4 dt <= t)z qm+i+l.

Letting finally - o we see from (4.12) and (4.14)-(4.17) that

sup to sin (oot)h’(t) dt

Combining this result with (4.8) and the fact that m was arbitrary we obtain (4.6) and
the proof is completed.
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SOLUTION OF H-EQUATIONS BY ITERATION*

c. T. KELLEY,

Abstract. A generalization of the Chandrasekhar H-equation is solved by iteration. Such equations are

of interest in heat transfer.

1. Introduction and statement of results. Consider the integral equation

(1.1) f(x, to): 1 + tof(x, to) qg(t)f(t, to) dr.

In (1.1), to is a complex parameter, f is the function to be found, and 0 is a measurable
function on (0, o).

Under certain assumptions on 0 it is known that (1.1) has a solution H(x, to)that is
analytic in to for [to] < 1. This solution is of importance in many applications. We call H
the physical solution to (1.1). The question considered in this paper is the following:
When can H be found by solving (1.1) by iteration?

The question has been answered if g, >= 0, o(x) 0 for 0 =< x =< 1, and j/2q(t) dt <
c. In this case H is continuous for ]to]_-< 1, x 1. These assumptions are natural in
neutron transport theory. Bowden and Zwiefel [1] have shown that if 0(t) dt 1/2 then
H may be found for Itol < 1 by an iterative method. In a more general setting, Mullikin
and the author [7] showed that H may be computed for Ito[ --< 1 in this way.

In many cases of physical importance, however, 0 may become negative. The
methods of Bowden and Zweifel [1] and Rail [9], then give the best known results. If,
however, q is not integrable on (0, ), these methods fail as the integral in (1.1) need
not even be defined in the Lebesgue sense.

This paper is motivated by work of Crosbie and Sawheny [5], [6]. They consider
(1.1) for o(x)=1/2Jl(x), where J1 is the Bessel function of order one. They obtained
numerical results that indicated that H may be found by an iterative method for quite
general o.

We assume o satisfies the following conditions:
(A1) qLp(0, c) for some P, I_-<P<.

f(A2)
_

dt <

(A3) Let k(x)= limN_,o j c-lXltto(t) dt; then k => 0, and k Ll(-oe, oo).
(A4) joo k(x) dx 1.
(A5) limN_,oo j qg(t) dt 1/2.
(A6) If f is a measurable, nonnegative decreasing function on (0, oo) and

0 < sup Ix(x)l, <oo, then lim q(tff(t) dt > O.
0<x=<l

The reader should note that (A4) is merely a normalization condition on q. As will
become clear, (A5) implies (A4). The purpose of the normalization is to make H
analytic in the disc Itol < 1. Our assumptions imply that the integral in (1.1) is defined for

* Received by the editors December 30, 1977, and in revised form April 3, 1978. This work was
sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and the National Science
Foundation under Grant No. MCS75-17385 A01.

’Mathematics Research Center, University of Wisconsin-Madison, Madison, Wisconsin. Now at:

Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27650.
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nonnegative decreasing f by

Io(1.2) -q(t)f(t) dt= n-,olim p(t)f(t) dt.

For e >- 0; let c(e) be the space of complex-valued functions continuous on [e, )
and having finite limits at infinity, c(e) is a Banach space under the sup norm. Moreover
Dini’s theorem holds for (e) in the sonse that if a sequence of real valued functions f,
in (e) converge monotonically upward to f in c(e) pointwise, and lim,_, f,(x)=
limx_, f(x)for all n, then f,, converges to f in the topology of c(e).

We will show in 2 that H is an analytic (0) valued function of to for Itol < 1 and is
a continuous (e) valued function of to for Itol --< 1.

Under assumptions (A1)-(A6)we prove the following iteration results.
THEOREM 2.1. For Io91 <- 1, x >= 0 define

Ho(x, to)= 1,

Hn+a(x, to)= 1 + toH,(x, to) I? + t
to)qg(t) dt, n>-O.

Then for 0 < e < 1,
(i) Hn converges to H in (0) uniformly in to for [tol --< 1 e.

(ii) Hn converges to H in c() uniformly in to for Itol <-_ 1.
THEOREM 2.2. Let 0 < e < 1, [to[_--< 1, define for x >- 0,

Ko(X, to)= 1

K,+ x, to)= 1-to --]t q )K, t, q ) d

Then

(i) K converges to H in c(O) uniformly in to for [tol <- 1 e;
(ii) K, converges to H in (e) uniformly in to ]:or Itol <- 1.
Implicit in the statements of these theorems is the fact that all integrals exist in the

sense of (1.2). For convenience we write, for g measurable,

(1.3) lim g(t)dt= g(t) dt
N-oo

when the limit on the left exists.

2. Proots ot Theorems 2.1 and 2.2. Equation (1.1) isintimately connected to the
theory of Wiener-Hopf equations [8]. This connection plays a vital role in the proofs of
our results, and we give the relevant details here. For f LI(-, o), fwill denote the
Fourier transform of f.

Let k(x) be as in (A3). Assumptions (A3) and (A4) imply that for Itol < 1, the
6quation,

(2.1) 3"(x, to)- to k(x-y)3"(y, oo) dy=tok(x), x>O,

has a unique solution 7(x, to)e La(0, m). For ONto < 1, 3’ =>0, and 3" is an analytic
LI(0, )-valued function of to for Itol < 1. We write

(2.2) y(x, to)- 2 o-)n3"n(X)
n=l
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In (2.2), y,(x)->0 for x >0, ,, LI(0, c). Then the unique solution to (1.1) which is
analytic in to for Itol < 1 and c[0, ] valued is

(2.3) H(x, to)= 1 + "(ix, to).

For Itol < 1, we have the factorization, valid for real A,

(2.4) (1- ,ot?(a))(1 + 9(a, o))(1 + 9(-a, o))= 1.

From (2.3) and (2.4) we conclude

0
(2.5) --H(x, to)<0 for x>0, 0-<to<l,

Ox

and

H(x, to)>O forx_>0, 0_-<to<l.(2.6)

(2.7) H(x, to)= 1 + . to",(ix), [o91 < 1.
n=l

(2.8) n(ix)>0 for n >= 1, x_-> 0.

(2.9) %(i. )e [0, ] for n => 1.

Let E denote the class of nonnegative decreasing continuous functions f on (0, )
which satisfy

(2.10) sup Ixf(x)[ <
0<x=<l

For fee define

(2.11) Lf(x)=
x +t qg(t)f(t) dt,

X
(2.12) Mf(x)

x + qg(t)f(t) dt.

The integral defining M is a Lebesque integral for each fixed x > 0 by assumption (A1).
Assumptions (A1) and (A6) imply that Mf and Lf are in (0) for everyf Z. We note
that for 0 -< to < 1, H is in . We may rewrite (1.1) as

(2.13) H(to) 1 + toL(H(to))H(to).
We now prove the main lemma.

LEMMA 2.1. Let e > 0; then

lim H(to) H(1)

exists in c(e). Moreover H(1)6 Z, and for x >0, we have

(2.14) H(1)= 1 + L(H(1))H(1).
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Proof. By (2.4)we have that

H(0, to)= (1 to)-1/2 1 + to I, qg(t)H(t, to) dt n(o, to).

Hence

(2.15) H-’(to) (1 to)a/2 + toM(H(to)).

Consider the function F given for x-> 0 by,

 (xl=

Assumptions (A2) and (A6) imply that F c(0) and F>-_O. For e >0, x_->0, we
have

F(x)-F(x+e)= (x+t)(x+e+t)q(t)dt>O.
Therefore F is decreasing. By (2.13), we have

(2.17) H-l(x, to) >- toxF(x) >=toxF(O).

Hence, for x>=e, 0Nto<l, H(x, to)<=(1/(toe))F-a(O). Hence, for x>0,
lim,,_l-H(x, to)= H(x, 1) exists by (2.6). Moreover H(x, 1) is decreasing in x and
supo<x__<l Ixtt(x, 1)l=<F-l(0)<oo. Hence MH(1)e c(0)by assumption (A1). By the
dominated convergence theorem and assumption (A1)we have, for x > 0,

(2.18) MH(1)(x)= lim MH(to)(x)=H-l(x, to).

Hence H(1)e Z and H(1)satisfies (2.14). Dini’s theorem then implies that the limit in
(2.18) exists in (e) for e >0. This completes the proof.

Now for x>0, IH(x, to)l<=2,l Itol"’’,(ix)+ 1 =H(x, [tol)_-<H(x, 1). Hence for
e _->0, H is an analytic ’(e)-valued function of to for Ito[< 1. For e >0, H is a
continuous (e) valued function of to for [tol--< 1.

We now prove the main results.

Proof of Theorem 2.1. Let 0<e < 1. Observe that if g(x)= 1 +I e-XtG(t) dt, and
G e L is nonnegative, then 1 + Lg(x) has the same form as

(2.19) Lg(x)= e -xt k(t)+ k(x + t)G(s) ds dt.

The definition of Hn implies, therefore that for m >= 1 there are functions P,,,,
L(0, ), P,.,,, _>-0, such that for x =>0, Itol -< 1,

(2.20)

It is easy to see that

Hn(x, to) tom e-Xtpn,m(x) dx.
m=0

(2.21) P,,.,,,(x) y,,(x), 1 <- rn <= n.

We claim that Pn,m(X) <- 7m(X) for all m and n. We prove this by induction on n. For
n =0 the result is clear. Assume (2.21) for n N; from the definition of/-/,, and (2.19)
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we have , PN,l(t-- S) k(s + r)PNd(r) dr dsPN+I,(t)
i+t=,-I
j,ll

+ PN,,,-(t-- s)k(s) as + k(t + S)PN,m-I(S) ds

(2.22)

Io Io<= y,(t- s) k(s + r)T(r) dr dx
j+l=m-1
j,ll

v_(t- s)k(s) ds k(t s)v_(s) ds

v(x).

The last equality is a consequence of the fact that

(2.23) (ix) %(ix)L(,(i. ))(x) m-l(iX)L((i" ))(x),
j+l=m--1

which is an easy consequence of (1.1).
A similar argument shows that

(2.24) Pm P.,m.

Hence we have, for n, k 0, x 0, ]] 1,

(2.25) IHk(X, )-H(x, )/H(x, Il)-H(x, I) m(iX)llm.
mn+l

For x e, [] 1 we have

(2.26) (ix)l] H(x, 1)- m(iX).
mn+l ml

The right side of (2.26) goes to zero as n becomes large uniformly for x e, [] 1. This
proves (ii).

For x 0, ][ 1 we have

(2.27) (ix)[] H(x, 1- e)- (ix)[1- elm.
mn+l ml

The right side of (2.27) converges to zero as n becomes large uniformly for x 0,
[] 1- . This proves (i) and completes the proof.

Proq q Theorem 2.2. Note that H0(x, ) Ko(x, ) H(x, ). An induction
argument similar to that used in the proof of Theorem 2.1 will show that, for x )0,
01,

(2.28) K(x,)H(x, ),

and

(2.29) K(x, )[1-L(H_(., )(x))]- H(x, ).

As in the proof of Theorem 2.1 we also have for [] 1, x ) 0, n 0, m 0,

(2.30) ]g.m(X, )- K(x,

This completes the proof.
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Systems of nonlinear equations similar to (1.1) are of interest in the kinetic theory
of gases [2], [4]. It is possible that the methods of this paper will generalize to that
setting.
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CALCULATION OF EXTREMUM PROBLEMS FOR UNIVALENT
FUNCTIONS*

ECKHARD GRASSMANN? AND JON ROKNE"

Abstract. Let $ be the usual class of univalent functions in {[z < normalized by f(z) z +i:z aiz and

V,, the coefficient region of S. It is well known that f corresponds to a boundary point of Vn if and only if f
satisfies a quadratic equation of the form O(w) dw:z= R(z) dz called Schiffers equation that maps {[zl< 1}
onto a slit domain. We treat the following problems numerically for V4:

1. Given O find R and f.
2. Find the function that maximizes Re ei’a4 with the constraint that a2 and a3 are some given complex

numbers in V3. In this case Schiffers equation is a sufficient condition for f to be extremal.
The critical trajectories of O(w)dw and R(z)dz are in each case displayed graphically for some

particular examples.

1. Introduction. Let S be the usual class of univalent functions in the unit disc that
are normalized by f(z)-z +=2 aiz i. It is easy to prove existence of solutions of
extremum problems in this class, but extremely hard to actually solve them. In fact it
seems to be a lucky coincidence if such a problem can be solved explicitly. Today,
modern computers give us so much more calculating power which we feel has not been
exploited sufficiently for this type of problem. The purpose of this paper is to show that a
computer can be used successfully to find explicit solutions for problems involving the
coefficients up to order four. Even though our methods are not restricted to four, this
seems to be our limit for practical reasons (financial and otherwise).

As in [5] and [6] our main aim is to give heuristic insight. Accordingly, we chose, in
case of doubt, an approach that promised most successful solutions rather than one
which would work in every case.

Our main line of attack are the theories of 10]. As it is done there, we denote by
the n th coefficient region of S. To each boundary point of Vn there corresponds a
unique function w -f(z) and this function satisfies an equation of the form

(1) O(w) dw2= R(z) dz 2.
Here O and R are rational functions. They have a pole of order n + 1 at zero. At eo O
has at least a triple zero so the quadratic differential O(w) dw2 has at most a simple pole
there and the numerator of O has degree n 2. Furthermore, f maps {Izl < 1} onto the
complement of finitely many slits satisfying O(w)dw: >=0 containing co. Conversely,
each function f that satisfies these conditions corresponds to a boundary point of Vn. We
call these functions Dn-functions.

We treat two problems. Problem 1 is to find R if O is given. This problem has
according to [10, pp. 111,112] a solution. It is unique if there is only one slit that does
not split. Problem 2 is to maximize Re e’a4 with the constraint that a2 and a3 are some
given complex numbers, and q some given real number. According to the general
coefficient theorem an equation of the form (1) is then necessary and sufficient (see [7]).

2. Problem 1. As mentioned in the introduction, there is to each quadratic
function q5 + qaw + q3w 2 at least one Dn-function f(z)= w, and a rational function R
such that the differential equation

5 2

((W) dw2 q +q4W +q2w
dw2 R (z) dz 2

W

* Received by the editors January 1, 1977, and in final revised form January 16, 1978.
t Department of Computer Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4.
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is satisfied. Our first task is to find sufficiently many necessary conditions for R. We
therefore assume we have a rational function R (z) and a mapping function f(z) such
that the above equation is satisfied. Throughout, we will also assume that there is only
one boundary slit and that it does not split, i.e. both zeros of O lie in the image domain,
and therefore R has two zeros inside the unit disc. Then the solution is unique. Because
R(z) dz 2-- -R(z)z 2 dq >-0 on {]z[ 1} the symmetry principle implies that then R is
also zero at 1/ffi. Since the slit is analytic there is a unique ao on {[z]= 1} that
corresponds to the tip of the slit, so R has at this point a double zero (at least). These are
all the zeros of R. We get"

(Z a 1)(Z a2)(Z 1/a--)(z 1/a-)(z ao)2
R(z)=a s

Z

Since z2R (z) is real on {]z] 1} we get, according to the symmetry principle,

zR(z)= l- R(1/),
Z

Evaluating the right hand side we get"

l_. R (_) =d [[I= ’l/-ai)(1/- l/i)]Z 1/E3

I-I2_-o (1- 7iz)(1-z/a)=c 3
Z

1-I a H (1/a-z)(o-z)
Od"

H Oli Z

and comparing with the left hand side we get that:

2 2

(2) ,, Fl ,, =a II a
=0 =0

is real. If f is to be in $ the terms of order 5 of the Laurent series of the poles of R and O
also have to agree. This gives

(3) qs=a
i=o Oli

For Problem 2 we will have more conditions of this type.
Next we will deal with two crucial conditions. First of all the critical points of O and

R have to match if the differential equation is to have a univalent solution. We denote
by 81,/2 the zeros of O(w), so O(w) can be written

(W itI)(W (2)
5

We obtain as consistency condition"

(4) 4O(w ) dw x/R (z ) dz.

This assumption can be removed by a slightly more complicated program. It holds if f is a support point
of $ (see [11]). This is the most interesting case.
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Here the integration is to be performed over some path in the z-plane and the
image-path in the w-plane, or equivalently over paths that are homotopic to those. For
practical purposes we chose straight lines. Equation (4) holds for some evaluation of the
square roots which leaves us with an ambiguity. This ambiguity is the cause of a lot of
troubles, and necessitates the use of plots to check the solutions, as we will see later.

The last condition is easy to miss: There is a point a on {Iz] 1} that corresponds
to in the w-plane. Since ,/IO(w)l Idwl is the same along either side of the boundary
slit the same has to be true for the corresponding arcs in the z-plane which means that

Oc

where the integrals are followed in the counterclockwise sense. This equation deter-
mines a. From this we get the consistency condition

(6) ,/R(z) dz 40(w) dw.

We have now the right number of conditions: The unknowns are aoo, ao, a 1, a2, a.
The conditions are [a0[ 1, law] 1, the complex equations (3), (4) and (6) and the
conditions (2) and (5), i.e. we have as many equations as we have unknowns. In order to
simplify the numerical calculations we reduce the ten real equations to five real
equations using algebraic and analytic techniques in the following manner. The
following constants were computed once for all the iterations

p 4O(w) dw, p 4O(w) dw, p 1-I .
i=o

Then for each iteration the following was computed with a0 and ao normalized to 1:

a =p3 fl + if2 x/R(z) dz-pl.

via a Newton iteration on equation (5) (see 5 # 1 for details)

f3 + if4 4R (z dz p:z, f5 Im (a -’Iai)
i=0

and the five real equations are then

fi=0, i=1,2,...,5.

3. Univalence of the solution. The question is of course whether the equations
of the last section are sufficient for univalence and the answer is unfortunately in
general no.

To see this, observe Fig. 1. O.(w) is in this case the left-hand side of an equation (1)
corresponding to the Koebe function k(z) z/(1 z):Z and the extremum problem
max Rea4. Schiffers variation gives in this case O(w)=(lOw2+6w+l)/wS.2 The
correct solution is shown in Fig. 2, a wrong solution in Figs. 3 and 4. The lines shown are
the trajectories of O. (w ) dw >= 0 respectively R (z ) dz >= 0 that end at the zeros and the
boundary slit. f should map the trajectories of the z-plane onto those of the w-plane. It
is quite obvious that this cannot be the case in the wrong solution since they are linked in
a wrong way. The tip, which is found by numerical integration of equation (1), starts at

In this case, equation (1) is not uniquely determined by k.
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FIG.

/

the wrong place in Fig. 3. This is another indication that something went wrong. This
will be explained in a later section.

This gives us a clue how to decide whether we have a right solution or not. It is
known that the trajectories starting at the ct’itical points i of Q, and o cut the w-plane
into three half-plane domains (so called since r .x/Q(w) dw maps those domains 1-1
onto a half plane), and finitely many strip domains (so called because r maps those
domains onto a strip), there not being any circular, ring or ergodic flow domains (see
[10, pp. 68, 69]). The trajectories bounding the half plane domains all have limiting
endpoints at zero, and there are three limiting directions there. Those belonging to the
same half-plane domain enclose an angle of 2zr/3. f does not rotate these trajectories
since f’(0)- 1 and it is easy to determine which corresponds to which.

We are now ready to prove univalence in particular cases assuming that (2)-(6) are
satisfied. (The general case seems unnecessarily complicated and does not give much

// \\

FIG. 2
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FtG. 3

insight.) Let us take Figs. 5 and 6 and explain the various arcs first: The tip of the slit has
been found by integrating the differential equation (1) numerically along the line segment
a xa0. This corresponds function-theoretically to an analytic continuation of the
function elements w f(z) given by (1.) along the segment a la0. At the end we get
o f(ao) which is, if there is a unique function f, the tip of the boundary slit. From there
the trajectory O(w) dw2 >= 0 was followed in the direction away from the region to give
the complementary slit. For the following argument it should be considered an
illustration only since it uses the existence of f. On the other hand there must be a
trajectory of O(w) dw >= 0 coming from oo and ending at zero and the only open place is
near our trajectory, so we can assume that our picture is qualitatively correct. The other
solid lines are the trajectories starting at the/3i, respectively the ai, with the exception of
the trajectory from a0 to the origin. There are two strip domains, S1 and $2 and one
half-plane domain H adjacent to a, and strip domains Rx and R2 and a half-plane

Ii
I/

\
\\\ 11

FIG. 4
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domain K1 adjacent to B1. The functions -L,/R(z)dz respectively

1 x/O(w) dw are univalent in these respective domains. Therefore the equation
gives a univalent function in the half-plane domain H1 K1. For the strip domains we
have to show that the associated strips in the ’, respectively ,/-plane, have the same
width. First, we consider the strip R whose other side contains oo and the boundary slit
respectively Sl whose other side contains the unit circle. The width of the strip in the
st-plane is Jim ,,o R (z) dz[ taken along the straight line while the width of the strip in
the ,/-plane Js Jim 1 x/Q(w)dw[ and the two are equal according to (6). Call this
number hi. If we consider now the line segment aid2 we observe that we first cross a bit
of the half-plane domain HI then S1 until we meet the trajectory coming from d0 (not in
picture but it must end at zero for geometric reasons, see 10, pp. 61, 62]). Then we cross
$1 again then $2 and then a piece of a half-plane domain adjacent to de, H2. So the total
increment of Im sr is +(2hl + h2) where he is the width of the second strip domain. The
same reasoning gives us that the increment of Im r/along the straight line joining/31 and
/3e is +(2h + h) where h is the width of the second strip in the r/-plane. Equation (4)
gives us now at once hi h’ and the equation sr =r/ gives a univalent function in
and $2.

From the definition of these mappings it is obvious that they "match" along the
trajectories separating HI from $1, respectively $2, but we also have to prove that this
holds along the trajectory from d0 to 0 which separates $1 from itself. For this we
observe that equation (6) insures that aoo corresponds to oo. Since the unit circle is a
trajectory the two circular segments from doo correspond to the two sides of the
trajectory coming from co. Equation (5) insures now that d0 corresponds to one point in
the w-plane only, no mattter whether we approach it from below or above. The same
now holds for the whole trajectory, joining do with zero. We have shown that the
equation sr r/provides a univalent function in cl(S1 J S2 I,_J H). It is now easy to see
that equation (4)implies that dl corresponds in the mapping to/1, and that the image of
the straight line segment a xa2 is homotopic to the straight line segment /xfla. A
repetition of the previous argument shows that sr r/also gives a univalent map in the
remaining two half-plane domains He and H3. Since these again match at their
boundaries we have a univalent function defined in the unit circle, thus completing the
proof.

Remark. The trajectories that are boundary to R leave the picture. In our earlier
attempts they were "lost" and it was just a guess that they would come back, as shown in
Fig. 5. The univalence of f can actually be shown without them but this is somewhat
more complicated, since it is then also not certain that what appears to be the boundary
slit is really the boundary slit because it might a priori be in a bounded component
of the complement of these trajectories, due to the ambiguity of the square roots for the
integration of (1). We could have avoided some of these difficulties by following the
trajectory from c, and using equation (5) to determine its length. This would have
involved a transformation u 1/w, since the computer does not handle o0, and a
converter for the length of the trajectory; i.e. it would have been slightly more
complicated. We are grateful to the referee for this suggestion.

4. Problem 2. In this case we need the equations for Problem 1 and further the
function f must have the right coefficients a2 and a3. We could of course not expect a
solution and most certainly not a "correct" one if (a2, a3) were not in V3. To evaluate
for a given Q and R, a2 and a3, we set

q4 q3 r5. r4 r3O(w)= +--+--3, R(z) =--+--++. ,
W W W Z Z Z
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So

f(z )= z + a2z
2 + a3z 3+.. .,

[f’(z)]-2= [1 + 2a2z + 3a3z 2 + .]-2 1 --4azz --6a3z 2 + 12a:z 2 +. .

r4 r3]
R(z)f’(z)--= +-+-J [1-4a2z + z(12a22 -6a3)+.’.

r5 r4-4a2r5 r3-4a2rn + rs(12a -6a3)
5 + 4 " 3 q-’’’"

Z Z Z

On the other hand we get for O(w)"

O(w)= qs[z(1 + azz + a3z
2 +’’ .)]-5 + q412’(1 + a2z +’’ .)]-4 + q3[z +’" .]-3

q5 qn--5a2q5 q3--4a2q4+qs[15a--5a3]
=+ 4 + 3 +"
z z z

And (1) therefore yields the equations:

qs r5 (meaning f S),

(7) q4-- 5a2q5 r4- 4a2r5,

(8) q3 4a2q4 + q5(15a 5a3) r3 4a2r4 + rs(12a 6a3).

Of course the ri have also to be expressed in terms of the ai. For this see 5. If these
equations are solved together with the equations of Problem 1 ((2), (3), (4), (5) and (6))
and if f is univalent which is to be shown as in the case at the end of the last paragraph,
then we have the solution of the problem: Maximize Re (--qsa4) subject to the condition
that a2 and a3 are the given values. (See [4] and [7].) Since we can multiply both sides of
equation (1) by a positive constant without affecting any conditions we can assume that
]q51 1 or -qs e i’ where q is some real number.

As in Problem 1 we reduced the number of real equations from 14 to 7 using
algebraic techniques. A plot for the solution continuum for this problem is displayed in
Figs. 7 and 8. The input values were al 1.92-0.44, a2 2.66-1.29 and q =0.0.

5. The computational procedure. Programs were written that accomplished the
following" 1) solved a set of nonlinear equations using the sequential secant method;
2) evaluated the equations (2)-(6)for Problem 1 and (2)--(8)for Problem 2; 3)plotted
the two continua; 4) located the tip of the slit from oo; 5) plotted the slit. The procedures
differ slightly between the two problems and we will identify the differences as they
arise.

1. The sequential secant method. The main program calls a subroutine to evaluate
equations (2)-(6) or (2)--(8). It does not recognize that it deals with a set of complex
equations since the values of the function are returned in real form. We are therefore
simply solving a set of real equations, 5 in the case of Problem 1 and 7 in the case of
Problem 2. We used the sequential secant method of [1] and obtained reasonable
results. A problem in the case of nonlinear equations of this kind is of course to obtain
starting values for the iterations.

Since the Koebe function has a known solution, we therefore started by solving
problems close to it using the solution for the Koebe function as input guesses. We could
then use the solutions for these problems as guesses for problems further away from the
Koebe function. This procedure was repeated until we had a satisfactory number of
solutions. An algorithmic implementation of a technique also including predicting
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initial guesses was done in [3] and it was suggested to us by Rheinboldt [9]. In view of the
complexity of the program to evaluate (2)-(6) and (2)-(8), we decided not to implement
this suggestion, but we did implement a simple form of this idea. The program would
take a solution and perturb the inputs by fixed amounts. It would then attempt to find a
solution to the perturbed program, using the solution to the last problem as input data.
Since our main interest was to find some solutions we felt that this approach was
satisfactory.

The sequential secant method was successful if either the norm of the solution
vector was small or the last solution vector was close. We used a tolerance of 10-6 in
both cases.

2. Evaluating the equations. A subroutine was written for each problem that
evaluated the equations (2)-(6), respectively (2)-(8). This subroutine again called
routines to perform a number of tasks.

The first task was to evaluate R (z) dz. This was accomplished using Simpson’s
rule over 2 subdivisions (n 6, 7 or 8). In some cases, however, the path of integration
went almost through the origin which is a pole of order 5. We therefore encountered
severe numerical difficulties and we had to integrate via -0.5 + 0.5 or -0.5 depending
on the case. The flags discussed in [6] were of course used to keep track of the branch of
the square root.

Secondly, an iteration was performed to find ao. We know that a satisfies the
equation

(9) 41R (z)l + 41R (z)[ 0.
o

This equation is analytic in arg a; hence it may be solved iteratively using Newton’s
method. Letting (9) be written as f(arg a)= 0 we get

and the iteration

df(arg a) 241R (z)l
d arg aoo

i+1 0(o) f(O(c))
ao i=0, 1,2,3,’’..

241R(z)l’
This iteration scheme converged rapidly in all cases when the initial guess was

a)= -a0. The integrals Lo ,/IR(z)] dw and o x/IR(z)l dq were evaluated using the
same subroutine taking care to go in the correct directions around the unit circle. No
flags were needed in this routine since we were dealing with real integrals. Again,
Simpson’s rule was used. The integral o x/R(z)dz was computed using the same
routine as for x/R (z) dz.

A problem arose in evaluating 0o x/0(w)dw due to the improper integral. This
was solved by standard techniques. In fact we define S(u)= x//3(1-u/31)(1-ufl2) and
u 1/w. Then

o

12It3 /O(w) dw I1 -x/O(1/u)-- du
/01 U

S(u)
du

31
du+---S(O),

2/31
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the last transformation being done to avoid the singular endpoint at 0. In the case of
Problem 1, this integral was evaluated once in the main program since the value of the
integral did not change as the iteration proceeded. In the case of Problem 2 this integral
had to be evaluated for each iteration. For Problem 2, the subroutine evaluating the
function also had to compute the numbers/1, 2, a0, O 1, O2 and a from the input values
fl, a2 and a3 at the beginning of the routine. Let the real unknowns be Xl, x2," , x7.
These are assigned input approximations. Then using equations (8) and (9) we may
write the following sequential assignments:

3
ol <-- X -t’- x 2

ol2 <-- X3 nt- ix4

ao e ix7

i=00i

bl ’" x5 + ix6

O 102
/’5"-

O102

r4---\\ a--]-1-1-1-1-1-1-1-1/+(aa * o2) -
r3 O102

1 (11+22)12

r3 - r5 r4 00 d- d- r3
0

00)r4 <-- -r5 o0 + - tO

/’5 - r5
to

(1 + 5a2cel +(al/p)(r4-4rsa2))

P

r3 <- r3cx

r4

r5 rsa

q3fl

q4 - -/(/x +

v - q3 r3 + 4aE(r4 q4)+a (15q5 12r5) + aa(6r5 5q5)

The notation means "assigned to" as used in computer languages.
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where v is now the error in equation (8)which in the solution process provides us with
the value of one of the equations. The above rearrangement of the equations allows us
to solve systems in 7 unknowns rather than 9 which a simple application of (7) and (8)
would give us.

In Problem 1, we evaluated the coefficients a:, a3 and a4 of equations (7) and (8). In
order to do this we wrote a routine that computed the coefficients of a polynomial from
its roots. We then applied this routine to the roots of R (z) and O(w) that the program
had calculated obtaining the coefficients ri, 2, , 5 and qi, 3, 4, 5. By rearrang-
ing (7) and (8) as well as the next equation obtained from (1) we could compute a:, a3
and an. In Problem 2 the coefficients aa, a3 and a4 were evaluated in the same manner
for checking purposes.

3. Plotting the continua. In both Problem 1 and Problem 2 the programs were now
identical from this point on. We first plotted the trajectories of O(w)dw:>=O and
R (z) dz2 >= 0 respectively. At each zero of O and R we may go in three directions. We
have, for instance, for O(w):

For w -/1 we get

and therefore

0= arg [O(w)dw2] arg/3 [(w- 1)(_W --/2)dw2].

0 arg/3
w --5 dw 3

W

arg dw arg/3 5 + 2nrr
W

which gives three directions 2rr/3 radians apart. We stepped a small step in one of the
directions, then a few steps using simple steps. From then on a predictor-corrector
method was used (see Milne [8, p. 65] for method, and our paper [6]). There are
problems, of course, as to where the trajectories would terminate, but these were solved
using appropriate programming. In general an additional complication arose out of the
fact that the plots in the w-plane went off the paper and back in again. This was solved
using appropriate counters and flags. In some cases, however, the trajectories went so
far out that for practical purposes we had to terminate before it returned towards the
origin. One such return trajectory is missing in a couple of plots. In Figs. 7 and 8 for
example, we let our computer run for 20 minutes but the trajectory close to the slit did
not return. The trajectory could of course be obtained by starting from the origin. We
omitted that final programming effort since we felt it would not add substantially to the
displayed results.

4. The tip of the slit. In order to find the tip of the slit the equation

4R(z)dz =4Q(w)dw

was integrated from the initial point/3i, 1, 2, to b0, the tip of the slit (see also 3). The
initial directions for this integration are chosen from

1(arg I\ "/3i! I+ 2rr) + dedw - \ O(z ) }

Since this gives six possible endpoints we choose the two that coincide.
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If one were to choose a wrong initial direction for the integration one would follow
a curve in the w-plane that encloses the same angle with the trajectories of O(w) dwE as
the line segment agao makes with the trajectories of R (z) dz E but would start in a wrong
half-plane (or slit)-domain. It is then very unlikely that one would reach a close point
starting from the other zero of R, respectively O. It is interesting to note that in some
cases of "wrong solutions" the computer accepted "the tip of the slit" in bounded
components (see Fig. 4).

Having found the endpoirt of the slit, the slit was plotted using the same technique
as for the continua.

A total of 15 routines of various kinds was needed for Problem 1 and 16 for
Problem 2.

5. Numerical examples. In order that one should get an appreciation of the kinds of
calculations one has to do we give a numerical example both of Problem 1 and of
Problem 2.

In Problem 1 we input two flags +1, and +1. These are used to control the sign
of 4R (z) dz and 4R (z) dz since these may change from one set of solutions to
the next.

We then input
[1 --0.3785 + i0.1785

/3z 0.3- i0.1

Since we are using the sequential secant method we need n + 1 guesses for n
unknowns. The unknowns are dl, dE and c and the input guesses are given in the
following table.

TABLE

Re (Otl) Im (or1) Re (a2) Im (a2)

-0.10568 0.5097029 -0.35697298 -0.90227015 3.1949666
-0.1056845 0.5097029 -0.35697298 -0.90227 3.1949666
-0.1056845 0.509702 -0.35697298 -0.90227015 3.1949666
-0.1056845’ 0.5097029 -0.35697 -0.90227015 3.1949666
-0.1056845 0.5097029 -0.35697298 -0.90227015 3.1949666
-0.1056845 0.5097029 -0.3567298 -0.90227 3.19496

After the two iterations we computed

aa -0.10565422 + i0.50969774

cE -0.35661963 0.90139553

a =3.1950142

with an error of 0.98900644E-7. The coefficients are

c2 1.9324569- i0.40410985

a3-- 2.7450348- 1.0865342.

This example was plotted in Figs. 9, 10. Both in this example and in the two following
examples the unit circles give the scale for the numerical values.

In the case of Problem 2 the solutions were somewhat harder to obtain due to the
sensitivity of the solutions to the input values.
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FIG. 9

The solution graphs of Figs. 7 and 8 were obtained starting with the inputs

a2-- 1.92- 0.44i

a3 2.66- 1.29i

Since there are seven real equations we need eight sets of input approximations.
These are given in Table 2.

FIG. 10
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TABLE 2

Re (al) Im (o 1) Re (a2) Im (a2) Re (1) lm (/1) /30

0.14077 0.39930598 -0.18048628 -0.70184641 -0.28441 0.50898933 3.1328576
0.14077439 0.3993 -0.18048628 -0.70184641 -0.28441 0.50898933 3.1328576
0.14077439 0.39930598 -0.1804 -0.70184641 -0.28441 0.50898933 3.1328576
0.14077439 0.39930598 -0.18048628 -0.7018 -0.28441 0.50898933 3.1328576
0.14077439 0.39930598 -0.18048628 -0.70184641 -0.2844 0.50898933 3.1328576
0.14077439 0.39930598 -0.18048628 -0.70184641 -0.28441 0.50898 3.1328576
0.10477439 0.39930598 -0.18048628 -0.70184641 -0.28441 0.50898933 3.1328
0.10477439 0.39930598 -0.18048628 -0.70184641 -0.28441 0.50898933 3.1328576

The sum of the absolute values of the errors in these equations was of the order of
3 10-2 for all sets of inputs. Even so, the solution process needed 25 iterations in order
to find a close enough solution. This suggests that the constant for linear convergence
for the sequential secant method is very small for this problem. The output in this case
was

O 0.14137042 + 0.36632225i

a2 -0.29189849- 0.87970653i

/31 -0.21578116 + 0.50209839i

/30=3.0355212

from which one could calculate

/3z -0.31494625 0.12220681.i

With these values we recalculated the inputs a2 and a3 as well as the coefficient an.
It was of course encouraging to observe the following output

a2 1.9200000- 0.44000000i

a3 2.6600000-1.2900000i

an 3.1378254-- 2.3594080i.

A small perturbation in the input data to

a2 1.92 0.44i

a3-- 2.66- 1.3i

=0.0

resulted in the outputs

as well as a calculated

O 0.21334869 + 0.30924486i

ce2 -0.37487270- 0.8742856i

1 "---0.03777511 +0.63257063i

/30=2.9923485

2 -0.30700235 -0.11339281i.
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This is of course not surprising since this function is fairly close to the Koebe-function.
6. Practical problems. In the previous paragraphs we described the numerical

method used. The method is not foolproof even for Problem 1, as can be seen from the
following numerical calculations.

We start with

1 --0.3 +0.2i

/32 -0.3 0.09i

0 --77"

and increment Re (/31) by -0.05 each time we compute a solution. We get the following
sequence of solutions:

TABLE 3

Re (1)

-0.3
-0.35
-0.4
-0.45
-0.50
-0.55
-0.60
-0.65
-0.70

tx2 O(a0 iO)

-0.08143 +0.4243i
-0.0695 +0.4775i
0.0438+0.5261i

-0.0145 +0.5655i
-0.0163 +0.5972i
0.07437 + 0.6030i
0.07356+0.6192i
0.0689 +0.6347i
0.0682 + 0.6493i

-0.3829-0.7793
-0.4826 1.1501
-0.4444-1.3245
-0.3758-1.4572
-0.2963-1.5642i
0.3410 1.5808i
0.3555-1.4095
0.3498-1.229i
0.2738- 0.8622i

3.1122
3.1662
3.2100
3.2416
3.2654
2.9946
2.9824
2.9655
2.952

Since the problem only admits solutions for which lail 1, we clearly found several
"bad" solutions, i.e. either wrong solutions or solutions that solve the equations but not
the problem. We note that a2, the cause of the problem, took a trip outside the unit
circle but returned later. The question then can be posed: Is the last solution in Table 3 a

good solution, i.e. a solution to the original problem? The answer can only be given by
producing a plot for this case. In Figs. 13 and 14 we see the plot for that case. We note

that the graph of the trajectories looks turned only but topologically alright. One is
tempted to mend this problem by turning the solution appropriately but with closer
inspection we note that Im [.’ x/R (z) dz is equal to the sum of the widths of Sl and S2 in
Fig. 14 while ,ao ",/Q(w) dw is only the width of R2. It turns out that the width of $2 is the
difference of the two. Note here that the boundary slit is in a bounded component.

We tried to rescue such "wrong" solutions in a few cases by replacing a by 1/
and some similar tricks but never got close enough to the correct solution to insure
convergence. A program that can handle split trajectories might actually help here.

Almost every set of about 10 consecutive solutions with ai’s about 0.05 apart
displayed this peculiar behavior.
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We are left with the distinct impression that the problem in this form is not
tractable using continuation methods. Human intervention is needed at every solution
point.

The above description of the method and the program does not do proper justice to
the number of difficulties that arose in the programming of the problem. We believe that
these difficulties are inherent to this type of approach and we maintain that such
problems should only be solved if one has a large amount of time at one’s disposal both
for programming, for debugging and for general problem-shooting.

It is surprising how fast the trajectory from oe moves into the zeros and respectively
how fast the a’s move towards the boundary. It seems as if the zero "likes" the
trajectory from oo. It is not at all clear to us why this is the case. Figures 9-12 illustrate
this behavior.

Problem 2 is another matter again. Not only does it contain all the difficulties of
Problem 1, but also the following: Some algebraic functions, most notably the Koebe
function, do not determine Q(w) uniquely. The fli have then a freedom for a given ai
and this implies that the Jacobian of the system of equations is singular.

If we are very close to such a function, the system is very nearly singular and the
iterative methods of solution perform very poorly. We also tried quasi Newton methods
with no more success than with the sequential secant method.

The next difficulty is that starting at any place and perturbing one is likely to hit
such a function sooner or later. The fli then have a jump discontinuity and the old values
for the/i are too far off to ensure convergence of the sequential secant method.

To get some solutions we started out with a solution of Problem 1 that looked far
away from the Koebe function and perturbed the a. We believe that the problem is
solved in principle if we can produce solutions with a2 and a3 being not too complicated
numbers. In this context it should be pointed out that in the third coefficient region the
part of the boundary plot corresponding to functions whose complementary slit does
not split is quite small (see pictures in [10]). We should therefore in the case of V4 not
expect that the a_ and a3 are one digit numbers. We admit that for a2 and a3 given at
random in V3 a solution would still require a substantial amount of work and computer
time.

In Figures 15-18 we have shown two more representative solutions to Problem 1.
Figures 19-24 again show a sequence of three solutions to Problem 1 showing the
rapidity by which the a’s move towards the boundary.

6. Concluding remarks. Since this approach to these problems is so hard, in fact
much harder than we expected, the following approaches gain interest:

(a) One could replace the integrals by a numerical integration of (1) along the line
segments fllfl2 and fll and evaluate R at the endpoint as criterion for closeness. This
would remove some of the difficulties, but the ambiguity of the square roots would stay
and one would probably lose accuracy, a typical differential equation solver having
lower accuracy than equation solvers.

(b) One could find the boundary-slit by integrating Q(z) dz :z >- 0 starting at eo, and
then use the techniques of [2] to find the mapping function. An obvious difficulty here is
to implement the conditions on the coefficients without using too much computer time.
This approach would on the other hand have the advantage that higher coefficients
could be handled without much more difficulty.

(c) Another way would be to use the Biberbach-Eilenberg class instead of S. This
promising approach has been followed by J. Hummel.
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FIG. 11

(d) Since higher coefficients seem to be too hard for practical reasons, one could
use the theory of elliptic integrals instead of Simpson’s rule. This would reduce the
computer time and thus give a broader scope for V4. It could not be used for higher
coefficients (suggestion by the referee).

Still, in spite of all the difficulties, we feel very strongly that such programs should
be undertaken. If for nothing else, it is valuable for the same reason that it is valuable for

FIG. 12
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a student to calculate examples of an abstract theory, namely to see what is going on.
It is also needless to say that for mathematicians who share our taste it is sometimes

just as satisfying to solve a problem as to prove a theorem as there are a lot of problems
remaining in the direction of [5], [6] and the present paper, which range from mere term
projects to problems of almost unlimited difficulty.

FIG. 14
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ON THE EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF
SEMILINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS*

K. J. BROWN? AND H. BUDIN?

Abstract. We consider semilinear elliptic boundary value problems of the form

Lu Xf(x, u)

with Dirichlet boundary conditions. By using variational methods, we show how changes in the sign of f(x,
lead to multiple positive solutions of the equation for sufficiently large A. In addition more detailed results are
obtained for autonomous ordinary differential equations by using simple quadrature arguments.

1. Introduction. In this paper we discuss the semilinear elliptic boundary value
problem

Lu Af(x, u) for x f;
(1.1)

u (x) 0 for x cgf.

We assume that f c R" is a smooth bounded open set and that

(Lu)(x)=- (a(x)u(x))+c(x)u(x)
i,j=

where -L is uniformly elliptic on f/and the coefficients aij C1/ (), c C () and c is
nonnegative.

We show how changes in the sign of f(x,. lead to multiple positive solutions of
(1.1). We assume that f: xR/R satisfies the following:

(i) f C(fixR+).
(ii) f(x, 0)> 0 for x e f.
(iii) There exists al, a2,’’’, a, e Rsuchthat 0< a <a2<’’’ <a,, andf(x,.ai)<=O

for x e f). and 1, 2, , n.
(iv) If F(x, u)= f(x, s) ds, there exists bl," , b,-1 e R such that a < bx < a2 <

"<b,,-l<a,, and F(x, bi)>F(x,u) for xF/ and O<=u<bi, i=
1,2,... ,n-1.

Roughly speaking the above hypotheses imply that, for fixed x, the graph of f(x, .)
has n positive humps and n negative humps, each positive hump having greater area
than the previous negative hump.

In 2 we prove our main result
THEOREM 1.2. If f satisfies (i)--(iv), then, for sufficiently large a > 0, (1.1) has at

least n nonnegative solutions 1, 2, , , such that cbl <= 2 <=" <= Cn. Moreover, for
such A, iff cl+a( R+) and

Lv Aft, (x, Ck (X))V for x e f,

v (X) 0 .for x

has only the trivial solution ]’or k and k + 1, then (1.1) has another solution lying
between i and

Finally, in 3, we consider the simple special case where (1.1) is an autonomous

ordinary differential equation and f satisfies conditions analogous to (i)-(iv). In this case

* Received by the editors July 8, 1977, and in revised form January 9, 1978.
? Department of Mathematics, Heriot-Watt University, Riccarton, Currie, Edinburgh, Great Britain.
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we can obtain results which are somewhat more detailed than Theorem 1.2 by using a
generalization of a quadrature technique due to Laetsch [3].

2. Nonautonomous partial differential equations. In this section we prove
Theorem 1.2 by using variational and upper and lower solution techniques. We assume
that f satisfies (i)-(iv) and that L and D, are as in 1.

First we modify the function/. Let

0) if u < 0,

fl(x, u)- f(x, u) if0-<u-<al,

f(x, a l) if u > al.

Suppose A > 0 and (A, u) is a solution of

Lu hfl(x, u) for x 6 f,
(2.1)

u(x)=0 forxOf.

IfA={x ell: u(x)>al},thenLu(x)<-Oforx eA andu(x)=alifx 0A. Hencebythe
maximum principle u (x)= a for x A. Thus u (x)<_- a for x f. Hence all solutions of
(2.1) are also solutions of (1.1).

We now introduce a functional whose critical points are solutions of (2.1). Let E
denote the Sobolev space W10’: (). It is well known that, since -L is uniformly elliptic,
the inner product

(u, ,V )E Ia (aij Oiu Ojv + cuv d2
i,j=

for u, v E

is equivalent to the usual inner product in W’2 (-). We denote the corresponding norm
by I1" liE. Consider the functional Ii(h," )" E R such that

I1 U 1/2IlU JIl FI(X, u (x)) dx

1/211ultN-  tJ (u ),

where El (x, u ) f (x, s) ds.
LEMMA 2.2. For all h > 0 there exists ul(/) E such that Ix(A, ) attains its global

minimum at U x(A). Moreover Ul(A) is a classical solution of (1.1) and satisfies 0 <-

Ul(A)=< ax.
Proof. We first show that u Ii(h, u) is weakly lower semicontinuous. Let {uk} be a

sequence in E converging weakly to u. It is well known that [[ul[E_-< lim infk-,ool[ul[. By
the Sobolev embedding theorems {u} converges strongly to u in L (f) if p < 2n/(n 2)
and n _-> 3. By the definition of FI there exist constants K1 and K: such that [Vx(x, u)l -<

K1 + K:Iu[ for all (x, u) R. Hence {FI(" u(. ))} converges to FI(’, u(- )) in L’(f)
and so in Ll(f) i.e. limk_,Jl(uk) J(u). Therefore I(h, u)<_-lim infk_,ooI(h, u) and
so 11 is weakly lower semicontinuous. Similar, simpler, arguments are possible for
n=1,2.

It follows from a standard theorem in the calculus of variations, see e.g. Vainberg
[5], that Ix(A, ) attains its minimum on any weakly closed set. In particular, if R > 0,
I1 (A, attains its minimum on BR where BR denotes the closed ball center 0 radius R in
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E. Moreover

I (i, U ) 1/21In 112E l JI’ IFI(X, u (x))1 dx

--> 1/21lUllS-- A If (gl + g21u(x)l) dx

->- 1/21[u [1- A (K3 + K4IIU[[E)
for all u E, where K3 and K4 are constants. Hence there exists R (A)> 0 such that
I1(, u) 1 if Ilull e Thus, as 0)= 0, Ix(X,. attains its global minimum at an
interior point Ul(A )of Bnx. It is easy to show that I(A, ) is FrOchet differentiable with
Fr6chet derivative at u given by

(2.3) I (X, u)v (u, v)E--A , f(x, u(x))v(x)dx

for all v E. Since Ul(A )is a global minimum for I(A, ), I (Z, Ul(A ))= 0 and so by (2.3)

,a,(x)O,u()(x)O,v(x)dx-X f (x, u(A)(x))v(x)dx =0
id

for all v E, i.e. u () is a weak solution of (2.1). Because of the uniform boundedness
of f, it can be proved, using bootstrapping arguments, that u(A) is also a classical
solution of (2.1) and so 0 u(Z ) a 1. This completes the proof.

Remark. It is easy to see that (1.1) has at least one positive solution between 0 and
a by observing that u 0 and u a are lower and upper solutions respectively of
(1.1). The more complicated variational approach above, however, enables us to
investigate the existence of further solutions.

Now let

[ f(x, 0)

f2(x,u)=f(x,u)
[f(x,a)

ifu<O,
if 0 _-< u _-< a2,

ifu>a2

and let I2(A," ): E- R such that

I (A, u)= 1/211ul[ - I. F (x, u (x )) dx

-1/211ull -AJ (u)
where F2(x, u)= f2(x, s) ds.

Arguing in exactly the same way as above we can prove
LEMMA 2.4. For all A > 0 there exists u2(A) E such that I2(A, ) attains its global

minimum at u2(A). Moreover u2(A) is a classical solution of (1.1) and satisfies 0<=
U2(A) a2.

We now show that if A is sufficiently large, then Ul(A) Uz(A) provided that D is
sufficiently smooth. We shall assume that cl is of class 2+, that x /3 (x) is of class
C+ on 01 where fl (x) denotes the outward unit normal to 01) at x and that there exists
e > 0 such that for x 01 there exists a ball B of radius e such that x bB and B

__
1. In

this case there exists c >0 such that, if 6 >0 and the diameter of 1)_>-26, then
m(n)<=c6 where ln {x 1" dist (x, 0)< 6} and rn denotes Lebesgue measure on
R" (see Nussbaum [4]).
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LEMMA 2.5. If l) satisfies the above assumption and A is sufficiently large, then
sup {uz(A)(x): x f} > a and so uz(A )# u l(h).

Proof. We shall show that there exists w e E such that I2(w, ,)< I2(u, A) for all
u e E satisfying 0 <- u <- al. Let a inf {F(x, bl)-F(x, u)’x f and 0 <_- u -<_ al}. Then
a > 0 as ]" satisfies condition (iv). If u e E satisfies 0 <- u _-< a 1, then

(u I V:(x, u (x )) dx

(2.6) In F(x, u(x)) dx

<= In F(x, bl) dx

Let 6 > 0 and let &8: R" R be a nonnegative C function such that &8(x)= 0 if
Ilxll_-> and a,n(x)dx=l. Let h:R"R such that h(x)=bl if xf-D2 and
h (x) 0 otherwise. Let w O h i.e. w8 (x) a, O(x y)h (y) dy. w is usually
called a mollification of h. It follows from the standard theory of mollifiers (see e.g.
Adams [1]) that wn is a C function with support contained in l)-f and so w8 E.
Moreover 0 -< w(x)<= bl for all x R" and w(x) bl for x f- f3. Hence

(2.7)

where K sup {IF(x, u)l" x f and 0 =< u -< bl}.
By (2.6) and (2.7) we can choose and fix 6 sufficiently small so that there exists

r/> 0 such that w w8 satisfies

(2.8) Jz(W ) > Jz(u + rt

for all u E satisfying 0 <- u =< al. Therefore for all such u

h(, w)- I2(, u ) &llwll2- 1/2t[ull2- (J2(w )- J2(u ))

<0 for A sufficiently large.

Hence for such A the global minimum of 12 cannot be attained at any u 6 E such that
0u <-al. Therefore sup{uz(A)’x f}>al and so uz(A)# ul(A). This completes the
proof of the theorem.



SEMILINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS 879

By letting

f(x, 0) if u < 0,

fk (X, U) f(x, U) if 0 <-- U <-- ak,

f(x, ak) if U > ak

for k 1, 2,. , n and arguing as in Lemmas 2.4 and 2.5 we obtain
LEMMA 2.9. If fl is as in Lemma 2.5 and A is sufficiently large, then there exist n

distinct nonnegative classical solutions Ul(A), UE(A),. , u,,(A of (1.1) such that

ai-1 < sup {ui (A )(x ) x

for 1,. ., n and where ao O.
We complete the proof of Theorem 1.2 by using arguments based on upper and

lower solutions. The definitions and results we use can be found in Amann [2].
First we produce solutions to (1.1) which are the limits of iterations starting from

upper solutions.
LEMMA 2.10. Suppose l’l and A are as in Lemma 2.9. Then there exist n distinct

nonnegative classical solutions l(h ), 2(/ )," n(l of (1.1) such that
(a) (h is the maximal nonnegative solution of (1.1) satisfying u <-_ ai i.e. if u is a

solution of (1.1) with u <-ag then u -< (h);
(b) ai-l <sup{&i(h)(x):x fl}<=ai.
Proof. it is easy to see that u a is an upper solution of (1.1) and is greater than or

equal to the (lower) solution u(h) for all x 1. Hence by Amann [2] the sequence
defined by the following iteration scheme

Wo ai; Lw,,+x Af(x, w,,) for x

Wn+I(X) 0 for x 0f,

for n =0, 1, 2,... satisfies

a _-> W _-> w2_->" _-> w, _-> u(h).

Moreover lim,,_,o w,(x)= bi(h)(x) for x f where bi(h) is the maximal solution of
(1.1) satisfying u -<_ a. Hence bi(h)->_ u(h) and this completes the proof.

The next lemma produces lower solutions close to the solutions b(h).
LEMMA 2.11. Suppose f, I) and

L1) 1f (x,
(.)

v(x)=O forx
has only the trivial solution, then there exists e > 0 such that

(1) bi(A ) is the only solution of (1.1) in the ballB (bi (A)) radius e and center bi(A ) in
c+(fi);

(2) there exists a lower solution i() : 4i() of (1.1) in B(bi(A));
(3) the sequence defined by

Uo(X)=i(A); LUn+l(X)=hf(x, un(x)) forxsfl;

U,+l(X)=0 forx
for n O, 1, 2,.. satisfies
(2.13) ffi(h)<_- Ul _-< u2 -<" -< u,, _-< ai

and lim,,_,oo u,, (x)= i(t )(X for x
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Proof. Let D {u C2+’(fi) u(x)= 0 for x OD,}. Then D is a Banach space with
respect to the usual C2/"() norm. Since (2.12) has only the trivial solution, it follows
that G"D C’(Iq) where (Gu)(x)=Lu(x)-M:u(X, i(A )(x ))u (x ) is a linear
homeomorphism. If H" D - C (f) where (Hu)(x) Lu (x)- Af(x, u (x)), the Fr6chet
derivative of H at i(A) is G and so (1) follows from the inverse function theorem.

Define K" D R C’(f) by [K(u, t)](x)=Lu(x)-Af(x, u)+lx. Then the
Fr6chet derivative of u K(u, ix) at (u, ix)= (i(A), 0) is G and so by the implicit
function theorem there exists 6 > 0 and a continuous function 0" (-6, 6)D such that
0(0) (A)and H(0(tz),/z) 0 for ix (-6,6). If/x >0, then

LO()= ,f(x, 0(, ))- < ,f(x, 0(, ))

i.e. 0 (ix) is a lower solution of (1.1).
Since ai and. 0(ix) are upper and lower solutions respectively of (1.1) with 0(ix )=< ai

for small ix, the iteration {u,} starting from 0(ix) satisfies (2.13) and lim,_, u,(x)=
U(x) where U is a solution of (1.1). We now show that, provided ix >0 is sufficiently
small, U i(A). Since U <= a and i(A) is maximal, U <- i(A). Hence, if [[0(/x)-
,()11 r in C(I), then I1,()-uIl<- r in C(fi). Therefore there exists a constant Ka
independent of r such that I1(’, ,())-f(’, u)ll--< Klr in Lp(lq). Since

L((A)- U)= A [f(x, (A))-f(x, U)] for x
(2.14)

,(A)(x)- U(x)= 0 for x

by the Agmon-Douglis-Nirenberg Lp estimates there exists a constant K2 such that
II,(x)- uII <- K2r in the Sobolev space W2.p(f). Hence, if we choose p > n, it follows by
an embedding theorem that there exists a constant K3 such that II(;)-u[l_-< g3r in
C(1). It follows that there exists a constant K4 such that I1(’, ())-/(", u)ll< g4r
in C" (). Finally, by (2.14)and the Schauder estimates there exists a constant K5 such
that I1()- uII < Ksr in C2+’ (). Choose and fix tz =/x0 so small that Ksr < e and let
q(A )= 0(tZo). Then, if U is the limit of the iteration starting from 4,i(A ), U Be (i(A))
and U is a solution of (1.1) and so, by (1), U (A). This completes the proof of the
lemma.

It is now easy to complete the proof of Theorem 1.2. Fix i, 1 =< -< n 1. Since ai+l
and (A) are upper and lower solutions respectively of (1.1), the sequences defined by
the following iteration schemes

u0 4(,)

VO ai+l;

for n 0, 1, 2,... satisfy

Lu,,+ --"/f(X, U ) for x

u.+a(x)=O forxeOfI,

Lv,,+ lf(X, On for x

v+a(x) 0 for x 012

I[i(A) Ul Un Vn 121 ai+l.

Moreover lim,,_. u, (x) 4’, (,) and lim,,_. v,, (x) 4’+(,). Hence Amann [2, Thin. 1]
asserts the existence of another solution of (1.1) lying between 4’,(,) and qi+x(A ).

3. Autonomous ordinary dilterential equations. We now study

-u"(t) Af(u (t)) for [0, 1 ],
(3.)

u(0)= 0 u(1),
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where A > 0 and ]’: R/--> R satisfies the following:
(a) f has continuous derivative.
(b) f(O)> O.
(c) There exists al, az,’’’, an R such that 0<al<a2<...<an and f(ai)<=0

for 1, 2,. , n.
(d) If F(u)= S f(s) ds, there exist bl," , bn-1 R with al< bl < az <. <

bn-1 <an such that f(bi) > O and F(bi) > F(u for O <- u < bi, 1, 2,... ,n-1.
If we extend f so that f(u) > 0 for all u < 0, then all solutions of (3.1) are positive on

(0, 1). Moreover, because (3.1) is autonomous, any positive solution attains its maxi-
mum at and is symmetric with respect to 1/2. Hence u is a solution of (3.1) if and
only if u is a solution of

(3.2)
-u"(t)= hf(u(t)) for (0, 1/2);
u (0) 0 u’(1/2).

Also, if u satisfies (3.2), u(1/2)= sup {u(t)’t [0, 1]- Ilull.
It is easy to see that if u satisfies (3.2) then

(3.3) [u’(t)]2 + AF(u(t))= XF(iiull) for [0, 1/2].

Hence Ilull is such that F(ilulI)> F(u) for 0<= u < [lull. We shall prove a converse of this
result which will enable us to discuss the multiplicity of solutions of (3.1). Let
S={u >0:f(u)>0 and F(u)>F(s) for all s, 0_-<s <u}.

THEOREM 3.4. Ifp S, there exists a unique A > 0 such that there is a solution (A, u)
of (3.1) satisfying Ilull- p. Moreover p --> A (p) is a continuous function on S.

Proof. As the proof is very similar to that in Laetsch [3, Thm. 2.1] we shall merely
sketch it briefly.

Suppose that (A, u) is a solution of (3.1) with Ilul[- . Then by (3.3)

and so

[u’(t)]2= 2Z(F(p)-F(u(t))) for t6[0, 1/2]

u(t)

(3.5) t(2A)1/2 (F(p F(s ))-/2 ds for 6 [0, 1/2].
aO

Putting = we obtain

(3.6) A ,/:z= 2,/2 (F(p)-F(s))-’/z ds.

Hence A (if it exists) is uniquely determined by p.
If, given p S, we define A(p) by (3.6) and u(t) by (3.5), it is straightforward to

verify that u is twice differentiable, u satisfies (3.2) and u(1/2)= p. The continuity of A (.)
is implied by (3.6) and this completes the proof.

If r inf {u > 0: f(u) 0}, clearly (0, r)
_

$. It is shown in Laetsch [3, Thms. 2.6 and
2.9] that limo_.o A (p) 0 and limo-,r- A Go) oo. We now derive some further asymptotic
properties of A(. ). Let fli =inf {u > bi: f(u) 0} and c =inf {u: (u, Bi)S}. Then ai-<_

ai < b </3 -< a+l and (ai, B)- S for 1, 2, , n 1. Moreover we have

THEOREM 3.7.

(i) lim A (p) c; (ii) lim : (O) .



882 K.J. BROWN AND H. BUDIN

Proof. (i) Suppose firstly that f(ag) > 0. Since S is open,a S and so there exists k,
0< k < a such that F(a)= F(k). Clearly k must be a local maximum for F and so
f(k)=0. Hence, if M=max{[f’(u)l:O<=u<=b}, then [f(u)l<-M[u-k[ for O<-u<-b.
Let N max {If(u)[: 0 =< u =< b}. Then, if a < p < b and 0 =< u < p,

F(p)- F(u ) F(p)- F(a,)+ F(k)- F(u )

and rt (k, u)

Hence

=(p-a)f(sc)+(k-u)f(rt) where : (a, O)

<= N(p a, + M(k u .
[@)]1/2 21/2 (F(p) F(u))-1/2 du

>21/2 (Nlo-al+MIk-u du

Ho(u)du.

As p a, H, is a nondecreasing sequence of measurable functions. Hence by the
monotone convergence theorem,

folim [ @)]/ lim+ Ho(u ) du lim+ 21/M-/lk u]- du .
Suppose now that f(a)=0 i.e. F’(a)=0. It is easy to show that ’ (F(a)-

F(u))-1/2 du . Now

lim+ [ )]/ lim+ (F)-F(u))-l/2 du

(F(ai)-F(u))-1/2 du, by the monotone
convergence theorem

(ii) Let Kl=max{lf(u)l’O<=u<-fli} and Kz=max{lf’(u)l’O<=u<-B}. Since
f(,) o,

I(u)l <- g,lu 1 i 0 <- u <.
Hence, if 0

F(p)- F(u ) F(p)- F(,)+F(,)-F(u )

([3i D )f ) -t- ([3i U )f 71] )
where : e (p, fli) and r e (u, fli)

<= gl(, p)+ g2(, u )2.
Hence, if 0

))-,/[A (P)] 1/2 =>21/2 (Kl(i-p)+K2(i’-u du

Go (u) du
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where Go(u) 21/2(K11, p[+Kzl3, u[Z)-I/zX’[o.o and Xto,o denotes the charac-
teristic function of [0, p]. As {Go} is a nondecreasing sequence of measurable functions,
by the monotone convergence theorem

lim [i)]1/ lim ao(u)dup

o

We can now prove the following result on the multiplicity of solutions of (3.1).
ToazM 3.8 (a). For all > 0 there exists a solution (, u) o[ (3.1) such that llull < r.
(b) I[A > inf { )’O (ai, i)}, there exist at least two solutions (, u) of (3.1) such

that a < Ilull<or 1, 2,..., n 1.
(c) I[ (, u) is any solution o[ (3.1) such that <llull<. then >4k- where
sup {l(u)" 0
Pro@ (a) follows from the continuity of 0) on (0, r) and the facts that

limoo
(b) follows from the continuity of 0) on (,) and the facts that

limo?
(c) (, u) satisfies (3.1) if and only if u satisfies the integral equation

(x)u

where G is the Green’s function corresponding to -u" and zero boundary conditions,
i.e.

-y) for0NxNyN1,
G(x,y)=

(1-x)y for0NyNxN1.

Hence

lu(x)t<-x Io G(x, y)t/(u(y))l y

-<, sup a(x, y) sup
x,ye[0,1] ye[0,1]

Hence, if i < Ilull <, < 1/4 sup {l(u)l" 0 u _-< l and so > 4ceik -1.

REFERENCES

[1] R. A. ADAMS, Sobolev Spaces, Academic Press, New York, 1975.
[2] H. AMANN, Existence ofmultiple solutionsfor nonlinear boundary value problems, Indiana Univ. Math. J.,

21 (1972), pp. 925-935.
[3] T. W. LAETSCH, The number of solutions of a nonlinear two point boundary value problem, Ibid., 20

(1970), pp. 1-13.
[4] R. NUSSBAUM, Positive solutions of nonlinear elliptic boundary value problems, J. Math. Anal, Appl., 51

(1975), pp. 461-482.
[5] M. M. VAI/’BERG, Variational Method and Method of Monotone Operators in the Theory of Nonlinear

Equations, John Wiley, New York, 1973.



SIAM J. MATH. ANAL.
Vol. 10, No. 5, September 1979

1979 Society for Industrial and Applied Mathematics
0036-1410/79/1005-0002 $1.00/0

SPECIAL FUNCTIONS, STIELTJES TRANSFORMS
AND INFINITE DIVISIBILITY*

MOURAD E. H. ISMAIL" AND DOUGLAS H. KELKERt

Abstract. We establish the complete monotonicity of several quotients of Whittaker (Tricomi) functions
and of parabolic cylinder functions. These results are used to show that the F distribution of any positive.
degrees of freedom (including fractional) is infinitely divisible and self-decomposable. We also prove the
infinite divisibility of several related distributions, including the square of a gamma variable. We also prove
that x’-)/2l.(x/)/l,(x/-) is a completely monotonic function of x when > v >-1. This result and the
complete monotonicity of x’-’)/2K(x)/K,(x/x), Ix > v >-1, are used to introduce two new continuous
infinitely divisible probability distributions. The limiting cases contain the reciprocal of a gamma distribution
and a distribution whose, probability density function is a "generalized" theta function. The first distribution is
used as a mixing distribution to introduce a new, two parameter, symmetric, infinitely divisible probability
distribution on the real line, which contains the Student distribution as a limiting case. We also establish the
complete monotonicity of K,(bx/)/K,(ax/) and I,(ax/)/l(b’,/)for b > a >0 and u >-1. We also obtain
some results on the zeros of combinations of modified Bessel functions.

1. Introduction and main results. A probability distribution /x on the half line
(0, ) is infinitely divisible if for every n, n 1, 2, 3,. ., there exists a probability
distribution tzn, on (0, c), such that

e-" dl e -xt dl, n=l,2,....

A function f, defined and having continuous derivatives of all orders for x (0, ), is
called completely monotonic if (-1)"f(’)(x)=> 0, x (0, c). The classes of completely
monotonic functions and infinitely divisible distributions are related by, see Feller [12,
p. 425],

THOrEM 1.1. The function w(x) is the Laplace transform ofan infinitely divisible
distribution if and only if w(x)= e-(), where h(0+) 1 and h’(x) is completely mono-
tonic.

Because of Bernstein’s theorem the usual technique of proving the complete
monotonicity of a function is by showing the positivity of its inverse Laplace transform.
This is cumbersome sometimes and the Stieltjes transform is often easier to work with,
Ismail [19], [20]. The Stieltjes transform is, at least formally, a two-fold Laplace
transform

(dtz)(z) I0 d(t)_z + e-ZX e -x’ dx(t) dx.

A Stieltjes transform of a positive measure dz is the Laplace transform of an infinitely
divisible density if (d/z)(0)= 1, since e -x’ d> (t)is obviously completely monotonic
and all completely monotonic densities are infinitely divisible, as shown in Goldie 13].

The representation and inversion theorems for the Stieltjes transform are
THEOREM 1.2 (The Representation Theorem). If
(i) F(z) is analytic for ]arg z[< rr/a for some a, O<a < 1,
(ii) F(z)=o(1) as z-o and F(z)=o(lz]-) as z 0, uniformly in every sector

]arg z[ <- rr/a’, a’ > a,

* Received by the editors May 6, 1977, and in revised form March 20, 1978.

" Department of Applied Mathematics, McMaster University, Hamilton, Ontario, Canada 68S 4K1.
$ Department of Mathematics, University of Alberta, Edmonton, Canada T6G 2G1.
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then

(1.1) F(x)= 1_ I0 dt ___1 IczF(teZ)eZ/2r x + 2ri r +z dz, x (O,

where C is a rectifiable closed curve going around [-iTr, izr] in the positive direction and
lying in the strip Jim z I< zr/a.

THEOREM 1.3 (The Inversion Theorem). IfF(z)= o (z + t)-1 dix(t) then

ix(tz)--ix(tl) |imp/ (2ri)- {F(-t-in)-F(-t+ir)} dr,
rl-O

where ix(t) is normalized by ix(0)= ix(0/) 0 and ix(t)=1/2{ix(t+)+ ix(t-)} ]:or t>0.
For a proof of Theorem 1.2 see Hirschman and Widder [18, pp. 210 and 235]. A

proof of Theorem 1.3 can be found in Stone [31].
Our first set of results is on the infinite divisibility of the quotient of two gamma

variables and related distributions. In particular this establishes the infinite divisibility
of the F distribution. In doing so we arrived at new entries for the Stieltjes transform.
Our results in this direction are the following.

THEOREM 1.4. We have the following integral representations, ]:or largz f< zr

(1 2) z-1/2D__a(4)/D (4)= {4F(1 + ,)}-a I ID_(i4-t) --
(1.3)

-1
Z z-3/2D_v_l(Z-1/2)/D_v(z -1/2)

Iv_,(it-1/2)[-2{2,/ r(1 + p)}-I /
(z + t)t3/2o

(1.4)
O(a + 1, c + 1, z) f5 e-tl4(a, c, ei)l-2

4;(a, c, z) (z + t)r(a + 1)r(a c + 1)
dt, a > O,

dt, u > 0,

c<l,

and

(1.5) _1 0(a, c 1, z)
{F(a)F(a c + 2)}-1 e[0(a, c, e’=)1-2 dt,

z O(a,c,z) z+t

a>0, l<c<a+l.

THEOREM 1.5. The distribution of the quotient of two gamma random variables is
self-decomposable, hence is infinitely divisible.

THEOgEM 1.6. The noncentral chi-square distribution is infinitely divisible for all
degrees offreedom (including fractional degrees offreedom).

THEOREM 1.7. The square of a gamma variable is infinitely divisible.
Theorems 1.4-1.7 will be proved in 3. Theorem 1.5 was stated as an open

problem in Steutel [30]. Our second set of results is to introduce some new infinitely
divisible distributions and point out a few more entries for the Stieltjes transform. These
results are as follows.

THEOREM 1.8. Let -1 < u<ix. The function x(-g)/2Kv(x)/Kg(x) is a
completely monotonic function of x with

(1.6) Ix/2K(/)}/Ix_LK__(x/_) -Xtp (t, , )dt,2_lF(u) 2,,_lF(lx) j e ix
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where pl(t, P, 1.1,) is a probability density function on (0, oo) of an infinitely divisible
distribution.

THEORF.M 1.9. Let -1 < u < ix. The function x(-")/zI,()/L() is a completely
monotonic function of x with

(1.7)
2"r(+ 1)L(4) 2-r(, + 1)I,(4)

e p2(t, v, >)dt,

where p2(t, ,, I.t,) is a probability density function, on (0, oo), of an infinitely divisible
distribution.

The limiting case tx -+ oo of Theorem 1.9 is of interest, as we shall see in 6, as is the
following

THEOREM 1.10. For v > O, we have

(1.8) x/22-{I(4)F(u + 1)}-1 e-X’pz(t, v, c) dt,

where p2(t, v, oo), (0, oo), is an infinitely divisible probability density.
The above distributions are very natural companions to the distributions W1 and

W2 of Hartman [16].

Io(1.9) Io’(t)//[ Io(’r) /
exp(-rlx2)Wi(dr’t’ ’)’ 0<t<r<-"

(110, {K(’r)l/{K(t)l=I) :,
Ko(’) I Ko(t) /

exp (-r/x W2(dr, t, r), 0 < < " <- oo.

In all the above formulas L(x) and K(x) are the modified Bessel functions of the
first and third kind, respectively. Hartman [16] proved that the distributions W1 and
W2, of (1.9) and (1.10), are infinitely divisible; see also Hartman and Watson [17]. It
might be of interest to note that as / the distribution pl(t, v, p,) tends to the
reciprocal of a gamma distribution which is the mixing distribution for the Student
distribution with 2 v + 2 degrees of freedom. The information on the Student and the
variance mixtures can be found in [19] and [22]. The infinite divisibility of the Student
distribution was proved by Grosswald [15] and by Ismail [19] by proving the infinite
divisibility of the reciprocal of a gamma distribution. Therefore the distribution
pl(t, , I) is the mixing distribution of another infinitely divisible distribution p3(t, , I)
depending on the two parameters (degrees of freedom)/x, v, and as/x - this new
distribution pa(t, u, I) will converge to the Student distribution. The probability
density functions pa, P2 and P3 will be given explicitly in 4, see (4.3), (4.14) and (4.8),
respectively. As it will turn out, the representation (1.7) or (1.8) can be interpreted as a
generalized Mittag-Leffler expansion for Bessel functions, while (1.8) is essentially a
Fourier-Bessel expansion. These expansions will be derived in 4. As an immediate
consequence of Theorems 1.8 and 1.9 and the convolution property of the Laplace
transform we see that the probability density functions pl(t, u, ) and pE(t, /,’,/z) have
the reproducing property

(1.11) p(t,a,)*p(t,,y)=p(t,a,y), y>/3>a>O, i=1,2,

where "." is the usual convolution

(1.12) f(t). g(t)= f(O)g(t- O) dO, > O,

associated with the Laplace transform.
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In 2 we show that the infinitely divisible distributions of Theorems 1.5, 1.7, 1.8,
1.9 and 1.10 are members of an important class of infinitely divisible distributions, the
self-decomposable distributions or the class L. Section 3 contains proofs of Theorems
1.4-1.7, while 4 contains proofs of Theorems 1.8-1.10 and some related results. In 5
we study the infinite divisibility of certain functions of normal variables. Section 6
includes additional results on Bessel functions. We shall prove the following

THEOREM 1.11. The functions (b/a)K(b4)/K(a4) and (b/a)L(a4)/
I(bx/x) are self-decomposable Laplace transforms, hence are infinitely divisible and
completely monotonic functions of x for b > a > O.

THEOREM 1.12. Assume v >0. Ill(z)and g(z) are analytic functions in the half
plane Re z >-0 with no common zeros and Re {g(z)/f(z)}>-_O for Re z _->0, then the
functions
(1.13) (z)= f(z)K._(z)+ g(z)K.(z)

and

(1.14) ’(z) g(z)I-l(z)+f(z)L,(z)

will have no zeros in the half planes Re z >= 0 and Re z > 0 respectively.
COROLLARY 1.13. Assume v > O. Then

and

Re {K_I (z)/K,,(z)}>O

Re {I-1 (Z)/Iv(z)} > 0

for Re z _-> 0

for Re z > 0.

Corollary 1.13 follows immediately from the proof of Theorem 1.12. The complete
monotonicity of the quotients appearing in Theorem 1.11 is certainly new. The only
other known results on monotonicity of quotients of Bessel functions can be found in
Hartman and Watson 17], Ismail [20] and Lorch [26]. Recently Berndt and Glasser [2]
evaluated certain integrals involving quotients of Bessel functions. Erd61yi and
Kermack [8] proved that under the assumptions of Theorem 1.12, the function

(1.15) r/(z ) =: f(z )K ’ (z) g(z)K(z),

will have no zeros with nonnegative real part. Our result on the zeros of (z) of (1.13)
is stronger than Erd61yi and Kermack’s as will be explained in 6. The problem of
showing that the zeros of combinations of Bessel functions, like (z), r(z), and rt (z), lie
off the closed right half plane was encountered in solving boundary value problems, see
for example Carslaw and Jaeger [3] and [4]. Furthermore, integral representations for
quotients of Bessel functions of order zero were also used in solving heat conduction
problems, [4]. Section 6 also includes a method for summing Bessel series. We conclude
the paper by mentioning a few related open problems in the last section, 7.

2. The class L. Let S, XI+’" +X, where the Xg’s are independent random
variables. Let S* (S -b)/a, where a,, and b,, are constants with a, o, a+l/a, -*
1. A distribution is in class L if it is the limit distribution of such a sequence S,*.

A random variable with characteristic function (t) belongs to the class L if and
only if for each a, 0<a <1, the ratio (t)/(at) is a characteristic function. (For
distributions on [0, o) the term characteristic function may be replaced by Laplace
transform.)

LEMMA 2.1. A nonnegative random variable is a member of the class L if its
Laplace transform is of the form e -h(x), with h’(x)= jo 1/(x + t)dlx(t), dlz(t)>=O.
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Proof. e-h(x)/e-h(ax) e -(h(x)-h(ax)), 0 < a < 1.
By Theorem 1.1 it is sufficient to show that (d/dx)(h(x)-h(ax)) is completely

monotonic.
d
(h(x)-h(ax))= I 1

dlz(t)-f 1

-x x + x + t/------’- dl( ).

Since 0 < a < 1, the difference is clearly completely monotonic.
The quotient of two gamma variables, the square of a gamma variable, and the

infinitely divisible distributions of Theorems 1.8, 1.9 and 1.10 have Laplace transforms
of the form of Lemma 2.1 and hence are members of class L.

Consider a probability density of the form

I0 (2"r/’U)-1/2 exp dG(u),(-xZ/Zu)

where G is a distribution on [0, ). This is called a variance mixture of the normal
distribution. The Student distribution is one of these mixtures. In the proof of the
infinite divisibility of the distribution (Grosswald [15], Ismail [19]), the mixing
distribution G was shown to have a Laplace transform of the form of Lemma 2.1. In
particular, G is the distribution of the reciprocal of a gamma variable, so this
distribution is a member of the class L. But the distribution itself is also in class L as is
shown in the following lemma.

LEMMA 2.2. A variance mixture of the normal distribution is in class L if the mixing
distribution is in class L.

Proof. Let G be the mixing distribution. Since G is in class L, there is a distribution
Ga such that

--tu 2tu --tu 2e dG(u e dG(u)= e dGa(u), a>0, 0<a <1, t>0.

Replacing by t2/2 we have

exp(-t2u/2)dG(u) exp(-t2u/2)dG,(u), -o0< <o0 0<a<l.’ exp (-(at)2u/2) dG(u)-
The numerator on the left is the characteristic function of the normal mixture, and

the term on the right is the characteristic function of a normal mixture. Hence the
variance mixture of the normal distribution with the self-decomposable mixing dis-
tribution G is a member of the class L.

3. The proofs of Theorems 1.4 to 1.’/. Representations (1.4)and (1.3)of Theorem
1.4 will be derived in the proofs of Theorems 1.5 and 1.7, respectively. Representation
(1.5) is obtained from (1.4) by the use of the relation 4,(a,c;z)
zl-C4,(a-c + 1, 2-c; z). Representation (1.2) is a special case of (1.4) obtained with
the use of the relation

(3.1) D_,,(z ) 2-’42 exp-z g,
’2’

This relation is found in Erd61yi et al. [9, p. 267]. Representations (1.2)-(1.5)of
Theorem 1.4 can also be expressed in terms of the Whittaker function WK,,.

3.1. Proof of Theorem 1.5. A gamma variable has the density

(r(())-l/-tXt-1 exp (-x/8), x > O, fl > O, oe > O.
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The chi-square distribution with k degrees of freedom is a gamma with a k/2, 2.
If X and Y are independent gamma variables with parameters (a,/3), (ao,/30),
respectively, then Z X! Y has the density

(/3o)-(+’o)
F(ol +Olo)[(Ol)(Oo)]-l(o/)aZ a-i 1 +-z z >0.

The density of an F variable with n and m degrees of freedom is this density with
a n/2, ao= m/2, [3o= n, [3 m.

Without loss of generality we will let/3 fl0. The Laplace transform of the density
of Z is [l"(ao)]-F(a + ao)O(a, 1 ego; t), where 4’ is the Tricomi function as defined in
Erd61yi et al. [9]. To prove that the density is infinitely divisible, it is sufficient to show
that -(d/dz) log 4’ is completely monotonic on (0, c).

Let a a, c 1- ao, and

-4,’(a, c; z) aO(a + 1, c + 1; z)
by the differential relation of(3.2) G(z)=

O(a, c; z) O(a, c; z) the function.
The distribution of the quotient of two gamma variables is infinitely divisible for all
a >0, ao>0, if G(z) is completely monotonic on (0, c) for all a >0 and c < 1. We will
show more. We will show that G(z) is a Stieltjes transform of a nonnegative function;
i.e.,

(3.3) G(z)= ----:-Tg(t) dt, with g(t)>-O.

Conditions (i) and (ii) of the representation theorem, Theorem 1.2, are verifiable by
3reference to the asymptotic expansion of O(a, c; z) for larg z[ < r, given by equation

(1) in [9, p. 278], and the fact that O(a,c;z) has no zeros in the region largzl-<zr
[32, p. 672]. So G is a Stieltjes transform:

a(z) J0 (z + t)-1 dO(t).

Choose a, ]<a < 1 so that p(a, c; z) has no zeros in [arg z[< zr/a. Evaluating the
contour integral of (1.1) as the sum of the residues at z + izr yields the relation

dO(t) G(-t- irl )- G(-t + irl
dt

g(t)= lim > 0.
n-’o 27ri

We will use the notation -t it/= e -i’ (t + irt), -t + it/= e
g’ (t it/).

1
g(t)=- lim

n-,o 2
(3.4)

[" ,’(a, c, e-g=(t+irl))(a, c, eg=(t-il))-O(a, c, e-’(t+i,1))O’(a, c, e’=(t-iq))].
l [[0(a, c, e i (t irl ))ll

To show that g(t)>-_ 0 we need to show that

lim
1

n-,o /(-numerator) > 0.

For the present, assume that c is not an integer. Then ff has the representation

e+/-,. r’(1-c) =t=irc( )l_cr(c- 1)
lim 4,(a,c, (t:il))=F(a c+l)Yl(-t)-e -1 y2(-t),,-,o+ r(a)
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-a < min (0, 1 c), where y l(a, c; z) and y2(Z, C Z) are two solutions of the confluent
hypergeometric equation with the Wronskian (1- c)z e z. These relations are found
on pages 252, 253 and 263 of Erd61yi et al. [9].

Write the limit as KlYl-e:iCK2y2. Then the numerator of G can be written,
(evaluated at -t), as

that

(Ky,’ e-’K2y’2)(Klyx e’K2y2) (Kyx e-iK2y2)(Kly’ ei’rrc"’t/2Y2)
K1K2[yly 2i sin (Trc)- yy22i sin (Trc)].

Since yly yy: (1 -c)(-t)-e -t and sin (Trc) 7r(r(c 1)r(2-c))-1, it follows

1 e -t

(3.5) 2r----tnumerator’ of g)=
F(a)F(a -c + 1)

>0

for > 0, a > 0, c < 1, c not an integer.
We have been assuming that c is not an integer. But all of the functions used are

continuous with respect to c and so the final expression is also valid for c a negative
integer or zero. Thus G(z)= 1/(z +t)g(t)dt with g(t)>-_O and the quotient of two
gamma variables is infinitely divisible.

Remark. 3.2. By substituting (3.5) into equation (3.4) and the result into (3.3) we
get representation (1.3) of Theorem 1.4.

3.3. Proot of Theorem 1.6. We are fairly sure that this result is known to some
people, but we have not seen it stated anywhere.

For integer degrees of freedom, k, and noncentrality parameter 0, starting with the
normal density it is straightforward to show that the Laplace transform of the noncen-
tral chi-square distribution is

(1-2t)-/exp (-tO/(1-2t))=(1-2t)-/ exp +--0/(2-4t)
This is the product of the Laplace transform of a gamma distribution and the Laplace
transform of a compound Poisson distribution, both of which are infinitely divisible for
all real k > 0.

For 2 , + 2 degrees of freedom the density of the noncentral chi-square distribution
can be written as

1/2 exp (-(0 + x)/2)(x/O)V/2I((Ox)I/2).
Without noting that this is the density of a noncentral chi-square, Feller 12, Chap. 13,

3] discusses this density as an infinitely divisible Bessel function density.

3.4. Proof of Theorem 1.7. The square of a gamma variable has density

(2F(2v))-x/3-2Vx- exp (-x///3), v > 0.

Without loss of generality, let/3 1. The Laplace transform of the density is found in
Erd61yi et al. [11, p. 147] to be

(2/)------- exp ((8t)-)D_2[(2t)-/]
2

where D is a parabolic cylinder function. In terms of the ff function, Erd61yi et al. [9, p.
267], the Laplace transform is 1/2(4t)-qJ(v, 1/2, (4t)-1).

We need to verify conditions (i) and (ii) of the Stieltjes representation theorem for
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the function

u , 6(u + 1, 23-, (42)-1)
(3.6) G(Z)=z 4z 2 t#(’,1/2, (4z)-1)
From the comments about in Theorem 1.5, condition (i) is clearly satisfied.

With the use of the asymptotic formulas on pages 262 and 278 of Erd61yi et al. [9],
it is straightforward to verify condition (if) and hence Gx is a Stieltjes transform. As in
Theorem 1.5 we need to show that lim,_o+ (Gl(-t- i1)- Gl(-t + il ))/(2zri) >- O, > O.

In the limit the ,/z terms cancel. The remainder of the proof is almost identical to
the corresponding part of the proof of Theorem 1.5. The terms e=(t+ i)-1 and
e-=(t_ i/)-1 are substituted for e-’(t + il) and e=(t i) in all the formulas. The
factor (4z)-Z gives a term multiplied by (4z)- and two terms that go to zero as / 0+.
Proceeding as in Theorem 1.5, the limit as / 0+ of (numerator of G)/2i is

(3.7) (4ta/EF(v)F(v + 1/2))-1 exp (-(4t)-).
This quantity is positive for > 0, and hence the square of a gamma variable is infinitely
divisible.

Remark 3.5. Representation (1.3)of Theorem 1.4 is obtained by combining
relations (3.2), (3.3), (3.4), (3.6), and (3.7)in the appropriate manner and replacing
each O function by the corresponding parabolic cylinder function D. It can also be
proved directly by showing that the left-hand side of (1.3) is a Stieltjes transform then
inverting the transform. The only additional information required is the behavior of
D_(z) for large [z[ and this is available in Olver [28].

4. Some infinitely divisible dis*tributions. The present section contains proofs of
Theorems 1.8-1.10 and the explicit formulas for the densities p(t, u, tz) and p2(t, u,/z).

For the proof of Theorem 1.8 and later theorems we need the integral represen-
tation (Grosswald [15] and Ismail [19])

--1
-2 Io 2 (x/)}-z-/K_(4)/K(4) 2zr ---{J (4)+ Y dt,

(4.1)
u>0, larg zl < r.

4.1. Proof of Theorem 1.8. The function zt-")/2K(x/)/K, (x/)is analytic in the
cut plane larg zl < 7r because K,(z) has no zeros with larg zl--< 7r/2, Erd61yi et al. [10, p.
62]. We now apply Theorem 1.1. Let

h(x) In {x"-)/EK,(x)/K(xx)}.
Using the differential recurrence relation for K (Erd61yi et al. [10]), we get, for x > 0,

2h’(x x-1/Z{K,,_(4-)/K(4-)}- x-1/2{Kg 1(4)/K,, (4)}.
Hence from the above integral representation we obtain

(4.2) h’(x) rr- I? t-1

’[{J2 (4)-- y2 (4)}-1 _{j2 (4)-- y2 (4)}-11 dt.

Nicholson’s formula (Watson [33, p. 479])

J(z)+ Y (z)= 8r- go(2z sinh t) cosh (2ut)dt, Re z >0,

shows that J (t)+ Y (t) is an increasing function of . Thus the integrand in (4.2) is a
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positive multiple, independent of x, of (x + t)-1, hence h’(x)is completely monotonic. It
remains to show that h(0/) 0. From (12) and (13) of p. 5, (37) of p. 9 in Erd61yi et al.
[10] and the well known relationship

r(z)r(1 z) , csc (z),

we see that, for a > 0, (zK(z)/(F(a)2"-l))- 1 as z - 0. This shows that h(0+) -0 and
the proof is complete.

Remark 4.2. The explicit form of pl(t, v, Ix) is

F(/x)2-- u (V-" )/2 {J, (xu) gv (x/u) Jv(u)gg (vu)} du
(4.3) pl(t, , I e -tu

2 2r() o ()+ Y. ()

which follows from (2.1) in Ismail [20] and the observation that the Stieltjes transform is
a two-fold Laplace transform.

Remark 4.3. It is shown in Ismail [20] that as Ix , K, (x)--- 2"-1x -" F(IX). This
and (1.6) imply

x V/2Kv (x/) I) -p t, oo) dt,2_lF(v e v,

so that [11. (39), p. 283], px(t, v, oo)is the probability density function of the reciprocal
of a gamma distribution since

(4.4) pl(t, v, cx3)
4-t--1

1-’(V’- e-(1/4)/t (0, o)

The probability density function for the Student distribution with k degrees of

freedom can be written as

r[(k + 1)/21 (k/2)k/2
(1 x2/k )-(k+l)/2 JO u-(k+2)/2 e-k/2u du,(4.5)

x/krr r(/2)
+

r(c/2) 4ru

because a variance mixture of normal distributions has the form

o (2,n.U)_l/2 e_X2/2UdG(u), where G is the mixing distribution; see [21] and [22]. This
suggests that the Student admits a generalization, generalized Student distribution,
which is a variance mixture of the normal distribution and a mixing distribution with
probability density function (2k)-Ipl(t/(2k), k/2, Ix) or (4v)-lpl(t/(4v), v, Ix). Define

hence

(4.6)

with

I03(X, /, IX)--" (2rrt)-1/2 e-X2/2t(4t,)-lpl(1/4t/,, t,, ix)at;

/93(X, P, ix) (2rr)-1/2(4)-1/2(4)-1 IoP e -tu/4v e-X2/2tt-l/2g(u, v, ix) dt du,

F(ix) 2"-" (,,_.)/2 {J.
(4.7) g(u, v, ix)= u

r(,,) -
The inner integral in (4.6) is a Laplace transform and can be evaluated using (27) in
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Erd61yi et al. [11, p. 146]. Therefore

p3(x, v,/z) 4r(v + 1) e

(4.8 {.(4)Y(4)-(4)y(4)} du

These considerations lead to
THEOREM 4.4. Thefunction O3(x, v, of (4.8) is the probability density function for

an infinitely divisible probability distribution. As , this distribution tends to the
Student distribution with 2v degrees offreedom.

All that remains to be proved is the evaluation of the limiting distribution
p3(x, v, ). The asymptotic behavior of J,(x), Y,(x) as and x>0 can be
determined from their explicit forms, (2) and (4), [10, p. 4],

(z/2)-+(_1)
J,(z)==0E F(m+v+l)m’.
Y,(z) [sin (v)]-x[J,(z) cos (v)-J_(z)].

Indeed J,(x)(x/2)"/F( + 1) and Y,(x)-(2/x)"F()/, and the limiting density
function is

O3(X, P, )=[F(p+ 1)1-1 e x/ J.()du

F( +)
1 +

and a comparison with (4.5) identifies 03(x, , m) as the probability density function for
the Student distribution.

LEMMA 4.5. The Bessel unction o the first kind J(z ) has infinitely many positive
zeros {],}; all are simple zeros and [or every fixed n, fl, is a continuous increasing

unction o[, >-1. ff+ 1 > >-1, then

0 <], <]., <], <. .
Pro@ This lemma follows from the fact that fl, increases with ( > -1), Watson

[33, p. 508] and that

Watson [33, p. 479].
For the proof of Theorem 1.9 we will need Lemma 4.5 and the following

representation (Mittag-Leer expansion)

L+x(z)/L(z) 2z +I, v >-1.

This formula can be found, for example, in Erd61yi et al. 10, (3) p. 61 upon using
the following relation between I(z) and J(iz), see [10, p. 5],

(4.9) z [r( + + 1)].
k=O



894 MOURAD E. H. ISMAIL AND DOUGLAS H. KELKER

4.6. Proof of Theorem 1.9. Let h (x) be the natural logarithm of the left hand side
in (1.7). Clearly h(x) is well defined since z-’I,(z) has no real zeros and is analytic in z,
for a >-1. Clearly, by the Mittag-Leflter expansion and the differential recurrence
relation for Iv (Erd61yi et al. [10, p. 79])we get

2h’(x)=,/- L(,/) ,/ I,(,/)
1,,n 1 ,,,,,

=2 E (x .2 .2
n=l dr ] v,n )(X "}" ] .,n )

Therefore h’(x) is completely monotonic because ].,, > jr.,, for tz > v. What is left is to
check that h (0) 0, which is certainly the case, in view of (4.9). This completes the proof
of Theorem 1.9.

Our next result is a generalization of the Mittag-Leffler expansion.
THEOREM 4.7. We have

(4.10) z

for t* > v > -1, larg z I< rr.

Proof. Let us first assume that

(4.11) F(z)=: z(V-’)/2I,(vz)/Iv(vz)= I/ dO(t)z +
The relation betweem Iv(z) and Jr(z) is provided by (4.9), namely

(4.12) /(z e +,,/2) e+/-iv/2j (z).

From the inversion theorem, Theorem 1.3, it is not too difficult to see that when lies
strictly between the squares of two successive positive zeros of Jr(z), or in (0,/’2,a ), the
function O(t)will be absolutely continuous with

27ri ,-,oli+ {F(-t- iq)-F(-t + in)} F(r e-=)-F(t e") O,

.2by (4.12). This shows that O(t) is a step function with jumps at the points {l,k}= a, the
squares of the positive zeros of J,(z). Next we consider the case j,k-a < ta </’,k < tz <
j,k/l, where/’v,0 is interpreted as zero. Rewrite F(z) as

(4.13) F(z)= z (-’)/2
I,(47) .2.------r--{(z +,.)//(,/7)}.
(z +,)

Observe that if Sl < 0 < $2,

(2rri)_ li+ Issz 1
n-,0 -t- it/ i$2 7"’-11

dt lim+
r dt

-t + i -,o tz +g =1,
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and that

lim
.2
k

z (’-’lI, (x/z)(z + j,, lL (x/z)

Formally, we have (z + t)-1 dO(t) equal to the right side of (4.10). Thus if F is a
Stieltjes transform then (4.10) holds. However, the function z-V/2/(/) >-1 is
analytic and has no zeros with [arg z I< r because all the zeros of z-VI(z) lie on the
imaginary axis. F(z)- (z + t)- dO(t) is obviously analytic in [arg z[ < 3r/2 and the
behavior near z --0 and z -eo can be determined from (4.9), (5) and (6) on p. 86 of
Erd61yi et al. [10]. Thus the representation theorem, Theorem 1.2, is applicable to
F(z)- (z + t)-1 dO(t) and (4.10) holds.

As an immediate corollary of Theorem 4.7 we obtain the explicit form of the
probability density function pE(t, v,/z) of Theorem 1.6.

COROLLARY 4.8. The probability density function pE(t, /",/d, ) is given by

(4.14) p2(t, v,/x) _2._+ FOx + 1)
r(+ 1) n=l

In the special case/z v + 1 we get, using (54) in Erd61yi et al. [10, p. 11],

(4.15) p2(t, v, v + 1)= 4(v + 1) E e ’.",
n=l

and when 1/2, (4.15) reduces to

(4.16) p2(t, 1/2, 23-) 6 Y. e -"2"2’,
n=l

since Jl/2(z) 4(2/(rz) sin z.
The function p2(t, 1/2, ) is a theta function so p2(t, v, v + 1) may be considered as a

natural generalized theta function.
Remark 4.9. When v + 1 ->_/x > v > 1, the numbers J,, (],)/J’ (],,), n 1, 2,.

are negative because of the simplicity of the zeros {fl,,,},,= and the interlacing property
of Lemma 4.5. See Fig. 1. In the case tx > v + 1 some of the numbers J,, (fl,,)/J’ (],,)
might change sign but, due to the reproducing property (1.11), p2(t, v, tx) will be
nonnegative for all ix > v >- 1.

FXG. 1. The graph ofJ1/2 and J3/2 illustrating the negativity ofJ.(j.,,,)/J(j.n).

We conclude this section by finding the explicit form of the limiting distribution
pE(t, P, oO) and the corresponding Mittag-Leffler expansion. The proof is almost iden-
tical with our proof of Theorem 4.7 and will be omitted.
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THEOREM 4.10. We have
.v+l

(4.17) z/2/i(/)=_2,,X 1.,,. {(j,)}-I
z +l,,.

and

=1 .v+l -j.t,. ((/,.)- e (0, ).(4.8) p(t, , )=
r( + 1)

Remark 4.11. Special cases of the densities pE(t, P, ) and pE(t, P, ) appear in
Feller [12]; see formulas (5.9)and (5.11)in Chapter 10.

5. The infinite divisibility oI other tunetions oI normal variables. Goldie [13] has
shown that nonnegative random variables with completely monotonic densities are
infinitely divisible. Steutel [29] has shown that mixtures of the Laplace density of the
form ff u/2 exp (-[xu)dG(u)are infinitely divisible; i.e., densities symmetric about
zero and completely monotonic on (0, ) are infinitely divisible. These results can be
used to easily show the infinite divisibility of certain densities. For example, let Z be
N(0, 1) and let Y Z2k for k a positive integer. Y has the density

(k)-y’(/(2k))- exp (_yl/k), y >0.

This density is a product of completely monotonic functions if k 1. Let W Z2k+1.
The density of W is

((2k + l))-lw-Ek/(E+) exp (--]Wl2/(Ek+l)),
For k 1 this density is a product of functions which are completely monotonic on
(0, ), and hence the density is a mixture of Laplace densities. Thus if Z is N(0, 1), then
Zk is an infinitely divisible variable for any integer k 1.

Let X have the gamma density (F(a)fl)-ix-1 exp (-x/fl), x >0. Let Y X".
The density of Y is

(r(l-/-p - >0.

This is completely monotonic and hence infinitely divisible if max [, 1 ]. Thus ifX is
a chi-square variable with k degrees of freedom, k 2, X is infinitely divisible for any
real such that k/2.

The density with k degrees of freedom is

F,k+l/,r( %( 1+ -<t<.
2

Again, the density of t" is easily shown to be completely monotonic on (0, c) for m a
positive integer, m _-> 2. Thus t" is an infinitely divisible variable for m 2, 3, 4,. .

For the F distribution, the density of f is easily seen to be completely monotonic
and hence infinitely divisible if v is greater than or equal to one half of the degrees of
freedom of the numerator.

The reciprocals of chi-square, Cauchy, and F variables are infinitely divisible. We
now show that the reciprocal of a normal variable is not infinitely divisible, and neither,
in general, is the reciprocal of a variable.

Let Z have a N(0, 1) distribution. Assume that Z-1 is infinitely divisible. Then
Y x/u Z-1 is infinitely divisible for all u > 0. The density of Y is

-1/2y-E,f-rr exp (-uy -2)
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and the characteristic function is found in Oberhettinger [27, p. 13] to be

b(t) =-- (- 1)"(/ t)"
0 n !r((n + 1)/2)"

Infinitely divisible characteristic functions have no zeros so under our assumptions this
characteristic function is strictly positive for all real t. In particular, for fixed > O,

x/-UU exp (-u) (t) > 0 for all u >0.

Hence

I? u"/2+l/Z(-t)"
2 0 n !r’((n + )/2)

du>O.

The sum converges absolutely, so the integral and summation sign may be inter-
changed. Integrating term by term, we get that the sum is the Taylor series expansion of

4-1(1 t) exp (-t) which is negative for 0 < < 1. This contradicts the assumption of
the infinite divisibility of Z-1.

The distribution with 3 degrees of freedom has the density

The density of Y 1/t is
2 -2

with characteristic function

1.5(1 4[u [) exp

which is negative at u 1. Hence -1 is not an infinitely divisible variable..

6. Further results. We start the current section by a proof of Theorem 1.11.
6.1. Proof of Theorem 1.11. For positive x, the function K,(/) does not vanish

and is infinitely differentiable. Consequently, the function

(6.1) f(x)= In {K,,(ax/)/K,,(bf-)}, x > 0,

is a well-defined infinitely differentiable function. An appeal to (4.1) and the differential
recurrence relation for K, yield

b K-l(b/) a K_x(a/)
2f’(x)=x K bx/x) K a/x)

(6.2)
2-- {(x +t/b)--(x +t/a)-}t-{J(,/-t)+ Y (/)}-

From this identity it is easy to see by direct differentiation that f’(x) is completely
monotonic since a <-b. Therefore

(6.3) K,,(b K,,(a =e -[f(x)-’lg(b/a)],

hence is infinitely divisible by Theorem 1.1 since f(0+)= u log (b/a), and the complete
monotonicity of K(bx/)/K(a) follows from (6.3), the complete monotonicity of
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f’(x) and the formula for the nth derivative of a composite function, the Faa Di Bruno
formula. The complete monotonicity of I(ax/)/I(bx/)can be proved along the same
lines. This completes the proof of Theorem 1.11.

6.2. Proof of Theorem 1.12. The integral representation (4.1) implies

-2 I? zt-1
(6.4) g-x(z)= 2zr {j2 (x/)+ Y (X/)}-1 dt, v >- O, ]arg zl < zr/2.

K(z) zZ+t

The relationship (6.4) and the observation

Re 2 =Re 377J= Izz +t Iz +tl
Rez

show that Re K_l(z)/K(z)>O if Re z >0. Rewrite (1.13)when f(z)#O, as

(z)= f(z)Kv(z){ Kv-l(Z)-v(;i -[- g(z)f(z )"
Thus (z) # 0 when Re z > 0 and f(z O. If f(z O, (z) 0 since f(z and g(z ) have
no common zeros. It remains to consider the case Re z 0. Let z e+/-i=/t, > 0. The
connection between the modified Bessel functions of the third kind K(z) and the
Hankel functions H1) (z) and H( (z) is, Erd61yi et al. [10, (15), p. 5],

K(t e i/2) irr _ivr/214(2 (t) and K(t e -i/2) izr i/2H(a)-- e - e ),

where, Erd61yi [10, (5) and (6), p. 4],

J(z)+ iY(z)=H (z)

Hence

and J(z) Y(z) Her (z).

Re
K-l(t e +i/2)
K(te+/-i/2)

Re e
+i/2J_(t): iY_(t)l J(t)Y-x(t)-J-l(t)Y(t)

J(t)q: i--(f5 J J (t)+

2 {j2 (t)+ y2 (t)}-a,
zrt

by (35) [10, p. 80]. Thus Re{K_l(z)/K(z)}>O even when z is purely imaginary.
Using the same argument used when Re z > 0, we see that (z) has no zeros in the half
plane Re z _-> 0. This argument can be repeated to prove that ((z) has no zeros with

positive real parts.
Remark 6.3. Our proof depended only on the fact that

(6.5) Re{K,_l(Z)/K(z)}>O

while Erd61yi and Kermack’s result depended on

(6.6) Re{-K’,,(z)/K,,(z)}>O

Clearly (6.6) is stronger than (6.5) since

K’
g(z) z

for Re z _-> 0,

for Re z _-> 0.

K._,(z)
K(z)

holds.
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We conclude the present section by illustrating a method for summing Bessel
series. Recall that if F(z) is a meromorphic function with a finite number of poles then,
under mild additional conditions, the series Y’.,__ 1F(n) and Y,=x (-1)"F(n) can be
summed by integrating F(z)z cot 7rz and F(z)z cosec z along a rectangular contour.
The sequence 7r, 27r, 3r,. is the sequence of positive zeros of Jx/2(z), since J1/2(z) is
x/2/(Trz) sin z. In potential and heat conduction problems, see Greenwood [14], the
Bessel series ,,o= F(]v,n) and En__ F(]..)/Jv-x(j,.)often arise. Observe that J-l(jv,n)
is J’(],.); hence the sign of J-l(]..) is (-1)". Therefore the aforementioned Bessel
series can be summed by integrating F(z)J_l(Z)/J(z) or zF(z)/J(z) around
rectangles. Indeed one can prove the following general theorem by using the Stieltjes
transform.

THEOREM 6.4. If F(z) is a single-valued entire function with the asymptotic
behavior F(z)= O(Z"-v/2-1/2 e’/), as ]zl-> oo, uniformly in every sector [arg z[ =< rr e,
0 < e < rr, then

v+l .2
I ,. rl,-i ,.)z /ZF(z)

-2 n’l j, .2 v > 1.(6.7)
L(4) (i,.)(z + ,.)

We omit the proof of Theorem 6.4 because it is straightforward. Note that
Theorem 6.4 can be extended to meromorphic functions F(z) with a finite number of
poles. This can be done by replacing F(z) by F(z)-G(z) where the rational function
G(z) is chosen such that F- G is an entire single valued function, then express F as the
sum of G and F- G and apply Theorem 6.4 to F- G. One can easily state and prove an
analogous theorem by replacing Z’/2/I(/)in (6.7) by Z-1/2I+1(/)/I(/).

7. Open lroblems. As we saw in 5, for the F distribution, the density of f" is
infinitely divisible when v is at least one half of the degrees of freedom of the numerator.
We conjecture that the following holds:

Problem 7.1. If X is a gamma or an F variable, then X" is infinitely divisible for all

In 3 we saw how the infinite divisibility of the F distribution led us to study the
complete monotonicity of 4(a + 1, c + 1, x)/,(a, , x). This suggests

Problem 7.2. Prove the complete monotonicity of 4,(a, c, x)/,(a, % x) for a
c-3,>0, a-c+l>O and a-,+l>0.

Motivated by the existing proofs of the complete monotonicity of
>/-- "4- 4-x(- K( x)/K,(x) one might try solving Problem 7.2 by either calculating the

inverse Stieltjes transform of d/(a, c, x)/(a, % x) or show that the negative of the
logarithmic derivative of that function is completely monotonic. The direct compu-
tation of the Stieltjes transform will establish the result if one can prove the positivity of
the double integral

e-’2r2"+Z(cos 0 +1(sin O)Z’{l,(rt sin O)Y,-l(rt cos 0)
.0

Y(rt sin O)J-l(rt cos O)}r dr dO,

for all positive t,/z, v. For fixed 0, the function

J(x sin 0)Y_l(X cos 0) Y(x sin 0)J_l(X cos 0),

as a function of x, has infinitely many positive zeros. The second approach is to mimic
the proof of Theorem 1.11 by using (1.4) and an analogue of Nicholson’s formula for the
4 function. Unfortunately this analogue of Nicholson’s formula is not known. Recently
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Durand [6] and Durand et al. [7] derived a Nicholson’s formula for the Gegenbauer
functions. The next step is to study the Jacobi functions of the first and second kind and
hopefully derive the corresponding Nicholson type formula for them. This will yield a
similar formula for the confluent hypergeometric function as a limiting case.

Problem 7.3. Derive a formula of Nicholson type for the Jacobi functions or their
limiting case, the confluent hypergeometric functions.

We might add that the addition theorem for the Jacobi polynomials might be
helpful. This addition theorem was discovered by Koornwinder [23]-[25]. An account
of the addition formulas is available in Askey [1].

The methods used in the present paper and in Ismail [19], [20] utilized the explicit
form of the functions under consideration. These functions, however, are solutions of
certain differential equations. It is very likely that a differential equations approach can
be used to handle these problems. This suggests

Problem 7.4. Find a differential equation technique that guarantees the complete
monotonicity of quotients of (nonoscillatory) solutions belonging to different eigen-
values of an eigenvalue problem.

In conclusion we would like to mention an open problem on the monotonicity of
the quotient of the density p2(t, ,, tz) by its average on (0, t).

Problem 7.5. The function p2(t, ,, tx )/{t-1 o p2(s, ,, tx ) ds}, /x > , -> 0 is a decreas-
ing function of for > 0.

The special case/ 1, , 0 of Problem 7.5 was conjectured by Clements and
Edelstein [5] and arose in their investigation of certain diffusion processes.
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INEQUALITIES FOR ULTRASPHERICAL AND
LAGUERRE POLYNOMIALS*

Dedicated to Professor Walter T. Scott
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Abstract. R. Askey and G. Gasper have proved that, (X)k (A),,-k sin (k + 1)0
>0, 0<0<r,

k=0 k! (n k)! (k + l) sin 0

for 0 -< A =< 2 and Askey proved it for A 3. Here we prove this inequality for 2 < A < 3 by considering
inequalities of the form P:(x)P+I (x)-P:+ (x)P(x)>O, 0< x < 1, for the ultraspherical polynomials P:.
We also prove an inequality similar to the above for Laguerre polynomials.

1. Introduction. R. Askey and G. Gasper have proved [2] that the inequality,

(A)k (A)n-k sin (k + 1)0
(1 .1) z, >0, 0< 0 < 7r,

k=0 k! (n-k)!(k+l)sinO

holds for 0 -< A -< 2, and Askey also proved it for A 3 1 ]. Here we will prove that (1.1)
also holds for 2 < A < 3 and we will prove that (1.1) is a special case of a more general
type of inequality valid for ultraspherical and Laguerre polynomials.

Denote the sum in (1.1) by An(O)/sin O. Then

., Ak(O)zl+l=(1--Z)---{(1--eiOz)-X+l--(1--e-iOz)-X+l}.
k=0 2i(A- 1)

If we define Bk(O) by

(1-r)---(1-eir)-X+l= , Bt,(O)r t’,
2i(A- 1) k=0

then k=O Ak(O)zk+I k=0 [Bk(O)+ k(O)]z k
SO that Ak 2 Re Bk+I(O). Now for a

suitable contour C,

1 (1- z)-X(1- eiz)-+1
2i(A -1lB"(O) i z-,T dz.

If we set w z e i/2 then

e i’/z (1- 2 cos (O/2)w + w2)-x

Jc n+l dw2i(X-1)B,(0)
w

e i(n+l)/Z27ri Ic, (1- 2 cos (O/2)W w2)-’
dw

P(cos (0/2)) e i’(/2)-Pn_lx (cos (0/2)) e i(n+l)/2

where P(x) denotes the ultraspherical polynomial of degree n and we have used the
generating relation

(1-2xz+z2)-= Y. P(x)z ’.
k=0

* Received by the editors October 6, 1977, and in revised form March 7, 1978.

" Department of Mathematics, Arizona State University, Tempe, Arizona 85281.
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Since A,(0) 2 Re Bn+l(O) we find

A,(O) sin[(n + 1)(O/2)]P+l (COS (O/2))-sin[(n + 2)(O/2)]P(cos(O/2))
sin 0 (A 1) sin 0

Then since P(cos 0) sin [(n + 1)0]/(sin 0) we have

(A)k (A),_k sin [(k + 1)0]
k=0 k! (n-k)! (k+l)sinO

(1.2)
P(cos (O/2))P+ (cos (0/2))-P+ (cos (O/2))P(cos (0/2))

2(A 1) cos (0/2)

Inequality (1.1) and the identity (1.2) led us to look for inequalities of the form

fl-a
for ultraspherical polynomials, and

(1.4) L’(x)L"+a(x)-L’+’(x)L(X)>o, 0<x <,

for Laguerre polynomials.
In 2 we will prove that (1.3) holds on the lines/3 a + 1, a > 0 and/3 a + 2,

a > 1/2 (Theorems 2.1 and 2.3). Then we fill in the region between the lines a =/3 and
/3 c + 2 (Lemma 2.2 and Theorem 2.4). In 3 we prove similar results for (1.4).

2. UItraspherical polynomials. In this section we will need the following identities
(see [6]). We will frequently suppress the independent variable and write P for P(x).

(2.1)

(2.2)

(n + 1)P+1 ---2(n + A)xP-(n + 2A

P 2Ax,

P(1)=(n+2x-n 1).

n > 1 where

2 d
(2.3) (1 x )xxP, (n + 2A 1)P_a nxP, n >- 1.

d A A+I(2.4) dxP,, 2AP_, n>=l.

(2.5) lim P(x) =-2 T,,(x), n => 1, where T,(cos 0) cos nO.
x-0 A rt

(2.6) (1-x2)X-1/2P (-2)" F(n + h)r(n + 2A)
n! F(A)F(2n + 2A)

[(1--xZ)n+x-1/2](n).

(2.7) 2h(1-x2)PX,+1 =(n+2h)P-(n+ 1)xP+l, n=> 1.

P,,P,,+ P,,+1P. Throughout this section we will make extensiveDefine A,,(x c,/3) t

use of a derivative relation for A,,. Computing (d/dx) A,, A and using (2.3)and (2.1)a
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computation gives

(2.8) (1- xZ) A’,= (2a- 1)x A,,+2(-oe)P,[P-xP+I.
Equation (2.8)can be rewritten as

(2.9) [(1 x)’-/2 A,,]’ 2(/3 a)(1 xz)-/ZP[P xP+, ].

An equivalent form of (2.9) which will be useful is obtained as follows. From (2.3) we
have

(1 -x2)(p+l )’= (n + 2a)P-(n + 1)xP+l
(2.10)

(n + 2a)[P-xP+a + (2a- 1)xP+a.

Thus (1 x2)(P+i )’- (2a 1)xP+a (n + 2a)[e xP+l ], and this last can be writ-
ten as

(2.11) [(1-x2)-’/2P:+l]’=(n+2a)(1-x2)-3/2[p-xP+,].
Hence (2.9)can be rewritten as

(2.12) [(1-x2)-/z a,]’ 2(-a)p
n +2 [(1 xZ)-/ZP+a ]’.

If we define F by

(2.13) F (1 xZ)-/ZP,

and we define 6,(x; a, ) by

(2.14) 6,=F,F,+ -F,+F,

then we note that F has the same zeros in (-1, 1) as P and also Sgn P Sgn F.
Further, since

(2.5) . =(-x)+- a.
we also have that Sgn 6, Sgn , in -1 < x < 1. Equation (2.12) can then be expressed
as

(2.16) [(1 x)-+a/z6,]’- 2(- a)
(1 x2)-+/2(F+I)’

n+2a

We get from (2.6) that

(2 7) (vT+)’= -(n + 2)
_i(n +2)F;.

Thus (2.16)can be written as

( la) [(1 -x)-*’/ 1’- -(-)(n+) n. n+2(-
(-x

We will need some identities involving the functions F. From (2.1) we get

(2.19)

From (2.11) we get

(2.20)

(n + 1)F+.a 2(n + o)xF -(n + 2c I)F-I.

(1- x2)(F+I )’= (rt q- 2a)[F -xF’+l ].
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Computing (1-x2)(F) directly and using (2.4)we get

(2.21) (1 xZ)(F )’ zar,_l
,-,.,+ (2a 1)xF.

Finally from (2.7) we get

(2.22) 2aF+’ (n + 2a)F -(n + 1)xF+l.

We will say that the zeros of two polynomials A(x) and B(x) interlace if between
any two consecutive zeros of A(x) there is precisely one zero of B(x) and vice versa.

LEMMA 2.1. If An(X a, ) 0 for 0 < x < 1 then the zeros of P’ andP interlace.
Proof. Let Xl < x2 be consecutive zeros of P. Suppose P : 0 in [xl, x2]. Then

A,,(x,; a,/3)= -P’+, (x,)P(x,),
A,,(x2; a,/3)= -P’+, (x2)P(x2).

Since the zeros of P and P+, interlace, P+I (Xl) and P+I (x2).have opposite signs.
Hence A,,(x,; a,/3) and An(x2; a,/3) have opposite signs.

We will need to know the value of An(x; a, fl) when x 0 and x 1. Since
P(0)= 0 when n is odd, it follows that An(0; a,/3)=0. Using (2.2) we can compute

a.(; , t)=
2(/3 a)F(n + 2a)F(n + 2/3)
r(n,+ 1)r(n + 2)r(2a)r(2/3)

Thus A,,(1; a, fl)>0 for /3>a>0, and An(l; a, fl)<0 for -1/2<a<0, /3>0. The
values of An(x; a,/3) at x 0, x 1 will be important because we will be proving
positivity of A,,(x; a,/3) in 0 < x < 1 by proving that (1 x2)-/2 A,, has positive
extrema in 0 < x < 1.

THEOREM 2.1. If a > 0 then A,(x; a, a + 1) > 0 for 0 < x < 1. If 1/2 < a < 0 then
A,,(x; a, a+ 1)<0 for 0<x<l.

Proof. Set/3 a + 1 in (2.9)and get

(2.23) [(1 xZ)’--/2 An]’= 2(1-x2)-3/2p+[P-xP’+ ].

We will show that the relative extrema of (1 X2)a-1/2,An are all positive if a > 0 and all

negative if -1/2 < a < 0. The points of relative extrema occur when P+I 0 or when

P’j xP’j+l. This gives two cases. From (2.7) we have

(2.24)

and from (2.1)

(2.25)

2xo,,+l (n + 2a + 1)P+I -(n + 2)xP+22c(1 x j-n+1

(n + 2)P+2 2(n + a + 1)xP+l -(n + 2a)P.

Substitution of (2.25) in (2.24) gives

2Dc+l(2.26) 2a(1-x ).+ =[(n+2a+l)-2(n+a+l)x]P.+ +(n+2a)xP..

We proceed with consideration of the two cases.
Case 1. In this case P+I (x)= 0, and we have An --n--n+a-r’P"+ Since Pn’+ 0 we get

from (2.7) that

(2.27) (n + 2a)P (n + 1)xP+.
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From (2.26)we get, using (2.27),

2a(1 2 +1-x )r,,r,,+a [(n+2a+ 1)-2(n +a + 1)xZ]P,,+aP,, +(n+2a)x(P)2

(2.28)
(n+2a)
..1)------[(n(n+ + 2a + 1)- 2(n + a + 1)xZ](P)2

+ (n + Za)x(P)2.
Thus

(2.29)

2ppa+2ax(1 x l.tnan+

{[(n + 2a + 1)-2(n + a + 1)x2](n + 2a)+ (n + 2a)(n + 1)x2}(P)2
n+l

(n 2a)(n + 2a + 1)(1 x2)(P)2.
n+l

Equation (2.29) gives

(2.30) A,, (n + 2a)(n + 2a + 1) (p)2.
2a(n + 1)x

From (2.30) we see that at a point where P+I 0 we have A,, > 0 provided a > 0 and
0 < x < 1, while if a < 0 and 0 < x < 1 then A, < 0.

Case 2. In this case we have P=xP+I and A, becomes A,,=
a+l a+lP,,+ltxr,+a -P ]. From (2.26)we obtain

2oa+l(2.31) 2ax(1-x ,,+ =[(n+2a+l)-2(n+a+l)x2]p+(n+2a)xEp,
and (2.7) becomes

(2.32) 2a(1 x2)P+1 (2a- 1)P.

Hence we have
2\r na+l +12a(1-x)ixr+l-P.

(2.33) [(n + 2a + 1)- 2(n + a + 1)x2 +(n + 2a)x2-(2a 1)IP

(n + 2)(1 x2)p’2.

Consequently when P,, xP,,/l we have

(n + 2)x(P+l )-
(2.34) A,

2a

Thus A,,>0 if a>0 and 0<x<l. If -1/2<a<0 and 0<x<l then A,,<0. This
completes the proof.

Theorem 2.1 has a limiting case as a 0. Since P, -= 0 for n > 1, when a 0 we
need to look at A,,(x; a, a + 1)/a. Using (2.25) we find

lim
A,,(x; a, a + 1) 2 2 T,,+lp1,"T,,P,,+ ’1O Ot t t

Denote the limit above by A,*. From (2.23)we find

(2.35) [(1- X2)-1/2 mn]t----4(1- x2)-3/2eln[! Z
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Proceeding as in the proof of Lemma 2.2, we find that if P 0 then A,* 2(T,)2/(nx),
and if T,/n=xT,+l/(n+l) then A,* (2(n+2)/(n+l)2)x(Tn+x )z. Thus A,>0* for
0<x<l.

We can include this limiting case in the statement of Theorem 2.1 if we restate it as
THEOREM 2.2. Ifa>-- and 0<x<l then A,(x; a,a+ 1)/a >0.
As a consequence of Theorem 2.2 and A,, (x; a,/3) -A, (x;/3, a) we have
COROLLARY 2.2. Ira>1/2 and 0<x < then An(x; a, a- 1)/(a- 1)<0.
THEOREM 2.3. A, (X a, a + 2) > 0 for a >= 1/2, 0 < x < 1.
Proof. If we set a + 2 in (2.9) we get

(2.35a) [(1 x2)-/2 A,]’= 4(1 x)-3/ZP’+Z[P xP+, ].

From (2.26)we get

2h 19a+2(2.36) 2(a+1)(1 x)-,+l [(n+Za+3) 2(n+a+2" 2,,+1
)x It,+1 +(n + 2a + 2)xP+

From (2.7)we get

ra+l(2.37) 2(a+ 1)(1 xZ)P+2 =(n+2a+2)P+1 -(n+ 1)xrn+.

Now consider the two cases under which the right side of (2.35a) vanishes in (0, 1).
Case 1. P+2 =0.
In this case An --,--,+. From (2.37) we have

(2 38) (n + )Xn+l.

+1Substituting for P+I from (2 7) and for ,+ from (2.26) after multiplying both sides
by 2a(1-x2), we get

(n +2 + 2)[(n + 2)ea-(n + 1)xea+
(2.39)

=(n+ )x{[(n +2 + )-2(n + + a)x21ea+,
+(n+2a)xPa}.

Equation (2.39)reduces to

[(n +2 + 2)(n + 2)- (n + 1)(n + 2)x2lea
(2.40)

{(n + 1)x[(n + 2. + a)- 2(n + + 1)x21
+ (n +2 + 2)(n + )x}PT+l.

If we substitute (2.38) into (2.36) we get
2x+22(a + 1)(1 x

(2.4) (.+2+2)
[(. +2 + 3)-2(n + + 2)x]ea+

(n+ 1)x
+(n+2a+2)xP+,

or, equivalently,

2(a + 1)(n + 1)x o4+2 +
n+l Pn(2.42)

(n + 2a + 2)(n + 2a + 3)

From (2.7), substituting for P,/a from (2.40), we get

(2.43) 2a(1-XZ)n+ 2a Pn’+’ (n + 2a + 1 )(1 x2)p’
2n(1 x2)+ 2a(2- x2)+ 2(23-- x2)"
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Hence,

op+2 (n + 2a)(n + 2a + 1)(n + 2a + 2)(n + 2a+ 3)(P:)2
(2.44) A, ""+ 4a(a + 1)(n+ 1)x[Zn(1-x)+ 2a(2- x)+ 2(}- xZ)]
which is positive for a > 0 and 0 < x < 1. Now we turn to the other critical points of
(2.35).

Case 2. P, xP,+ l.
[_ ha+2 p+2In this case , P,+ txr,+ ]. From (2.26) using P, xP,+ we get

(2.45) ,+, [(n + 2a + 1)-(n + 2)x 2]
*"+ 2ax(1 X2) P

and from (2.7) we get

(2c 1)P(2.46) p+l
2a(1 -x2)"

Substituting (2.45) and (2.46) into (2.36) we get
2,,2 +24c(a + 1)(1 -x )

(2.47)
{[(n + 2ce + 3)- 2(n + a + 2)xZ][(n + 2c + 1)- (n + 2)x2]

+ (2c 1)(n + 2c + 2)x2}p.

Now from (2.37) substituting (2.45) and (2.46) we get

(2.48) 4c(c+ 1)(1-xZ)ZP+2 ={(2a- 1)(n+2c+2)
-(n + 1)[(n + 2c + 1)-(n + 2)xZ]}P.

Subtracting (2.48) from (2.47) we get, after simplifying,
2xr roe+2 _p+24a(a + 1)(1 x )txr.+

(2.49)
{2(n + c + 2)[(n + 2a + 1)-(n + 2)xq

-(2a- 1)(n + 2a + 2)}P.

Now A,, x-Ipo roe+2 _p+2|X/"n+I so from (2.49)we have

2(n + c + 2)[(n + 2a + 1)-(n + 2)x21- (2a 1)(n + 2c + 2)(p)2.(2.50) A,
4a(c + 1)x(1 x2)

Set R,,(x)=2(n+a+2)[(n+2a+l)-(n+2)x2]-(2a-l)(n+2a+2). Note that
R,(1)= (2a 1)(n + 2)=> 0 for a _-> 1/2 and R,(0) 2n2 + (4a + 7)n + 8a +6 > 0 for a ->1/2.
Thus R,,(x)>0 for c=>1/2, 0<x<l and so is A,. Thus the function (1-
x z)"-1/2 A,(x; a, a + 2) has positive extrema for a _>-1/2, 0<x < 1; and the proof is
complete.

COROLLARY 2.3. If a >= then A,(x; a, oe 2) < 0 for 0 < x < 1.
LEMMA 2.2. If < ee < < 3’ and A,, (x; a, y)> 0 for 0 < x < 1 then An (x; a, 8)> 0

forO<x<l.
Proof. From Lemma 2.1 and from the fact that the positive zeros of P*, are

monotone decreasing functions of A, it follows that the zeros of P andP are interlaced
as are the zeros of P and P. We consider

[(l --X2)-/3+1/2 2(/3- c)
n+2c

(1 -X2)-C+l/2Fn (F,,+’ )’.

Case 1. Suppose F 0. Then 6, F,F,,+I. Let W > W2 >" be the zeros of F
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in (0, 1). Then SgnF/l(Wi)=(-1)/. The interlacing of zeros for F and F give
Sgn F’d(wi)=(-1)j. Hence 6,,(wi; a,/3)>0.

Case 2. Suppose (F+I)’= 0. Let Wl > w2 >’" be the zeros of (F+I)’ in (0, 1).
From (2.20)we find

/3-1n+2 2 F,+2 (wj)
a(w; ,/3)=

2
(- wj)F+, (w;)

/3- 1

We have Sgn F+ (w/)- (-1)+. From (2.17) we see that the zeros of (F+)’ are the
zeros of F;. Since A(x; a, y)>0 we have that Sgn (F,+2 (wj)/(y- 1)) (-1)/+1. Let
z z2" be the zeros of F,+2 in (0, 1) and v Y2 )" the zeros of F/2 in (0, 1).

/3-1Then we have W/l <z < y < w. Also, F/ (x)/(/3-1) > 0 for x in a left neighbor-
-1hood of 1. Hence Sgn (F+2 (wi)/( 1))= (-1)i+ and (wi; a,/3) 0. This completes

the proof.
To 2.4. A(x; a,/3)/(/3-a)0 for O<x <1/f (a,/3) lies in either of the

regions
(i)
(ii)
Proof. The case for region (i) follows immediately from Theorem 2:3 and Lemma

2.2 with y a + 2. Then (ii) follows from (i) by noting that A,,(x; a,/3)= -A,,(x;/3, a).
Theorem 2.4 gives the missing values 2 < h < 3 for inequality (1.1). We need only

note that the line segment a 1, 2 </3 < 3, is contained in the region (i). Thus we have
COROLLARY 2.4. If 2 < h < 3 then

(A) (A)._ sin (k + 1)0
>0, O< O<zr.

=0 k! (n-ki! (k+l)sinO

It would be interesting to know the exact region in the (a, /3 )-plane for which
A,(x; a,/3) r O, 0 < x < 1. We note that our results do not for example include inequal-
ity (1.1) for 0< A _-<1/2.

3. Generalized Laguerre polynomials. In this section we prove theorems similar to
those of 2 but for generalized Laguerre polynomials. These are defined by

(3.1) (n+l)L’d+=(2n+a+l-x)L-(n+a)L_, n->_l,

where L 1, L 1 + a- x, and also

(3.2) L:(O)= (n + a)
We will need the following identities.

(3.3) X-xLd nL-(n + a)L_l, a >-1, n => 1,

d ya+l(3.4) dxL, -,_,

(3.5) L,+ ,,+1

L,L,+ L,+Set D,(x a, fl) /3 L. Lemma 2 1 holds for Laguerre polynomials so we
have

LEMMA 3.1. IfD, (x a, 0 then the zeros ofL andL interlace.
There is a derivative formula for D,, analogous to (2.9) for A,,. It is

(3.6) _,n.t.,n+
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THEOREM 3.1. D,, (x; a, a + 1) > 0 for x > 0 if a > 1, and also

Dn(x;a,a-1)<O forx>Oifa>O.
Proof. For contrast we give a different type of argument than was used in Theorem

2.1 although a proof along the lines of Theorem 2.1 can be constructed.
Setting/3 a + 1 in (3.6) we find

[e-Xx+lDn],=e-XxrrX-,na-,n+

We observe that the function e-x’+1Dn vanishes at x 0 and at x +oo. Thus it will bc
sufficient to show that Dn 0 at the relative extrcma of e-Xx+ID,,. These occur either
where L =0 or L+ =0. Let xx...x bc the zeros of L. If Ln--0 then
D,, -L+L+1. The zeros of L and L+I interlace so Sgn L’+(x)- (-1). From the
identity L’+ L:- (L)’ which follows from (3.4) and (3.:5) wc get L+l(x)
-(L:)’(x). Since Sgn(L)’(x.)-(-1) wc have SgnL+l(x)=(-1)+ and hence
D(x;c,a+l)>0. Next let ZlZ2’"Z+l bc the zeros of L+I. Then
D(z,,a+l)" =L(z)L+{(z).’’+ Now Sgn Ln(z) (-1)+1’ and the identity L,,+{-"+
L,+I (L+I implies that Sgn ,+a)’ r+(zi)= (-1)i+ Hence D,(zi; a, a + 1)>0 We
conclude that D,(x; a, a + 1)> 0 for a >-1, x > 0. To prove the second part, note that
D,(x; or,/3)=-D,(x; , or), and the proof goes as in the proof of Corollary 2.2.

THEOREM 3.2. D,(x; a, c+2)>0 forx>O if a>O, and also

D,(x; a, c-2)>0 forx >0 ira>2.
Proof. First we observe that since D,(x; a,/3)= -D,(x; , a) (3.6) can be written

as

[e-xD,(x; or,/3)]’= (/3 _,n..,n+

Setting/3 c + 2 we have

[e-xD,],=2e-Xx-L+Zr-Ia-n+l

and using (3.5), which implies L_ L/I-L, we get

[e--xO,] 2e-x-aL+Z[L+ L].

The relative extrema of e-Xx D, occur when either Ln+2= 0 or Ln+ --Ln. First we
establish some identities which will be useful. From (3.3) and (3.4) we get

(3.7) xL’+1 (n+cr + 1)L- (n + 1)L+,.

From (3.1) and (3.7) we get

(3.8) .,,+1 (n + ce + 1)L- (n + 1 x)L+aXL,n+

Case 1 If L+2 0 then D,, ,-.,,,+1 and (3.7) with c replaced by a + 1 gives
/- o+1(3.9) (n + a + 2)L+a (n +

Tc+lMultiplying (3.9) by x and substituting for L/ from (3.7) and for ,-.,/1 from (3.8) gives

(n + c + 2)[(n + c + 1)L- (n + 1)L+a] (n + 1)[(n + c + 1)L- (n + 1- x)L+l].

This reduces to

(3.10) (n + a + 1)(c + 1)L: (n + 1)(x + cr + 1)L+I.

Replacing c by ce + 1 in (3.8) and then substituting forL from (3.9) gives
1 ,/. +2(3 11) (n + x/,n+l (n+a+2)L:+1
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Substituting in (3.7) for L+I from (3.10) gives

(3.12) (x + c + 1)L+1 (n + a + 1)L.

Hence D,, ((n + a + 2)(n + c + 1)/(n + 1)(x + a + 1))[L]2. Thus D,,.> 0 for x > 0 and
a > -1 at the points, where L+2 0.

!-/- ae+2 a+2]Case 2. If L,,+a L,, then Dn L,,+ltn+ -L, and from (3.8) we get

(3.13) xL,+-+l (c + x)L.
From (3.7)we get

(3.14) xL+ aL’d.
If we replace a by c + 1 in (3.8) and use (3.13) and (3.14) we find from (3.8)

(3.15) x2c+2L.+a [c(n + a + 2)-(a + x)(n + 1 x)lL

Similarly from (3.7) we obtain

(3.16) x2L+2 [a(n + a + 2)-(a + x)(n + 1)]L.

Hence

(3.17) xt,-.,+l-L, =(x + c)L.
Thus D,, ((x +a)/x)(L)z. Hence D,,>0 for x>0 and a >0 at the points where
L+ L, and we conclude the proof of the first part of the lemma. The second part
follows as in the proof of Corollary 2.3.

The proofs of the next lemma and theorem are similar to the proofs of Lemma 2.2
and Theorem 2.4 and consequently are omitted. An important difference is that the
zeros of L are monotone increasing functions of a.

LEMMA 3.2. If O<a<fl<y and D,(x;a, y)>0 for x>0 then D,(x;a, fl) for
x>0.

THEOREM 3.3. D,(x; a, fl)/(fl-a)>O for x >0 in the regions:
(i) 0<a </3_-<c+2,
(ii) O < fl < a <- fl + 2.

4. Remarks. Differential identities similar to (2.9) were used by O. Szfisz [5] and
by G. Gasper [3] in proving inequalities of Turan type. We observe that the inequalities
of 2 and 3 can be written in the determinant forms

(4.1) A,,(x; ce, fl) !

(4.2)
D,,(x; o, /3)= 1

/-a t-’
L L,,+
L L+I

>0,

This suggests the possibility of generalizing inequalities (4.1) and (4.2) to n x n
determinants as was done by S. Karlin and G. Szeg6 [4] for determinants of Turan type.
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FRANKL-MORAWETZ PROBLEM IN I3.

A. K. AZIZt AND M. SCHNEIDER$

Abstract. Using a variation of the a, b, c method, in this paper we obtain sufficient conditions for the
uniqueness of the solution of the boundary value problem L[u] K(x3)[Uxlxt + Ux2x2] + UX3X3 "3t- FU f in G and
ul6o)u,t2) 0, where K(x3) is a function of one variable satisfying sgn K(x3) sgn x3, and is a function of
three variables. Let G be a bounded simply connected region in i such that L[u] is defined on G, whose
boundary OG consists of the following surfaces:

(i) a surface d,)(x) 0 lying in x3 >0 and which intersects the plane x3 =0 in the circle x +x 1"
(ii) the characteristic surface b)(x)= -[Xl + x22]/2 +0 [_K(t)]I/2 dt= O"
(iii) a surface 4,2)(x) 0 which intersects x3 0 in the circle x +x 1.
Special cases of the present problem have been dealt with in the literature. However, it appears the

proofs of some of these uniqueness results contain crucial gaps. For more details we refer to the Introduction

and references contained therein.

1. Introduction. Consider the equation

(1.1) [ul := k(x3)(ux -[- ux2x2)-[- ux3x3 + r(x)u f(x)

in a bounded simply-connected region G of N3, where the function k(x3) 0 for x3 < 0
and the region G is bounded by the surfaces of the form: A piecewise smooth surface

2b()(x) 0 lying in x3 >0 which intersects the plane x3 0 in the circle Xl + x2 1. For
x3>0 by the characteristic surface of (1.1)

0

(1.2) &()(x)=-(Xx2 -bx22)1/2+ f (-k(t))1/2 dt=O
-x

and a piecewise smooth surface b3(x) 0 which intersects the plane x3 0 in x2 +x
1 and satisfies the condition

(1.3) k (x3)([b(3)]2 (3) (3) 2
X1 "+" [ ]2)"t-[X3 >0oX2

The condition (1.3) implies that the surface (3)(X)-- 0 lies inside the characteristic
triangle 4,(1)(x)= 0 and the characteristic surface

0

(1.4) !p(2)(x)=(x21+x)1/2-1+ fx (-k(t))l/2 dt=O.

In this paper using a variation of the a, b, c method we obtain sufficient conditions
for the uniqueness of the solution of the boundary value problem

(1.5) /S[u] f in G,

(1.6) U ()U(3) 0.

We note that the surface b (3) 0 may coincide with the characteristic surface b (2) 0. In
fact G. D. Karatoprakliev [3], J. S. Papadakis [6] and M. H. Protter [7] give uniqueness
theorems for the case b (3)__ b (2). In [3] a uniqueness result is given for the case b 3 b 2,
for the boundary value problem

(1.7) L[u]=f in G,
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914 A. K. AZIZ AND M. SCHNEIDER

In general, it is evident that in this case the problem is overdetermined. In [6] the
uniqueness of the solution for the boundary value problem (1.5), (1.6) is considered for
the case 2 3 and k(x3) -t- 1 for x3 -->< 0. The proof of the uniqueness in [6] contains a
gap on page 168. By private communication with the author we know that he presented
a corrected version of this uniqueness result at the 1975 spring meeting of the American
Mathematical Society (Missouri) not only for the case k(x3)-- 4-1 but also for the case
k(x3) x3 and the author mentions that the method of proof may be extended to the
case k(x3) x a, where n is an odd integer.

Similarly the proof in [7] contains a crucial gap on page 445, where it is stated that
the surface integral over $4 is positive-semidefinite. On the contrary, this surface
integral is negative definite. The second author in [8] gives a uniqueness proof for the
problem considered here, with the assumption that the solution lies in a restricted
function space.

Our proof of the uniqueness, which is a generalization of the techniques used in 1],
is based on the a, b, c method. Since this method is also useful for proving the existence
of weak and semistrong solutions by providing a priori estimates, we briefly indicate the
technique of how to use the method in 3 for a general linear equation of second order
(see Remark 2.1 below).

2. A priori estimates for the Frank-Morawetz problem. We consider the differen-
tial operator (1.1) in the form

(2.1) L[u] (Aku,,,)x, + Ru, i, k 1, 2, 3,

where

Aik(x)=O fori#k,

(2.2) A"(x)e cl((/)f"1C1((_), R(x)e C1((), and

X-"(Xl, X2, X3), G+=GI"q{x3>O}, G-=GI"I{x3<O}.

The repeated indices as a subscript or a superscript denote a summation over i, k
1,2,3.

Let a(x), ai(x), 1, 2, 3, be real valued arbitrary functions with

(2.3) a(x)e C2((+) C2(t_), a’(x)e C1((+) n C2((_);

then we get, using u,,ux,xj (uxku,,),j- u,u,,,

(2.4) o Uxl(Aiiux,)x, [otA ii )x, Aii 2ux, ux, l, (a u,,,Ux,-1/2[aAiiu2,,l

as well as corresponding terms for

ol 2Ux2(A iiuxi )xi,

and

o3Ux2(A iiux,)x

u(A ii ii 0 iiu 2 0 ii ii(2.5)

By (2.4) and (2.5) we get for the differential operator (2.1) the identity

3

(2.6) 2(au d- otiux,)L[u] pix, + (-aoo)U 2 + Y. (--a,k)Ux,Ux,
i.k=l
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where

p1 2(au q"ol. iUx,)AllUx + a l(ru 2 Aiiu 2x,)- u 2Allax,
A22 2(ru2 Aiiu 2 2A22 o(2.7) p2 2(aOu + a ux,) ux + a ,)- u ax,

A Aiiu2 2A33 op3 2(aOu + a u,) 33Uxa + aa(ru )- u aXi X3

a _2OR+(R), ,_, o,-- x)x,

a11= +
22 2

a22 -(AEai), + 2A (ax + o),
33z 3(2.8) a33 -(A33a), + 2A ta + o),

2 11 22
a12 a21 xA + x2A

3 11 33a13=aal:xA +xaA
3 22 2 33

a23 a32 xA + xaA

Let n =(n, n2, n3) denote the outer normal to OG. From (2.6) by use of Green’s
theorem, we obtain

2(u + u,)L[u] dx dx dx
G+UG_

(2.9)

+ aou2 + aikux,ux dXl dx2 dx3 pini ds.
i,k=l

G+UG- oG+LJoG_

We shall show that for a quasi-regular solution u of the Frankl-Morawetz problem
o(1.5), /[u] =0 in G with ul(o)u,(3)=0, the functions a and a, i= 1, 2, 3, can be

determined so that

(2.10) 0 <- pini ds aoou 2 Jr" aikUxiUxk KX1 dx2 dx3 < O;
i,k=l

aG+LJaG_ G+LJG_

o
thus it will follow from (2.10) that u- 0 in G. Hereby the functions a a have the
further property that the boundary integrals over the "parabolic" surfaces G
{x3 0:i:} vanish by cancellation.

DEFINITION 2.1. If the coefficients of (2.1) satisfy conditions (2.2) and the
functions a, a satisfy conditions (2.3), then we call a function u(x) a quasi-regular
solution of (2.1) if the following hold [4, p. 234]:

(i) u(x) satisfies/[u] =f( C(t)).
(ii) The integrals

I.fPini ds

Gr’){x3 =0-t

in (2.9) exist.
(iii) If G+/-(e) are regions with boundaries aG+/-(e) lying entirely in G/ and G_, then

surface integrals along the surfaces aG+/-(e) which result from the application
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of Green’s theorem to the integrals

G+/-(s) G+/-(s)

/’=1,2,3,

have a limit when OG+/-(e) approaches the boundary of G+ and G_.
To motivate our method of proof we first give a uniqueness theorem for a special
Frankl-Morawetz problem, namely, we consider the case where in (1.1), k(x3)--
sign X3IX3[ m, m > O.

THEOREM 2.1. The equation

[u] k(x3)(Uxlxl + Ux,x_)+ Ux3x3 + r(x)u =f(x)

where

k(x3) sign x31x31 m, m >0; r(x) C1(), f(x) C(r),
has at most one quasi-regular solution in G satisfying the boundary condition
0 if the function r(x), the surfaces qb (o) and qb (3), satisfy the following conditions"

4
(2.11) m+2r et gradr>-0 inG,

(2.12)

where

" grad b()16(o, ainil,(o>O,
t" grad b(3)16) a ni]t3)=> 0,

o(al 3 ( 2)O O )-- Xl X2 X3
m+2

Proof. Suppose there exist two solutions ux and u2; let u Ul-u2. By (2.9)

P n dS aoou + Y aUx,Ux dxa dx2 dx(2.14) 2

i,k=l
aG+UaG_ G+UG_

where the functions P, a, aik correspond to (2.7) and (2.8).
(i) By choice of

2 3 2 o m+l
(2.15) a =x, a =x2, a =x3, a

m+2 m+2’

we have
3 4

aikUx,Uxk ----O, a r + ot grad r;
i,k=l m+2

thus the right side of (2.14) is nonpositive under the condition (2.11).
(ii) For the boundary integrals over the surfaces b( and b(3) we get from (2.7)

ff
(/) ()U (/) (3)

ii 2 2A kkog 0{2(aOu+aiu,,,)AkkUx + a k(ru2 A Ux,)- u x}nkdS.

With.the choice (2.15), Ux, (Ou/On)n on the boundary, u16(o)6(= 0, and we have

I3= f f (nn) 2{tiniAkknkrtk} dS"

d) tO)ud)(3)
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For X3 > 0 (in the elliptic part ,of the region) we have Akknknk > O; on the boundary 4 (3)

we have Akknknk >--0 by condition (1.3); thus I1 >0 with (2.12) and (2.13).
(iii) It remains to show that

11 := P ni dS >= 0

where
o

z)1/2 I, 2 (_x3)<,+2)/24<1>= -(x + x2 + (-k(t))1/2 dt -r +m+2 0.

By a simple calculation with x r cos b, x2 r sin b we have

(m+2)m/(m+2)I fR(6){m+lrrn/(m+2)+l rm/(m+2)+2U2(2.16) I 2
2 =o ,=o m + 2

uu + dr d.

Now by integration by parts we have

(2.17) m+2/ [
R(, f/ (R,6>r/(+2>+UU drd r/(+2>u2 dr d.

m +1 =o at=0 =0 at=0

Thus

rm/(m+2)U 2 dr d&
=0 ar=O

rm/<m+2)U 2 dr d-m + 1 =o ,=o

(3 +4)/(m+2) 2r u, drd
0 at=0

We now have
2r

f
R(4,)

(2.18)
,=o

Using (2.17)in (2.18)we have

rm/(m+2)U2 dr d4 <
m r(3m+4)/(m+2). 2

u dr d4.
m =o ar=O

I fR(4’){ m+l m/(m+2)+l rm/(m+2)+2.2}
=0 :r=0 m + 2

r uur + u dr d& > O.

The last inequality implies 11 ->_ 0.
(iv) With the choice (2.15) the boundary integrals

IIP’n, dS

Gfq{x3=0+/-}

vanish by cancellation.
Under the hypothesis of Theorem 2.1 we obtain from (i)--(iv) that

Ou
=0.(2.19) ul*’’= -n ,,o,

By elliptic theory (see [5, p. 60]) we get u =0 in G/, but this implies u -=0 in G_, since in
this case u[x3-_o (Ou/on)l-_o 0 and u[6,3,= 0.
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The proof of Theorem 2.1 indicates the way for proving an analogous uniqueness
theorem for Frankl-Morawetz problem in the general case when the function k (x3) - 0
whenever x3 <>- 0.

The central idea is to choose the functions a a 1 2, 3 in such a manner that
the quadratic form ik=l aikUx,Uxk 0 in G and the boundary integral 0/u0_ Pini dS
in (2.10) is nonnegative.

We consider

(2.20) L[u] k(x3)(Uxlxl + Ux2x2)+ Uxsx3 + r(x)u =f(x)

where it is assumed that the functions k (x3), r(x), f(x), a(x) and a (a 1, a 2, a3) satisfy
the following hypotheses.

Hx. (a) k(x3) C()f’l C3(+)n C3(-), r(x) C’(), f(x)s C(),
(b) 2

Xl, X2,

0
3 --1/2 [ 1/2a =-lk(x3)l {k(t)l dt andx

2= I-sign x3lk(x3)1-3/
H2. (a) a

o
+

(b)

(c)

H. (a)

(b)

0 0 -’0 O
3 3

a,s+ a
_

+ a_ 0 in G {X3 0"+’},

-aoo 2aOr_(rai)x + k(x3)(ao o o >0XlXl -[-
X2X

"[-
X3X

in G/ and G_, and ao is integrable over G/ and G_,

a. grad b([o aini[,o, > O,

o. grad b (3)16() a nl,,, >= O.

{(-k)l/2r2gr- 2g2}1-, => O, {g,(r)}l(- >- 0

and g2/gr is integrable on (1), where
o

f (-k(t))1/2 dr, g(r)= a(-k)I/2r+h(r), h(r)= (-k)l/2ra (r).
-x

lim g(r)= lim h(r)= 0 on b (1).
rO rO

3

aikUxiUxk =0,
i,k=l

ao _2aOr + (rai), k(x3)(ao o o
XlXl

"[-
X2X ) O[ X3X3

thus the right side in (2.21) is nonpositive under the hypothesis Hz(b).

(2.21)

(i) Using a, a i, 1, 2, 3, as given in H(b), we have

If pinidS= Iff (au2+ .aikUx,Ux,)dxldx2dx3.
i,k=l

aG+UaG_ G+LJG_

THEOREM 2.2. If the hypotheses H1-H3 hold, then there exists at most one quasi-
regular solution of (2.20) in G satisfying the boundary condition ul6(o,(s= 0.

Proof. Suppose u and u2 are two solutions of (2.20) satisfying the boundary
conditions ui16(o6( 0, 1, 2; let u Ul-u2. From (2.9)we have
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(ii) From (2.7) and H2(c), using the same argument as in Theorem 2.1 we obtain

P nidS>=O.

(iii) It only remains to show that

where

To this end we consider

P nidS>-_O

o

b(x)= -r + Ix (-k(t))x/2 dt O.

2,rr R

(2.22) Ix= I6,-o Ir =o [2a(-k)l/2ruur+2(-k)X/2r2u2(-k)a/2ra] drd.
From H3(a, b) and integration by parts we have

2 R

2uurh (r) dr dqb u drd
=0 =0 =0 =0 =0 =0

u2(-k)X/2ra dr d&.

Thus

2r R

Similarly, we get

{2uu[ce(-k )l/2r + h(r)] + 2(-k)X/2r2u2 } dr d.

2.n" R 2"n" R

I6 Ir 2UUr[a(-k)l/2r + h(r)] dr db I4, Ir 2uurg(r) dr
=o =o =o

(2.24)
2’n" R

u g(r) dr
=0 =0

Using the above relation we obtain

(2.25)
2-n- R

ix= I,/,=o Ir=O {-U2gr(r)+2(-k)l/2r2u2r} drd4.
Since by H3(a), gr(r)>-_O on b (x), integration by parts and Schwarz inequality yield

2-rr R 2"n" R

l--f,/,=o Ir=0 U2gr(r) dr d4l ].I,_-o Ir=0 Ugr(r)1/22Urgr(r)-l/2g(r) dr d4[
=< ( U 2gr dr d4

=0 =0 =0 =0

Thus
2,n" R 2,rr R 2

u g(r) dr dc < 4u2g dr dqb.
=0 =0 =0 =0 gr

2

) 1/2

4u2 g drd
gr
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Noting that
2-rr R 2-n" R

I6 Ir 2UUrg(r) dr dck I, Ir u2gr(r) dr
-o =o --o

we conclude from (2.25) that

(2.26) I__0 =0

4u2g+r
gr

2uurg(r dr dk > O.

P ni dS >= 0 providedFrom (2.25) and (2.26) we obtain 11 1
2

2(-k)l/2r2-> 4g on b),
g

which is precisely our first condition in H3(a).
(iv) With the choice of the functions tz, c i, in Hi(b) and the hypothesis H2(a), the

boundary integrals nx3--o+/-r Pn dS vanish by addition.
Under the hypotheses of Theorem 2.2, we getJfrom (2.21) that

u},,o,= =0,

from which it follows as in the proof of Theorem 2.1 that u -0 in G.
Remark 2.1. If k(x3) sign x3lx31m, m > 0, then we have a special case of Theorem

2.1. To see that the conditions of Theorem 2.1 are satisfied, we observe that in this
special case hr(r)= 0, and since lim_,o h (r)= 0 we have h (r)= 0,

g(r)=
m + l ( m + 2)’/"+2)r"/’+2+l andm+2 2

(_k,1/2 2
) g-2g =0.

Remark 2.2. The method used for the uniqueness theorem is also useful for
proving the existence of weak and semistrong solutions by providing a priori estimates.
To show how to use this method for a general linear equation of second order in I3 we
consider the differential operator

(2.27) L[u] (Aikuxi)x "Jr" B ux, + Ru, i, k 1, 2, 3,

where Aik (X) 0 for k. The equation (2.27) may be written as a Pfailian form of third
degree by the use of e-tensor

(2.28)

(2.29),,

for an even permutation i, r, of l, 2, 3,
for two same indices,
for an odd permutation i, r, of 1, 2, 3.

Corresponding to (2.27) we introduce the forms

dnlg ikeiaA u,[dx, dxt]
=Alluxa[dx2, dx3]-A22uxz[dx x, dx3]+ A33ux3[dx 1, dx2],

0 eiaB [dx, dxt],
3

1 R-
i= 10Xi

For the geometrical interpretation of d,,u we refer the reader to [2]. The differential
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operator (2.27) now may be expressed as a Pfaffian form of third degree given by

(2.30) L[ul[dxX, dx2, dx3l [d, d,ul + td, uOl + Ru[dxl, dxZ, dx3I.
Let a(x), ai(x), 1, 2, 3, be real valued arbitrary functions and

2wz=cz [dx ,dxa]-aE[dx dxal+a[dx dxE]
then we consider the second order Pfaffian form

ii 2 0(2.31) l=2(ai+aiux,)d.u+(Ru2-A Uxi)O)2 uZdnot +ou20.
A formal calculation gives

dx dx + aoou + Y. aikUx,Uxk(2.32) [d, 1] 2(au +a ux,)L[u][dx 2, 3] 2

i,k=l

[dx 1, dx 2, dx3]
where ak ak and these functions depend on Ak, a and a i, 1, 2, 3, in a way similar
to (2.7), (2.8). By the use of the Green theorem we have

from which we obtain a priori estimates by special choice of the functions a, ai(x).
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A BIFURCATION PROBLEM FOR A NONLINEAR
HYPERBOLIC PARTIAL DIFFERENTIAL EQUATION*

G. F. WEBB

Abstract. The stability of equilibrium solutions of the damped nonlinear wave equation w, + 2cwt-
wxx-A/(w)=O, a >0, A >=0, is investigated using Lyapunov stability techniques. Under appropriate
conditions on f it is shown that for A,, <A -<A,,+I, A,, =n2/[’(O), n =0, 1,2,. ., there are exactly 2n+
equilibrium solutions and all solutions exist globally and approach exactly one of them as approaches .

1. Introduction. The objective of this paper is to study the asymptotic behavior of
solutions to the damped nonlinear wave equation

w,(x,t)+2aw,(x,t)-Wxx(X,t)-Af(w(x,t))=O, 0<x <Tr, t->0,

(1.1) w(O, t)= w(Tr, t), >=O,

w(x, O)= 4(x), w,(x, 0)= (x), 0< x <

where ce is a positive constant and A is a nonnegative parameter. The conditions we
require on f allow the cases that f(w)=sin w (sine-Gordon equation) and f(w)=
aw-bw3; a, b >0 (Klein-Gordon equation). Out results extend and refine results
obtained by different methods due to R. W. Dickey in [5], [6] and A. J. Callegari and E.
L. Reiss in [1]. The approach we take is to reformulate (1.1) in a Banach space as an
abstract first order ordinary differential equation whose solutions define a dynamical
system. We then apply Lyapunov stability techniques to investigate the large time
behavior of the solutions as a function of the parameter A. Our treatment is analogous to
that of N. Chafee and E. F. Infante in [2] who considered a similar problem for a
parabolic equation. We will follow the development of D. Henry [7] who extended and
abstracted the ideas of Chafee and Infante in the parabolic case.

Our results can be summarizedin the following way: Let A= n2/f’(O), n
1, 2,. . If 0 _<-A <-A 1, then all solutions of (1.1) exist globally and approach the zero
stationary solution b0---0 as t-+. If A, <A-<A,+, then there are 2n additional
stationary solutions bk,+/-, k 1,. , n, and every solution of (1.1) exists globally and
approaches exactly one of them as - +. In this case &,+/- are locally asymptotically
stable and bo, bk,+, k 2,. , n, are all unstable.

In 2 we present the abstract theory which we shall require. In 3 we formulate
(1.1) abstractly and apply the results of 2. For the sake of completeness and clarity we
will provide careful details for all proofs except those which may be found elsewhere.

2. The abstract problem. LetX be a Banach space with norm I1" and let A: X X.
We make the following assumption on A:

A is a closed linear operator in X and there exists a closed linear operator B in
(2.1) X such that B2 -A and B-1 exists with domain all ofX and is compact from

XtoX.

Let [D(B)] be the Banach space which is the domain of B with the norm I111 IInll,
4D(B). Let Y denote the Banach space which is [D(B)]X with the norm

* Received by the editors February 10, 1978.

" Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37235. This work was
supported in part by the National Science Foundation under Grant NSF 75-06332 A01.
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I1(, )11-- (1111 +11[I) x/z, ekeD(B), OX. Let a R and let 4: Y Y by

(2.2) 4(b, 4t)= (if, ab 2aft), D(4) D(A) D(B).

We make the following assumption on :
(2.3) is the infinitesimal generator of a strongly continuous group T(t), in Y

satisfying [T(t)[ <-Me -v’, , where M and , are real constants.

We make the following assumptions on the (nonlinear) operator F from [D(B)]
to X:

(2.4)

(2.5)

F is continuously (Fr6chet) differentiable from [D(B)] to X in the sense that
(i) for each 4D(B), F(4+4)=F(c)+Lc+g(4) for all cD(B), where
L: [D(B)]-X is bounded, linear, and everywhere defined, and g: [D(B)]-X
satisfies IIg(x)- g(2)ll-<- c(r)lla- 211 for all bl, &z D(B) such that

--< r for some continuous function c1: ++satisfying c1(0) 0; and (ii)
def

L F’(4) is continuous in b from [D(B)] to the Banach algebra of bounded
linear operators from [D(B)] to X;

F(D(B))cD(B) and there is a continuous increasing function cz: ++
such that IIF( )[l --< c2(11 11 ) for all b D(B).

We now define the (nonlinear) operator 0% from Y to Y by

(2.6) ((b, )) (0, F(b)), D(--’) Y.

The following fundamental theorem of I. Segal will provide the local existence and
the uniqueness of solutions of (1.1). Its proof may be found in [11, Thm. 1, Corollary
1.5, and Lemma 3.1].

THEOREM 2.1. Let (2.1), (2.3), and (2.4) hold. The following are true:
(i) for each (, ) Y the maximal interval [0, to), to to(b, ), of the necessarily

unique continuous function u(. 4, ) from such an interval to Y such that

(2.7) u(t; , )= T(t)(, )+ T(t-s)(u(s; , )) ds

has positive length, and either to + or Ilu(, , g,)ll- is not bounded on [0, to);
(ii) u(t; ok, O)is a continuou function of and (ok, ) in the sense that if (ok, ) Y,

0 <- < to(Ok, O), and e > O, then there exists 6 > 0 such that if [[(b, ) (, < then
t< to(C, ) and Ilu(/; , )-u(t; c, )llv < e ;and

(iii) /f (b, ) 6 D() then u(t; c, ) D() for 0 <- < to(Ok, 4), and on
[0, t0(b, )), u(. b, ) is continuously differentiable and satisfies
(2.8) (d/dt)u(t;

Now we define q’l, 77"2 as the projections of Y onto [D(B)] and X, respectively,
given by zrl(b, 0) b and 7r2(b, )= O. Then (2.8) implies that for (&, O)D(sg),
0 <_- < t0(b, ),

(2.9) (d/dt)Tru(t; ok, )= zrzu(t; 4, ),

(2.10) (dZ/dt)Trxu(t; qb, O)+ 2a(d/dt)zrxu(t; b, t)=ATrlU(t; , 4t)+F(Trlu(t; , O)).
The following theorem will be of essential importance when we apply Lyapunov

stability methods:
THEOREM 2.2. Let (2.1), (2.3), (2.4), and (2.5) hold and let y >0 in (2.3). Let

(c, ) Yand letthe solution u(. , q) of (2.7)be defined andboundedon [0, c). Then
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{u(t; , O):t -->0} is a pre-compact set in Y.
Proof. Since {u(t; , O) t_->0} is bounded in Y, we have that {BTrlu(t; , 0) t->_0}

is bounded in X. By (2.5) {BF(Trlu(t; cb, 0)):t>_-0} is bounded in X. Since B-1 is
compact in X, we must have that {F(zrlU(t; , O)): _>--0} is pre-compact in X. Thus
{o%(u(t; &, O)): _-> 0} is pre-compact in Y, which together with the strong continuity of

def
T(t), R, implies that for every -_->0, K {o T(s)(u(t-s; , )) ds’t_-> r} is
pre-compact in Y. Now let N be a positive constant such that [I,(u (t; , ))11- _-<N for

def
t=>0 and define for every ->=0, L {(, )
Then u (t; , if) L +K for => -, since

T(t)(, )+ T(s)(u(t-s; , 0)) ds <--Me-"(ll(,
Y

To establish the conclusion it suffices to show that if {tn} increases to +oe, then
{u(tn; &, O)} has a convergent subsequence in Y. To achieve this we will use the concept
of the a-measure of noncompactness due to K. Kuratowski [9]: if E is a bounded subset
of Y then a [E] is the infimum of e > 0 such that E can be covered by a finite number of
sets of diameter no larger than e. We require the following facts: if El, E2 are bounded
subsets of Y, then (i) E1 c E2 implies a[E1] =< ce [E2]; (ii) a[E] 0 iff E1 is pre-compact;
(iii) c[E1UE2] max {alEx], a[E2]}; and (iv) alE1 +EE]<-a[E1]+a[E2] ((i), (ii), (iii)
follow directly from the definition of a[.] and (iv) is proved in [4]). Let e >0.
There exists k such that a[Lt+Kt]<e. Then, a[{u(t,;&,)’n=l,2,...}]=
a[{u(t,; , b): n k, k + 1,...}]_-< a[Lt +Kt] < e. Hence, ce[{u(t,; , 4’)" n
1, 2,. .}]- 0 and the proof is complete.

Our next two theorems, which are similar to Theorems 5.1.1 and 5.1.3 in [7], use
the fact the property of being the infinitesimal generator of a strongly continuous group is
preserved under bounded perturbations [8, Thm. 2.1, p. 495].

THEOREM 2.3. Let (2.1), (2.3), and (2.4) hold. Let be an equilibrium point of
(2.10), that is, D(A) andA +F().= O. LetF( /) F() /F’() + g() for
all e D(B) as in (2.4). Let : Y--> Y be defined by L(, )= (0, F’()) for all
(, d/)e Y and let the strongly continuous group f(t), in Y whose infinitesimal
generator is M +L satisfy

(2.11) [f;’(t)[<-ie -/t for >=O and constants lf/I>= l, 3>0.
Then (, O) is locally asymptotically stable in the sense that

(2.12) thereexistse>O,N>-l, and6>Osuchthatif[l(,O)-(,O)[Iv<-e thenthe
solution u(t; , O)of (2.7)exists on [0, o)and satisfies ]]u(t; , 0)-(, O)]]v -<
Ue-’ll(, 0)- (, 0)11- [or all >= O.

Proof. Since g(0)= 0, there exists el > 0 such that IIg()ll--< (,)/(2t))ll II if I111 <
e 1. Let e e 1/(22/), let I1(, )-(, 0)llY -<-, and let tl <-az be the largest extended
real number such that flu(t; 4,, 4,)-(,0)11--<- for O<-t<h, where u(t; , O) is
defined on its maximal interval of existence. We will use the fact that

(2.13)

def IOw(t) "(t)(&, 0)+ ’(t-s)h(s) ds

r(t)(, O)+ T(t-s)(w(s)+h(s)) ds

for all (, 0) e Y, e N, and h e C(N; Y).
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(Condition (2.13) holds for ($, ) D(M) D(M +) and h C1([; Y) by Theorem
1.19 of [8, p. 486] and hence for all (&, ) Y, h C(; Y) by the strong continuity of
T(t), and T(t), ). Then, for 0 < t we have

0u(t; , )= r(t)(, )+ r(t-s)(O,F()

+’((u(s; , -+(u(s; ,-s

(tl(, + o (t- sl(O, f(l

-’((+g(.(s; ,-s.

Since u(t; ,0) and g(O) O, we have for ONt<q,

$)-(, O)llv e-’ll($, $)-(, 0)11 + o e-(’-s)llg(lu(s; $’ $)--)[ dsIlu(/;

Thus, for 0 _-< < tl,

/’[lu(s; 4,, )-(,, O)llvds

and Gronwall’s lemma implies

Ilu(t; , O-(& o11 <-11(, 0-(, olle-/ <=1 -/.

But this means that t and also (2.12) holds with N and 8 /2.
THEOREM 2.4. Let (2.1), (2.3), and (2.4) hold. Let be an equilibrium point of

(2.10), that is, D(A) andA +r() O. LetF( + O) F(t) /F’() + g(&) for
all &D(B) as in (2.4), let : Y- Y be defined by L(O, )=(0, F’(O)O) for all
(&, O) Y, and let f(t), , be the strongly continuous group in Y whose infinitesimal
generatoris +. Let Y Y1 O) Y2 with Y 0 and lettrl, 0"2 be the projections of Yonto
Y1, Y2, respectively. For each let (t)Y YI and f(t) Y2 Y2 and let K >- 1 and
to 0 be constants such that

(2.14) [[(t)(0, 0)ll--<Ke3’’ll(O, O)[Iv for t_<0, (O, 0) rl,

(2.15) II#(t)(O, o)llv<=Ke"[[(O, 0)llY for t_>0, (O, O)e Y2.

Then (, O) is unstable in the sense that

there exists e >0 and a sequence {(&,,,.$,)} in Y such that {11(, )-
(2.16) (, O)llv}--> 0 and sup,__>o {[[u(t; 4’,, 4,,)-(4’, O)llv}->- e (where the supremum is

taken over the maximal interval of existence o[ u(t; &,, )).

Proof. Choose r >0 such that K(Icrl+lcr2l)c(r)/oa <1/2 and glcr21c(r)r/to <r/(4K)
where c is as in (2.4). Let y Yx such that K[crl[cl(r)r/w < IlyllY/2 <r/(4g). We claim
that for each z -> 0 there exists a unique function v(. )" (-, r] Y such that

v(t) (t-r)y- ’(t-s)o’(O, g(rv(s))) ds

(2.17)
4- (t--S)tr2(O, g(Trv(s))) ds, t<-r,
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(2.18) IIv (t)l[,, < r ez(t-’), <= -.
To establish this claim define the complete metric space {(2, II1" III} by

(2 {v C(-, ; Y) llv(t)llv <- r e2(t-z), z}

I[[vl[[ sup e-2(-)llv(t)llv.
tz

Define H: O O with (Hv)(t) as the right-hand side of (2.17). Then H maps O into Q,
since for v e Q, <-z,

[[(Hv)(t)[iv<=Ke3(t-’)[lyllv+ ge3"(t-)ltrlcl(r) re2"(-’) ds

+ K e’(’-Slo.2]cl(r)r e2’(s-’ as

-<- g(llyllv + (lrl + [r21)c(r)r/o) e=’-’.
Also, H is a strict contraction in Q, since for v, t3 e Q, -< -,

II(Hv)(t)-(H)(t)llv <= ge3(’-slrl]cl(r)llv(s)-e(s)llvds

+ I_ ge(’-)lrlc(r)l[v(s)-(s)llvds

By the contraction mapping theorem, H has a unique fixed point v(t)= v(t; z) Q,
which is also the unique solution of (2.17).

Now define y, v(0; n)+ (, 0), n 1, 2,. .. We claim that

(2.19) v(t;n)+(&,O)=u(t;y,), n=l,2,..., O<=t<=n.

As in (2.13)

v(t; n)= T(t-n)y + In T(t-s)[(O,F’()Trcrv(s; n))+o’(0, g(zrlV(S; n)))] ds

+ r(t-sl[(O,F’()rrv(s; n))+ r(O, g(rv(s;

0

r(t)( t(-n)y + -Inf T(--S)[(O,F’(()TI’10"11)(S’ n))+ o’1(0, g(Trlv(s; n)))] ds

0-- I_ T(-$)[(O’V’(f)71"l’21)(s’/’/))+0"2(0, g("B’l)(s; n)))]ds)
+ T(t-s)(O,F’()Trlv(s; n)+g(zrxv(s; n))) ds

T(t)v(O; n)+ T(t-s)(O,F(+rv(s; n))-F(r)) ds

r(t)y-(, 0)+[ r(t-s)(O,F(,+.v(s; n)))ds.
.o

By the uniqueness of solutions to (2.7), (2.19) must hold.
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Finally, {lly,-(, 0)llY}-0 by (2.18), and supo=<,_, [lu(t; y,)-(, 0)llY
since Ilu(n y.)-(& 0)11,- IIv(n; n)[[Y>=[lyllY-"_oge’("-S)[o’zlcx(r)re 2’(s-") ds
[ly glzlc(r)r/.

3. The bifurcation problem. We now apply the abstract theory developed in 2 to
(1.1). Let X =L(0; ; ) with inner-product (., .). Let A" XX be defined by
A6 &", D(A) {& eX" 6, &’ are absolutelycontinuous, &" eX, &(0) &() 0}.We
observe that A&==-n=(&,X,)X,, &eD(A), where X,(x)=(2/)/ sin nx, n=
1, 2,..., is a complete set of orthonormal vectors in X. Let B’X X be defined

absolutely continuous, &’ X, 6(0) 6() 0}. We observe that B2 -A, B-&. (l/n)(&, X.)X., D(B-x) =X, and B- is compact from X to X. Thus, (2.1) is
satisfied.

If M is defined as in (2.2), then (2.3) is satisfied, where T(t), is given by

(3.1)

T(t)(ck, 4,) Y. [(b, X,,)U,,(t)+(dj, X,,)V,,(t)]X.,
rt=l

E [(ck, x.)U’,,(t)+(g,,x.)V’.(t)]x (6,) Y, t,
n=l

e-"t(cos h(x/aZ-n 2 t)+(a/4a2"n) sin h(4re n t)),

(3.2) U,,(t)= e-t(1 + at),

e-’(cos (/n a t)+(a//n a sin (/n--r-L-a t)),

2 2n <a,
2 2n =re,
2 2

(3.3)

(e-"//re- n2) sin h (/re2- n2 t),

V. (t) e -’t,
)[ (e-"t//n re sin (/n z re2 t),

2 2
?’/<re,

2 2n =re,
2 2n >re

[12, p. 112-115]. From (3.1) we see that there exist constants M >= 1 and ), e R as in
(2.3). Furthermore, if a > 0, then we may take y > 0.

The conditions we require on f in (1.1) are exactly the same as those in [2]. Let
f: R N such that:

(3.4)

(3.5)

(3.6)

(3.7)

f is twice continuously differentiable on ;
f(O)=O and f’(O)>O;

lim sup f(x)/x <=O;

sgn f"(x) -sgn x for all x .
For a given A => 0 define F" D(B)X by

(3.8) (F(6))(x)=A/(qb(x)), 6eD(B), O<-x<--’rr.

Our next goal will be to verify that F satisfies (2.4) and (2.5). We first observe that

supo_x_<_,, I&(x)l <=’,/ IIB&[I and 11611 <- IIB6II for all & e D(B).
def

To establish (i)of (2.4) let D(B), let (Lrp)(x) f’((x))r(x) for 0<x < r, and
let c(r)-supll_,/lls$11+ If"(x)l. Let g()=F(g +r)-F(g)-Lr for D(B), let
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r > 0, and let IIll, I1=11 -<- r, Then

IIg(41)- g(42)112 A 21 f(4(x)+ (x))
-/((x) + (x))-f’((x))ffx)- (x))l dx

2 f
(x)+(x) 2= I0 [d(X)+2(X)(f(x)f"(r)dr)ds] dx

ac(rl [((xl-(xl/] &

(A 2c(r)2/4)llB(& + &)llllB (&l- =)11=
cl(r)=lll- =11

where c(r)= Ac(r) r. A similar argument shows that IILOlI A (sup,, If’(x)l)
def

IIIIB for all & eD(B) and L =F’()is continuous in as in (ii) of (2.4). Next let
& D(B) and define (r)=A sUpxl/’(x)l. Then F(&) is absolutely continuous,
(F(&))(0) (F(&))() 0, and (F(&))’ X, since

((l’(xl ax ’((xl’(xl ax

e(lIB& II)[IBO =.
Thus, we have shown that (2.5) holds with c(r)= (r)r.

We may now apply Theorems 2.1, 2.2, 2.3, and 2.4. Our next goal will be to prove
THEOREM 3.1. Let a O. For each (&, ) Y the solution u(t; &, O) of (2.7) exists

and is bounded on [0, ).
Proof. We define the Lyapunov functional V" Y , D(V)= Y, by

io(3.9) V(, o)= ()(IIII+IIII=)-A J((x)) dx

where J(x)= o [(s) ds. It follows from (3.6) that there is a constant k > 0 such that
J(x) x/(4A) + k for all x . Then, for (, ) Y we have

()11 I1. + ()1111= k.

Thus, for (, ) Y, 0 < to(6, ), we have

(3.0) Ilu(t; 6, 6)[l4(V(u(t; 6,

If (6, 6) D() then the symmetry orB, (2.9), and (2.10)imply that for 0 < to(, )

(d/dt) V(u(t; , ))= (.B(d/dt)u(t; , ), Bu(t; , ))

+((d/dt)r2u(t; , O), 2u(t; &,

-A(f(lU(t; , )), (d/dt)lU(t; , ))

(3.11) =(-Au(t; , )+(d2/dt2)u(t; , )
-Af(u(t; , )), (d/dt)rlU(t; ,

=-2all(d/dt)u(t; , )11=
=-2ll=u(t; , )11=.
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Then, (3.11) implies that for all (b, 0) e D(s4), 0<_-t < t0(b, 0),

I0(3.12) V(u(t; ok, 0)) V(b, g,)-2c II zu(s; O)ll ds.

Since D(M) is dense in Y, the continuity of V and of u(t; 4,, g’) in the sense of Theorem
2.1 imply that (3.12)must hold for all (b, g,) Y, 0<-t < to(b, 0). Since a >=0, (3.10) and
part (i) of Theorem 2.1 yield the desired conclusion.

THEOREM 3.2. Let a >= O. Define S(t)y u(t; y) for >- O, y Y. Then, S(t), >= O, is
a dynamical system in Y in the sense that:

(3.13)

(3.14)

/’or each >- O, S(t) is a continuous mapping from Y to Y;

for each y Y, S(. )y is a continuous function from [0, c) to Y;

(3.15) $(0) I, the identity mapping on Y;

(3.16) S(t)S(s)y S(t + s)y for all s, >-0, y Y.

Proof. The conclusions are true by virtue of Theorem 2.1 and Theorem 3.1. We
observe that (3.16) holds because of the uniqueness of solutions to (2.7).

The following theorem is proved in [7, Thm. 4.3.3]:
THEOREM 3.3. Let S(t), >-_ 0 be a dynamical system in the complete metric space C.

def
Let C and let the orbit y() {S(t) >= 0} of be a pre-compact set in C. Then the

def
o-limit set oJ (13) {y C" there exists tn -> oo such that S(t,) --> y } of is nonempty,

compact, connected, and dist (S(t), oo())--> 0 as t-->
def

THEOREM 3.4. Let a > O. Let E {(4, ) Y 4 6 D(A), Ark + F(ck) O, and
g, 0} be the set ofequilibrium points of (2.10). Then, dist (u(t; ok, 0), E) --> 0 as --> oo for
all (ok, g,) Y.

Proof. Since a > 0, we may take 3’ > 0 in (2.3). By virtue of Theorems 2.2, 3.1, 3.2,
and 3.3 the solutions u(t; 49, O) of (2.7) define a dynamical system in which orbits are

pre-compact and w-limit sets are nonempty, compact, connected, and dist

(u(t; d, O), o(b, tp)) - 0 as t- c. Thus, it suffices to show that if (, ) o(b, 0) for a

given (4’, 4’)e Y, then (, )eE. Since (3.10) and (3.12) hold for all (b, 0)e Y, we
have that V(u(t; d, 4’)) is bounded below and nonincreasing for t_->0. Let q=
limt_, V(u(t; 4’, 4’)) and let (, ) e o(b, tp), so that (, ) lim,_ u(t,; d), O) for
some sequenceAtnffoo. Since V is continuous, V((, t))= q. But if (,
then so is u(t; d, O) for all _->0, so that V(u(t; d, 0)) =q for all _->0. From (3.12) we
must have that zr2u(t; , )=d)=0 for all t>_-0. Now we observe from (3.1) that
(d/dt)Trl T(t)(4, 0) zr r(t)(d, 4,) for all (b, 0) e Y, . Then we see from (2.7) that
(d/dt)rlu(t; , 0)=zr2u(t; d, 4’) for all (d,, 0)eY and t->_0. Thus, we must have
(d/dt)TrlU(t; b, 4’) 0 for all >- 0, so that u(t; b, ) (, ) for all >_- 0. From (2.7) we
see that T(t)(,, ,)= (, ,)-; T(s)(, ,) ds is differentiable with respect to t, so that
(, )D(M) and s4(d, 4’)=-(b, 0), or equivalently, (, g)e E.

The proof of the following theorem is given in [2, Theorem 5.5].
THEOREM 3.5. Let An =n2/f’(O), n =0, 1,..., and let An <h <-hn+l for some

n 0, 1,. .. There exist exactly 2n + 1 functions d) X satisfying

(3.17)
A4 +F(ck) O, D(A), or equivalently,

"(x) + xf((x)) 0, 0 < x < , (0) (r) 0.

If we designate these functions as Co and (k,+/-, k 1,..’, n, then 4o=-0 and for
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k 1,’’’, n, ,+(0) > 0, ,_(0) < 0, Ck,+/- vanishes exactly (k- 1) times in (0, zr), and
sgn f(k,+/-(X))= sgn &k,+(X) for all x (0, zr).

In [-2] it is proved that as h increases through An the pair of equilibrium solutions
Cn,+/- bifurcates from 0 in the sense that sup0<_x, I ’n,+ (X)I 0 as h - An from above. As
our last theorem we prove

THEOREM 3.6. Let a > O. Let An, n 1, 2, , and let o, rbk,+/-, k 1, , n, be as
in Theorem 3.5. The following are true:

(3.18) if 0 <-h <-_ h and (cb, O) Y, then the solution u(t; cb, tO) of (2.7) converges in
Y to (0, O) as oo;

(3.19) if /-n </. /.n+l for some n 1, 2,... and (rb, O) Y, then the solution
u(t; rb, O) of (2.7) converges in Y to exactly one of (4)0, 0), (k,+/-, 0), k
1, , n as t

if /.n </ .n+l for some n 1,2,..., then (1,+/-, 0) are locally asymp-
totically stable in the sense ofTheorem 2.3 and (o, 0), (k,+/-, 0), k 2," ’, n,
are unstable in the sense of Theorem 2.4.

Our proof of Theorem 3.6 is based on the ideas of [7, 5.3]. We first prove the
following lemma:

LEMMA 3.7. Let a C[O,r; R] with r>O and let g,h C:[O,r; R] such that
g(0)= h(0), g’(0) h’(0) > 0, and h"+ah =0 on [0, r]. The following hold:

(3.21) if h > 0 on (0, r) and g" + ag >- h" + ah on (0, r), then g >-_ h on (0, r];

(3.22) if h > 0 on (0, r) and g" + ag < (<-)h" + ah on (0, r), then g < (<-)h on (0, r];

(3.23) if g > 0 on (0, r) and g" + ag < (<=)h" + ah on (0, r), then g < (<-)h on (0, r].

Proof. To prove (3.21) observe first that limx-,0 g(x)/h(x) limx-,0 g’(x)/h’(x) 1.
Since (g/h)’=(hg’-gh’)/h:, it suffices to show that hg’-gh’>=O on (0, r). But (hg’-
gh’)(O) 0 and (hg’ gh’)’ hg"- gh" >= hh" + ah : agh gh" (h g)(h" + ah 0 on
(0, r). The proof of (3.22) is similar to the proof of (3.21) except that one shows
hg’- gh’ < (-<)0 in (0, r). To prove (3.23) observe that since h (0) 0 and h’(0) > 0, there
exists rl 6 (0, r) such that h > 0 on (0, rl). Assume h(r) 0. Then g < (-<)h on (0, rl] by
(3.22). So 0 < g(rl) < (<-)h(rx) 0, yielding a contradiction. Thus, h(rl) > 0 and in fact
h > 0 on (0, r). Now (3.23) follows immediately from (3.22).

Proof of Theorem 3.6. Parts (3.18) and (3.19) follow immediately from Theorems
3.4 and 3.5, so we have only to prove (3.20). Let hn < h <- hn/X, n 1, 2, , and let
denote one of the equilibrium solutions b0, bk.+/-, k 1,...,n. Let (b, 4J)
(0, F’()b) for all (b, 4J) Y and let (t), tI, be the strongly continuous group
generated by M+. We shall give an explicit formula for (t), [, by using the
method of separation of variables to solve

Wit -F" 20Wt- Wxx Af’(t)W O, 0 < X < zr, 6 R,
(3.24)

w(x, O) ok(x), wt(x, O) O(x), w(O, t) w(zr, t) O.

Let i12,1 < it/,2 <’’" be the eigenvalues and )1, )2, the corresponding orthonormal
sequence of eigenfunctions corresponding to

(3.25)
h’"(x) + hf’( (x))h’(x) -ttg(x), 0 < x < zr,

x(0) x(r) 0
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[3, Thm. 4.2, p. 199 and Thm. 2.1, p. 2.12]. Then, for all (4, @) Y, R,

(3.26)
n=l

U,(t)+(6, ,f,) "’V, (/)3,,
n=l

where tQ,(t) is as in (3.2) and Qn(t) is as in (3.3), but with n 2 replaced by
From the representation (3.26) it is clear that (,, 0) will be locally asymptotically

stable in the sense of (2.12)provided/xl>0 (that is,//->_1 and >0 can be chosen
as in (2.11)). Further, we claim that (, 0) will be unstable in the sense of (2.16)
provided /x < 0. To establish this claim let Z. {(b, ,) Y" $ a,., b,. for
some a, b [}, n 1, 2,. ., and observe that Y Y,n- Z.@ and f’(t)Zn Z. for
t6, n=l,2,... If g.<0 let Z.,x={(a,., a(-a+/a2-t.)n)Z.:a},Z..2
{(a,., a(-a-/az-.).)Z.:a}, and observe that Z.=Z.,IZ.,z. Also,

T(t)Z.=Z., for t, since from (3.24), T(t)(a;n, a(-a+/az-tx.);.)
(-,/ u, )t^ 2 (_,+,/’,2__,),,(a e ;, a(-a +/a -) e g.), and smdarly T(t)Z..2 Z..2. If

Ngu<0 and gu+>0, et Y Z.u=Z.,(R) and Y= E.=Z.,(R))(R)(E.=u+Z.(R)).
Then Yx and Y2 satisfy the hypothesis of Theorem 2.4 and furthermore (2.14) and
(2.15) are satisfied for appropriately chosen K _-> 1 and to > 0.

Now take bl,+ and we will show that 1 > 0. From Theorem 3.5, > 0 on
(0, zr), ]’()> 0 on (0, zr), and ’(0)> 0. Let g be the unique solution of

(3.27)
x" + xf’(g;)x 0, 0 < x < r,

x(0) =0, x’(0) f’(0).

We claim that X > 0 on (0, or]. To establish this claim define p(x) f((x))/c’(O). Then
p >0 on (0, or), p(0)=0, and p’(0) =f’(0)>0. Using (3.17) and (3.7) we have that
p"+hf’()p=f"()c’2/&’(O)<O on (0, zr). By (3.23) P<h’ on (0, zr], which implies
h’ >0 on (0, or]. Set ,(x) ,(x)f’(O)/ (0) (, (0) = 0, since ,(0) , (0) 0 implies
,1 0). Then ,’(0) > 0 and since ,1 has no zeros in (0, zr) [3, Thm. 2.1, p. 212], , > 0 on
(0, zr). Now assume /xl<=0, so that /za,<=0. Then 0=g"+h/’()X=,"+
(/xx + hf’()), <-,"+ hf’(), on (0, or) and by (3.21) we must have , -> g > 0 on (0, zr].
But ,(zr)=0 and so the assumption/21 =<0 must be false.

Next, take bo. From (3.25) we see that /z 1-hf’(0)<0, since X > X
1/f’(0). Lastly, take 4 =4k.+, k 2,"’, n. From Theorem 3.5 and the fact that
4"=-Xf(b) on (0, zr) we see that there exists x(0, zr) such that (Xl)<0 and
’(Xl) 0. Let g be as in (3.27) for this . We claim that g(xl)<0. To see this claim
observe that from (3.17) ’ satisfies (’)" + hf’()’ 0 on [0, 7r]. Then the Wronskian
’g’-"X is constant on [0, 7r], since ’ and X are linearly independent solutions
(’(0) 1, X(0)= 0) of the same homogeneous equation [3, Thm. 6.1, p. 83]. Thus,
’(X1),)(t(X1)--fn(X1),)((X1) --f)"(Xl))((X1)"-" ’(0)f’(0)>0, since b’(0)>0 by Theorem
3.5 and f’(0)>0 by (3.5). By Theorem 3.5, ,"(x)=-hf((Xl))>O, which means
h’(x) < 0 as claimed. As before set ,(x)= l(X)f’(O)/’l (0). Assume that tz =>0. Then,
O=,"+hf’(),=,"+(t+,f’())>="+hf’() and by (3.23)we must have
on (0, r]. But ,>0 on (0, 7r) and g(Xl)< 0, so that the assumption/x >_-0 is false. The
cases 4’k,-, k 1," ", n are handled in a similar fashion.
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SOME OPERATIONAL FORMULAS INVOLVING THE OPERATORS
xD, xA AND FRACTIONAL DERIVATIVES*

RICHARD TREMBLAYf

Abstract. We consider the operator {D1- 1-I’1 (xD+cj)’x}" (8=0 or 1; m,n,r integers, and t

arbitrary) which contains as a special case the operator (D(xD)’) previously studied by Carlitz. We also
consider the analogous operator involving the finite difference operator A. Some general operational
formulas are established from which interesting relationships may be deduced. Further generalizations of
operational formulas for the fractional derivative are also given. In particular a law of exponents is deduced
for the general fractional operator D(z"D) where a may be nonintegral.

1. Introduction. The fractional derivative of the function F(z) is a generalization
of the familiar derivative D"F(z)= d"F(z)/(dz)" where the order "n" is replaced by
arbitrary (integral, rational, irrational or complex) "a", and denoted by DF(z). The
literature contains many examples of the use of fractional derivatives in ordinary
differential [9] and integral equations [8]. There exists an extensive fractional calculus
forD and the most important representations which have been proposed are reviewed
in [13]. This reference contains a list of selected formulas and theorems on fractional
differentiation such as the Leibniz rule, the law of exponents, the generalized Taylor’s
series, etc.

This present paper has two parts. In the first ( 2 and 3) we treat the following
operational formulas

(1.1)

I-[ xD + o x
/’=1

D(1-8)nXS(1-)n I-I (xD + o/. + 1 On)xS"D(x-s)(-)"

where 8, 0 0 or 1, and the equivalent of (1.1) for the difference operator A defined by
Af(x) f(x + 1) f(x)

(1.2)

Ax- VI ([x +8i-(1-8)(i+ 1)]A+ci}r(x +i)
i=0 1=1

A(1-)"(x)(-). [-[ ({x +n(8 0)}A + cti + 1 On) r/nl,x)n\8’t(1-8)(1-O)na

8, 0 0 or 1 and (x)i x(x + 1). (x + i- 1) for >= 1, (X)o 1. (Each of the above
relations contains four identities; we use the parameters 8 and 0 for brevity).

In these identities r, m and n are nonnegative integers and the a/. are arbitrary
constants.

Note that the operators

((x +q)A+c)A and ((x +s)A+

where a,/3, q and s are constants, do not commute; it is understood that the products in

* Received by the editors August 18, 1977, and in final revised form May 19, 1978.

" Department of Mathematics, Royal Military College of Canada, Kingston, Ontario, K7L 2W3. This
work was supported by the Defense Research Board under Grant DRB 3610-607.
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(1.2) mean

(1.3) 1-I
i=0

and must be read from right to left.
The proofs of these results are given in 2.
The operators involved in (1.1) contain the differential operator studied previously

by Carlitz [4]

(1.4) (D(xD)’)’= A(’)(n,s)xD+"
s==O

where

(1.5)
1 ,. (_l)_i()(j+l),...(j+n),.A(’)(n, s)= . i=o

The expression (1.5) has been obtained by application of a general result developed in
13, p. 746] and A()(n, s) contains as a special case the Stirling numbers of the second
kind.

The particular operator (DxD)" has been introduced by Lardner [11] and general-
ized by many authors, for example Osipov [14] and more recently A1-Salam and Ismail
[2].

Many other operational formulas can be deduced from (1.1) and (1.2). For
example, we easily prove
(1.6) (D"(x’D")’)" D"(x"D"’)"

using the well-known Boole’s formula

(1.7) x"D" (xD n + 1),.

Other formulas are given in 3 which involve the numbers A()(n, s).
Now, the question is: Can we generalize these results to fractional order? The

second part of this paper ( 4) is devoted to this question. The equivalent of (1.1) for the
fractional derivative D7 is given in Theorem 4.2. Moreover, the formula (1.6) suggests
the fractional operator D(zD)" and we prove that (1.6) remains valid if m is an
arbitrary number. More precisely, we show that it is a consequence of a law of
exponents for the operator D(z"D)" given in Theorem 4.3. This theorem is a
generalization of the law of exponents DDz D7+ which appears in Theorem 4.1.
Note that the extension of (1.2) to the finite difference of fractional order A remains to
be done. To establish such a result, we need the equivalent of Theorem 4.1 for
AA=A+ which, to the best of the author’s knowledge, does not exist. Little
attention seems to have been given to the operator zX". The author knows only of Diaz
and Osler’s paper [7] which treats this subject.

2. Proo|s ot (1.1) and (1.2). To establish the proofs of these operational formulas,
we can, as usual for such formulas, proceed by mathematical induction on the integers
m, n and r, without particular difficulty. We can also readily prove these relationships by
operating with each side respectively of (1.1) and (1.2) on x and (x)s. If there is equality
for s 0, 1, 2, , according to theorems previously stated by Carlitz [6], the operators
involved on each side are equivalent. The important elements of the inductive proof of
(1.1) and (1.2) are the following principles.

A product of operators of the form D and (xD + a) (or A and [(x + s)A + a]) may
be rearranged at will, provided that if qD’s (or qA’s) are moved from the left to the right
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of a particular operator (xD+aj) (or [(x+s)A+aj]), then this operator becomes
(xD + ai + q) (or [(x + s + q)A + ai + q]). For instance, we have

(2.1) D’(xD + a) (xD +a + q)D’
and similarly

(2.2) Aq[(x + s)A + aj] [(x + s + q)A + ai + q]Aq.

Similarly, if qD’s (or qA’s) are moved from the right to the left, we have the same result
as if -qD’s (or -qA’s) are moved from the left to the right.

The same ideas apply in reverse in a product of operators x and (xD + ai) (or (x + s)
and [(x + s)A +ai]). For instance, we have

(2.3) (xD + ai)x’ x’(xD +o + q)

and

(2.4) [(x + s)a + a](x + s) (x + s).[(x + s + q)+/- + a + q].

Finally, (xD + a and (xD + B) commute. Moreover, [(x + s)A + a and [(x + q)A +/3 do
not commute. The reason is that when A moves from the left to the right of (xA + ai), xA
changes to (x + 1)a. We must pay special attention to the products involved in formula
(1.2), whose sense is given by (1.3).

Note that these principles readily prove Boole’s law (1.7) and its equivalent in
terms of A

(2.5) (x).a" (xa- n + ).,

also the following

(2.6) D"x" (xD + 1),,

and

(2.7) a" (x n ), (xa + l),

which will be of use in the next section.

3. Other operational formulas. We next deduce some formulas which are more or
less direct consequences of the main results (1.1) and (1.2). In particular, we obtain
some formulas involving the coefficient A(’)(n, s) defined by (1.5).

First, with the help of (1.7), we can easily deduce from (1.1) the following
relationship

(3.1) (Dx-(xD)’x) D(1-’)"(x"D")x"
where 6 0 or 1. Formula (3.1) leads us readily to the following expression

(3.2) (D(xD)r) (D(xD))
x-"(x(Dx)r-)"(D(xD)’)"+" ifr>=s,

(D(xD)r)m+n(x(Dx)S-r)mx if r<--s,

and more generally

(Dr(xrDq)n-1)m (Dr2(xr:zDrz)n-2)mz.
(D.-x.-D.-)’.-D.".

(3.3)
Drmxramloraml+r2mxrm+r,m9

Drm+...+rn_m,_.xrm+’"+rn-xm,.,-Drm+’"+rnm,L
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The special case ri mi 1 (i 1, 2,..., n) of (3.3) can be found in [6, p. 253].
Similarly, with the help of (2.5), we obtain from (1.2) the analogue of (3.1) as

(3.4) 1-I [al-{[x +6i-(1-6)(i + 1)]ay(x + i)]= A(1-)"[(x + n6-n),A"]"(x)
i=0

where 8 0 or 1.
Note that (3.4) with 8 0 can be written in the more elegant form

(3.5) [(Ax)’V]" [A"x<")]’V

where V is defined by Vf(x)=f(x)-f(x-1) and x(= 1, x’=x(x-1) (x-n + 1)
for n_->l.

The above formulas are obtained from (1.1) and (1.2) when we put aj 0. The
replacement a =-/’n leads us easily to

{x (xD n + 1)"(xD 2n + 1)’. (xD mn + 1)’D-}’
(3.6)

D(1-6)Onx(8+o-o,)n (xmnomn)rx (8-1)onD(1-6)(1-o)n

where 6 and 0 are 0 or 1, which contains as a special case the formulas (12) and (13) of
Klamkin and Newman [10]. These formulas can be useful in the solution of certain
differential equations (see [10]). Note that the special cases 6 1, 0 0 and 6 0 1 in
(3.6) are the same.

The formula (3.1) can be used to prove other types of operational formulas. For
example, we now give a direct proof of the "Leibniz formula", proved in [1], for the
operator 0 x (1 + xD) xDx,

(3.7) (xDx)"xuv x (n)[(xDx)"-u] [(xDx)v].
s=O S

Indeed, by use of (3.1) with r 6 1 and (2.6), formula (3.7) becomes

(3.8) (xD + 1),xuv x [(xD + 1),_u] [(xD + 1)v].
s=O S

Making the change of variable x 1/y and using (1.7), we see that yDy =-xDx and
(3.8) reduces to the classical Leibniz rule

(3.9) Duv o= (n)D"-u
Now, with the help of (3.1) with 6 0, it is easy to obtain from (3.7) the following

(3.10) (xDx)’x(D"u) (D%)=x’+1 (n)[(DxD)’-SDSu]. [(DxD)SD’-v],
s-O S

which reduces to equation (5.1) of [5, p. 384] if u 1Ix.
The analogue of (3.7) for the difference operator A is

(3.11)
A"(x n + 1),uv/x x

n
{A,_(x n + s + 1),_u(x + s)/x}

s=0 S

{A(x-s + 1)v(x)/x}

which can be established by induction.
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The same elementary change of variable can also serve to obtain other relation-
ships. For example, starting with the equation (6.6) of [4, p. 387]

()(n, SD,(3.12) (xD+l)n _, A s)x
s--O

we can easily deduce

(3.13) (x"D")r= E (-1)m-sA(r)(n, s)(xD + 1)s.
s=O

Special cases r 1 of (3.12) and (3.13) are given in [4] and [5]. Formulas (3.12) and
(3.13) imply the summation formula

(3.14) A((n, k) Y’. A((n, s)
n + s s

1)_.
=k n +k (-

Now, with the help of (3.14) and [4, p. 387]

(3.15) (xa+ 1)= E A(r(n,s)(xLa,
s=O

we can deduce readily that the analogue of (3.13) is

(3.16) ((x),a") E (-1)"-A(r)(n, s)(xa+ 1).
s=O

Other formulas can be obtained with the help of the fundamental expansions
(3.12), (3.13), (3.15) and (3.16). For instance, using the fact that

(3.17)

and

(3.18) V" (x),Z" (VxA)",

we can obtain from (3.15) and (3.16)

(3.19) V"(xA+I),= Y’. a()(n,s)V"-S(VxA)
s=0

and

(3.20) ((x),A")V"= Z A()(n,s)(-1)"-S(Ax7)7"-
s=0

where 7 is defined above.

4. Some generalizations involving the fractional derivative. As we mentioned
above, the most important representations for the fractional derivative D’ as well as a
list of selected formulas and theorems on fractional differentiation can be found in [13].
Among these results, the generalizations of the Leibniz rule (3.9), such as

+ ( O ) r3’+S..(4.1) Du(z)v(z) ., Dz V-U(Z)’Lz v(z),
s=-oo y+S

play a prominent part in this theory. More complex extensions of the Leibniz rule have
been given by Osier [15] (see the bibliography of [13]).
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In this section, we generalize certain formulas contained in the previous sections.
Firstly, we prove the validity of (2.1) and (2.3) when q is arbitrary, i.e. the

fundamental relationships

(4.2) Dz(zD+o)f(z)=(zD+a +)Dzf(Z)
and

(4.3) (zD + a)ztf(z) z t (zD + a + )f(z)

for all values of a and 3. Formula (4.3) is obvious. For the proof of (4.2), using (4.1) with
3’ 0, we have

(4.4) Dz(zD+a)f(z)=zDz[Df(z)]+Dz-l[Df(z)]+aDzf(Z).
Here, we must pay special attention to (4.4) because it is not always true that
D Dz D+. For instance [13, p. 262]

D-’Df(z) f’(z) dz f(z)-f(O) Dff(z)= f(z).

For (4.4), we must appeal to the following theorem on the law of exponents given in 13]
(see also 12]).

THEOREM 4.1. Let f(z) be analytic on the simply connected open set R containing
the point z O. Assume f(O) 0, and that p -1, -2, Ifp-a -1, -2, , then
for z R-{0} we have

+-O(z).DzD’zVf(z) D z

Ifp-a -N, N 1, 2," , then for z R -{0},

o+,_ f(" (o)r(1 +p + n) -,-o+,,DzD’zPf(z) Dz zf(z)- P

,=o n!F(l+p-a-3 +n)
z

We assume, as always, that all functions on which operators perform satisfy the
appropriate existence and differentiability conditions. Now,

Dz[Df(z)] Dz+f(z)-zf(O) -t-

r(-3)

and

Dz (zD + a )f(z) z(Dz +lf(z)

( f(O) -0) aDOzf(z)+ fl Dzf(Z)
F(-/3 + 1)

z +

(zD + a + 3)Dzf(z)

and this completes the proof of (4.2). Similarly, if Dz is moved from the right to the left
of (zD + a), we have the same result as ifD is moved from the left to the right, which
can be proved directly with Theorem 4.1 for all values of 3.

The following theorem generalizes the result (1.1) to the fractional derivative.
THEOREM 4.2. Let f(z) be analytic on the simply connected open set R containing

the point z O. Assume f(O) 0, 8, 0 0 or 1, m, n are positive integers, {0, 1, 2,. },
I{2,3,...,n-1} and {2, 3, l} with n > 2. If l lt + i-1 when 8=0 and
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n > 2, then for z R -{0} we have

D(zx-)t I-I (zD + ai)’z f(z) D(1-a)"z
n-1

(4.5) 1-I l-I [zD + aj- i + (1 -O)fln]
i=0

z6OnD(zl-6)(1-)Onf(z).

If 13 It + 1 when 6 0 and n > 2, then for z R -{0},

}n n--1
lOBnD I-[ (zD+ai) f(z) 1-I 1-I [zD+ai-iB+(1-O)n]

i=l i=0

(4.6)
[n/lO--lf(S’(o)D(z1-)On f(Z)-- Z

where [n/l] is the integer part of n/ l.
Proof. By iteration of (4.2), we easily obtain

(4.7) Dz 1-I (zD + ai)7(z) 1-I (zD + ai + [3)’Dzf(Z),
i=1 j=l

if [(z) is analytic at z 0. Now Dz[(Z) is a function in the form z-H(z), if/3 1, 2,. ,
where H(z) is analytic at z 0 [13, Thm. 18.1]. Consequently, the function involved in
(4.7) is also of this form and we can iterate (4.7) once more. We obtain

(4.8) Dz I-[ (zD + ai) f(z) Dz [I 1-I [zD + ai- i + 2(1 O)]Dt-f(z)
]=1 i=0]=1

valid for all values of/. This proves (4.5) for 8 0 and n 1, 2. In (4.8), the function
is now in the form z-G(z), where G(z) is analytic at z 0. Also, for n 3, 4,. .,
successive application of (4.1), by virtue of Theorem 4.1, forces us to reject in (4.5) the
values -2/- 1 -1, -2, -3,. , -3/3-1 -1, -2,. , etc., except the integers/3
0, 1, 2,.... In other words, for n(>2) iterations, (4.5) with 8 =0 is valid if 1/3 -It + i- 1, where 2, , n 1, 0, 1, , and 2, , l. In the special case that
l It + 1, if we operate termwise on the Maclaurin series of f(z), the presence of the
factor 1/F(1 +s-In (lt + i-1)) in the series resulting from [n/l] iterations causes
the first In (lt + 1) terms to vanish and we obtain (4.6). By analytic continuation,
the result is valid on R -{0}. The case 1 of (4.5) can be easily proven from (4.3) and
the proof gives rise to no particular difficulties; therefore this proof is omitted.

For the last example, we shall prove the following result

(4.9) {D(z-(zD’2)’z }"f(z) D(-’"(z"D")z"f(z)
where 0 or 1, with only restrictions is -1, -2, for 1, 2, ., n when 6 1
(obtained from Theorem 4.3). We suppose that f(z) is analytic at z =0 in (4.9).
Relationship (4.9) reduces to (3.1) if a 1.

In fact, this formula can be obtained with the help of the following relationship

(4.10) {D(’-)(zD)’z} {D(z’-)(zD)’zn} D(z’-)(+)(z+D+)’z(+)

where 8 0 or 1. Again, we must pay special attention to the law of exponents (4.10),
which is not valid for all values of parameters a and/. Indeed, if r 1 and 6 0, we
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have with/3 =-a 1
(D;lz-ID-I (DzD)f(z)

1
[uf’(u)+f(u)] du dv

if(v) dv =f(z)-f(O) DzzDzf(Z)= f(z).

The general situation is examined in the following theorem. The study [12] of the
analytic properties of fractional derivatives plays a decisive part in this theorem.

THEOREM 4.3. Let f(z) be analytic on the simply connected open set R containing
the point z =0. Also, assume f(0)0, t =0 or 1, M, N {1, 2, 3,... } and r is a
nonnegative integer If 3" -N, 3" -M when 3 O, and 3" + -N, 3’ + a +
-M when 1, then for z R -{0} we have

{DCz’-)(zD)’z} {D(z1-6)t (zDz )’Z} zf(z)
(4.11)

{D(z1-)(+) (z’+tD’+t)’z(’+t)} z f(z);

if 3" -N, 3" -M when O, then ]’or z R -{0},

{DT(zDT)} {Dz (zVz )} z ff(z) {DT+(z+VT+)} zf(z)

(4.12) MI( F(I + y + s))r+Xf(s)(O)s+3,_o_
,=o F(l+3"-a -3 +s) s!

z

Remarks. (i) If r 0 and t 0, Theorem 4.3 reduces to Theorem 4.1.
(ii) If a =0, 1,2,... in (4.12), 1/F(l+3"-a-3+s) is zero and the finite sum

vanishes. Relationship (4.11) is clearly true when a and/3 are natural numbers.
Proof. We shall demonstrate below (4.11) and (4.12) by operating with the

operators

D(zl-e3 (zrD,, D(}-) ,
z)Z (z Dz)’Z and

D(z-a)(,+) (z,+tD+t),za(,+)
(respectively for t 0 and 1), termwise on the Maclaurin series of f(z). This procedure
only proves the results for z inside the circle of convergence of the Maclaurin series.
However, we recall Theorem 3.1 in [12] (which describes the analycity of DzVf(z) with
reference to the three variables z, a and p) and this theorem affirms that all terms in
(4.11) and (4.12) are analytic functions of z for z e R-{0}. Thus the results are true for
z in the full domain z e R -{0} by analytic continuation.

Recalling the fact that [13, p. 243]

(4.13) DzV= F(l+p) zO_,
F(1 +p-ee)

where the only restriction is that p-1,-2,-3,..., and expanding f(z) in a
Maclaurin series, ar,,d operating termwise with the operator Dz(zDz)" we get

Dz (zDz )’Z f(z)

/()(o)(, r(l+r+s) )’+=o s! F(I+3"-B+s) z

f()(0)(.. F(l+3"+s)
,=v s! F(I+3"-B+s) z

-+s if 3"-/3

-v-t3+s

-1, -2, -3, ,
if 3" 3 -M,

M=1,2,3,....
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Now, operating with D(z"D) on the above series, we have

{D(zD)} {Dz (zDz)}z’f(z)

(4.14)

/()(o)( r(l+v+s) i)s=o s!" F(l+y-a-/3+s

r+l
V-a-B+sZ if y-/3

-1, -2, -3,

f()(O ( r(l+ + s)
=M Si \r(l+,-c-t+s)

z ’-’-’+s ify-/3=-M,

M=1,2,3,...

We note at once that the first series of (4.14) is DT+O(z’+OD’+O)’z’f(z), and thus
formula (4.11) with 6 0 is proved. The second series above is just the first series with
the first M terms subtracted away, and thus the validity of (4.12) is clear.

The case 6 1 of (4.11) can also easily be proved. In the same way, expanding f(z)
in a Maclaurin series and operating termwise with (zODz)’Z we get

(z3Ogz)rzt" Z’Vf(z) E f(s)(o) (r(1 +,,/+ t + s)’ ,+,+s

=o s! r(++i ]z
with the simple restriction 3’ +/3 # -N, N 1, 2, 3, . Operating next with (zaD)rza
on the above series, we have

( + 3" + a + B + s ){(zaO)rza}. {(zBO)zB}zVf(z)= ., [(s)(O)_F( 1
s=0 S! \ F(l+3"+s)

z

if 3"+/3 +a #-1,-2,-3,. . This is simply (z’+OD+O)z’+. zf(z) and then the
relationship (4.11) with 6 1 is proved. This completes the proof of Theorem 4.3.

Note that we can prove Theorem 4.3 in another way. Let zO denote a fractional
operator defined by

(4.15) zOt{. }=F(a) z -OD’-tz }, # O,-1,-2,...

With the help of (4.13), we can now obtain zOf(z), where f(z) is analytic at z 0, by
operating on the power series for f(z) term by term. We get

(4.16) zOf(z) y f(s)(O) (a )s
=o s!

This series has the same circle of convergence as the power series for f(z) about z 0
and this operation has only the restriction/ # 0,-1, -2, .Note that this restriction
vanishes if we divide both sides of (4.16) by F(/3). The result of operating with zO/F()
on the first M+ 1 terms of the series in (4.16) is zero if fl -M. Clearly, two operators
zO’ and zO commute and for the proof of Theorem 4.3, we need only the following
properties"

(4.17) oa zO]’(z) zO$]:(z) fl 3"#0,-1,-2,""

and

(4.18)
r()r( + ) , +,zO,z {(z)= z zO+ZJ(z)
r()r(t+ )

B, a +3" #0,-1,-2,

which can be easily deduced from the definition (4.15) and (4.16).



942 RICHARD TREMBLAY

Remark. If B + y -M, M O, 1, 2,.. , then

(4.19) zOz’f(z)= E f’()r(+r+s)r()z+ /0,-1,-2,...
s=M+l S F( + y + s)F()

since 1/F(B + y + s) 0 for s O, 1, 2,. , M. Consequently, if B + y -M, M
O, 1, 2,..., we have

(4.20) zO zOz’f(z) zOz" f(z) X s - z*
s=O

Now, from (4.15), we have

(4.21) zD

and

r(1-a)

(4.22) Dzz =F(l+az,-,1

Thus, we have

zO --ot 01_131
O (z Dz) Dz(zC’Dt _( .)r+l _( \r+l

and using the shift rule (4.18) r + 1 times (and (4.20) if 7-fl -M, M 1, 2, and
other properties mentioned above, we obtain

{D’ (z’D’)} {Dz (ztDz )’}z’/f(z

=z
F(1-a-B

r+l

(zO- zOl_)’+1-B-a Z’Vf(Z)

r+l

--t( l 01-0-) zf(z)z
F(1-a -8)

z f(z)- 7--zs=O S.

ify-B =-M,M= 1,2,3,..

D;+(z’+OD+t)zf(z _
f(s)(o }D+(z"+D’+)% f(z) Y z

s=O
if y-/ =-M, M 1, 2, 3,

We prove (4.11) with 6 1 in a similar way using (4.22) and the shift rule (4.18).
Note that the operator zO has many other properties and, with various represen-

tations of the fractional derivatives reviewed in [13], we can find the corresponding
representations for the operator zO with the help of definition (4.15). In particular,
with the Pochhammer representation of the fractional derivative as given in 13, p. 256,
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Eq. (13.6)], we obtain

-F(/) e-iz-zOaf(z)
4F(a)F(/ a sin (aTr) sin

(4.23)
(z +,O+,z-,O-)

f()- (z )-- d

where the only restriction is fl # 0,-1,-2,. . (We can prove that the singularities
a 0, + 1, +2,. and fl a 0, + 1, +2,. can be removed). Representation (4.23)
is valid for z e R-{0}, R being an open, simply connected set in the complex plane
containing the origin, where f(z) is an analytic function. A publication discussing the
various properties of this operator is in process of preparation (for more details
concerning the operator zOa and its applications, see [16]).

Acknowledgments. The author wishes to thank the referees for several remarks
which have improved the paper, in particular the proofs of the main results of 2.
Thanks are due to Dr. A. J. Barrett of R.M.C. for his advice in the preparation of this
paper.
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COUNTABLY INFINITE NONLINEAR TIME-VARYING ACTIVE
ELECTRICAL NETWORKS*

A. H. ZEMANIAN’

Abstract. This work presents existence and uniqueness theorems for the currents and voltages in a
countably infinite RLC electrical network for which the total power dissipated in all the resistors or stored in
all the capacitors and inductors is allowed to be infinite. This relaxation of the finite-power condition prevents
the use of a number of Hilbert-space techniques and requires instead a more graph-theoretical approach. The
latter has previously been used to analyze linear time-invariant networks. The main contribution of the
present work is that it encompasses, under certain conditions, time-varying active networks with nonlinear
resistors, inductors, and capacitors.

1. Introduction. The theory of infinite electrical networks is a comparatively
recent development in the networks literature, the seminal work in this area being
Flanders’ 1971 paper [4] on locally finite, purely resistive, electrical networks. The
initial works were devoted to linear networks, but lately attention has shifted to
nonlinear ones. Some powerful results in the latter direction have been obtained by
Dolezal [2]. The present work is another contribution to the theory of nonlinear infinite
networks. It is distinguished from the works of Dolezal and Flanders in that it does not
require that the total power within the network be finite. Finite total power allows the
current flows obtained by Dolezal and Flanders to be approximated by current flows in
finite subnetworks and to be analyzed by certain Hilbert-space techniques. However,
the total power within an infinite electrical network need not be finite, and the current
flows corresponding to infinite power are not encompassed by those Hilbert-space
techniques.

An alternative approach, which we call "limb analysis", is to use graph-theoretic
methods to partition the network into a sequence of finite subnetworks, which can be
analyzed recursively [7]. The only requirements, other than restrictions on the element
values, are that Ohm’s law (i.e., the voltage-current relationships imposed by the
branch parameters, be they resistive or reactive) and Kirchhoff’s node and loop laws be
satisfied. Consequently, current flows that generate infinite power become allowable.
Moreover, the branch currents determined by this procedure in the finite subnetworks
are not merely approximations to the corresponding branch currents in the infinite
network but are instead precisely equal to them.

We should point out that in a countably infinite network, Kirchhoff’s node law is
required to hold only at the nodes of finite degree, not at those of infinite degree. An
attempt to apply that law to nodes of infinite degree leads to a contradiction [9]. Thus,
Kirchhoff’s node law is an assertion concerning a finite number of branches, as is his
loop law.

For a simple example of limb analysis, consider the infinite linear resistive network
of Fig. 1. For simplicity, we allow no voltage or current sources, even though they can be
easily incorporated into the analysis. (In the following, we allude to certain subnetworks
called "limbs" and "orbs" and to certain branches called "joints" and "chords". They
are defined in the next section, but what they are in this example should be clear.) The
upper horizontal branches induce one "limb", the lower horizontal branches induce a
second "limb", the vertical branch is chosen as the one and only "joint", and the
diagonal branches are the "chords". We assume that a current flows in from infinity

* Received by the editors January 31, 1978.

" State University of New York at Stony Brook, Stony Brook, New York 11794. This research was
supported by the National Science Foundation under Grant MCS-75-05268-A03.
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FIG.

along the upper limb, down through the joint, and out to infinity along the lower limb.
This path is called the "joint orb". The value of may be chosen arbitrarily. We also
assume that a current it (and i2) flows along the upper limb, diagonally down through
the branch with resistance rt (respectively, r2) and then out toward infinity along the
lower limb. These paths are called "chord orbs". The currents ix and i2 are treated as
unknowns. The branch currents resulting from the superposition of/’, it, and i2 satisfy
Kirchhoff’s node law at every node. We now write Kirchhoff’s loop law for the ro, rt, r4
loop and the ro, r3, r2 loop.

(1.1)
rlil- r4i2 (ro + r4)]’,

r3i1 + r2i2 (ro + r3)f.

Upon choosing j, we can solve these equations for il and i2 so long as the determinant
rtr2- r3r4 is not zero. A similar procedure can then be applied to the next four branches
to the right in Fig. 1 to solve for the currents in the next two diagonal branches.
Continuing in this fashion, we can compute all the chord currents and therefore all the
branch currents.

If however rlr2 r3r4, then the bridge consisting of the corresponding four bran-
ches and the vertical branch is balanced and (1.1) cannot be solved. As a matter of fact,
if an infinite sequence of such bridges out along Fig. 1 are balanced, an infinite sequence
of pairs of equations like (1.1) cannot be solved, whatever be the choices of the limbs
and joints. This balancing implies that the network of Fig. 1 can carry no nonzero
currents.

For general infinite networks, the question arises as to what conditions can be
imposed on the resistance values to ensure that nonzero currents can flow. For Fig. 1,
the answer is that all but a finite number of bridges are to be unbalanced. For general
networks, just how the requirement of not too much balancing is to be prescribed is
problematic. However, a sufficient condition is suggested by Fig. 1: If the limb branches
are close enough to short circuits and the chords are close enough to open circuits, then
no balancing occurs anywhere, and limb analysis will determine the possible current
flows. This is the basic idea we shall exploit.

Other contributions of this work are as follows. Limb analysis is extended to the
case where nonlinear time-varying active resistors, inductors, and capacitors are
allowed in the network. A first result along these lines was given in [8] for nonlinear
purely resistive networks. It says in effect that, if there exists a choice of limbs and joints
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for which the slopes of the resistance functions are small enough in the limb branches
and large enough in the chords, then there exists a unique current flow for each choice of
the joint currents. Sections 3 to 6 extend this result to the case where series capacitors
occur in the limb branches and parallel inductors occur in the chords. Section 7 indicates
how mutual coupling can be incorporated into the analysis. An existence (but not
uniqueness) result for the current flows is obtained in 8 to 10 by weakening the slope
restrictions on the resistors, inductors, and capacitors but adding a boundedness
condition on them. A stronger existence theorem is obtained in 11 for purely resistive
nonlinear networks by totally removing the slope restrictions and imposing only
boundedness and continuity requirements.

2. The chainlike structure of a countably infinite network. R. Halin [5] proved
that every locally finite network has a certain "chainlike" topology. This result, which
we extended to countably infinite networks in [7], is fundamental to limb analysis, and
so we describe it in this section.

Let N be a countably infinite network and M a subnetwork of N. A node of M is
said to be N-infinite (or N-finite) if its degree as a node of N is infinite (or, respectively,
finite). Thus, a node of M may be both M-finite and N-infinite.

A countably infinite network N is called chainlike if the following holds true: N
can be partitioned into a sequence of finite subnetworks No"

v= u v

where each branch of N belongs to one and only one No. Moreover,

N rl No+ V+ U Wo+, p=1,2,3,...,

where the following conditions are satisfied.
1. Vo+l consists of rno+l N-finite nodes (but no branches), where mo/l < c, and

Wo+ consists of no/ N-infinite nodes (but no branches), where no/ < c.
2. The sequence {rno+}o= is monotonic increasing but not necessarily strictly so,

whereas the sequence {no+x}o= need not be monotonic. Some or all of the rno/ or no/
may equal zero. (mo/l either tends to or remains constant for all p sufficiently large.)

3. For every p, Vo/ shares no nodes in common with U o-
s= Ns; also, if p m I> 1,

then No (3 N,, is a finite set (possibly void) of N-infinite nodes.
4. In each No/1, there are rno/ node-distinct finite paths from the nodes in Vo+ to

rno+l of the rno+2 nodes in Vo+2.
This ends the definition of the adjective "chainlike". (A finite network or a

network consisting of a countable infinity of finite components is encompassed by this
definition when rno/l 0 for all p.)

LEMMA 1. Every countably infinite network is chainlike.
This was established in [7; 4] for connected networks; the extension to dis-

connected networks is immediate.
The chainlike structure is illustrated in Fig. 2. Each finite subnetwork is contained

within the dotted lines labeled by the No. The union of the paths indicated in item 4
above is a collection of one-sided paths, which we call spines; these are indicated by the
horizontal solid lines of Fig. 2. (A one-ended path is an infinite connected graph all
nodes of which have degree 2 except for one of them, which has degree 1.) The infinite
nodes of N will also be called spines; we represent the latter in Fig. 2 by the horizontal
dot-dash lines and think of them as one-ended paths of short circuits. Thus, a spine is
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N2

--...

T T

FIG. 2

either (i) a one-ended path, which starts at some node of, say, V,, and then passes
through exactly one node of each set V,,/I, V,,/2, , and possibly other nodes as well,
or (ii) an infinite node, which meets an infinity of the No but not necessarily all the No
after the first N,, that it meets. The nodes of Vo/ are represented by the small crosses in
Fig. 2. The set of spines is maximal in the sense that it contains all the N-infinite nodes
and that no other one-ended path exists in N that does not meet any spines. It follows
from our definition that every finite component ofN will be contained in a single No and
will not meet any spine.

As was shown in [7], branches in N can be added to the set of spine branches to
obtain a spanning forest F in N each component of which either is a spanning tree in a
finite component of N or alternately contains one and only one spine and does not meet
any other spine. Each component of F is called a limb, and every branch of F is called a
limb branch.

Next, we add branches to F to obtain a forest T that is a spanning tree in each
component of N as follows. Add to F 71 N1 as many branches in N1 as possible to obtain
a forest that is a spanning tree in each component of N1. Assuming that a forest To,

which is a spanning tree in each component of NIU’" mNo, exists and contains
F f’l (N1U. U No), we add to To U (F f’l No/1) as many branches in No+ as possible to
obtain a forest To/l that is a spanning tree in each component of N1 " m No+l. To+l
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will contain F f’l (N1 LI... LI Np+I). Continuing in this fashion, we obtain T. All the
branches in T that are not in F will be called joints. Finally, all branches in N that are not
in T are called chords. We shall refer to the set of all limbs and the set of all joints chosen
in this way as a full set of limbs and a full set ofjoints. The partition N Uo= No, the
spines, the limbs, the spanning forests F and T, the joints, and the chords can usually be
chosen in many different ways for a given countably infinite network.

We assume henceforth that every branch has an orientation with respect to which
the currents and voltages in the branch are measured. A branch voltage will mean a
voltage drop in the direction of the branch’s orientation.

We shall need a few more facts, which were established in [7]. Assume choices of F
and T have been made. Given any chord d whose two nodes lie in different limbs, say,
L and L2, there exists a unique endless path (i.e., an infinite connected subgraph whose
nodes all have degree 2) that contains d and lies entirely within L1 I,.J d LI L2. Alter-
natively, if d’s two nodes lie in the same limb, say, L1, then there is a unique loop (i.e., a
finite connected subgraph every node of which has degree 2) that is contained in d U L1.

We shall call that endless path or alternatively that loop the d-orb or a chord orb. If d is in
No, then the d-orb is contained in U s_- o Ns, when the d-orb is an endless path, and in No,
when the d-orb is a loop. In the same way, any joint generates a unique joint orb, which
must be an endless path since a joint’s nodes must lie in different limbs. It is also true
that no more than a finite number of joint orbs or chord orbs can pass through any
branch.

Furthermore, for any given chord d in No, there exists a unique loop that is
contained in T LId. We call this loop the d-tree loop and chord-tree loop. When d’s two
nodes lie in different limbs, the d-tree loop is contained in U o N; when d’s two nodes
lie in the same limb, the d-tree loop is contained in No and is in fact identical to the
d-orb. We assign orientations to the d-orb and the d-tree loop that coincide on d with
d’s orientation.

Assume that the currents are zero in all the joints and chords except for one of
them, say, the chord or joint d, which carries a current of - 0. It was shown in [7; 5]
that, if Kirchhoff’s node law is satisfied, all the limb branches have zero currents as well
except for those in the d-orb. The latter limb branches carry a current of in the
direction of the d-orb’s orientation. If b is a limb branch in the d-orb, we say that d
induces + in b, the plus (minus) sign being chosen if the orientations of b and the d-orb
agree (or, respectively, disagree). Similarly, we say that d induces in itself the current i.
The following result comes from [7].

LEMMA 2. LetN be a countably infinite network and choose Fand Tas above. An
arbitrary assignment of joint and chord currents uniquely determines under Kirchhoff’s
node law the current in any limb branch b as the finite sum of all the currents induced in b
by the joints and chords. In other words, if a current flow in N satisfies Kirchhoff’s node
law, then the current in any branch is equal to the finite sum of currents induced in that
branch by the chords and joints.

3. Assumptions on the network’s elements. R" denotes n-dimensional real
Euclidean space, and R is the time variable. T denotes a positive number in R . In
this work all functions and variables are real-valued. L(c,/3) is the customary Hilbert
space of (equivalence classes of) quadratically integrable functions on the interval (c,/3)
with respect to Lebesgue measure. Here, we allow --< a </ =<. The norm for
L2(t,/) is
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Every branch of a network is assumed to have an orientation and every voltage v(t) and
current i(t) in a given branch are measured with respect to the orientation of that
branch. The work "voltage" is understood to mean voltage drop.

The assumptions we impose throughout most of this paper upon our network
elements and upon the structure of the network are as follows.

I. Sources. Every voltage source v or current source is a mapping of R into
R x. We always assume that v s, L2(0, T). The range values vS(t) and i(t) are the
instantaneous voltage and current of those sources. These quantities are assumed to be
known.

II. Resistors. We assume that the voltage v(t) and current i(t) in each resistor are
related by v(t)=r(i(t), t), where the resistance function r(.,. is a mapping of
R x (0, T) into R 1. It is not required that r(., be a nonnegative function. We assume
furthermore that for any a, b s R

(3.1) Ir(a, t)l <= O[al
and

(3.2) [r(a, t)- r(b, t)l <=grla b[,

where (2r and Kr are constants not depending upon a, b, or t.
III. Conductors. The voltage and current in every conductor are assumed to be

related by i(t)= g(v(t), t), where g(.,. maps RI (0, T) into R and need not be
nonnegative. In addition, we assume that for any a, b

(3.3) [g(a,/)l <=
and

(3.4) [g(a, t)- g(b, t)[ <- Kgla bl.

The constants (2g and Kg do not depend upon a, b, or t.

IV. Capacitors. The voltage v(t) and charge q(t) on each capacitor are assumed to

be related by

(3.5) v(t) 3"(q(t), t),

where 3’(’," maps Rl (0, T) into R 1; 3"(.,. need not be a nonnegative function.
Furthermore, it is assumed that each capacitor has zero initial charge at 0 (i.e.,
q (0) 0) and that the following inequalities hold for any a, b s R and any t, - s (0, T).

(3.6)

(3.7)

(3.8)

13,(a,t)[<-Ala[,

Iv(a, t)-3"(b, t)l<=e[a-bl,

I,(a, t)- 3"(a, ’)l <-- Llal[t-

Av, L, and P are constants not depending upon the time or charge variables.
V. Inductors. The current i(t) and the flux linkages b(t) in each inductor are

assumed to be related by

(3.9) i(t) h (4(t), t)

where h (., maps R x (0, T) into R1; h (., is not required to be nonnegative. We
also assume that b(0)=0 and that the following hold for any a, b s R and any
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t, z (0, T).

(3.10)

(3.11)

(3.12)

IA (a, t)l <- Ax la l,

IA(a, t)-A(b, t)l<=Pxla-bl,

]A (a, t) A (a, ’)l <-- Lx lal lt- ’1.
Here again, Ax, Px, and Lx are constants that don’t depend upon the time or
flux-linkage variables.

VI. Structure ofthe network. We assume that a full set of limbs and a full set. of
joints can be so chosen that every limb branch is either a voltage source, a resistor, a
capacitor, or a series connection of any two or all three of these elements and that every
chord is either a current source, a conductor, an inductor, or a parallel connection of any
two or all three of these elements. We finally assume that there is no mutual coupling.

4. Some consequences of the assumptions. Conditions II-V allow every resistor,
conductor, capacitor, and inductor to be nonlinear, time-varying, and active.

With regard to the resistors, (3.1) and (3.2) imply respectively that, for i, i’
L2(O, T), v(t)= r(i(t), t), and v’(t)= r(i’(t), t), we have

(4.1) Ilvll<-Q, llill
and

(4.2) IIv v’ll <- glli- i’11,

where I1" is the norm for L2(0, T). Thus, i-- r(i(. ),. is a continuous mapping of
L2(0, T) into L2(0, T). Also, (3.1) implies that r(0, t)= 0. Conversely, when r(0, t)= 0,
(3.1) with Q, replaced by K, follows from (3.2). In general, however, we allow Qr < K,.

Similar assertions hold for conductors. In particular, for v, v’eL2(0, T), i(t)=
g(v(t), t), and i’(t)= g(v’(t), t), we have

(4.3)

and

(4.4) Iii- i’ll <- gllv v’ll.
Now, consider the capacitors. Since q(0)=0 by assumption, the charge q(t) is

related to the current i(t) by q(t)=I0 i(to)dto. In view of (3.5), (3.6), and Schwarz’s
inequality, we may write

I1 11=- ]y(q(t), t)l 2 dt<-A2v i(to) dto dt

T

_-<A2Io Io 12 (a,
Thus,

(4.5)

where Qv AT/x/-. This implies that

is a mapping of L2(0, T) into L2(0, T).
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Virtually the same manipulation based upon (3.7) instead of (3.6) yields

(4.6) [Iv v’ll glli- i’11
where K PvT/4- and v’= Y(I i’(o) do),. ).

For any inductor the flux linkages b(t) are related to the voltage v(t) by b(t)=
o v(o)&o. We may use (3.7) through (3.9) with the same arguments as those for a
capacitor to obtain the following inequalities.

(4.7)

(4.8) Ili- i’ll <= K. IIv ’11,

Here, Ox AxT/4- and
Now, consider a branch consisting of a series connection of a resistor and a

capacitor, where either one but not both of these elements may be zero. Then, the
branch voltage v(t) is related to the branch current i(t) by

(4.9)

By (4.1) and (4.5),

v(t) z(i, t) r(i(t), t) + y( i(oo) do),

(4.10) IIv[I (Qr - O)[[i[I.

Similarly, if also v’(t)= z(i’, t), then by (4.2) and (4.6)

(4.11) [Iv v’ll (gr + g)lli- i’11,

Thus, v is a Lipschitz mapping of L2(0, T) into L2(0, T).
For a parallel connection of a conductor and an inductor, where either but not both

of these elements may be zero, we have

(4.12)

The inequalities (4.3), (4.7), (4.4), (4.8) with i’(t)= y(v’, t) lead to

(4.13)

(4.14)

Ilill_-< (og + O)llvll,

Iii i’11 (g + g)llv v’ll
so that here too v - is a Lipschitz mapping of L2(0, T) into L2(0, T).

5. The determining equations. Assume that a partition N Uo=l Np, a full set of
limbs, and a full set of joints have been chosen in accordance with 2 and condition V.
Let the indices of the limb branches of No be v 1, , n and the indices of the chords
of No be/x n + 1, , n + m. Also, let k denote the indices of the joints in No. We can
use Lemma 2, which is a consequence of Kirchhoff’s node law, to write an equation for
the current iv in each limb branch by of the subnetwork .No.

Y,v Lv Lv
(5.1) iv(t)- E (+/-)y,(v,,t)=hv(t)+Y. (+/-)/’(t)+ Y’. (+/-)i(t).

k

Here, the summation Y’.v’v is over all chords b, in No that induce nonzero currents in by
and have nonzero admittances y, as indicated in (4.12). Thus, chords that are purely
current sources are not included. As was mentioned in 2, the plus (minus) sign is used
with y, if the orientations of by and the b,-orb agree (disagree). v, (t) is the voltage in
b,. by(t) is the sum of all the currents induced in by by all the joints and chords in
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U_ Ns. hv(t)= 0 if b is not a spine branch, jk(t) is the current in the kth joint of Np.
This is a free parameter except that it must be chosen in conformity with the kth joint’s
parameters. The summation J’ is over all joints in No that induce nonzero currents in
b, and the plus or minus sign is chosen if the orientations of b and the kth joint’s orb
agree or disagree respectively, i (t) is the value of the current source in the/z th chord of

No. *’ is a summation over all chords in No that induce nonzero currents in b and have
nonzero current sources. The plus or minus sign is chosen with i, in the same way as it
was for y,.

We can also write an equation for the voltage v, in the chord b, of No by applying
Kirchhoff’s loop law to the b,-tree loop"

Z, J, V,
(5.2) vg(t)- Y. (+)z(i,t)=e,(t)+ Y (+/-)Wk(t)+ . (+)v(t).

k

y.z., is a summation over all limb branches b in No that lie in the b,-tree loop and have
nonzero impedances z as indicated in (4.11). The plus (minus) sign is used with z if the
orientations of by and the b,-tree loop disagree (agree). iv(t) is the current in b. e, (t) is
the sum of all the voltages of the branches in that portion of the b,-tree loop that lies in
LIS N, those voltages being measured with respect to a tracing of the b,-tree loop that
disagrees with b,’s orientation. Wk(t) is the voltage in the kth joint of No; it may be
chosen arbitrarily so long as it conforms with the kth joint’s parameters. The sum-
mation’ is over all joints in No lying in the b,-tree loop; the plus (minus) sign is used
with Wk if the orientations of the kth joint and of the b,-tree loop disagree (agree). v(t)
is the value of the voltage source in the vth limb branch of No. Y’. v., is a summation over
all limb branches b in No that lie in the b,,-tree loop and have nonzero voltage sources.
The plus or minus sign is chosen with v in the same way as it was for z.

We shall now write the simultaneous equations given by (5.1) and (5.2) in matrix
form. First, let x(t) be the unknown (n + rn)x 1 vector of limb-branch currents and
chord voltages in No

x(t)=[il(t), i(t), v+(t), v+(t)]"r.
The superscript T denotes the matrix transpose. Let

d(t) [dl(t), , d,+,(t)]T

where, for v=l,...,n,d(t) is the right-hand side of (5.1) and, for
n + 1,..., n + m, d,(t) is the right-hand side of (5.2). If all the joint currents and
voltages have been chosen as members of L2[0, T], if all the voltages and currents in

Ns have already been determined by prior computations as members of L2[0, T],
and if all voltage and current sources are given as members of L2[0, T], then the
right-hand sides in (5.1) and (5.2) are determined as members of L2[0, T]; that is, d(t) is
a known vector. Finally, set

0, a(. ,t)](5.3) w(.,t)=
b(. t) 0

where a(., t) is an n x m matrix and b(., t) is an m x n matrix whose elements involve
y, and z, respectively. More specifically, the vth row of w(., t) has the term + y, (., t)
(or zero) in the/x th column if that term appears (or, respectively, does not appear) in the

Y,vsummation Y’., Similarly, the/zth row of w(., t) has the term + zv(’, t) (or zero) in
the vth column if that term appears (or, respectively, does not appear) in the summation
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we also assume that

(6.1) (gg,+gx,.12<M-1
and

(6.2) (Kr. + gvl2 <M-1,
then we can conclude that

(6.3) IIw (x, t)- w(x’, t)ll <= 61Ix x’ll
where 6 < 1.

tx =n+l,.. .,n+m,

u=l,...,n,

COtmVA3LY NFINITE ELECWRICAL NE:WORIS

z.,. With these definitions, the matrix notation for (5.1) and (5.2) is

(5.4) [I- w( t)]x(t)= d(t),

where I is the (n + m) x (n + m) identity matrix.

6. Existence and uniqueness. We now let H be the direct sum of n + m repli-
cations of L2[0, T]. That is,

H {a [a 1, an+m IT: ai L2[0, T]}

and the norm of H is given by

i=1

Thus, the vectors x and d of the preceding section are members of H. Let

x’(t)=[i(t), ,i’(t),v’ T.+l(t),’’’,v.+(t)]

be another member of H. Then, with the understanding that is the independent
variable of the functions whose norms are being taken, we may write

IIw(x, t)-w(x’, t)[Iz 2 ()[y,(v,, t)-y,(v, t)]
=1

+ 2 (l[z(i, tl- z(i’, t
=n+l- 2 E Ily.(v.. t)- y. (v’..

u=l

+ E E IIz(i, t)-z,(i’
=n+l

Since (i=a fli)2 k i= O, the right-hand side is bounded by
n+m

E Mlly(v, t)- y(, t)i E Miz(i. t)- z(i’, t)]
=n+l

where M (or M) is the number of terms in all the rows of w(., t) in which y (or,
respectively, z) appears. In view of (4.14) and (4.11), the last expression is bounded by

n+m

lv-vE M,(Kg,+Kx, 2 ’[Iz+ M(K +gv.)z[li-i’llz.
=n+l

Here, Kg, +Kx, and K. +K. are the constants corresponding to y, and z, in
accordance with (4.14) and (4.11) respectively. If in addition to our prior assumptions
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Set (Wx)(t)= w(x, t). So, (5.4) becomes

(6.4) (I- W)x d.

The inequality (6.3) asserts that W is a contractive mapping of H into H. Consequently,
I- W is a bijection of H into H. (Indeed, for any fixed d H, set Fd d + W.. Then,
Fa is also contractive and therefore has a unique fixed point x0 H, which implies our
assertion.)

In view of (6.4) we can conclude that once the voltage-current pairs for the joints
in N have been chosen and the currents and voltages in the limb branches and chords of

Ns have been determined, then the currents and voltages in the limb branches and
chords of No are also uniquely determined by (5.4). Upon applying this argument
recursively to N1, N2, , we can conclude with the following theorem. [Note that the
argument in this section employs all the assumptions of 3 except for (3.8) and (3.12).]

THEOREM 1. LetNbe a countably infinite network satisfying the conditions I-VI of
3 except for (3.8) and (3.12). (Those two inequalities may or may not be satisfied.)

Assume in addition that, for the chosen partition N p= Np in the chainlike structure
and the choices of and indicated in condition VI, the constants Kg, + Kx, cor-
responding to the chord admittances in No satisfy (6.1) and the constants Kr. +K.
corresponding to the limb-branch impedances in No satisfy (6.2) for every p. (By
definition, Kx, Px,T/andK PT/4.) Then, any assignment ofvoltage-current
pairs in L2[0, T]xL2[0, T] to the joints (in conformity with the joint’s parameters)
uniquely determines under Ohm’s law and Kirchhoff’s node and loop laws the voltage-
current pairs from L2[0, T] x L2[0, T] for all the branches of N. These voltage-current
pairs can be computed by solving recursively equations of the form (6.4) for the finite
subnetworks N1, N2, .

Let us make a few more remarks before leaving this section: It is the restriction
(6.1) coupled with (4.13) and (4.14) that requires in effect that the chords be sufficiently
close to open circuits, and it is the restriction (6.2) coupled with (4.10) and (4.11) that
requires the limb branches to be sufficiently close to short circuits.

Another way to determineM is as follows: Let P, be the orb for the th chord in

No. For any limb branch b lying in N, P,, count the number of chords in No whose orbs
pass through b and whose admittances are not zero. Add together all such numbers
obtained by letting b traverse all the limb branches that lie in No P,. This gives M,.

To get M, consider the uth limb branch b in No, and let d be any chord in No
whose d-tree loop contains b,. Count the number of limb branches in N, that lie in the
d-tree loop and have nonzero impedances. Add together all such numbers obtained by
letting d traverse all the chords in No whose chord-tree loops contain b,. This gives M.

7. Mutual coupling. Under certain circumstances we can allow dependent current
sources u(tr, t) as parallel-connected elements in the chords of No and dependent
voltage sources f(tr, t) as series-connected elements in the limb branches of No so long
as u and f are in L2[0, T] whenever tr is in L2[0, T]. When tr(t) is a voltage or a current

o- Ns, u and f appear as known quantities in the right-hand sides of (5.1) and (5.2),in Us=l
and the analysis proceeds as before. On the other hand, we cannot allow (r(t) to be a
voltage or current in U s--o+ Ns for then our recursive method would fail.

When mutual coupling occurs within a particular No, we require that the corres-
ponding dependent sources have the form u(v, t) and f(i, t), where v(t) is a chord
voltage in No and i(t) is a limb-branch current in No. Such sources appear as unknown
terms in the left-hand sides of (5.1) and (5.2), but W maintains the form indicated in
(5.3). If these terms correspond to transconductors, transresistors, mutual capacitors, or



COUNTABLY INFINITE ELECTRICAL NETWORKS 955

mutual inductors and if sufficiently strong conditions like those of 3 and (6.1) and (6.2)
as well are imposed upon them, then (6.3) can be satisfied again. In this way Theorem 1
can be extended to encompass such mutual coupling.

8. Some results from tunctional analysis. Our next object is to get another
existence theorem by weakening part of the hypothesis of Theorem 1 but adding other
assumptions. We will lose uniqueness in the process. We start with some results from
functional analysis.

H continues to be the Hilbert space defined in 6. Every f If1, , f,/,]T H
can be extended as the zero vector outside of [0, T]. This we do. Let supp h denote the
support of any function h, and let f(. + s) be the translation of f through the distance
s R 1. Then, supp If(. + s)-f(. )] c [-Isl, T + Isl]. Moreover, f(. + s)-f(. is a
member of the direct sum of n + m replicates of L2(-, ), whose norm in the latter
space is also denoted by I(" + s)-f(. )11.

LEMMA 3. A subsetKofHis conditionally compact ifand only ifthe following hold.
(i) K is bounded under the norm ofH.
(ii) As s O,

]If(" + s)-f(’ )[[2 [fi(t + s)-fi(t)[2 dt + 0

uniformly for all f K.
Lemma 3 is the extension of the M. Riesz-Tamarkin theorem to the direct sum H

of the n + m replicates of L2[0, T]. See [1, p. 32] or [3, pp. 298-299].
LEMMA 4. Let D be a closed sphere in H and let B and C be continuous functions

from D into H satisfying the.following"
(a) Bx + Cx D for all x D.
(b) C(D) is conditionally compact.
(c) There exists a real number < 1 such that [lBx Bx’[l [[x x’ll for all x, x’ D.

Then, there exists at least one Xo D such that Bxo + CXo Xo.
A reference for Lemma 4 is [6, p. 126].
LEMMA 5. LetR andS be continuousfunctionsfromHinwH, let W R + S, let d be

any fixed member ofH, and let the following be satisfied.
(i) There is a real number < 1 such that Wx[l llxll for all x H.
(ii) For any closed sphere X in H, S(X) is conditionally compact.
(iii) There is a real number < 1 such that llRx Rx’ll [[x x’l for all x, x’ H.

Then, there exists at least one Xo H such that Xo- Wxo d.
Proof. Let B be the function d + R x d + Rx, let C S, and let

D= x H x <

B and C are continuous functions on D. Set z d/(1- ). Then, for all x D,

Ilnx + Cxll lid + Wxll Ildll + Wxll Ildll + llxll
( )llzll + llzl[ Ilzll.

Thus, condition (a)of Lemma 4 is satisfied.
Since S C, condition (b) of Lemma 4 is also satisfied. Finally, for any x, x’ D,

IIBx Bx’ll [IRx Ux’ll = n IIx x’ll.

So, (c) is satisfied too. Our conclusion now follows from Lemma 4.
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9. Another estimate. In addition to the conditions of 3, let us now assume that
for all capacitors and inductors the defining equations (3.5) and (3.9) and the inequali-
ties (3.6) to (3.8) and (3.10) to (3.12) hold for all and z in a neighborhood of the
compact interval [0, T]. Also, let e > 0 be so small that, whenever [0, T] and Is[ _-< e,
we have s and + s f. For these restrictions on and s and for any inductor, we
obtain from (3.11) and (3.12)

Ih (b, + s)-h (a, t)l <--I (b, + s)-h (a, + s)l + I (a, + s)-h (a, t)l

elb-al+txlasl.
Since la + B [z _<_ 2a2 + 2/32 for a, B R 1,
(9.1) IA(b,t+s)-A(a,t)12<-2(elb-al)2+2(tlas[).

Next, let p(t) 1 for 0 < < T and p(t) 0 otherwise. Any function defined on a
subset of R is understood to be extended outside its domain as the zero function. With
this convention, every function in L2[0, T] is zero outside [0, T]. Also, since A (0, t) 0,
it follows that, for any v L2[0, T],

"+S

In the following manipulations, we let =_ and we understand that it is the
independent variable of the functions in L(-oo, oo) whose norms are being taken.
Then,

(9.2)
II(o/+s ft+sl.)((.O)do.), t+S)-A(p(t)Io v(w)dto, t)

a0

2

-I Io’+s st IoI(o/+s v(w) dto, t+- (t) (to) dw, t) ldt.
By (9.1) this is bounded by

+s

2P] p(t + s) v(oo) dw -p(t) v(oo) doo dt

(9.3)

+2L21s[2 vo(t) () do dr.

By Schwarz’s inequality, the second term is bounded by

foT o 12 2 foT fot2tlsl2 v() d dt2tls Iv()l2 ddt.

But, supp v = [0, T], and so the right-hand side is dominated by (Lx Isl Tllvll)2.
Furthermore, with Isl e as above and e < T, the first term in (9.3) is for s > 0 equal

to

and for s < 0 equal to

2P] Io
2

By Schwarz’s inequality the squared magnitude inside both of these integrals is no

larger than Isl Ilvll=, and so the first term in (9.3)is bounded by 2elsl(T/lsl)llvll.
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Altogether then, (9.2) is bounded by

(9.4) 2P Isl(T + Is I)llvll + (t Isl TIIv II)=,
which tends to zero as s --> 0. A similar result holds for our capacitors.

10. Another existence theorem. Instead of conditions (6.1) and (6.2), we will now
require that, for , 1, , n and/x n + 1, , n + m,

(10.1) M,(Og, + Ox,)2 < l,

(10.2) M(O + Ova)2 < 1,

(10.3) M.K. < 1,

(10.4) M,gr < 1.

Here, M. (or M,) is the value that M. (respectively, M.) would take if all chord
inductors (limb-branch capacitors) were replaced by open (respectively, short) circuits.
That is, if R is the matrix operator obtained by setting all inductor and capacitor terms
in W equal to zero, then M,. and M, are determined from R in the same way as M. and

M are determined from W. Alternatively, we may follow the procedures given in the
last two paragraphs of 6 so long as open circuits and short circuits are not counted as
branches. Thus, Mg. <- M. and M, <- M.

It can be seen from (3.1) through (3.4) that the conditions imposed on the network
elements by (10.1) through (10.4) are no stronger and in general weaker than those
imposed by (6.1) and (6.2).

THEOREM 2. LetNbe a countably infinite electrical network whose elements satisfy
conditions I-VI of 3 with the added proviso that the equations and inequalities of
conditions IV and V hold for all and - in a neighborhood f of the compact interval
[0, T]. Assume that, for the chosen partition N [.J= Nfor the chainlike structure and
the choices of and indicated in condition VI, the constants Og,,, Kg,, O,., K,.,
Qx, Ax,T/x/-, Qv. Av.T/x/- corresponding to the electrical elements in No satisfy
(10.1)-(10.4). Then, any assignment ofvoltage-current pairs from L2[0, T] L2[0, T] to

all the joints (in conformity with the joints’ parameters) and any specification ofthe initial
currents and voltages in the inductors and capacitors respectively determine at least one
collection of voltage-current pairs from L2[0, T] X L2[0, T] for all the branches ofN that
satisfies Ohm’s law and Kirchhoff’s node and loop laws.

Proof. We will show that the hypothesis of Lemma 5 is satisfied by the operator W
defined in 6. As before, it is understood that is the independent variable of the
functions whose norms are being taken. For any

x [i," ", i,,, v,,+l," ", Vn+m]T H,

we have

IlWxll=-- (+)y(v, t) + 2 2 (+)z.(i. t)
v=l =n+l

v=l =n+l

Since()N k , the right-hand side is bounded by

E Mglly,(v,, t)llz+ M,llz(i,, t)[Iz.
g=n+l v=l
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By (4.13) and (4.10), this is dominated by

n+m

m,(O.+O,,,):Zllv,ll:+ M(Or+O)2llill.
g=n+l v=l

By virtue of (10.1) and (10.2) we can conclude that there exist a 8 <1 such that
IIWxll llxll. Thus, condition (i) of Lemma 5 is satisfied.

Now, let W R + S, where R (or S) is the matrix operator consisting of the
conductor and resistor (respectively, inductor and capacitor) terms in W. Let Mx, (or
M) be the value that M, (respectively, M) would take if all chord conductors
(limb-branch resistors) were replaced by open (respectively, short) circuits. Consider S.
By the same manipulations as in the preceding paragraph but based upon (4.7) and
(4.5), we obtain

n+m

=n+l v=l

which implies that S(X) is a bounded set in H for every closed sphere X in H. That is,
S(X) satisfies condition (i) of Lemma 3.

Next, let and s be restricted as in 9. Then, in accordance with that section, we
may write for any x H

II(Sx )(. + s) (Sx)( )11=
2; I0 s)

2

s+=+ w ()[(0(+ i(’ d, t+)-(o(t) ’i()d,
where’ (or ’") is the summation that g’ (respectively, z) would become if all
conductor (respectively, resistor) terms were set equal to zero. By virtue of 9,
especially (9.4), the last expression is bounded by

2

+
=n+l

As s + 0, the last expression tends to zero uniformly for all x in any given closed sphere
X in H. Thus, S(X) satisfies condition (ii) of Lemma .

By Lemma , therefore, S(X) is conditionally compact in H for every closed
sphere X in H. In other words, condition (ii) of Lemma 5 is satisfied. Furthermore, by
just the same manipulations as those of the first paragraph of this proof in conjunction
with (4.8) and (4.6), we have for every x, x’+ H

+m

x. .,, + Mglli -i;112,
=n+l v=l

which shows that S is continuous on H.
In the same way the inequalities (4.2) and (4.4) yield

liNe ex’ll + Mg i- i’ll.
=n+l v=l
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By virtue of (10.3) and (10.4), there is an r/< 1 such that

IIRx Rx’ll n IIx x’ll.
Thus, R satisfies condition (iii) of Lemma 5 and is therefore continuous on H.

We can now invoke Lemma 5 to conclude the proof of Theorem 2.

11. A stronger existence theorem for a purely resistive time-invariant
network. When N consists only of time-invariant continuous conductors and resistors,
we can strengthen Theorem 2 by totally dropping the Lipschitz conditions (3.2) and
(3.4) and using only boundedness conditions like (3.1) and (3.3). We assume now that
each conductor g: v and each resistor r: -->v is a (linear or nonlinear) continuous
mapping of R into R and that

(11.1) Ig(v)l Og[vl,

(11.2) [r(i)[O,[i[,

where Qg and Qr are constants. In general, there will be fixed voltage sources in series
with the resistors and fixed current sources in parallel with the conductors, but no other
sources will be allowed. We also assume that there are no inductors, capacitors, or
mutual couplings. We assume still further that, among the possible choices of the
partition N CI o= No, the full set of limbs, and the full set of joints, there is one for
which every limb branch is a series connection of a resistor and a voltage source, either
but not both of which may be zero, and every chord is a parallel connection of a
conductor and a current source, either but not both of which may be zero. Finally, we let
v 1, , n be the indices of the limb branches and tz n +1,. , n +m be the
indices of the chords in any given No, and we assume that

11.3) MrO2r < 1, Mg.O2g,, < 1

for all v and ix, where M and Mg, are defined as in 10.
For any No we can write determining equations just like (5.1) and (5.2) except that

the arguments in disappear and the y, (v,.(t), t) and z,(iv(t), t) are replaced by g,(v,)
and r(i). In the same way as before, this defines the (in general, nonlinear) matrix
operator W as a mapping of real (n +m)-dimensional Euclidean space R"+ into
R "+. The manipulation indicated in the first paragraph of the proof of Theorem 2 then
shows that, for every x [il, i., Vn+l, Un+m]T R "+, we have

Wxll < E Mg,Q2 v 2 + MrQ2.2g ru

which by virtue of (ll.3) yields Wxl allxll for some fixed a < 1.
Now, let d R"+ be given and set

=1-
Also, let z d/(1- ). Then, for every x e D,

Thus, d + W. maps D into D. Since all resistors and conductors are continuous on R ,
d + W. is continuous on D. So, we may invoke Brouwer’s fixed point theorem [3,
p. 468] to conclude that that there exists at least one x0 e D such that xo-Wxo d.
Upon applying this argument inductively to N, N, N, , we obtain
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THEOREM 3. Let N be a countably infinite electrical network that satisfies the
conditions states in the first paragraph of this section. Then, any assignment of voltage-
current pairs from R lx R to all the joints determines (but not necessarily uniquely) a
collection of voltage-current pairs from RlR for all the branches of N that satisfies
Ohm’s law and Kirchhoff’s node and loop laws.

We finally mention that both Theorems 2 and 3 can also be extended to networks
with mutual couplings as indicated in 7.
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A NONHOMOGENEOUS INTEGRODIFFERENTIAL EQUATION IN
HILBERT SPACE*

RALPH W. CARRY" AND KENNETH B. HANNSGEN

Abstract. Let y(t, x,t) denote the solution of y’(t) +0 [d + a(t-s)]Ly(s),ds f(t), ->0, y(0) =x, where
d => 0 and L is a selfadjoint densely defined operator on a Hilbert space Y( with L => A > 0. Let U(t)x y(t, x, 0).
By analyzing a related scalar equation with parameter, we find sufficient conditions on the kernel a(t) for
IlU(t)ll-" 0(t ) and o IlU(t)ll dt <. These results and a resolvent formula can be combined to reveal the
behavior of y(t, x, f) as .

1. Introduction. Let L be a selfadjoint (possibly unbounded) linear operator on a
Hilbert space Yg, with spectral decomposition

Lx a. dE,x x

for x in , the domain of L. We assume that the spectrum of L is contained in an interval
A, ) with A > 0, so that L is a positive operator. We study the asymptotic behavior

(t c)of solutions of the initial value problem

(1.1) y’(t)+ [d+a(t-s)]Ly(s)ds=f(t) (t_-> 0),

(1.2) r(0)=ro

(’= d/dt), where y0 and f(t) belong to Y(, d-> 0, and the real-valued kernel a satisfies

(1.3)
a C(R +)(’1LI(o, 1). a is nonnegative, nonincreasing, and
convex on R +, 0 < a(O+)<,= and a() O.

(In this paper, R / (0, c),/+ [0, ).) See [9] for a discussion (with references and an
example) of applications of (1.1)to viscoelasticity theory. Here we remark only that
conditions like (1.3) are natural in such applications. Our most precise results on
asymptotic behavior will require additional hypotheses lacking evident physical inter-
pretations.

The resolvent kernel of (1.1) is defined by the formula

(1.4) U(t)= u(t, A) dEx,

where u (t, A) is the solution of the scalar problem

(1.5) u’(t)+A [d+a(t-s)]u(s)ds=O, u(O)= 1

* Received by the editors March 21, 1978. This work was supported by the United States Army under
Contract No. DAAG29-75-C-0024 and the National Science Foundation under Grant MPS 74-06403 A01.

t Department of Mathematics, St. Cloud State University, St. Cloud, Minnesota, 56301.
Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia

24061. Support by the Mathematics Research Center for a short visit to Madison is gratefully’acknowledged.

961



962 RALPH W. CARR AND KENNETH B. HANNSGEN

with parameter A (A =< A < c, 0-< < m). Under certain additional conditions on a (t),
we shall show in Theorem 2.2 that

(1.6) sup ]u(t, h )[ 0 (t oo),

(1.7) sup

It is clear that (1.6) and (1.7) imply, respectively,

(1.8) IIu(t)ll-,0 (too) and Ilu(t)lldt<oo.

In view of the resolvent formula

(1.9) y(t)= U(t)yo+ U(t-s)I(s) ds

for the solution of (1.1), (1.2) (see Theorem 2.1), (1.8) shows, for instance, that y(t) has a
limit in (t +oo)if |(t) does and Ilyll e ,(R

Our results extend those of [10] with respect to the conditions on a(t) as
0, oo. In particular, our results imply that (1.6) and (1.7) hold if a satisfies (1.3)

and -a’ is convex. Thus, for example, our results include the class of kernels a(t)=
t-(0 < 3 <1).

2. Statement of results. A solution of (1.1) is a continuously differentiable function
y from// to o such that Ly(t) is continuous in on// and (1.1) holds. Hille and
Phillips [11, pp. 58-89] give the general theory of Bochner integration, which we shall
use in studying (1.1) and (1.9). See [19] for the functional calculus of selfadjoint
operators.

Our first result, to be proved in 3, summarizes some earlier work and establishes
the resolvent formula.

THEOREM 2.1. (i) Let (1.3) hold. Then the operator U(t) defined by (1.4) and (1.5) is
bounded on with IIU(t)[I -< l(t /+). U(t) commutes with L on and is strongly
continuous on +.

(ii) ff yo , if f:/++ is continuous with f(t) for all t, and if Lf is Bochner
integrable on each finite subinterval ofR +, then (1.9) gives the unique solution of (1.1),
(1.2).

Remark. If Y0, f are in o but not necessarily in , then (as shown in [8] for constant
f) (1.9) gives the unique weak solution of an integrated form of (1.1), (1.2).

In proving (1.7), we shall need the technical hypothesis

(2.1) a(t)= b(t)+ c(t), where b and c satisfy (1.3) except that either
b (0+) 0 or c (0+) 0 is permitted. Moreover,

(i) t-lb(t) dt < eo and

(ii) -c’ is convex on R /.

The Fourier transform of a will be denoted

(2.2) a(r)=-q(r)- irO(r)=- e-i*ta(t) dt.
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Under hypothesis (1.3), (-) is continuous, and rp(r) and 0(’) are nonnegative for - > 0
[4].

The frequency conditions

(2.3)
(i) (’)>0 (z >0),

(ii) lim sup <

are crucial for (1.6) and (1.7); we indicate briefly their role. From [4] we know that if
(1.3) holds, (2.3(i)) fails to hold if and only if a(t) is piecewise linear with changes of
slope only at integer multiples of a single positive number; u(t, A) is then asymptotic
(t ) to a nonconstant periodic function, so neither (1.6) nor (1.7) holds. If, on the
other hand, (1.3) and (2.3i) hold, a result of Shea and WRinger [20] shows that

flu (t, A )[ dt < (A > 0).

It is then easy to show from (1.5) that

(2.4) t(-, A)
1

A [(-)+ i-(A -1- 0(r)- d--2)] (r > 0).

In proving Theorem 2.2, we shall show that if A is sufficiently large, d/-2+ 0(’)
A -1 for exactly one positive number -= to(A) with to(A) continuous and to(A)’ o as
A ’ . From (2.4), it follows that

This shows the necessity of (2.3(ii)) for (1.7).
THEOREM 2.2. Assume that (1.3) holds. Then

(i) (1.6) holds if (2.3) holds,
(ii) (1.7) holds if (2.1) and (2.3) holds, and
(iii) if (1.7) holds, then (2.3) holds.
If (1.3) and (2.3(i)) hold and a(0+)<, then (2.3(ii)) holds if and only if a(.t) is

strongly positive (that is, (1 + r2)rp (-)is bounded away from zero; see [10]). In 7 below
we shall give an example (with a(0+)- ) where a(t) is strongly positive but (2.3(ii))
does not hold. In the same section, we shall prove the following positive result.

COROLLARY 2.1. /f (2.1) holds and either (i) c =0, b(0/)<, and b is strongly
positive, or (ii)

b(t) dt
lim sup J
x-,0+ c(t)

then (1.6) and (1.7) hold.
Thus, in particular, (1.8) holds if a(t) satisfies (1.3) and -a’(t) is convex.
Integration of (1.5) (see also [11], [4])shows that

u(t, )+ A [d + a(t- s)] u(r, A) dr ds 1,

so that when (1.3) and (2.3(i)) hold,

Io u(t,A)dt=l/(A [d+a(t)]d



964 RALPH W. CARR AND KENNETH B. HANNSGEN

(interpreted as zero if d +a(t)eLl(R/).)Thus in Theorem 2.2 we have

Io /(I0 t)U(t) dt L-1 [d + a (t)] d

Detailed statements about the asymptotic nature of u (t, h) as (h fixed) are
given for certain special cases by Levin and Nohel [13], [14], by the second author [5],
and by Wong and Wong [24]. For example if d +a(t)= t-(0</3 <1), Corollary 2.1
applies and [5, Cor. 3.3] shows that

Ctt-2 (t c).u(t,)
On the other hand (see 4), there is a C’> 0 such that

(2.5) lu(t, ) t c’x -1/- ( > o).

Thus the asymptotic behavior of u(t, )as m is not completely clear. See [14], [9] for
further discussion.

Another useful example, where (1.5)can be solved explicitly, is d +a(t)=e-’.
Then [10] (1.5) reduces to an ordinary differential equation, and

u(t, )= e-/Z(cos t +-a sin t) ( # ),
(2.6)

u(t, l)= e-’/(1 + t),
where (4 1)/z ( and may be real or complex). For this example, we remark
that

(i) tU(t) is not continuous in the norm topology if L is unbounded, since
IIu(t)-U(s)llelu(t, X)-u(s, )1 for in the spectrum of L.

(ii) Io lu(t,x)[dtel ( >0). This is proved in [101.
(iii) u(.,A e)L(R+) if p 1, e 1, and >0 is sufficiently large.
Dafermos [2] and Slemrod [21] study equations similar to (1.1) as linear models in

viscoelasticity and fluid mechanics respectively. [2] concerns equations of a much more
general form than (1.1), but in overlapping cases Dafermos’ results on asymptotic
behavior require d > 0, a (0+) < m, and [It’ll e L (R +). The corresponding conclusion in
[2] is that Ily’(t)ll + IILa/zy’(t)ll 0 as if Y0 is in the domain of L/. The hypotheses in
[21] are quite close to ours, and sufficient conditions are given for solutions to tend to
zero (t m) in a fading memory space. Neither [2] nor [21] contains an analogue of
(1.8); consequently, the results cover a more restricted class of forcing terms and do not
give conditions ensuring that lyll e LX(R +).

Our results and methods are closer to those of Friedman and Shinbrot [3], who
obtain L estimates (1 N p < m) for the resolvent (fundamental solution) S(t) of

(2.7) y(t)+ h(t-s)Ly(s)= F(t)

in Banach space. Formal differentiation of (2.7) yields (1.1) if h’(t) d + a(t), h(0)= 0,
F’ =L For their L estimates, Friedman and Shinbrot require at least h(0)> 0, h’e
(+).

Miller and Wheeler 17] use procedures similar to those of [3] to study the equation

(2.8) y’(t) -Ly(t)- a(t-s)(L+lI)y(s)ds+I(t)
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in Hilbert space. Here L is self-adjoint and bounded below and has a compact resolvent.
Miller and Wheeler give conditions under which the resolvent for (2.8) may be
decomposed into an exponential polynomial with finite-dimensional projections as
coefficients and a remainder ("residual resolvent") R(t) with IIR(t)ll L’(R /).

The proofs of these results in [3] and [17] use the operational calculus based on
contour integrals and estimates such as

(2.9) f) lr(t, A)[" dt <= CIA 1-8

(larg A <- (7r/2)- e), where e, 6 > 0 and r(t, A ) is the solution of a certain scalar equation
(analogous to (1.5)) with complex parameter A. Remarks (ii) and (iii) following (2.6)
above show that estimates like (2.9) need not hold for our function u (t, A).

Questions of existence and uniqueness are easily settled under the hypotheses of
our theorems, as will be seen in 3. In Theorem 2.1, only the sufficient conditions for
the resolvent formula are new.

For a broader treatment of existence, uniqueness, and continuous dependence for
equations like (1.1) in Banach space, see Miller 16]; further discussion of the resolvent
formula (1.9)will also be found in [16].

Finally, we remark that nonlinear versions of (1.1) are under active study by many
authors. See, for example, [1], [15], [25], [26], [27].

3. Proof of Theorem 2.1. (i) The proof of Theorem 2 of [6], with a (t) replaced by
d+a(t) (and the last equalities corrected to read 2V(O)=uZ(O) 1), shows that
lu(t, A)I=< 1 (tR ,A R+), so IIU(t)ll=< 1 and U(t)L=LU(t) on . Since

IIu(t)x- U(s)xllZ IA In(t, )- u(s, )12 d(Ex, x),

the continuity of u(t, A in and the dominated convergence theorem imply that U(t) is
strongly continuous.

The computations for (ii) are formally the same as those for Theorem 2 of [9],
where a and Lf are continuous on/ /. To simplify formulas we take d 0 since this does
not change the following argument. It is obvious that the function y(t) of (1.9) satisfies
(1.2). Let T(t) be the triangle {O<-r<s<-t}(t>O), and let h(t)=toa(s)ds. Since
LU(r)yo U(r)Lyo is continuous (r /+), a(s-r)LU(r)yo is in LI(T(t)) and

Yo- a (s r)LU(r)yo dr ds

(3.1)
Y0 h (t r)LU(r)y0 dr

=Yo- h(t-r) t Au(r,A)dEyo dr
0

Yo- A h (t- r)u (r, A ) dr clE yo.

The expression in brackets here is just 1 u (t, A), as one sees by integrating (1.5); thus
the left-hand side of (3.1) is equal to U(t)y0 and differentiation establishes that

(3.2)
d

[U(t)yo] a(t- s)LU(s)yo ds.
dt
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We observe next that the strong continuity and uniform boundedness of U ensure
that the function

a(t- s)LU(s r)f(r)= a(t- s)U(s r)Lf(r)

is strongly measurable on T(t). In view of our hypotheses and [11, Thm. 3.5.4], the
following lemma establishes this. (Compare [16, Lemma 2.1].)

LEMMA 3.1. I g: R /--> belongs to BI(O, t), then thefunction G(s, r) U(s r)g(r)
is strongly measurable on T(t).

Proof. To simplify notation, take 1. For each positive integer n, let Un,i
U(j/n), En, ((- 1)In, j/n](1 <- <- n). Let g,, be a sequence of countably-valued
functions

g,, (r) X,,,k (r)g,,,k
k=l

(X,,k the characteristic function of a measurable set fl,,)such that g, (r)--> g(r)(n --> o)
except on a set Z of measure zero. For (s, r) T(1), let j(s, r, n) be the integer such that
s r E,,i(,,,,,), and let

G,(s, r)= Un,i(s,r..)g(r).

Then G.(s, r) is measurable and countably valued since T(1) is the union of the
measurable sets

{s r
_
E,,} Cl {r = fln,}

(1-< m _-<n, 1 <-k <), on each of which G. is constant. For fixed (s, r)s T(1), re=Z,

IIG(s, r)- G(s, r)ll-<-IIu,i(,r,)[g(r)-g(r)]ll

-[-[[[Und(s,r,n)-- U(s r)]g(r )[[.
As n-->, the first term tends to zero, since [[UI]<_-I and g.(r)->g(r); by strong
continuity, the second term tends to zero as well. Thus G(s, r) is the limit almost
everywhere of countably-valued measurable functions, and the lemma is proved.

Continuing the proof of Theorem 2.1, we note that

a (t s)llU(s r)L(r)l[ dr ds <- a (s) ds [ILf(r)l[ dr < c,

so a(t-s)U(s- r)Lf(r) BI(T(t)). Then, using Fubini’s theorem, a change of variable,
and the fact that L is closed, we may compute

io ioa(t-s)L U(s-r)f(r)drds a(t-s)LU(s-r)f(r)drds

(3.3) [a(t- r- s)LU(s)(r)] ds dr

I-[U(t- r)f(r)] dr,

where the last step uses (3.2) and f(r) in place of yo. It is clear from these equalities that
the integrand in the last expression is locally Bochner integrable in (t, r); using Fubini’s
theorem, we see that this expression (and hence the left-hand side (3.3)) is equal to

(tl- tJ(t-l(l a.
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In view of (3.2) this establishes (1.1).
For uniqueness, we pass to the weak, integrated version of (1.1), (1.2) and project

on Ea; see [9] or [7] for details.

4. Proof of Theorem 2.2. Reduction to two estimates. We assume without further
mention that d + a(t) has been rescaled, if necessary, so that A 1. The functions a’, b’,
and c’ are redefined where necessary so as to be continuous from the left on I+. We let
a(t)=a(r)dr.

The proof relies on detailed information about d (see (2.2)). See [4], [20] for earlier
versions of these ideas.

LEMMA 4.1. Suppose (1.3) holds. Then o and 0 are continuously differentiable on +
with

(4.1) 1-A _-< I,(z)l-< 4A (z > 0),
24

l/’r

(4.2) Id’(’)l-<- 40 ra(r) dr (r > 0),
aO

(4.3) - ra(r) dr _-< 0(r) <- 12 ra(r) dr (r > 0),

1/’r
T .3(4.4) -0’(r)>- a(r)dr (z > 0).

Our proof is adapted from [10, Lemma 2.2]. We exploit the fact that da’(t) is a
positive measure on R + and adapt the convention, consistent with our choice of
a’(t) a’(t-) that when 0-<_x -< y and feL(da’(t)),

f(t) da’(t)= f(t) da’(t).
x,y)

Convexity of a(t) implies a(t/2)-a(t) >- -ta’(t)/2, and hence

(4.5) 2 a(r)dr>-_ta -ta(t)--a’(t)>-_O (t >-O).

In particular (4.5)shows that ta(t)+(t2/2)la’(t)l=o(1)(t 0+). We also have ta’(t)
o(1) (t oo), as a consequence of (1.3) and

(4.6) rda’(r)=a(r)-ra’(T)<o (7’>0).

Two integrations by parts in (2.2) yield the formula

(4.7) (r)= z- (1 izr e-’) da’ (r) (r > 0),

where (4.5) and (4.6) assure vanishing of the boundary terms and absolute convergence
of the integral.

Following [201, we let J(u)= iu(1-e’)-2(1 +iu-e); then

(4.8) IJ(u)l1/4u 3 (Oul), and IJ(u)l2(u+2) (uO).

(4.8), combined with Fubini’s theorem, justifies differentiation of (4.7) and gives
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US

(4.9) d’0") r-3 Io J(-rr) da’(r)

The inequalities (4.1) and (4.2) now follow as in [20].
From (4.7)we have

(>0).

(4.10)

with

O(’r) r
-2 rK (rr) da’ (r) (z> 0),

sin u
K(u) (u > 01.

U

Note that

U
2

U
2

U
2

-6- 1-2-0 >_- -6 (0<--u <--1)
K(u)>=

1-max { sin 1 -} 1-_-> (u-> 1).

Therefore,

Ofo
1/’r 1 fl r da’ (r), (r > 0).(4.11) 0(r) > r3 da’(r)+,lO.2

The relations

(4.12)
I1 1 () ()r da’ (r)= --a’ + a
/ ’r

fo
1/’r

1 () 3 () I0
x/’r

r3 da’ (r) a’ a + 6 ra (r) dr,
T

along with (4.11), give us the first inequality in (4.3). The second inequality follows from
the estimates

IK(u)l<=2u z (0=<u-<l) and ]K(u)l-<2 (u>0),

which, along with (4.12), yield

I01/" I1 IO
1/"

O(r) <- 2 r3 da’ (r)+ 2r-z r da’ (r)<= 12 ra(r) dr.

To prove (4.4)we differentiate (4.10), which yields

(4.13) 40’(’/’) H(rr) da’ (r), O" > 0),

where

H(u)= 3(u-sin u)-u(1-cos u).
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Then

(4.14)
H(J)(0) 0 (] 0, 1, 2, 3, 4),
H(S)(0) 2,

-4 <- -3 sin u u cos u n(6)(u)--< 0 (0--< U_<-- 1),

SO

(4.15)
2u 5 4u 6 u 5 u 5

n(u) > =(3-u)>- (0< u < 1),
5! 6! 180 =100

and

(4.16) H’(u) >
2u4 4uS u’ u4

<1).
4! 5! 60(5 2u)>-6 (0 < u

If we can show that H"(u)>= 0 (1 =< u -< 4), it will then follow from (4.15) and (4.16)
that

(4.17) H(u)>--i-+ (u 1) 1-i(5u -4) (1 <- u-<4).

But H(3)(u)=usinu>-O(O<-u<=zr); by (4.14), we conclude that H"(u)>-O
H(2)(u) _-> HZ)(4r/3) >,0(0 =< u -< zr). Then since Ht3)(u)<-_O(r<-u<-4r/3),

(zr _-< u -< 4), so (4.17) follows.
It is easy to see that

(4.18) H(u)>=u-3 (u ->4),

and thus (4.13), along with (4.15), (4.17), and (4.18), gives

(4.19)

and

(5-r-4)da’ (r)+ (-r-3)da’ (r),’r’40’(’/’)-i- rs da (r)+-i--

r5
7" r3V6-6a + a (r) dr,0 da’ (r) -a -(4.20) (5’r- 4) da’ (r)= a’ a’ + a

100 1/, -a -(zr 3)da (r)=-a’
4 4

+ .a

Combining (4.19) and (4.20) we obtain (4.4). This completes the proof of Lemma
4.1.

Using (4.3) and (4.4) we see that the equation

d 1
(4.21) 0(w)+--

defines a strictly increasing, continuously differentiable function w 03 (A) on a subin-

terval (ho, az)of R/
with a3(h )--> o as h --> o. This provides the missing step in the proof

of Theorem 2.2(iii) outlined just above the statement of the theorem.
Fix tl >0 such that a(tl)>0 and let p =6t]-1. Set w(h)= max {p, o;(A)} if o;(h)is

defined, to(h)= p otherwise.
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(4.3) and (4.21) yield

(4.22)

and

(4.23)

1
_>- 0(to)>

1 fo
1/"

A - ra (r) dr,

f
1/" 1 ()a(tl)ra (r) dr>

ao 2w2 a 2o92.
In particular, (4.22)and (4.23)show that

(4.24) toz(h ) >-_ a(tl) h.
10

In [10] it was also shown that when a(0+)< oo, to2(h) is bounded above by some
constant times h. Such an estimate is not available to us when a (0+) , and this causes
the principal new difficulties in the proof of Theorem 2.2.

When a(t)=t-O(O<13<l,t>O), direct computations show that to(A)=
KA1/(2-t)(K=K(fl)>O). Now the inequality lu(t,a)ldt>-_la(o(A))l>-
O (to (h ))/o (to (h )). can be used to derive the estimate (2.5).

From (4.3), (4.21), and (4.23) we obtain

fl/a d ( 2d ) Iol/1
<_ 12 ra (r) dr + <- 12 + ra (r) dr(4.25)

A o to a(tx)

whenever

A>=Ao=max 0(p)+ ,1

On the other hand when 1 =< A _-< Ao, to (A) 19 and we have

1
<_ 1 <--Ao 12 + ra(r) dr.(4.26)

A

Then, combining (4.22), (4.25)and (4.26)we find that

If
/ 1

ra(r) dr <-< C ra(r) dr (h _-> 1),(4.27)
5 o =h o

where C [12 + 2d/(a(tx))]Ao. Define

D(-)-- D(-, oo)= (z)- dz-1

(4.28)
D(z,A)=D(.)+i-A-x=o(.)+iz(A--O(-)-d--2) (l=<h =<o, z>0).

If (2.3(i)) holds then [D(z, X)l_>-o(z)> 0 (-> 0, 1-<_, __<o)and [4] gives the represen-
tation

(4.29) zru(t, A) - Re dt (0< < oo, 0<h <oo).

(The integral is improper at - oo; by (1.3) and (4.1) [D(-, h )]--1 is continuous at
and for every -> 0.) Moreover the result of Shea and Wainger [20] shows that

(4.30) [u(t, h )[ at < oo (A > 0),
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and in [6] it was shown that (1.3) implies

(4.31) sup sup lu(t, A )I 1.
t>0 lA_oo

For the remainder of the proof, unless noted otherwise, we assume that (1.3), (2.1),
and (2.3) hold. Return to (4.29) and integrate by parts. There results the formula

1 f? i" D’(%A) drl (t>0, A>0).(4.32) ru(t, h)= Re / e
[D(r, h)]

Relations (4.1) and (4.2) show that the boundary terms vanish and that the integral
converges absolutely when d # 0. Absolute convergence of the integral when d 0 is
assured by an estimate of Shea and Wainger [20, pp. 322-323], namely

(4.33) J/’ra(r)drIo (/’a (r) drf
dr < c.

Note that

1 1 -ira

D(r, ) D(r) D(r, X )D(r)"

Then

(4.34)

D(r, A)
[D(r, A)]2

Define

I Io i,, D’(r)
dru(t)= e [D(r)]:

1 Io" e i.t

[u2(t) - ,[D (r)] I-----------

(t >0),

20’(__,)I
D(r) J

dr (t > 0),

1 Io i’t 2r
(4.35) u3(t) - e

[0(,/.)]3
dr (t > 0),

U4(t, A)-" e [D(r)]3D(r A) r)+ D(r, A dr (t > 0),

1 fo i’r, O,(r,X)
dr (t>0).us(t, )= - e

[D(r, Z)]=

Referring to (4.32) and (4.34) we see that

(4.36) u(t, h )= Im {h-lux(t) +/h-EuE(t) + A-aua(t)+ u4(t, A )+ Us(t, h )}.

In 6 we will show that if (1.3), (2.1) and (2.3) hold then

(4.37) lui(t, a )1 <- Mq(t) (t>O, I_<-A <oo, j =4, 5),
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where, now and henceforth, M (or M/) denotes a positive constant independent of h
whose value may change from line to line, and

q(t)--t-2 b(r)dr+t-2+t-lb(t)-b’(t), (t > 0).

The assumption (2.1(i))combined with an integration by parts shows that

I17" Iot [07, Io I17"b(t)-2 b(r) dr dt -T-1 b(t) dt + b(t) dt + dt

from which it follows easily that q(t) LX(1, o).
In view of (4.30), (4.36), and (4.37)we find that ui(t)L(1, o) (/" 1, 2, 3), and

this, along with (4.31), implies that

Io [u(t, A )l dt <sup oo.

This is the assertion of Theorem 2.2(ii).
Similar estimates which hold when (1.3) and (2.3) hold, but without the assump-

tions of (2.1), can then be used to show that

(4.38) [Ul(t)l+lu2(t)l+lu3(t)l+lu4(t,A)I+lus(t,A)l <M= (1 =<A <m, o<t),

from which Theorem 2.2(i) follows. (Theorem 2.2(iii) has already been proved above.)

5. Two more lemmas---some important estimates. We would like to integrate by
parts in the formulas for u4 and u5 in order to bring out another factor of -1. Hypothesis
(2. l(i)) appears to be too weak to permit this, so we separate o’ into a "small" part and a
differentiable part.

We again let J(u)= iu(1-eiU)-2(1-iu-eu) and define

o(, )= (-r) ab’ (r)

fl(t, z)= "l"-3 J(-zr) db’ (r)

(0< t<oo, 0<- <),

(0< t<, 0< z < c).

Observe that (z) and b"(-) are given by expressions analogous to (4.7) and (4.9)
respectively so that, in particular

(5.2) t;’() =/(t, )+(t, ) (0< <o, 0< " < ).

LEMMA 5.1. ff (1.3) and (2.1) hold then (z) is twice continuously differentiable,
Ofl/Oz(t, -) exists and is continuous (t > O, z > 0), and

ll,r

(5.3) le"(z)l--<- 6000 r2c(r) dr (z > 0),
-0

(5.4) ]fl(t, z)] <_- 40--2(b (t) tb’(t)) (z > O, > 0),

(5.5) ---- (t, ’) -<_ 500z b(r) dr (z > O, > 0),
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(5.6)

1/r

(i) ICt(t, z)[ _-< 40 I0 rb(r) dr (r > O, > 0),

1/r

(ii) I’(r)l <- 40 j rc(r) dr (r > 0).

Proof. Three integrations by parts show that

(5.7) (,l-) -i’r-3 1 izr +..
2

e dc"(r),

where we use

and

rc(r)+ Plc’(r)[ + r3c"(r-) -> 0 (r --> 0+)

c(r)+ rlc’(r)l + rc"(r-)-> 0
which are consequences of (2.1) and which assure that the various boundary terms
vanish. Note that dc"(r) is a negative measure; three differentiations of (5.7) yield

where

"(r) ir-5 Io K(-rr) dc" (r) (r >0),

(iu)2
K(u)=-12 1 +iu +’

2
-e +6iu(l+iu-e +u2(1-e ).

The remainder of the proof of (5.3) now follows as in [10, Lemma 6.1(ii)].
To obtain (5.4) we first consider the case where rt => 1. (4.8) and (5.1) give us

ICl(t, r)l-<- 2r-3 (rr + 2) db’(r)<= 2r-Z(b(t) 3tb’(t))

<= 40r-Z(b (t) tb’ )).

On the other hand if rt < 1 then (4.8) yields

[fl(t, ")1-<- 6 r3 db’ (r)+ 2r-3 (zr + 2) db’ (r)
/r

6 [,r_3b,(1) 3b _2b (.) ft
l,’r

]7 -t ’(t)-3r +3t2b(t)+6 rb(r)dr

+ 2-Zb()-6r-3b’()
1/z

<=-6t3b’(t)+ 18tZb(t)+ 36b(t) [ r dr
"t

<= 40r-2(b(t) tb’(t)),

thus giving us (5.4) in both cases.
Differentiation of (5.1) yields

Off(t, r)= r
-4 K(-rr) db’(r)

Or
(r>O, t>O),
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where K(u) 6(1 + iu -eiU)-4iu(1-ei")+ u 2 e iu, and we have

IK(u)l<-u4 (0-<ul), and IK(u)l20(l+u z) (u>0).

If zt> 1, -- (t, z) _-<40 r4 db’ (r)+2077-4 (772r2+ 1)db’ (r)

=40177-4b’()-4"r-3b()+ 12 Iol/r:Zb(r)dr]
[ -2b’() () Ii’ r]+20z-2 t2b’(t) 77 2tb(t)+ 2r-lb + 2 b(r) d

I01/’r--< 4077-2 b(r) dr + 480

50077-2 b(r) dr.

r2b (r) dr

If 77t < 1 then

I--z .t, 77) <-_ r4 db’ (r)<- 12 r2b(r)dr<-- b(r)dr,

so we have established (5.5) in both cases. (5.6) is obtained in the same way as (4.2). This
completes the proof of Lemma 5.1.

In order to obtain estimates on the size of u5 we will need lower bounds on D(77, A ).
We use to to(A) as defined in 4.
LEMMA 5.2. ff (1.3) holds, then

Io/"(5.8) ID(77, A )1 >= M77 ra (r) dr -= 77

Proof. The estimates (4.3), (4.4), and (4.27) will be exploited throughout without
explicit mention.

For 0/2 -< 77 < to p,

Re D(77, A )= q(77)-_>M =>M177 Io ra (r) dr >- Mz

which establishes (5.8) and (5.9) in this trivial case.
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In all other cases we start with

7" I01/’r ra (r) dr >
1 ()807" a

and use both parts of this estimate to obtain

(5.11)

]1 dIIm D(7", A )l 7" ---0(7")

In the last step of this computation we used Fubini’s theorem on the first integral
and a change of variable (r 1/s) on the second. Then

(5.12)
7.17"-tl(7.+to)Iol/’20 r3a(r)dr>= 7.217. (’ [Iol/(4)20 f 1/(2"r)]+ r3a (r) dr

1/(4-) -
6000

7. a +a

Define f(t)= ta(t)-1/2t2a’(t)(t >0). Observe that f(t)is nonnegative, left continu-
ous (by our convention a’(t)= a’(t-)), and satisfies

(5.13) ta(t)<-f(t) <- a(r) dr (t >0).

Here the first inequality is immediate from the definition and the second is obtained by
integrating by parts twice in the inequality 1/2 o r da’ (r)>-_ O. From (4.5) we also have

(5.14) f(t) <- ta (t >0),

so that /(0+)=0 and f is bounded on [0, 1/7"] for every 7">0. Let S(7")=
supo<,,</{f(x)}, and for each 7" >0 choose 6 6(7") (0, 1] so that f(6/7")>=1/2S(7").

The proof now splits into three cases.
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Case 1. If 1 -> 6(-)->1/2 then (5.14) and (5.13) imply

6000.za ->6000. a
6000r

>
I -,ol

(5.15) 12000----- 

->l-wl(zl-. sup
12000 0<x<X/’r

(xa(x)})

12000
ra(r) dr.

If p/2<-r<=w/2 then [o--[->1/2w->r so (5.11), (5.12), and (5.15) combine to give
(5.8).

On the other hand, if - _->1/2o then (5.11), (5.12), (5.15) and (4.27) yield

ra (r) dr
12000

ra(r) dr+- /

>- ra (r dr >M
12000 h

which is (5.9).
Case 2. If 0<60")<1/2 and f(1/z)>=1/2f(6/r) then, again using (5.14), we obtain

(5.16)

6000-2 zz 0

12000"

=> 240(J0S(’r )

->l’-[(zl-sup {xa (x )})24000 o<x<l/

>- ra (r) dr.-24000

Combining (5.11), (5.12), and (5.16) we complete the computations as in Case 1 for
both (5.8)and (5.9).

Case 3. If 0<6(’)<1/2 and f(1/z)<=1/2f(6/z) then we use (4.7) along with the
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estimate 1-cos x >=x2/4 (Ox 1), and then apply (5.13) to obtain

2 Re D(r, A)= 2(r)= 2r-2 (1 -cos rr) do’ (r)

1 IO
1/r

>---- r2 do’ (r)-2
lIt

a(r) dr-f(

f01/r i01/r(5.17) =r ra(r)dr+ (1-rr)a(r) dr-f()
>-- T IO

1/r

ra (r) dr +-
01/r>- r ra (r) dr.

This is (5.8).
When r => o/2, (5.11), (5.17), and (4.27)combine to yield

(5.18)

which is (5.9). This completes the proof of Lemma 5.2.

6. Proof of estimate (4.37). Define A(t, r)=fl(t, r)+’(r)+id/r2 (r>0, t>0),
and let

Io r2(A(t, r)+ ia-1)[ 2 1 ]1 i’rt/z41(t,A)-’-57 e [D(r)]3D(r,A ) D(r)+D(r,a) dr (t>0),

1 Io irt "/’2O(t T) [2 1 ]pt42(t, A)= e [D(r)13D(r A) D(r) +n(’r, h’-----) dr (t > 01,

1 I; i’r, (A(t, r)+ i/-1)
/z51(t, h )- -7 e

[D(r, h )]: (t > 0),

1 I; i’rt (t, "l’)
/zs2(t, A )-- 7 e

[D(r, h)]: dz (t > 0).
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Thus ui(t, A ) tzix(t, A )+ Id,j2(t i ) (t > 0, 1 =< A < oo, j 4, 5). We now integrate by parts
on/-/,41 and/*sx in order to bring out another factor of -x. This gives us

(6.1)

-iA 3t21z41(t, A )
ei’p=(A(t, p)+/A-x)[ 2 1 ]DS(p)D(p, A) Drio)

+
D(p,X’----

+ e"’ 2r(ZX(t, r)+ia-x)+r2A,(t, 7") 2 1

D3(r)D(r, A) D(r)+ D(r,a
r2(A(t, r)+ia-x)/8D’(r) 5D’(r)+2ia -1

+ D2(r, X) } J dr

and

(6.2) -iatztzsx(t, a )=
e"’(zX(t,p)+ia -)

O2(p, a)

D(r, X)
2(ZX(t, r)+ ih-X)D,(r, a )] dr.D3(r, a)

In (6.1) the estimates of Lemmas 4.1 and 5.1 assure absolute convergence of the
integral and vanishing boundary terms at r 0. In (6.2) absolute convergence and
vanishing boundary terms at r oo is a consequence of Lemmas 5.1 and 5.2 along with
(2.3). Inequalities (4.1) and (2.3(i)) imply that

inf inf ID (r, a)[ 3’ > 0.
0<r<p

From (4.2) and Lemma 5.1 we find the estimates

(6.3)
max {zlD,(z, a )1, zlA(t, r)+ ix -l} =< 40r f ra(r) dr + dr-x + 7"i -1,

rlZ,.(t, r)l <- 500 b(r) dr + 6000r rc(r) dr + 2 dr-x

(t, r > O)

(t, r>0)

and from (4.28) and (4.3) we have ID(r)l >= IIm D(r)l >= dr-. When d 0 we have a
lower bound on ID(r)l from (4.1). Thus, referring to (6.1), we obtain

la 3t2tx4x(t, X )l <-M +MIo" r l/ r2c (r) drra(r) dr + r + d’l"-1 -I" IO b(l’) dr + r= I/"
max {dr-1, /" a (r) dr}. 3,

4

_[.( "l" IoX /r,.ra (r dre /,

+ r + dr-z
y-4

max ,at Jo a(r) dr}] dr

in other words

<- M( b(r) dr + l

(6.4) I/,4x(t, h )l <=Mq(t).
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From (5.4) it is clear that

IA3tlx42(t,A)[<-M dz<-(b(t)-tb’(t))<-tq(t).

Taken together with (6.4), this shows that

(6.5) lU4(t, A )1 <- Mq(t)
which is the case/" 4 of (4.37).

In order to obtain a similar estimate on us(t, A) we partition the interval [0/2, oo)
into four sets

El U E2 U E3 I,.J E4.
We use the estimates of Lemma 5.2 on E1 I,.J E2 I,,J E4 and (2.3)on E3 for lower

bounds on ID(z, A)I. Lemmas 4.1 and 5.1 will again give upper bounds on the
numerators.

We know from (6.3) that

iot f
l/,

r2c(r) dr+d1"-3Ia,(t, ’)t <_- M(--2 b(r)dr+
aO

(6.6)
<-Mlt2q(t)z-2 (’r >),

and

(6.7) max {la(t, )+ i;-l, [D,(r, A )1} <-M ra(r) dr " >= 0

f2/,,,Using the estimate J1/,o ra(r)dr<--w-2a(to-1) <3 Jo ra(r)dr, along with (4.27) and
(6.7), we obtain

,r_

Returning to (6.2), we observe that

(6.9) la.(t, )1Itzz(t, , )1 <M + +
A [D(.r, A)I2

21A(t, z)+ ix-l [D,(z, X
d-.

From (6.6), (6.7), (5.8), and (4.27) it follows that

(6.10)

2lA(t, -)+ ix-l ID,(’, )[} d’r
X ID (’, ] )1

<_Mt2q(t)[..A f./,;;
1 f,,,/2 d"

,o ra(r)dr

<_Mt2q(t) 1 1
+ dr <-Met2q(t).

/2

o ra(r) dr o/2 "
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From (6.6), (6.8), (5.9), (4.24), and (4.27)we find that

I ,&(t, z), 2,A(t, 7.)+iA-xlD,(7.,A)[}..+ a
d

[f-/2 I? 1 1 r]+ )3 d(6 11) <MtZq(t)
/2 +,/2 (r-)2 (r-

Mxt2q(t).

Then (6.6), (6.8), (4.3), (4.27)and (2.3)yield

IE 2[A(t, 7.)+ ix-ll iD,(r, A)I7.)[ + d

(6.12) Mt2q(t)_o/2 2(r) 3(r)} dr

Mxt2q(t).
Now (6.9) through (6.12) imply that

(6.13) [s(t, a )[ Mq(t).

It remains to establish an estimate on

(6.14) Its2(t, A )
A ID(, A )l2

From (5.4) and (5.8) we argue as in (6.10) to obtain

fe IB(t’r)l
dr 2itq(t) f

/2 dr
Mltq(t).(6.15) Alo(,a)l= ra(r)dr o/2 rJ0

As in (6.11), (5.4)and (5.9)yield

(6.16) IB (t, ")1
d, < Mtq(t) + <M,tq(t)., a ID(,, a)l ,/ +0/ (,-)

Finally, (5.4)and (2.3)give us

I(t, r)l
dr < Mtq(t)(6.17) dT" <- Mltq(t).

Combining (6.13)through (6.17)we have now established that

lus(t, a )1 <=Mq(t).

This completes the case 5 of (4.37).
In order to prove (4.38)one need only apply the estimates of Lemmas 4.1 and 5.2

along with (4.27) and (4.33) to the functions as defined in (4.35) in the same manner as
we have done in this section, noting that in this case the decomposition a(t) b(t)+ c(t)
from (2.1) is never used.

7. Proof of Corollary 2.1 and an example. In view of Theorem 2.2 it suffices to
show that either hypothesis (i) or hypothesis (if) of the corollary implies (2.3).
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If c--0 and a(0+)=b(0+)<oo and a(t) is strongly positive then there exist
constants /> 0 and/ > 0 such that

2>-i- >-i ta(t)dt>-_ 0(r)>0 (r_->p),

and

()) n 2>0 (0<<-p).
l+p

Here we have used (4.3). This establishes (2.3) when (i) holds.
Assume now that hypothesis (ii) holds. If a(0+)< oo then [18, Cor. 2.1 and 2.2]

imply that c is strongly positive, and hypothesis (iii) assures that, for sufficiently small
Xo > 0, there exists/ > 0 such that

I) a{t) dt
<- (0 < x < Xo),oC(t)dt-

and that there exists > 0 such that

Re ()-: ( v).

Therefore

o(z)-> Re e(
_> m.-2

P IO1/">-- c(O)---- c(t) at

b’ f
1/"

>-- a(t) dt
/3c (0)" o

4/c (0)

>= MO(’r) > 0 (z >- max {p, x1}).
Here we have used (4.1). The condition (2.3(i)) is satisfied, because a is strongly

positive. This establishes (2.3) when (ii) holds and a (0+)< o.
Assume now that (ii) holds and a(0+)= o. Then c(0+)= o, and we define

cl(t)=
1/2(t-tl)2c’’(tl)+(t-tl)c’(tl)+c(tl) (0<t--<t1)
c(t) (t>&)

and c(t)=c(t)-Cl(t),(t>O). Then Cl and c2 both satisfy (H), -c ’ (t) is convex
c2 L (R /), c1(0 + < o, and hence c(0 + .

By a result of O. J. Staffans [23, Thm. 2(iii)]

{Re 2(z)}a inf > 0.
>o le,.()l

Furthermore c1(0+)< oo and hypothesis (ii) imply that for some Xo> 0, fl > 0,

I) a(t) at
</3< (0 < x _-<Xo).I c2(t) dt
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Thus

>-MO(r)>O (r_-> max {0, xl }).

Again (2.30)) is trivial, and we have established (2.3) when a(0+)= oo. This completes
the proof of Corollary 2.1.

We conclude with an example where (2.3(i)) holds and the kernel is even strongly
positive but (2.3(ii)) is not satisfied.

2Let bk(t) (1 2 t),t’to.2-2k (t) (t -> 0, k 0, 1, 2, 3,. .) where ,gE denotes the
characteristic function of the set E. Define

a(t)= Y’. bk(t) (t>0).
k=0

This sum is finite for each >0 and one easily checks that a (t) satisfies (1.3)with
a(0+) oo. A direct computation shows that a e LI(0, oo), and

(7.1) q(r)= Y. 2k
(1-cs2-r)

(r >0).
k=0 ’r

We first show that a(t) is strongly positive. Note that

(7.2) 1/2u >- 1- cos u >-1/4u z (0 <- u <= 1),

and let rn [log2 log z] for r => 2, where [. denotes the greatest integer function. Thus
22"‘ <- r <- 2’/1. (7.1) and (7.2) imply that

1
2-2> 2 > (r > 2).(7.3) (4 (’r’)

k=m+ = 4 =r2

For 0 < z <- 2 we use (4.7) and (7.2) to obtain

2 da’ (t)>-K >0,(7.4) o(z) r-2 (1 -cos rt) da (t)>-- o
fl/z z da’ (t) is a fixed positive constant.where K 1/4 Jo

(7.3) and (7.4) show that a(t) is strongly positive, even though da’ (t) is a purely
singular measure. (Compare [18, 4].)

We next show that a(t) does not satisfy (2.3(ii)). Let r,

22" (2zr) (n 0, 1, 2, 3,. ").



A NONHOMOGENEOUS INTEGRODIFFERENTIAL EQUATION 983

Then, referring to (7.1), (7.2) and (7.3), and using the fact that Re OCk(Zn)
0 (k =0, 1, 2,’’’, n), we find that

1 22(2-2rn)2 1
2 -2"+’ (2rr)2

2 Y’- 2-2 <- --’-T-"(7 5) q(r,)< r 2 =,+k=n+l

From (4.3)we have

1Iol/" 1 Io1/" n
(7.6) O(r")>-- ta(t) dt >-- k=l

t(1-r"t) dt 3or-----"
Comparison of (7.5)and (7.6)shows that

O rn >= n
o (n -+oo r, -+ oo);

q9 (r,,) 120rr2

thus (2.3(ii)) fails to hold. We note that da’ (t) being a purely singular measure was not
the critical aspect of this counterexample. One could use a(t)= a(t)+ e -t, where a(t) is
as defined above, and observe the same phenomenon.
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STABILITY CONDITIONS FOR SECOND ORDER ORDINARY
DIFFERENTIAL EQUATIONS WITH PERIODIC COEFFIENTS*

EARL R. BARNES"

Abstract. We give several stability tests for canonical second order ordinary differential equations with
periodic coefficients. The tests assume a knowledge of the integrals of coefficients in the differential equations
and are the best possible when no further information is available.

1. Introduction. Consider the canonical linear second order ordinary differential
equation

(1.1)
31 -/3 (t)yl- y(t)y2,

where a (t), /3 (t), y(t) are periodic of period T>0, and Lebesgue integrable on [0, T].
Hill’s equation

(1.2) y"+p(t)y =0, p(t+ T)=p(t),

which arises in numerous applications, is included as a special case by taking yl --Y’,
y2 y. A classical result due to Lyapunov states that all solutions of (1.2) are bounded
on (-c, o) if

T

{>=0 and T Io P(t) dt < 4,(1.3) p(t)
O.

This result was generalized by Krein in [1]. He showed that all solutions of (1.2) are
bounded if for some integer n _-> 1,

2 2 T

(1.4) p >
n "iT fO 2Tg2 "/T

T2 and T p(t) dt < n + 2zrn(n + 1) tan
2(n + 1-------’

In this paper we derive similar results for equation (1.1). For example, we show that all
solutions of (1.1) are bounded on (-o, ) if for some integer n => 0,

(1 5a) a(t) >nr nr
=T’ ’(/)--> T’ a(t)--- y(t)----/2(t)_-->0,

and

(1.5b)

T

{a(t) + l(t)l + 3,(t)} dt < 2nr + 2(n + 1)log

nqT-
1 + cos

4(n + 1----
n’tr

1 + sin
1)4(n+

+4(n + 1)

nT/"
cos

4(n + 1)
-sin 4(-- 1)

1 +sin
4(n + ]i +cs 1

* Received by the editors December 22, 1977.

" Mathematical Sciences Department, IBM T. J. Watson Research Center, Yorktown Heights, New
York 10598. This work was supported in part by a Vinton Hayes Fellowship from the Department of
Electrical Engineering, Massachusetts Institute of Technology.
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The tests (1.3) and (1.4) are derived in [2] by variational methods. These methods
also apply to the more general equation (1.1). However, the variational problems that
arise are, in this case, considerably more difficult to solve. We give the solutions in 4.
In 5 we list the stability tests that are implied by these solutions and work out an
example. In 2 and 3 we review some preliminaries from I-2, Chap. 8] that are
necessary for the variational formulation of stability conditions.

2. Preliminaries. For convenience we write (1.1) in vector notation as

(2.1) J H(t)y

where J and H(t) are the 2 2 matrices

(2.2) J=-1 0 /3(t) y(t)

H(t) is called a Hamiltonian matrix and the differential equation (1.1) is called a
canonical Hamiltonian system. The totality of Hamiltonians, under ordinary matrix
algebra, forms a vector space which we denote by3 and term Hamiltonian space. We
define a norm on 3 by

(2.3)
T

Iln(t)[[= I0 {l(t)l+l(t)l+lT(t)l} dr

A 3-dimensional model of 3 is constructed in [2, Chap. 8]. It consists of open
connected sets <,,, ,, n 0, +/-1, +/-2,. ., and closed connected sets r,
n 0, +/-1, +/-2,. , and may be obtained by rotating Fig. 2.1 about a line through the
points r, n 0, +/-1, +/-2,.... We denote this model by R 3 and write

R 3 91"*-O U U U U U U r*.+ U U r*.*

Each Hamiltonian H(t) is associated with a point in exactly one of the sets in R 3.
This association defines a many-to-one continuous mapping. For simplicity we shall say
that a given H(t) belongs to the set with which it is associated under this mapping.

rr. rr_ o o *-

FIG, 2.1.

The sets >, and , represent zones of stability and instability for systems of the
form (1.1).

If H(t) for some n, then all solutions of (1.1) are bounded on the entire line
(-,

If H(t) , for some n, then all solutions of (1.1) grow unboundedly as -+ +oo or
as --> -oo.
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If H(t) r*-t.Jrn for some n, then (1.1) has exactly one periodic solution
(y(t+ T)=y(t)) of period T if n is even, and exactly one antiperiodic solution
(y(t + T)=-y(t)) of period T if n is odd.

If H(t) zr**, then all solutions of (1.1) are periodic of period T if n is even, and all
solutions are antiperiodic of period T if n is odd.

R 3 is a faithful representation of3 in the sense that the preimage of each (Tn in3
is open, connected and simply connected and its boundary is the preimage of the sets
r LI r and n+l t.J zr/l. These preimages are connected and simply connected, as

/ ** r*- zr** The preimage of each , is connected, but notare the sets 7rn r, and ,/1 LI ,,/1.

simply connected, and its boundary is formed by the preimages of the sets zr*- t3 r**,
r, The fact that R 3 Q93rn is a faithful representation of will be of particular
importance in 3 where we shall state, without proofs, certain results which are
obviously true in R 3 but require proofs in 3. The proofs for 3 are given in [2].

DEFINITION. We define the rotation by of a solution y(t) of (1.1) to be the angle
through which y(t) turns as goes from 0 to T.

A brief calculation shows that

"H(t)y(t). y(t)
dt.(2.4) by

y(t)-y(t)

The following characterization of the sets ’,, ,, r, r, rn in terms of
rotations is given in [2, p. 654].

THEOREM 2.1. H(t) 7 if and only if the rotation of any solution y(t)0 of (1.1)
satisfies nzr <

H(t) if and only if there exist two linearly independent solutions yl and y2 of
(1.1) with rotations qbyl qby2 nzr and there are also solutions with rotations both less than
and greater than nzr. In this case we have (n- 1)r < by < (n + 1)r for any solution
y(t)0.

H(t) r, if and only if (n -1)r < 4y <- nzr for any solution y(t)0 and there is
exactly one linearly independent solution y(t) such that qby nr.

:+H(t) r, if and only if]or any solution y(t)0 we have nr<=4y <(n + 1)Tr and
there is exactly one linearly independent solution y such that qby nzr.

H(t) r** if and only if qby nr ]:or any solution y(t) 0 of (1.1).
This theorem remains valid if the interval [0, T] is replaced by any interval

[to, to + T] in the definition of the rotation. Thus if H(t) zrn n 0, a given solution of
(2.1) may always be assumed to satisfy y(0)= 0.

Sufficient conditions for a constant Hamiltonian to belong to each of the sets r**,
t?,,, n 0, + 1, +2, , are given in [2, p. 658]. According to these results, the constant
Hamiltonian

0 cn
belongs to 7,, if

nzr (n + 1
(2.6) <c,,<

T T

and to r** if c, nr/T, n 0, + 1, +/-2,. . This follows immediately from (2.4) and
Theorem 2.1.

3. Stability tests. In this section we give several sufficient conditions for all
solutions of (1.1) to be bounded. When one of these conditions holds, it also identifies



988 EARL R. BARNES

the stability zone Tn in which H(t) lies. The conditions are based on results which are
proved in [2, Chap. 8] and stated here without proofs. However, if one is willing to
accept Fig. 2.1 as a faithful representation of 3, no proofs are required.

Let
+ *+ ** q’r*- **77n q’/’n I,.J q’/’n 7rn+l n+l J 7"/’n+l.

These sets are simply connected and closed. Their union is the boundary of the stability
zone n-Let
(3.1) +p inf liB(t)- He.

H(t)’n’n

(3.2) p+a inf IIn(t)-n.ll,
H(t)

+ (cn) towhere cn satisfies (2.6). Strictly speaking, we should write 0n (cn) and
+indicate the dependence of pn and pn+a on c,. But we shall not do this. In 5, cn will be

taken to be an endpoint, or the midpoint, of the interval (2.6).
THEOREM 3.1. Let H(t) be a Hamiltonian satisfying

(3.3) [IH(t)-Hc.ll<min {P+n, P+l}.
Then H(t) n and consequently all solutions of (1.1) are bounded.

The proof of this theorem is trivial if one accepts Fig. 2.1 as an accurate description
of 3. Inequality (3.3) says that H(t) lies in an open sphere centered at He. fin and
contained in the closure of Tn. It follows that H(t)

In the next section we show how to compute the numbers 0n, 0n+a, n
0, +1, +2,.... Inequality (3.3) then becomes a practical test for stability. In the
remainder of this section we explain how tests for stability can be made in terms of just
one of the numbers 0n, pn+l. Tests (1.3), (1.4), (1.5) are of this type. Their derivations
require a well-known comparison theorem for linear second order ordinary differential
equations.

Recall that a square matrix H is said to be nonnegative definite if the inner product
Hy.y is ->_0 for each vector y for which Hy is defined. We indicate that H is
nonnegative definite by writing H => 0. If in this definition the inequality Hy.y _-> 0
holds with strict inequality for y # 0 we say that H is positive definite and write H > 0.
Similarly, Ha => Hz means that Ha-Hz >- O, etc. The matrix

is nonnegative definite if and only if

(3.4) a=>0, 3’=>0, and

THEOREM 3.2 (Comparison Theorem). Let yl(t) and y2(t) be solutions of (2.1) with
Hamiltonians Ha(t) and Hz(t) respectively, and let ya(0) y2(0) # 0. Let arg (yi(t)) be a
continuous branch ofthe argumentofyi with arg (y 1(0)) arg (yZ(0)). IfHa t) >= Hz( ),
then ya(t) rotates "ahead" of y2(t) in the sense that arg (ya(t))-> arg (y2(t)). If there is a
set of positive measure in the interval (0, to) on which Ha(t)>Hz(t), then arg (ya(t))>
arg (y2(t)) for >-_ to.

The following theorem is now a consequence of Theorem 2.1.
THEOREM 3.3. Let cn be a constant satisfying (2.6) so that H. n. If the Hamil-

tonian H(t) in (2.1) satisfies H(t) >-_H., that is, if
(3.5) a(t)>=cn, y(t)>=cn, and (a(t)--Cn)(y(t)--Cn)--Z(t)>=O,
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then H(t) lies in one of the sets ’n, or*- ** "B’n$l, n+l,n+l, qTn+l, to the right of
+ + in Fig. 2.1.

Similarly, if

(3.6) a(t)<=c,, y(t)<=c,, and (a(t)-c,)(y(t)-c,)-z(t)>=O,

** ,, r* to the left of.lr-+l "B’n+l LI ,+a inthen H(t) lies in one ofthe sets ,, r, ,.
Fig. 2.1.

THEOREM 3.4. Let H(t) be a Hamiltonian satisfying

(3.7) IIH(t) ncnJ[ </9+1

where He, andP+l are defined by (2.5) and (3.2) respectively. Then H(t) lies in one ofthe-*+ 7r** ,, to the left of 7r,+a 7r,+1 LI in Fig. 2.1sets rain, q’/’n q’/’n+l

Similarly, if

(3.8)

then H(t) lies in one of the sets 6n, *- ** *+
q’/’n+l, qTn+l, q’/’n+l, n+l,’’’, to the right of

+ +7r r t_J zt in Fig. 2.1.
THEOREM 3.5. If the Hamiltonian H(t) satisfies (3.5) and (3.7) for some integer n,

then H(t) .
Similarly, if H(t) satisfies (3.6) and (3.8) for some integer n, then H(t) n.
COROLLARY. If H(t) satisfies (3.5) and (3.7) for some integer n with cn nr/ T,

then H(t) n t_J r** and consequently all solutions of (2.1) are bounded.
Similarly, ifH(t) satisfies (3.6) and (3.8) for some integer n with cn ((n + 1)r)/T,

**then H(t) n r,+l and consequently all solutions of (2.1) are bounded.
In the next section we shall see than when cn mr T, n >= 0,

(3.9) O+1 2(n + 1) log

nqT"
1 +cos

4(n + 1)

1 + sin
4(n + 1-

+4(n +1)

nTr ner
cos

4(n + 1)
-sin 4(-- 1)

+cos
4(n + 1)

+sin

Test (1.5) is therefore a direct application of this corollary.

4. An optimal control problem. We turn now to the problem of computing the
numbers an, pn+l. We begin with the case n =>0 and compute p,+a. For simplicity we
drop the subscript n on

From (3.2) and (2.3) we see that

(4.1) p+a =inf IO
T

{l(t)-cl+l(t)l+l(t)-cl} dt

where the infimum is taken subject to H(t) qT"+l. The requirement H(t)
implies that the differential equation (2.1) has a periodic solution of period T if n + 1 is
even, and an antiperiodic solution of period T if n + 1 is old. That is, the differential
equations

(4.2)
1 --/3 (t)yl-- y(t)y2,

f2 a(t)ya + 8(t)y2
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with boundary conditions

(4.3) y,(0) y(T) 0, y2(0) (-1)"+’ya(T) 0
+have a solution. Problem (4.2), (4.3) also has a solution if H(t) r,/ 7r,/1 t.J zr,+. It

is also clear from Fig. 2.1 that the infimum (4.1) does not change if 7r/ is replaced by
the larger set zr,,/ CI r,,/. Thus computing p,/ is equivalent to solving the optimal
control problem (4.1), (4.2), (4.3). It turns out that the infimum (4.1) is not attained at
any H(t) 7r+ U +

r,,+. We determine the infimum by the following device.
We choose a large positive constant and impose the constraints

(4.4) Ic(t)l---l, [/3(t)l <-l, I,(t)l <-l

on the controls a(t), /3(t), ,/(t). Let 0<e<m be fixed constants. We replace the
boundary conditions in (4.3) by the conditions

(4.5) yl(0)=y(T)=0, ya(0)[e,m], (-1)"+ya(T)[e,m].

We then consider the problem of computing (4.1) subject to the differential equation
(4.2) with boundary conditions (4.5), and subject to the constraints (4.4). We must also
impose the constraint

(4.6) &y (n + 1)r

on y. For sufficiently large, this problem can be shown to have a solution by standard
existence theorems in optimal control theory. See for example [3, p. 259]. As we shall
see, the optimal trajectory y corresponding to this solution also satisfies the boundary
conditions (4.3). We can therefore obtain p/1 as the limiting value of (4.1) subject to
(4.2), (4.4), (4.5), and (4.6), as

For a fixed l, sufficiently large, let

(c (t)/3 (t))(4.7) H(t)
O (t) 3,(t)

denote a solution of (4.1), (4.2), (4.4), (4.5), (4.6), and let y(t) denote the corresponding
optimal trajectory. Then according to Pontryagin’s maximum principle there exists a
nonzero function O(t)= (O(t), Oz(t)) satisfying

(4.8) 4) r(t)O 3 (t)O,

(0) O(T) O,

and a constant fro =< O, such that

max {-0x(t)(yl(t)

(4.9) =-O(t)(B(t)y(t)+y(t)y(t))+O(t)(c(t)y(t)-B(t)y(t))

+ 00[Ic (t)- cl + I/3 (t)l + Iw(t)- cl]
for almost all in [0, T] where the maximum is taken subject to

All nonzero solutions of (4.8) have the form

1(/) :t:xy(t), Oz(t) +xyl(t),
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or, in vector notation,

(4.10) b(t)= q:KJy(t)

for some constant K > 0. If we substitute this into (4.9) we see that H(t) must provide a
pointwise maximum to the expression

(4.11a)

over a,/, 3’ subject to (4.4). From this it follows that o 0, for the condition 4o 0
implies that at least one entry in H(t) has absolute value for each [0, T]. It therefore
follows from (2.4) that [y[-o as l-c. This contradicts (4.6). We therefore have
o< 0, and by properly scaling O(t), we shall take 0--1. Having done this, we can
compute a(t),/(t), y(t) in terms of y, :, and by maximizing (4.11a) subject to (4.4).

To simplify matters we eliminate r from the expressions for a(t), (t), 7(t) by
defining

Zl(t)=/-yl(t), ZE(t)=x/-yE(t).
Expression (4.11a) can now be written as

(4.11b) +az(t)+2flz(t)ZE(t)+Tz(t)-[[a-c[+[t3[+[y-c[].
Since this expression must be a maximum with respect to a,/3, y, subject to (4.4), we
must have

+l if z21(t)> 1,
(4.12a)

c if z21(t) < 1,

(4.12b) /3(t) =IS if 2zx(t)zz(t) <-l,
if 12Zl(t)z2(t)[ < 1,
if 2Zl(t)zz(t) > 1,

/+l if z22(t)>l,
(4.12c)

c if z22(t)< 1.

On the surfaces z21 1, z22 1, 12ZlZzl--1, condition (4.9) does not uniquely
determine a,/3, and y.

Clearly Zl(t) and z2(t) satisfy, -13(t)z-T(t)z2,

22=a(t)z+(t)z2,

or, in vector notation

(4.13) J: H(t)z

and
z (0) z (T) 0, z2(0) > 0, (-1)"+lzz(T)>O.

We emphasize that the signs in (4.10), (4.11), and (4.12) must be chosen in a
consistent manner. Thus if the sign is used in (4.10) we must set +/- 1 1 and : 1 1 in
(4.11) and (4.12). Since we are computing p+l, the sign in (4.10) must be chosen so that
Cz (n + 1)r ->_ r since H(t) zrn+ zrn+ and n + 1 _-> 1. We shall see shortly that the
choice of the sign causes this to happen.

The procedure for determining H(t) is now clear. The surfaces

(4.14) zz= 1, z= 1, IEZlZzl 1
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divide the second quadrant of the z 1, z. plane into seven regions which we have labeled
Ri, 0, , 6, in Fig. 4.1 below. In the interior of each of these regions a,/3, and 3’ are
constant and are determined explicitly by (4.12). Thus on the interior of each Ri we
have, by (4.13),

d
d---z(t). Hz(t)= 2z" (t). Hz(t)=-2JHz(t) Hz(t)=0.

This last equality follows from the fact that J rotates vectors through 90. It follows that
solutions of (4.12), (4.13) travel along curves of the form

(4.15) az21 + 2/ZlZ2 + 3"Z E

in phase space. E is constant on the interior of each R. We have plotted these curves in
Figs. 4.1 and 4.2 for z in the second quadrant with 10 and c 5. For z in the
remaining quadrants, the curves (4.15) can clearly be obtained as reflections of the
second quadrant. Figure 4.1 is obtained when the sign is chosen in (4.10) and Fig. 4.2
is obtained when the + sign is chosen. In the case we are considering, we clearly cannot
have z(t)+z(t)<= 1 for 0=<t < T, for this would imply that by <(n + 1)r, contradic-
ting (4.6). This shows that z(t) must enter one of the regions R1, R2, R3, R4, Rs, R6.
And since bz (n + 1)r => 7r, z(t) must describe an orbit in Fig. 4.1. Thus the sign
must be chosen in (4.10).

z
2

FIG. 4.1. P= (:, 1), O=(rl,

If one plots the entire phase portrait of the system (4.12), (4.13), he observes that
all orbits close and that the phase portrait is symmetric with respect to the Zl and z2
axes. Since the optimal trajectory z(t) satisfies bz (n + 1)r, it also satisfies zl(0)
Zl(T)=0, z2(O)=(-1)n/Iz2(T). The optimal trajectory, y(t)=(1//-)z(t) therefore
satisfies the boundary conditions (4.3). This shows that the solution of (4.1), (4.2), (4.4),
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(4.5), (4.6) is also a solution of (4.1), (4.2), (4.3),.(4.4), (4.6). By letting we obtain
the value p+x defined by (3.2).

Since the optimal trajectory must satisfy 4z (n + 1)r and must start and end on
the zz axis, it must cross the z axis n + 1 times. It must therefore pass through 2(n + 1)
quadrants, counting repetitions. By the symmetry of the phase portrait, the optimal z(t)
must spend time

T
2(n +1)

in each quadrant. But in regions R1, Rz, R3, R4, Rs, R6, at least one of the quantities
[a,(t)[, [/3(t)l, [y(t)[ has value and so the time that z(t) spends in these regions
approaches zero as m. It follows that the time that z(t) spends in one crossing of Ro
approaches T/(2(n + 1)) as - c. We can therefore find the limiting position of z(t) in
Ro, as m, by finding the trajectory which spends exactly time T/(2(n + 1)) in Ro.

2tWe have seen that zi(t)+z( )> 1 for z(t)eRo. It follows that z(t) enters Ro
from RI at a point P=(s, 1) where -<<0. z(t) then travels along the circle

z21 +z :+ 1 reaching R5 at a point O (/1, /). See Fig. 4.1. As lc, s and /

approach limiting values which we again denote by s and /, respectively.
Let ri(l) denote the time at which z(t) enters Ri for the first time and let ti(l) denote

the time required for z(t) to pass through Ri. Then Zx(’ro(/)) s:, z2(’ro(l)) 1, Zx(’rs(/))
/1, and z2(-5(/)) /. Since z(t) passes through one quadrant in time T/(2(n + 1)),
clearly

1 T
to(1)= ’5(1)-zo(1)4(n + 1

as 1.
z(t) leaves Rs at the point O’=(-r/,-r/l) and reaches R6 at the point P’=

(-1,-:). It follows from (4.12) that

a(t)=c, T(t)=/, /3(t)=0 forz(t)eR1,

a(t) c, y(t) c, /3(t) 0 for z(t) Ro,
(4.16)

a(t)=c, y(t)=c, /3(t)=-I forz(t)Rs,

a(t) I, T(t) c, /3(t) 0 for z(t) . R6.

We therefore have
T/(2(n+ )) r(l) f

"rs(1)+ts(l)

{la(t)-cl+]13(t)]+lT(t)-cl}dt--2 II-cldt+ Idt
a0 a,r5(l)

211 ClZo(1) + Its(l),

and since each of the 2(n + 1) quadrants that z(t) passes through is just a copy of Fig. 4.1
we have

(4.17)
TIo {l(t)-c[+l(t)l+13,(t)-cl} dt= 2(n + 1){2ll-clzo(1)+ lts(l)}.

All that remains is to compute the limiting value of this expression as c. This
will give the value of Pn+I, n =>0.

On the interval (0, Zo(/)) we have z(t) R1 and it follows from (4.16) and (4.13) that

dz2 CZ

dzx lz2
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Thus as --> oo, the portion of the trajectory z(t) lying in R approaches the horizontal
line segment t5 =< Z =< 0, z2 1, uniformly in t. From now on we shall not distinguish 5
and "0 from their limiting values as l-> oo. We have

z2(t) dt,s l(t) dt
"0 0

and since Z2(t)" 1 uniformly in as I- oo, we have

(4.18) ]1 lim lro(1)= lim II-c]ro(l).

For z(t) R5 we have, by (4.16) and (4.13)

,1 lZ CZ2

so that

Zl(t) Zl(’rS(/)) el(t-’s(l))--c el(t-s)z2(s) ds.
s(l)

if we take ’5(I) + ts(l) we obtain

"rs( l)+ts(l)

(4.19) --’02 ’//1 et’5(t)--c e(’5()+t()-S)z2(s) ds.
"rs(/)

For z (s) s R we clearly have
"rs( l)+ ts( l)

l(’5(l)+ts(l)-s)<--lts(l)=:..() 1[3(t)ldt<2O/

for sufficiently large. Thus

]el(’s(l)+’5(l)-s)z2(S)] <= e20.+1,
and since t5(l)-O as -oo, the integral in (4.19) approaches 0 as -oo. It follows that

(4.20) log (-r/-) =lim-,o Its(1).

The limiting value of (4.17) can now be expressed in terms of and "0 through (4.18) and
(4.20).

Let 01 and 02 denote the angles which the respective line segments connecting the
origin and the points (’, 1), (,/1, "02) make with the positive z2 axis. Let 03 zr/4- 02. We
then have

tan 01 I:l
and

’02cot 02 --,
"01

and it follows from (4.17), (4.18), (4.20) that

(4.21)

For z(t) Ro let

p+l 2(n + 1){2 tan 01 +log cot 02}.

O(t) Tan-1 z2(t)
zl(t)
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It then follows from (4.16) and (4.13) that

(t)=c.
And since z(t) goes from (, 1) to (r/l, */2) in time T/(4(n + 1)) we have

cT
02-01 4(n + 1)"

Let 2h denote the distance from (r/l, ,/2) to (--r/E, --r/l). It is then clear from Fig. 4.1
that

h I1sin 03-- and sin 01-.
4:+i 4:" + 1

Moreover,

2h =[(rh + n2)2 + (r/2 + "01)2]1/2 [2(rt2t + 2r/in1 + ,y/)]l/2 [2(2 + 1 1)]1/2 411
so that

1
sin 03 sin 01.

On the other hand

) tsin 03 sin ’- 02 sin --4(n + 1)
01

E_sin
4 4(n+l

cos 01-cos --4(n+l) sin 01

1( cV
x/- cos

4(n + 1)

cT
| cos 01

4(n + 1) /

cV
cos

4(n + 1)

cT
| sin 01.

4(n + 1) /

It follows that

(4.22)
sin 01

tan 01
cos 01

cT cT
cos-sin

4(n +1) 4(n +1)
cT cT

1 + cos + sin
4(n + 1) 4(n + 1)

Similarly,

sin 03 sin r_ Oz - sin O1 - sin 02-

which implies that

(4.23) cot 02
1 + COS

cT
4(n + 1)

1 + sin
cT

4(n + 1)

cT )4(n + 1



996 EARL R. BARNES

Substituting (4.22) and (4.23) into (4.21) we obtain the formula

(4.24) p;+l =2(n +1) log 1+cos
1 +sin

cT cT cT
cos

4(n + 1)
sin

4(n + 1)1_j
+4(n + 1)

4(n +
cT cT

-sin
cT

4(n +
1 +cos

4(n + 1 4(n + 1)
By taking c n,rr/T we obtain (3.9).

Since (4.1) is a decreasing function of l, (4.24) gives a lower bound on the value of
the optimal control problem (4.1), (4.2), (4.4), (4.5), (4.6) for arbitrary values of the
parameters c, l, e, m satisfying

(n + 1)zr
0 < c < 0 < e < m, sufficiently large.

T

For the case c, n’rr/T the following lemma gives the simpler, but slightly smaller,
lower bound zr.

LEMMA 4.1. If C, nzr/T and n >- O, then Pn+l > "rr and lim_, Pn+l .
Proof. Observe that

zr / sin (zr nor ) nTr/ sin
4(n + 1------ --4(n + 1)

=cos
4(n +1"-sin

This implies that

(4.25) lim 4(n + 1)[cos 4(n +1)
-sin

n’rr ] /’rr.
4(n +1)

4(n + 1)"

We therefore have

(4.26)

F/q]" n’rt"
cos-sin

4(n + 1) 4(n + 1)
lim 4(n+l)
,,--,o n,rr nrr 1 +

1 + cos + sin
4(n + 1) 4(n + 1)

Now consider the first term in (3.9). We have

log
1 +cos

4(n + 1)
nTr

1 +sin iTi
(_l)k+ 1 nzr (_1)+ 1 nzr

k=l - cs 4(n + 1) k=l - sin
4(n + 1"-----

nor nor
1 +

(- 1)k[ E cosk-i nr sinicos
4(n +1-sin

4(n +1---- k=l k + 1 li=o 4(n + 1---- 4(n +1-----
It therefore follows from (4.25) that

(4.27)

n,17"
1 + cos

lim2(n+l)log
4(n+l) rr{ (_) }= rr

1 +sin n____ -x/-- 1 + Y (-1)
1

nc k=l 1 +x/"
4(n + 1)



STABILITY CONDITIONS 997

The fact that limn_. p/1 r now follows from (4.26) and (4.27). It is easy to verify
that p/l is a decreasing function of n for n ->_ 0.

+Consider now the problem of computing pn, n => 1. This problem has an obvious
formulation as an optimal control problem similar to (4.1). In this case the optimal
trajectory z(t) passes through one quadrant in time T/(2n). Moreover, the time that
z(t) spends in the interior of each Ri, i>0, approaches 0 as l-+oo. On the other hand,
the sum of the angles through which z(t) rotates in one crossing of Ro is given by Cto(1). If
to(l) were to approach T/(2n) as -+oo, we would have, for sufficiently large

Cto(1) > rr/2

by (2.6). But this is impossible since R0 lies in one quadrant of phase space. It follows
that z(t) must remain fixed for some time AT>0 at a point in the boundary of R0. This
means that the + sign must be chosen in (4.10), since the system (4.12), (4.13) has no
rest points (except the origin) when the sign is chosen. This is readily seen from the
phase portrait Fig. 4.1. The phase portrait of the system (4.12), (4.13) corresponding
to the + sign in (4.10) is shown in Fig. 4.2. The point (-1/x/, 1/x/) is the only rest
point in the boundary of Ro. We must therefore have z(0)= (0, 1).

z
2

z -ZlZ2

R
2

Z

FIG. 4.2. P=(, 1), Q (1-/1 1,/2), S (-1/x/, 1/,/).

When the + sign is used in (4.10) the sign must be used in (4.11b). At
(Zl(t),z2(t))=(-1/x/-,l/x/-), (4.11b) is maximized by taking c=c, 3,=c and
/3 ->_ 0. In particular we can take/3 c. By substituting these values in (4.13) one verifies
that (-1/x/, 1/x/)is a rest point. Similarly, (-1/x/,-1/x/), (1/x/,-1/4), and
(1/x/, 1/x/) are rest points in the remaining quadrants.

Since z(t) makes one crossing of Ro in time T/(2n)-AT we must have

g=c
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so that

Clearly

AT=
T 7/"

2n 2c

It follows that

(4.28)

T](2n)

[ {l(t)-cl/l(t)l/l/(t)-cl} dt=c AT-
aO

-4-
p, 2nc AT cT- n.rr, n>_l.

cT r

2n 2

The case n 0 is special. In this case we must have Cy 0. In particular y(t) does
not rotate around the origin. Thus in the control theoretic formulation of the problem of
determining p- it is not possible to assert that yl(0)= yl(T)= 0. All we know is that
y (0)= y (T). However, it is clear that the optimal trajectory satisfies

(4.29) y 1(0) + Ay2(0) 0, y (T) + Ay2(T) 0

for some constant A 0. That is, the optimal trajectory starts and ends on a line segment
of the form

yl+hy2=0

and forms a closed orbit.
+If in the control problem associated with p0 one imposes the boundary conditions

(4.29) he finds that the adjoint variables Or(t), 2(/) satisfy the transversality conditions

Aqq(0) q2(0) 0, AI(T)- 2(T) 0

and the differential equation (4.8). It follows that 4(t) is related to y(t) by an equation of
form (4.10). Thus the theory proceeds as in the case n > 0. The phase portrait in the z
space must contain a closed orbit which does not encircle the origin. The phase portrait
must therefore be given by Fig. 4.2, which means that the + sign must be chosen in
(4.10).

The optimal trajectory z (t) must enter Ro at a point P (, 1), 1/2 < <= 0. it crosses
R0 and enters R5 at a point Q (r/x, */2). All of this is accom.plished in time to(1). Clearly
Cto(l)<=r/4. If cT>=r/4, then =0 and (rtl, r/2) (-l/x/2, 1//) is a rest point for
z(t). z(t) remains at this point for a time AT which approaches T- r/(4c) as o. z(t)
leaves the rest point and crosses Rs, first entering R2, and then R, at points which
approach (-1/2, 1) as c. Finally, z(t) returns to the starting point (’, 1) after time T
has elapsed. Clearly

T

Io {la(t)-c[+l[3(t)l+ly(t)-c[} dt=c Ar+ lts(l)+ll-cl(t2(1)+ tx(l)).

The limiting value of this expression as c is easily found to be

+(4.30) p0 cT--+log 4+

If cT < r/4, then $ < 0 and r/2 > 1/x/, and it is easily shown that

1 1 1
(4.31) p0 log/

--/n2-Il =log 4-5(41
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where

cos (cT) sin (cT)
1 +cos (cT) +sin (cT)"
+ andp,+x for n 0,1 2,.. We leave it to theWe have now determined p, ..

+reader to determine O, and 0,+x for n =-1,-2,. . The results are

+ 21nl log(4.32) p,

n =-1,-2,. , and

cT cT "]cT
cos nn-sn nn |1 +cOS4n

41nl ------TI’cT
1 + cos + sin!1 + sin 4-- 4n.J

(4.33) P-+l IclT-In + liar, n =-2,-3,...,

where c cn satisfies (2.6).
Finally, p can be obtained from the formula for p- by replacing c with ]cl. Thus

(4.34) flclT-r/4 +log /+1/2
P [log 4(x/] + I:l2 -I’[) + 1/2-I[

if lclT>- r/4,
if IclT < zr/4,

where

coslclT-sinlclT
1 +cos [c[T +sin

5. Practical stability tests. In this section we list several stability tests that can be
deduced from results obtained in 4.

THEOREM 5.1. All solutions of (1.1) are bounded i[a(t), B(t), and y(t) satiffy (1.5)
for some n >= O.

Proof. This follows from the corollary to Theorem 3.5 and formula (3.9).
THEOREM 5.2. All solutions of (1.1) are bounded i[for some integer n, unrestricted

in sign,

nzr nr
a(t) >=---, y(t) >=-, ( a n___) ( n.__)y(t)- -/32(t) >-- 0,

and
T

a(t)l+l(t)l+13,(t)l} dt < (2lnl + 1),n’.

Proof. For n >= 0 the result follows from Theorem 5.1 and Lemma 4.1. For n < 0
the result follows from the corollary to Theorem 3.5, together with the fact that
p/l " for c, nr/T and n <-1. See (4.33). Also, p > r for c -r/T.

TI-mOREM 5.3. All solutions of (1.1) are bounded iffor some integer n < O,

(5.1)

(n + 1)r (n + 1)r(t)<, ,(t)<T T

(a(t)-(n + 1),rr](l(t)-(n + 1)ry /-(t)>-_o,
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and

TIo {l(t)l + 1/3 (t)[ + 13’(t)l} dt

1 + cos

< 2In + liar + 2In] log
1 +sin

(n + 1)r
4n

(n + 1)or
4n

(n+l)r (n+l)Tr
sin--- -----cos

4n
+4[nl

1
(n + 1)Tr _sin(n +1)+cos

4n 4n

Proof. This theorem is a consequence of the corollary to Theorem 3.5 and formula
(4.32).

THEOREM 5.4. All solutions of (1.1) are bounded iffor some integer n, unrestricted
in sign, (5.1) holds and

IoT n + l Tr n + l rl dt < rr.(5.2) a(t)----- +l/3(t)[+ y(t)-

Proof. For n < 0, p,+ is given by (4.32). It follows as in the proof of Lemma 4.1 that
> r for c (n + 1)r/T and n < 0. Moreover,

+lim p

Thus for n < 0 the conclusion of the theorem follows from Theorem 5.3.
+For n >0, (4.28) shows that p r if c (n + 1)r/T. Also, (4.30) shows that

+
p0 > r for c r/T. Thus for n _-> 0 the theorem follows from the corollary to Theorem
3.4.

THEOREM 5.5. All solutions of (1.1) are bounded iffor some integer n we have

T

+lte(t)l+ y(t)- dt <-
2T 2T 2"

Proof. If one takes cn to be the midpoint of the interval (2.6), then it is easily shown
that p,/a => 7r/2 and p, -> r/2 for each n. The conclusion of the theorem therefore
follows from Theorem 3.1.

Example. At A 0 all solutions of the differential equations

(5.3)
(sin (27rt) cos (27rt))y1-A (sirtz (2rt))yz,

(cos (2rt))yx + h (sin (2rt) cos (2rt))yz

are bounded. We wish to determine how large we can make A before we encounter
unbounded solutions. This example has been chosen so that the answer can be
determined explicitly. We wish to compare this with the estimates given by Theorem
5.1.

Let

a(t) h COS
2 (2rt), y(t) h sin2 (2rt), /3(t) A sin (2rt) cos (2rt)

where A > 0. These functions are periodic of period 1/2 and
1/2Io {a(t)+l(t)[+y(t)}dt:+ A

2,n’"
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It therefore follows from Theorem 5.1, with n 0, that the Hamiltonian

(c (t)/ (t))H(t)=
/3(t) V(t)

lies in 0 if

+--- < p- =3.386294.

Thus all solutions of (5.3) are bounded if

0-<A <5.13727.

We shall now show that, in fact, all solutions are bounded if

0<=A < 2zr 6.283185

and that 2r is the largest we can make A without encountering unbounded solutions.
First observe that, if A 2r

(5.4) yl(t) =cos (2rt), yE(t) =sin (27rt)

is an antiperiodic solution of (5.3) satisfying by r. Then observe that if y(t) is any
other solution of (5.3), with A 2r, we have, by (2.4),

1/2" y cos2 (2zrt) + 2ylY2 sin (2rt) cos (2rt) + y sinE (2rt)
2zr dt30 Y+Y

/) (y cos (2rt)+ y sin (Ecrt))
2zr dt

.o

/2 (y + y)(cos2 (2rt) + sin2 (2rt))<- 2 rr --- d rr
Jo yl+y2

and equality holds if and only if y(t) is a multiple of the solution (5.4). It follows from
Theorem 2.1 that H(t)e rr- for A =2r. We must therefore have H(t)e(Yo for
0<X <2rr.
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ON THE A-ACCEPTABILITY OF PADi APPROXIMATIONS*

ARIEH ISERLES"

Abstract. The problem of A-acceptability of the Pad6 approximations is explored. The conjecture of
Ehle, according to which these approximations are not A-acceptable for n => m + 3 is verified in the case
n m 2 (mod. 4).

1. Introduction. The Pad6 approximations to the exponential function have been
an object of extensive research in the recent years. These approximations are a natural
outcome when one solves ordinary or partial linear initial value problems.

The Pad6 approximation R,,,,,, is a rational function,

One verifies readily that

nn,m(Z)"=Pn,m(Z)/(n,m(Z),
(n+m-k)!m! kP,,,., (z):= 2 z,

k=o n!k!(m- k)!

O.,,.(z):=,o (n + m- k)!
k!(n-k)!

Rn,m(Z)-eZ:e(zn+m+l),
We call a rational function A-acceptable if it is analytic in the complex left

half-plane and there its modulus does not exceed one. Clearly, when the solution of the
stable scalar linear differential equation Ax, x(0)= 1, Re , < 0, is approximated by
an A-acceptable rational function, the approximation itself is stable.

Birkhoff and Varga [1] prove that R n, is A-acceptable for every n >- 1. Ehle [2]
shows that R.+I,,, and Rn+2,n are A-acceptable for every n >_-0. Furthermore, Ehle
conjectures that these, namely the diagonal and the first two subdiagonals of the Pad6
tableau, are the only A-acceptable functions of this type. Actually, Ehle himself [2] and
N0rsett [3] show that R.+3,., Rn+4,n and R.+3,0 are not A-acceptable for any n->0.

The purpose of this paper is to verify the conjecture of Ehle in certain general
cases. We prove that if n-m 2 (mod. 4)and n =>m + 3_-> 3 then R,,,m is not A-
acceptable and the conjecture is valid.

2. The case n m 2 (mod. 4). According to the maximum modulus theorem
is A-acceptable if and only if the three following conditions are simultaneously valid:

A. Rn, is analytical in the left half plane.
B. IR,,.(it)l =< for every real t.
C. limlzl-. IR.,., (z)] _-< 1.
Obviously, the condition C implies that n ->_ m. The condition A is equivalent to the

absence of zeros of O.,m in the whole left half plane.
We now explore the condition B in greater detail:
We define

oo.,,.(t) := IO...,(it)]2-1P.,.,(it)l2.
As a matter of fact, the condition B is equivalent to the nonnegativity of w.,,,, for every

* Received by the editors September 27, 1977.
"f King’s College, University of Cambridge, Cambridge CB2 1ST, England.
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real t. Furthermore, w...,(t)= w...,(-t) and o..., is an even polynomial. Thus

to.,,.(t) A’m)t2k.
k=O

We know that R...,(it)=exp (it)+ ([tl"+’+). Therefore

IR.,.,(it)l2= 1 +

implying 6On, re(t) (I/"++’1). Hence, A"’) 0 for every 0 < k =<[(n + m)/2]. We now

determine the expression for A"’"), [(n + m + 2)/2] <- k =< n.
LEMMA 1.

m,(m+l),(n-m-l-l), In-m-l](-1) -nT l-.- nS i )
0<--1<=

2

Proof. m <= n implies m =< [(n + m)/2] and thus IP,,,(it)], as we as the lower-order
terms of IO,m(it)l, does not contribute to w.,.,. Thgrefore, w.,., equals to the high-
order terms of IO.,.,(it)l2.

But

{ (m + 1), (m + 2), }O....(it) (- 1)" (it)" (it) "- + (it) "-2
l!(n- 1)! 2!(n-2)!

and we see by introspection that

(n,m) [(m+l)! ] 2 )iA.-t l(n. -I)!
+2

i=l

y" (-1
(m+l+i)!(m+l-i)!

(n + i)!(n l- i)!(l + i)!(l- i)!"

Hence, in order to prove the argument of the lemma, it suffices to show that

(m+l+i)!(m+l-i)vY (-1)
i=1 (n + i)!(n l- i)!(l + i)!(l- i)!

1 (m + I)! [ (m + I)! m [(n._--._m. -_. 1._-.I.)! ]
l(n 1) [l!(n 1))+(- 1)

n!(n-m-l-2l)!J

for every 0 _--< _--< [(n m 1)/2].
We define

4 (_ 1)i (m + + i)!(m + l- i)!
Z(m, /):=n,

,=o (l + i)!(l- i)!(n- + i)!(n l- i)!"
We obtain

(m + + 1)’(m + 1)!
(m 2 + 2ml + (l + i)(l- i))Z(m,n,l)= , (-1)

=0 (l + i)!(l- i)!(n + i)!(n 1- i)!

((m 1)+ + i)!((m 1)+ 1- i)!
=(mz+2ml) E (-1);

=o (1 + i)!(l- i)!(n + i)!(n- l- i)!

+ E(-lt-1) (m +(1- 1)+ i)!(m +(1- 1)-i)!
,=o ((1- 1)+ i)!((l- 1)-i)!((n- 1)-(1- 1)+ i)!((n- 1)- (/- 1)-i)!

Therefore, Z obeys the partial difference equation

(2) Z(m, n, l) (m 2 + 2ml)Z(m 1, n, l)+ Z(m, n 1, 1- 1).

We know that n =>/. Thus, in order to set the initial conditions for (2), we need to
compute Z(rh, h, 0) and Z(0, ri, l’) for every ri, th _<- ri and ’_<-[ri/2].
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Obviously, direct substitution into (1) gives Z(rh, h, O)= (rh!/!)2, in full
agreement with the argument of the lemma.

On the other hand

1
Z(O,r, [)= Y’. (-1)

i=0 (/’ -- [+ i) (r l- i)!

(-1)r (-1)’(2-2’)(2r-2’}! =o \

1 (_1)’( 2r -2[)(2r-2[)! ,=o r- ’+

Thus, in order to prove the argument of the lemma in this case, it suffices to verify that

r )i(2r-2[) 1 (2,q-2[)tr,,, (-1) r (,q-l-i), ],o (-1
\ r =2 (ri-’)! k(r-[ii+ti!(ri-l-2[)!

(- 1)r(2r 2’- 1)r-" + (2r 2[-lr)"
Indeed,

y’. (_ 1),(2ri- 21

i=o h

ri
+(-1

\ ri [ )+ (_1) (2r-2/’-1 2-2[-1
,=1 ,-1 )+( fi-i-1 )

(2_2/)+(_1)r(2_2) r, ( ) r (a [ + (_1)
2a-2/-1

_2 (-1)
2a-21-1

i= n-i i=2 n-i

={(2-2/) __(2-2[-1__1)}+(-1)r{(2-21)[ (2 [ )}
B -l

and the case Z(0, g, ) is verified.
Now we can apply the induction argument: let’s suppose that we proved the lemma

for Z(m- 1, n, l) and for Z(m, n- 1, l- 1). Substituting in (2), we get

1{ (m-l+l),[(m-l+l),+(_l)(m-1),(n-m-l),]Z(m, n,/)= (m + 2ml)
l(n l) l) n(n- m 2/)

+
(n-

l(n l)
(m + 2ml + )

+ (_l)t(m 1 + l)!(m 1)!(n m 1 1)! (m2n + mnl- m3- 3mZl- 2mlZ)}l!(n l)!n !(n rn 2l)!

1{ [(m + l-1)!(m + 1)]2
+ (-1)l (m- 1 + l)t(m- 1)t(n- m- 1-1)!

l!(n- l)!n!(n rn 2/)! m(m+l)(n-m-21)}
_1 (m + l)! [ (m + l)!
2 l!(n- 1)! t!(n- l)!

m!(n-m- 1-I)!]
n!(n-m-l-21)!

Q.E.D.
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LEMMA 2. When n-m--0 (mod. 4) or n-m--3 (mod. 4), n ---m + 1, the Padd
approximation R n,,, is not A-acceptable

Proof. If n-m 4k, k _-> 1, then, according to Lemma 1,

m
2k(m + 4k)!’(m + 2k)(m + 2k + 1)

2m+4k+2 q_ (t2m+4k+4 )

and if n m 4k + 3, k -> 0, then

to,,,,(t)
m

(m + 4k + 3)!(m + 2k + 2)
2m+4k+4 q_ (t2m+4k+6).

In both cases, for t 0 close enough to zero, we get wn,,,(t)<0, violating the
condition B.

Thus, the Pad6 approximations R,,,,, for n -> m + 1, n m 0 or 3 (mod. 4), are not
A-acceptable. O.E.D.

LEMMA 3. The Padd approximation R,,m, for n -> m + 5, n- m 1 (mod. 4) is not
A-acceptable.

Proof. If n m + 4k + 1, k -> 1, we set

g:=[6 (m + 2k-1)(m + 2k + 3)] 1/2

(3) l (2k- 1)(2k +2) J

We shall show that w.,.,(g)< O"

oo,,,,,,(g) E A
l=m+2k+l

Thus it suffices to show that

(i) A(n,m) 2 A(n,m) 4
m+2k+l -- m+2k+2, + m+2k+3’3 O,

(ii) A(n,m) (n,m) ,2
m+2k+21+2 -b Am+2k+2l+3S < 0 for every 1 ---< l--< k 1.

But, according to Lemma 1,

A(n,m) 2 A(n,m) 4
m+2k+l "- m+2k+2a q" m+2k+4,

m! { 1
(m +4k+ 1)! m+2k+l

1 (2k + 1)! (m + 2k- 1)! g2
2 (2k- 1)! (m + 2k + 2)!

1 (2k+2)!(m+2k-2)! ]+- (2k 2)! (m + 2k + 3)! g’



1006 ARIEH ISERLES

and, substituting g as defined in (3), we get
A(n,m) 2 A(n,m)

m+2k+l + m+2k+2 + m+2k+4

m! [ 1

(m +4k + 1)! m+2k+l

m! )i{ 1
<(m+4k+l m+2k+l

and (i) is valid.
Now we verify (ii):

A(n,m) 2
m+2k+2p+2 "}- m+2k+2p+3

where

3 (m + 2k 1)(m + 2k + 3)!(2k + 1)!(m + 2k 1)! }-- (2k l )(2k + 2)(2k l )!(m + 2k S,_-!
3 a}2 m+2k+l

c2{(2 k + 2p + 1 )(2k 2p 1)g2
-2(m + 2k-2p- 1)(m + 2k + 2p+ 3)(4p + 3)(p+ 1)}

c2=2 m!(m+2k-2p-2)!(2k +2p+ 1)!
(m +4k + 1)!(2k 2p- 1)!(m + 2k + 2p+ 3)!(4p + 4)!"

Thus, substituting the value of g, it suffices to show that

3((m + 2k + 1 )2- 4)((k + 1 )(2k 1 )- 3p- 2p2)
=<2((m + 2k + 1)z-4(p + 1)2)(4p2 + 7p + 3)(2k- 1)(k + 1)

for every 1 =< p -< k 1.
We get a quadratic inequality in m"

(m2 + 2(2k + 1)m +4k2 +4k-3)Ap>= Bp(4)

where

Ap:=2(4p+ 3)(p+ 1)(2k- 1)(k + 1)- 3(k +p+ 1)(2k- 2p- 1),

Be := 8p(p 4- 1)(p + 2)(4p + 3)(2k 1)(k + 1).

A sufficient condition for (4) for every m->0 is Ap>0, Bt,>= ((2k + 1)2-4)At,.
But

Ap (k + 1 )(2 k 1 )(8p2 + 14p + 3) + 9p + 6p2 > 0

and Bp =>((2k + 1)2-4)Ap is equivalent to the inequality

(2k 1)(k + 1)[4k - + 4k 3 2p2- 4p] + (4k2 + 4k 3)(9p + 6p2) =>0,

which is obvious. Thus, (4) holds for every m >- 0, implying the validity of condition (ii)
for every 1 =< p -< k- 1.

Hence, indeed w,,,,,(g)< 0 and the Pad6 approximation R,,,m, where n => m + 5,
n- m 1 (mod. 4) is not A-acceptable. Q.E.D.

So far, we verified the conjecture of Ehle for the case n --> m + 3, n m 2 (mod. 4).
The objective of the next section is to explore the conjecture in the case n m 2 (mod.
4).

The case n m 2 (mod. 4). In the cases n m2 (mod. 4), n _-> m + 3 we proved
the nonacceptability by showing that the condition B is violated. This is not necessarily
true when n- m -= 2 (mod. 4). Trivial examples are R6,0 and Rao,o. Nevertheless, these
two approximations violate the condition A.
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We have to point out that, generally speaking, the condition B is more essential for
the possible disproving of the A acceptability. This is a consequence of theorem of Saff
and Varga [4], which states that for every integer rn -> 0 there exists an integer -,, => 0
such that the polynomials P,,,n, n >= -,,, have all their zeros in the left half-plane. The
implication of the condition A for R,,,,, is obvious. Thus, going far enough along any
diagonal, we arrive at approximations which satisfy the condition A.

Computer tests show that in the cases n rn + 6 and n rn + 10 integers K6 and
K0 exist, so that the condition B is violated for Rm+6,m, rn >-K6 (resp. R,,,+10,,,,,
rn =>Ko) and the K’s are smaller than the respective -’s of Saff and Varga. Thus these
two diagonals of the Pad6 tableau satisfy the Ehle conjecture.

These tests provide some indication for further research, aimed at the complete
characterization of A-acceptable Pad6 approximations.
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A SET OF ORTHOGONAL POLYNOMIALS THAT GENERALIZE
THE RACAH COEFFICIENTS OR 6-j SYMBOLS*
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Abstract. A very general set of orthogonal polynomials with five free parameters is given explicitly, the
orthogonality relation is proved and the three term recurrence relation is found.

1. Introduction. A hypergeometric series has the form a, with a,,+l/a,,, a
rational function of n. A basic hypergeometric series has a,,+l/a,, a rational function of
q" for a fixed q. The standard notation will be used. It is

(1 1) rE (al,’ ",

bx, bs x)= (al)n’’’(ar)nXn
(bs),, n-"(’r---O

where

[a(a+l)... (a+n-1),
(1.2) (a)

1,

for hypergeometric series and

al, ar+l.(1.3) r+l(r\ bl, ", b,

with

(1.4) (a q),,

q,x)= (ax;q)n’’’(ar+;q)nX
._-o ii

(1 a). (1 aq"-), n 1, 2,. ,
1, n 0,

1
aq’" n -l, -2,

(1-aq-")...

for basic hypergeometric series.
For readers who are unacquainted with basic hypergeometric series, observe that

lim
(q;q)" (a),

There are reasons for using (a; q), in (1.3) rather than (q; q), which go beyond a
desire for a notation that is easy to set in type. There are times when we want "a" to be
negative, and we can only make q negative by taking a complex. It is possible to do this
but unnecessary. Also there are times when we want "a" to be independent of q. Again
it is possible to take a =(log a)/(log q) so that q is independent of q, but it is
unnecessary if we use (a; q), rather than (q; q).

In [12] it was pointed out that

(1.5) p.(h (x))= 4F3(-n’n "[- o -" "[- 1,-x, x + + 8 + 1. 1)a+1,++1, y+1

(1.6) x (x) x(x +’r + , + l)

* Received by the editors March 3, 1978, and in revised form May 5, 1978.
f Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706. The work of this

author was sponsored by the United States Army under Contract DAAG29-75-C-0024.
t Department of Mathematics, Purdue University, West Lafayette, Indiana 47907.
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is a polynomial of degree n in h (x) which is orthogonal on x 0, 1, , N when a + 1,
/3 + 8 + 1 or y + 1 is -N. This orthogonality relation is equivalent to Racah’s ortho-
gonality for functions that are usually called Racah coefficients or 6 -/’ symbols. We will
call these polynomials Racah polynomials. Racah was unaware of the existence of these
polynomials, but he was the first to find an orthogonality relation equivalent to the
orthogonality relation for (1.5) which is given in [12].. Since almost all the classical
orthogonal polynomials are named after a rediscoverer rather than the original
discoverer, we felt it was appropriate to err in the opposite way and name the
polynomials after the first person to treat them, even if he was unaware of the
orthogonal polynomials buried in his results. These polynomials contain as limiting
cases the classical polynomials of Jacobi, Laguerre and Hermite and their discrete
analogues which go under the names of Hahn, Meixner, Krawtchouk and Charlier
polynomials. All of these polynomials can be given as hypergeometric series. Since
basic hypergeometric extensions of the classical polynomials have been found [8], [2] it
is natural to look for a basic hypergeometric extension of (1.5). The right polynomials to
consider are balanced 4o3’s

(1.7) p,(ix(x); a, b, c, d" q)=p,,(ix(x))=4p3(q-"’ q"+’ab, q-, q+cd q)aq, bdq, cq
q’

where

(1.8) Ix(x) q-X + qx/lcd"

Since

n+.ab k

k(_i 2i+.cdtq ;q)ktq ;q)kq
[1 +q -q (Ix(x))]p,, (Ix (x)) 1 + kYl- (aq -qY2(-b-q i-("q ti-’S, q)k i--0

it is clear that p,,(Ix(x)) is a polynomial of degree n in the variable Ix(x).
The adjective "balanced" refers to a condition put on the parameters. For basic

hypergeometric series it means that the product of the numerator parameters times q
is the product of the denominator parameters. In this case q-"/’+labq-"/"/cdq
abcdq 3.

2. Orthogonality. Assume that one of aq, cq or bdq is q-N. Then the orthogonality
relation is

N

(2.1) p,(Ix(x); a, b, c, d; q)p,,(Ix(x); a, b, c, d; q)w(x)= O, m n,
x---O

where

O<=m,n<N,=

w(x)
(cdq; q),,(1-cdq2’/X)(aq; q),,(bdq; q),,(cq; q),,(abq)

(q; q),,(1-cdq)(cda-q; q)x(b-cq; q),,(dq; q).

Observe that

m-1
(q-"d-; q)m(q"+c; q),,,, I’I (1-d-lq-"+J)(1-cq’‘/j+)

j=0

m-1

l-I (l+cq
i=O

2J+ d- d-lqiIx (x ))
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is a polynomial of degree m in/z (x). To prove (2.1) for m n it will suffice to show that

N

(2.2) I Y’. p,(/x(x); a, b, c, d; q)(q-)Cd-1", q),,,(q’/Ic’, q)mW(X)=O’, m <n.

The advantage of (2.2) over (2.1) is that the polynomial of degree m can be attached to
the weight function. Using.the definition of p,((x)) in (2.2) gives

I N (q-n; q)k(qn+lab., q),(q-’ q)k(qX+lcd q)kqk
x=O k=O (aq; q)k(bdq; q)k(cq; q)k(q; q)k

(q-Xd-; q),,(qX+c; q),,(cdq; q)x(1-cdqE+)(aq; q)(bdq; q)x(Cq; q)
(q; q),(1-cdq)(a-cdq; q),(b-lcq; q)x(dq; q),,(abq)

n; (qn+ k+ (bdqk+lN (q- q)k ab" q)k(aq ;q) k ;q),-k
k--0 x--k (q; q)k(a-cdq; q)x(b-cq; q)x(q; q),c-k

(cq k+’, q)x-k+,,., (cdq; q)x+k(1--cdq2’+)(--1)k+"q
(dq; q)x_,,,(1-cdq)(ab)Xd

q(7)(_l), (q-n; q)k(qn+lab; q)kqk(k+)/2 N-k., (aqk+; q),(bdqk+ q)x
d k=o (q; q)k(--1)kqk(k+m+l(ab)k x=O (a-cdq; q)x+k

(cq k+x, q)x+,,,(cdq, q),+z -cdq2x+zk+l)
abqk++x(b-Xq] q)x+k(q; q)x(dq; +k_.,(1--cdq)

q(7)(_l),, (q-m; q)k(qn+Xab; q)k(cdq; q)Zk(cq k+’, q),,,(1--cdqZk+a)(--1)kq-mk-k
d ,=o (q; q)k(a-acdq; q)k(b-Xcq; q)k(dq; q)k-m(1--cdq)q(k2)(ab)k

2k+2x+l k+lk (cdq2k+ q),(1-cdq )(aq q)x(bdqk+; q),c(cq k+m+l; q)
2k+l k+l

,=o (q, q)x(1-cdq )(a- cdq ;q),,(b-lcqk+; q)x(dqk "a+; q)x

-m-k-l)(q.ab
The sum on x can be evaluated since it is a very well poised 65. The required sum is

(2.3)
a 2, aq,-aq, b, c, q-S a2qN+\

65 a2a,-a, b-q, a2c lq, a2qN+l" q, - )
(a 2q; q)N(a2qb-lc -1", q)N
(a2qb-, q)N(a2qc-1; q)N

(a2q; q)o(a2qb-c -’, q)oo(a2qN+b-l", q)o(a2qN+lc -’, q)o
(a2qN/’; q)oo(a2qn/b-’c-; q)oo(a2qb-’; q)o(a2qc-; q)oo"

A basic hypergeometric series

al, a,+l
P/I(CP bl," ",bp

q’x

is called well poised if

aq a2b a,+bp.

It is very well poised if a2 qbl, a3 -a2, or equivalently, a2 qa /2, a3 -qa /2. The
effect of the very in very well poised is to introduce (1 alq2k)/(1 a) as a factor in the
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term involving x ko Unfortunately this definition is not sufficiently precise to uniquely
determine a well poised or a very well poised series, since nothing is said about the value
of x. The usual value of x which leads to series that can be summed is

x (ala2"--’qbl""bvv’+)
That is its value in (2.3). However there are cases when a slightly different choice of x is
the right one.

Up until now no assumptions on q have been made other than the implicit
assumption that there are no zeros in the denominator. To make the calculations that
follow.a little easier we will assume [q[< 1 and define (a; q) by

(2.4) (a; q.) I-I (1 aq’).
n--0

Since we are only dealing with polynomials it is easy to remove this restriction on q. A
proof of (2.3) using orthogonal polynomials iS given in [1]. One needs to set bc aq in
the formula in Theorem 12.. A proof is also given in [10, (3.3, 1.4)]. However in the
appendix in [10] this formula is given with some misprints.

Using (2.3) in I gives

I
q(’;(-1)(cq; q) (q-; q)k(q"/ab; q)k(cdq; q)2k(1--cdq2k/1)

d" k-O (q; q)k(a-cdq; q)k(b-cq; q)k(1--cdq)

(cq"+l; q)k(Cdq2k/2; q)o(a-ib-lc; q)o(a-dq-,.; q)
(b-q-,,,; q)(_l)’q-(k/2)-(k/2)-"*k(ab)-k

"(dq; q)k-m(Cq; q)k(a-cdq k/l’’, q)’o(b-cq k+’, q)oo
(dqk-’+; q)(a-lb-q-k-’-; q)oo

q(7)(-1)"(a-b-c; q)oo(a-ldq-"; q)oo(b-q-"; q)oo(cdq2; q)(cq; q)
dm(a-lcdq; q)(b-cq; q)oo(dq; q)oo(a-lb-lq-m-1; q)oo

Z (q ;q)k(q"/lab; q)k(Cq +1., q)kq,
k---o (q; q)k(abqm+2; q)k(Cq; q)k

This sum is a balanced 32, and so can be summed using

[ aq", b \ (c/b" q),,(d/b" q),,b"
(2.5) 32,

q-"
q)c,d

;q’
(c;q),,(d;q),

when abq cd. The final result is

A(abc-lq; q),(q-"; q),(cq’+)’
I +2(abq ;q),.,(cq;q),,

where A is the coefficient of the sum above. So I 0 for m 0, 1,..., n- 1.
The value of the sum in (2.1) when m n can be found from this sum. However, it

is easier to obtain it from results in the next section.

3. Recurrence relation. If pn (x) are orthogonal with respect to a positive measure
then

(3.1) xp,(x)=AnPn+l(X)+BnPn(X)+CnPn-l(X); p_(x)=O.

If the measure has infinitely many points of support then (3.1) holds for n 0, 1,.
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When there are only finitely many point masses, say N+ 1, then (3.1) holds for
n 0, 1, , N- 1, and when n N the zeros of pN/l(x) determine the location of the
point masses. For a proof of this old fact see [3]. It is implicit in some of Chebychev’s
work on continued fractions. We have shown that {pn(tx(x))} is orthogonal, so (3.1)
becomes

(3.2) Ix (X )pn (Ix (x )) AnPn+ (tx (x )) + BnPn (1 (x )) + Cnp,,-1 (tz (x )).

When x 0, pn(tx (0))= 1, so (3.2) can be written as

(3.3) [tz (x) -/z (O)]p. (tz (x)) A,,[pn+ (i (x )) Pn (tZ (X ))]

C.[p.( (X )) p._(t (X ))].

An is determined by equating the highest powers of/x (x). It is

(3.4) A,,

since

(3.) p.(z(x))

(1 abq n+1)(1 aq n+l)(1 bdq"+l)(1 -cq"+l)
1 abqn+1)( 1 abq2n+2)

(q-n; q)n(qn+lab; q)nq
(aq; q),,(bdq; q)n(Cq; q),(q q),,

[/x (x)] + lower terms.

The easiest way to find C, is to first simplify (3.3). A routine calculation gives

(3.6)

pn+ (IX (X )) p,, (IZ (X ))

-q-" (1 q"+ab)(1 q-)(1 q +cd)
(1 aq)(1 bdq)(1 cq

q-n, q n+2ab q-X+1, qX+2cd
4@3 aq2, bdq2, cq2 q, q

So (3.3) can be rewritten as

q-n, qn+lab q-X, qX+lcd
--4@3 aq, bdq, cq

(3.7)
_A,,q-,,(l_q2,,+2ab) (q-n, q,,+2ab q-X+1,

(i:iii: bdq)(1-cq) 4@3 aq z, bdq2, cq
q ;q,q)

C,,q-n+l(l__q2nab) (q-,+l, qn+lab q-,+l, qX+2
(1 aq)(1 -Z-b)( -- cq) 4@3 aq2, bdq2, cq2

Now there are a couple of ways to proceed. If x 1 then all the 4@3’S can be evaluated,
but the reduction is more complicated than it has to be. Another way is to set q-X aq
and use (2.5) on all the series. This calculation gives

(3.8) Cn
cdq (1 q")(1 bqn)(1 abc-lqn)(1 ad-aq n)

(1 abq2"+)(1 abq2")
Formula (3.2) is an analogue for balanced 4@3’s of one of the contiguous relations

of Gauss. Set

{ a, b, c, d )@=4@3 e,f,g
;q’q
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where abcdq efg and one of a, b, c or d is q-n. Also set

(aq, bq-l, C, d q)g,(a+, b-)= 4(3 q,
e,f,g

Then (3.2) becomes

b(1 b)(a e)(a f)(a g)(aq b)o(a -, b +)

Fab(1-c)(1- d)(aq b)(a bq)(b a)
I I

(3.9) + / -b(1-b)(a-e)(a-f)(a-g)(aq-b)[o
+ a(1 a)(e b)(f- b)(g- b)(a bq)A

-a(1-a)(e-b)(f-b)(g-b)(a-bq)o(a +, b-) O,

or

(3.10)

and

b(1 b)(a e)(a -f)(a g)(aq b)[o (a -, b + )- p]

+a(1-a)(e-b)(f-b)(g-b)(a-bq)[o-o(a +, b-)]

+ ab(1 c)(1 d)(aq b)(a bq)(b a)o O.

To find the sum of (2.1) when m n, call it h,. Then

a,,h,.,+l tz(x)p,(tx(x))pn+l(tX(x))w(x)

Cnhn-1 E tx(x)p,,(Iz(x))p,,-x(Ix(x))w(x)

=A,.,_lh,.,

SO

(3.11) Cn Cn’’" C1
h,= h,,_a ho.A,,_ An-l Ao

The 65 sum (2.3) gives

(3.12)

and so

(cdq:Z; q)oo(-b q)oo(-; q)oo(; q)o
ho--

\(cdq;a q) oo(q; q) oo(dq; q)oo(aq; q)

(q; q),,(1-abq)(bq; q),,(ad-lq; q),,(abc-lq; q),,(cdq)"
h,,

(abq; q),(1-abqZ"+)(aq; q),,(bdq; q),,(cq; q), ho.

Once this formula has been found some of the mystery of 2 can be removed. It is
natural to ask where the weight function came from. Observe that

n+l x+l

(q ,q ab, q ,q cd q)4(43
aq, bdq, cq

q’

is symmetric in n and x when (a, b) is changed into (c, d). This symmetry carries over to
w(x) and h,, that is w(n) is just ho/h,, with (a, b) interchanged with (c, d). The reason
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for this is that a matrix that is orthogonal by rows is also orthogonal by columns. The
usefulness of this remark was mentioned by Karlin and McGregor [9] in connection
with the Hahn and dual Hahn polynomials. Also see Eagleson [6]. In fact this is how we
found the weight function. However we could not give a proof by this method without
first proving the recurrence relation (3.3) directly. This would be very tedious, so it is
preferable to prove the orthogonality directly.

To show from the recurrence relation that the masses must be located at x
0, 1,..., N, observe first that AN 0, since one of aq, bdq and cq was assumed to be
q-N. For definiteness take bdq q-N. The other cases are handled in a similar fashion.
Formula (3.3) will hold when n N if we can show that

(1 q-X)(1 q
/lcd)pN(ix (x )) CN[pN(IX (X)) PN-1(IX (X))].

Both sides vanish when x =0, since pn(ix(0)) 1. Use (3.6) on pN(IX(X))--pN-I(IX(X))
and the value of C given in (3.8), to see that this is equivalent to

qN+Xab q-X, qX+cd q)32 aq, cq
q’

(3.13)
cdq (1 qN)(1 bqN)(1 abc-qN)(1 ad-lq

(1 abq2N)(1 abq2N+)
(-q x-u)(1 abq2) (qU+lab, q l-x, qx+2

(1-aq)(1-bdq)(1-cq) 32 aq2, cq 2 cd; q, q),
when x 1, 2,. ., N. The series is terminated by q-X, so it is correct to replace the
factors (q-N., q),/(q-N., q), by 1, since they do not vanish. Since x 1, 2, N the
series in (3.13) can be summed using (2.5). Again a simple calculation shows that (3.13)
holds for x 1, 2,..., N. Thus the recurrence relation (3.2) holds when n N and
x 0, 1,..., N. Therefore the point masses must be located at x 0, 1,..., N.

4. Summary and miscellaneous results. For ease of reference we state the two
main results again:

(4.1)
N

pn(ix(x); a, b, c, d; q)p,,,(ix(x); a, b, c, d; q)w(x)= 8,,,,,,h,,, aq, bdq
x=O

-Nor cq q

where

(4.2) p,,(ix(x)" a, b, c, d; q)= 4q3(q-n’ qn+lab’ q-X, qX+lcd
aq, bdq, cq

q’ q

(4.3) Ix(x) q-X + qX+Xcd
(cdq; q)x(1-cdqZX+l)(aq; q)x(bdq; q)x(cq;

(4.4) w(x)
(q; q)x(1-cdq)(a-lcdq; q)x(b-Xcq; q)x(dq; q)x(abq)

(q; q),,(1-abq)(bq; q),,(ad-q; q),,(abc-lq; q),,(cdq)"
hn (abq; q),,(1-abq2"+X)(aq; q),,(bdq; q),,(cq; q),,

(4.5)
(cdq :’, q)(a-b-c q)(a-d q)o(b -1", q)oo

(a’Icdq; q)o(b’cq; q)oo(dq; q)o(a-b-q’i; q)"

These infinite products look like they must have Iql < 1 before they make sense.
However, since one of aq, bdq or cq is q-N these products all reduce to finite products.
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For example, when aq q-S, then

(4.6)

(cdq a’, q)oo(a-lb-lc q)oo(a-ld q)(b -1", q)
(a-cdq; q)o(b-cq; q)oo(dq; q)(a-b-lq-’, q)o

(cdq a’, q)oo(b-Xcq N+x’, q)oo(dq N+I", q)oo(b -1", q)oo
(cdqa+N; q)o(b-cq; q)oo(dq; q)oo(b-qN; q)oo

(cdq 2", q)N(b -1", q)N
(b-lcq q)N(dq q)N

-(1-q-X)(1-q’+lcd)p,,(lx(x); a, b, c, d; q)

A,p,,+l(tX(x); a, b, c, d; q)-(A,, + C,,)p,,(lz(x); a, b, c, d; q)

+ CnPn_l(la,(x); a, b, c, d; q),

where p-l(/Z (X); a, b, c, d; q)=O and

(4.7) A,,
(1 abq"+l)(1 aq"+l)(1 bdq "+x)(1 -cq"+)

(1 abqa,,+ x)(1 abq2n+2)
q(1 -q")(1 bq")(c abqn)(d- aq")

(4.8) C (1 abqZ")(1 abqa’+x)
When aq, bdq or cq is q-U then (4.6) holds for n 0, 1, , N- 1 and all x if the

basic hypergeometric series that define p,(tx(x)) are assumed to terminate so that
p,,(lx(x)) is a polynomial of degree n, and holds when n N when x 0, 1,. ., N.
When none of aq, bdq or cq is equal to q-N then (4.6) holds for all x for n 0, 1, .

For the polynomials p, (Ix (x)) to be orthogonal with respect to a positive measure it
is necessary and sufficient that

(4.9) A,_xC, >0,

See [7, Chap. II, Thm. 1.5]. If (4.9) holds for n 1, 2,..., then the measure has
infinitely many points of support; when it holds for n 1, 2, , N then the measure
can be taken to have support on N + 1 points. In this paper we have only considered
some cases when the measure is purely discrete and is supported on a finite set of points.
In a later paper we will treat the general cases where the measure has both an absolutely
continuous part and a discrete part.

There are many special cases of the orthogonality relation (4.1) which are
interesting. The polynomials with d 0 and cq q-N were discovered by Hahn, and
their weight function was found a couple of years ago by Andrews and Askey. Delsarte
[4], Dunkl [5] and Stanton 11] have considered special cases of these polynomials. The
polynomials are called dual Hahn polynomials when b 0. The orthogonality when

-Naq q was also found by Andrews and Askey.
Another interesting special case is Stanton’s q-analogue of the Krawtchouk

polynomials. These are
k+l

q)= 3o2 0, q- q’ q

To obtain these from the q-Racah polynomials (1.7) first set c d 0 and aq q-
then set b _qN/X.-X SO ab =-f-. The weight function is then

W(X)=(q-lV.q),( )x(q;q)x
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When q 1 thisconvergesto((-N)x/X!)fx(-1)x=(Nx)fX, which is the weight function

for the Krawtchouk polynomials, when f p(1 p).
A word of caution about characterization theorems needs to be said. There are

many theorems that say "the classical polynomials are the only polynomials to have a
given property". Such theorems are often misleading. For example, Eagleson [6]
showed that the Charlier, Krawtchouk and Meixner polynomials are the only poly-
nomials that are self dual. He is able to prove this theorem and yet miss the polynomials
Pn (/z (x); a, b, a, b), which are clearly symmetric in n and x because his definition of self
dual or symmetrizable is too restricted. A characterization theorem that leads to new
orthogonal polynomials is usually interesting, one that says the classical polynomials are
the only polynomials with a given property is usually much less interesting and if it keeps
people from looking for new polynomials it is harmful.
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ON AN ABSTRACT INTEGRAL EQUATION*

GUSTAF GRIPENBERG"

Abstract. The existence of solutions of the nonlinear Volterra equation

u(t)+ k(t- s)gu(s) ds f(t)

is studied in a real Hilbert space. The nonlinear operator g is assumed to be the subdifferential of a convex
function. The results obtained extend earlier ones by Barbu (SIAM J. Math. Anal., 1975), Londen (SIAM J.
Math. Anal., 1977) and Londen and Staffans (Proc. Amer. Math. Soc., 1978).

1. Introduction and statement of results. The nonlinear Volterra equation

(1.1) u(t)+ k(t-s)gu(s)ds f(t), R+ [0, ),

is studied in a real Hilbert space H. Here k, g and f are given and u is the unknown
function. The kernel k is real-valued and f maps R/ into H. The nonlinear mapping g is
assumed to be the subditterential of a convex, lower semicontinuous function 0:H
(-c, ] and is hence maximal monotone. We are interested in existence and unique-
ness of solutions of (1.1). This problem has been studied by Barbu [1], Londen [6],
Londen and Stattans [7] in the case g 00, and by the author [4], as well as indepen-
dently by Crandall and Nohel [3] (using a different approach), for more general
operators g (maximal monotone on H or m-accretive on a real Banach space X). In
these latter papers the nonlinear operator can also depend explicitly on t.

In this paper we obtain the following existence and uniqueness result for (1.1)
which is not covered by earlier work.

THEOREM. Assume that

(1.2) k Wllcc (R+; R),

(1.3) k(0)> 0,

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

(1.9)

(1.10)

and

there exists To > 0 and Co > 0 such that if
O<t< To; then var (k’; [t, To])_-< Co log -1,
g Oq where q9 is a proper, convex, lower semicontinuous
function: H (oo, oo],

f wilde2 (R+; H),
f(O)eD().

Then them exists a unique function u: R+ Hsuch that

U Wll(c2 (R+; H),
there exists a function w Lo(R+; H) such that

u(t) D(g), w(t) gu(t) a.e. R+

(1.11) u(t)+ k(t- s)w(s) ds f(t), t6R+.

* Received by the editors October 14, 1977, and in revised form March 24, 1978.
f Institute of Mathematics, Helsinki University of Technology, SF-02150 Espoo 15, Finland.
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Here Wll,;2 (R+; H) denotes the set {u[u Ll2o(R+; H), u’ Lo(R+; H)} where
u’ du/dt is the distributional derivative.

The novelty of this theorem lies in the fact that it allows lim,_,o/ (k(t)-k(0))t-1=
+, a case excluded in [1], [3], [4], [6], [7], [9] (for further details see [5]).

Note that the assumption (1.4) is crucial for the proof. If H R n, n => 1 then the
uniqueness assertion of Theorem 1 is still of some interest since g is not assumed to be
strictly monotone.

The difficult step in the proof of the existence consists in showing that certain
approximate solutions converge. To accomplish this we use a technique of inverting the
kernel that has earlier been used in [3], [4], [9].

Finally we remark that one could also use the fixed-point technique developed in
[3], [4] to prove this theorem, but the main parts of the proof would still be essentially
the same.

2. Proof of the theorem. We study the approximating equation

(2.1) u(t)+ k(t-s)gu,(s)ds=f(t), teR.,

where >0 and g is the Yosida approximation of g (i.e., g -l(I-Jx), J
(I + Ig)-1). It is easy to see that under the assumptions of the theorem the equation (2.1)
has a unique solution u which satisfies

(2.2) sup I[U’x[IL2(O,T.,H> < C,
A>0

(2.3) sup IIg u <
A>0

for any finite T (see e.g. [6]). If one can show that the functions ua converge uniformly
on some interval [0, T] to a function u then it is rather easy to deduce that this u is a
local solution of (1.1). But before we can establish any convergence properties we must
establish a certain local result for resolvents of Volterra equations, (for other properties
of these resolvents see e.g. [8]).

LEMMA 2.1. Assume that To > 0 and that a and b are realfunctions on (0, To] such
that

(2.4)

and

a is positive, nonincreasing on (0, To] and a LZ(0, To; R)

var (b; [t, To]) <-_ a (t) on (0, To].

Then there exists T, 0< T <- To and a constant C such that the /’unction r

defined by

(2.6) r(t)+ b(t-s)r(s)ds a(t) on (0, To]

satisfies
(2.7) var (r; It, T1])-<cla(t) on (0, T].

Proof. Let the sequence {bm}=l be such that b, C1(0, To; R), m _-> 1,

(2.8) b,b inLl(0, To;R)asmc
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and

(2.9) Ib(s)l ds <-_a(t) on (0, To], m >-_ 1.

This is possible by (2.4) and (2.5). Define the functions r,, m _>- 1, by

(2.10) r,,(t)+ b,(t-s)r,(s) ds b,(t) on [0, To].

Now it is easy to see that r e C(0, To; R) and it follows from (2.8) and (2.10) that
r, - r inL(0, To; R) as rn - oo. Hence it is sufficient to establish (2.7) with r replaced by
r,,, for all m. Choose T such that

(2.11) [b,,(s)l ds <=1/2, m >- l.

Fix m. It follows from (2.4) and (2.9) that there exists a constant c2 (independent of
m) such that

(2.12) Ib,,(t)l <-c2a(t) on (0, T1].

Now (2.4), (2.9), (2.10) arrd (2.12) yield that for some constant c3 we have
[IbmIILz(O,T;R) < C3 and IIr,,l[L’(O,r,;R)<= Ca. Consequently we get from (2.10) by Schwarz
inequality that

(2.13) Ir,.(/)l -< c / Ib.,(/)l on (0, T].
Let to, 0 < to <= T, be arbitrary and define the continuously differentiable functions

d and e on [to, Ta] by
o

)r,(s) ds, e(t) b,,(t s)r,,(s) ds.(2.4) a(/)= b(t-s
o

By use of (2.9), (2.12), (2.13), Fubini’s theorem and Schwarz inequality, it is not
difficult to see that there exists a constant c4 such that

It Tio

It is also easy to deduce that

(2.16) le’(s)l-< (Ir,(to)l + Ir’m(s)l Ib(s)l ds.
o o

Since it follows from (2.10) and (2.14) that

Ir;(s)l ds-

we conclude from (2.9), (2.11)-(2.13), (2.15) and (2.16) that there exists a constant cs
such that

As to was arbitrary we deduce from this inequality that there exists a constant c such
that (2.7) holds with r replaced by r,. This suffices to complete the proof of Lemma 2.1
as noted above.
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We are going to apply Lemma 2.1 to the case when a(t)=Co log -1 and
b(t)= k’(t). The next lemma is crucial for the rest of the proof as it gives the needed
convergence properties of the functions u.

LEMMA 2.2. Let the assumptions of the theorem hold. Then there exists a number T2,
0 < T2 <- Ta which depends only on the behavior ofk on (0, T) such that the functions ux
converge uniformly on [0, T2] toward a function u.

Proof. Without loss of generality we may assume that k(0)= 1 (otherwise replace
the nonlinear operator g by k(O)g). By (1.2) and (1.6) we can differentiate (2.1) and
obtain

(2.17) u’(t)+gaux(t)+ k’(t-s)gxux(s)ds=f’(t) a.e. tR+.

Using the resolvent property of r (defined in (2.6) with b k’) we have from (2.17) that

(2.18) ui(t)+gu(t)- r(t-s)ui(s)ds=f(t)- r(t-s)[’(s)ds a.e. te(0, T).

Let t be a sequence of positive real numbers such that t - 0 when n + oe. Define

r(t), O<t<-_t.,
(2.19) r.(t)

r(t), t. <- <-_ T1.
Then if 0 < < T

(2.20)

and

(2.21)

r(t s )u ’a (s ) ds (r(t s)- r. (t s ))u ’a (s ) ds + r. (t s )u ’a (s ds

r.(t-s)u’a(s)ds=r(t.)ux(t)-r.(t)ux(O)+ ux(t-s)dr.(s).

Subtract (2.18) with A -/z from (2.18), form the scalar product of the resulting equation
dcf

and v., (t) u (t) u, (t); finally integrate over (0, t). The result is by (2.20) and (2.21).
(1" is the norm and (.,.) the scalar product in H.)

lv.,,(t)l=--- (gxux(s)-&,u,(s), vx,(s))ds

(2.22) + (r(s-p)-r(s-p))vi..(p)dp, v.(s) ds

+ r(t)v,..(s)+ v,(s-p) dr(p), v,..(s) ds,

re[0, T].

Using (2.3) the definition of the Yosida approximation g and the monotonicity of g we
see that there exists a constant ca such that the first term on the right side in the equation

2in (2.22) is N5c(I + ). If we apply a quadratic integral inequality (see [2, Lemma A5]),
we obtain from (2.22)

(2.23)
Ir(t )l lu,(s-p)l [dr,(p)l ds, t6 [0, T1].
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It follows from (2.2) that Ilv.,]lc’(0.7-;n> remains bounded and so (2.19) and (2.23)
combined with Gronwall’s lemma imply that there exists a constant c7 such that

)1/2max / Ir(s)-r(t)[ ds
Ost

(2.24)
exp t(Ir(t,)l + dr(s)) [0, T].

By (1.4) and Lemma 2.1 we get for certain positive constants ca and c9 (independent of
nl

(2.25) exp Idr(s)l) tel0, r l.

From (1.5) and Lemma 2.1 we conclude that

(2.26) lr(s)- r(t)l ds N coc(t t log t).

If we choose T >0 such that cgTN, then (2.24)-(2.26)imply that

(2.27) limsup max Iv,,(s)lNcoccct/(l-logt),,0 ONsNT

and letting n in (2.27) we obtain the conclusion of Lemma 2.2.
The rest of the proof now follows easily (for details see [6] or [7]) and using a

translation-iteration argument we can continue the solution to R+. The uniqueness of
the function u is established in the same way as the convergence of the approximate
solutions u.

REFERENCES

[1] W. BARBU, Nonlinear Volterra equations in a Hilbert space, this Journal, 6 (1975), pp. 728-741.
[2] H. BREZIS, Oprateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert,

North-Holland/American Elsevier, Amsterdam, 1973.
[3] M. G. CRANDALL AND J. A. NOHEL, An abstract functional differential equation and a related non-

linear Volterra equation, Israel J. Math., 29 (1978), pp. 313-328.
[4] G. GRIPENBERG, On a nonlinear Volterra integral equation in a Banach space, J. Math. Anal. Appl., to

appear.
[5], On a frequency domain condition used in the theory of Volterra equations, this Journal, 10

(1979), pp. 839-843.
[6] S-O. LONDEN, On an integral equation in a Hilbert space, this Journal, 8 (1977), pp. 950-970.
[7] S-O. LONDEN AND O. J. STAFFANS, A note on Volterra equations in a Hilbert space, Proc. Amer. Math.

Soc., 70 (1978), pp. 57-62.
[8] J. J. LEVIN, Resolvents and bounds for linear and nonlinear Volterra etuations, Trans. Amer. Math. Soc.,

288 (1977), pp. 207-222.
[9] R. C. MACCAMY, Stability theorems for a class offunctional differential equations, SIAM J. Appl. Math.,

30 (1976), pp. 557-576.



SIAM J. MATH. ANAL.
Vol. 10, No. 5, September 1979

1979 Society for Industrial and Applied Mathematics

0036-1410/79/1005-0013 $01.00/0

SOME MULTIPLE POWER SERIES WITH ZERO-ONE COEFFICIENTS*

L. CARLITZ"

Abstract. The paper is concerned with sums of the type

"1 "2 "’Xn (n > 1),

where the summation is over either

(,) jai<-_al+a2 + .+a, (l<-_j<-_n" lin)

or

(**) a+a2+’’ "+a=jai+(n-j)bi (Ojn" lin)"

the a and b are nonnegative integers. It is proved, for example, that for the first type with 2, the sum is a
rational function with denominator equal to l<k (1--XgXk).

Several combinatorial applications are obtained by specializing the xg. For example it is proved that the
number of nonnegative solutions of the system

a+a2+’"+a=N, (n-1)aiN (lin)

is equal to the binomial coecient

(k+n-s-1)n-
(N= k(n- 1)+s, 0s <n- 1).

The final section of the paper is concerned with multiple Dirichlet series

,i mm2 ms",
where the smmation is over all positive integers m such that

mi[mm2’’’ m (ljn’ lin).

The ,i are expressed as products involving series satisfying (,); in particular

(a)(-s0’’’ (-s,)
((n 1))

where g Sl +" + s, and (s) is the Riemann zeta-function.

1. Introduction and summary. Let n 2 and put

(1, !) S Sn(Xx, X2," Xn) E X1Xa22 Xn

where the summation is over all nonnegative a l, a2," , a that satisfy

+" "+an2 3

a2al+a3+" "+an
(1.2)

For n 2 the conditions (1.2) reduce to a a2, a2 a, so that a a2. It follows
that

(1.3) S2
1 --X1X2"

* Received by the editors April 22, 1977, and in revised form September 6, 1978.
f Department of Mathematics, Duke University, Durham, North Carolina 27706.
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For n 3 we shall show that

(1.4) $3

while, for n 4,

1 + XlX2X3

(1 x2x3)(1 XlX3)(1 x1x2)’

1 + 0"3 20"4- 20-10"4 "+" 0-30-4 -1" 0",]
(1.5) 6’4 (1 XlX2)(1 XlX3)(1 XxX4)(1 x2x3)(1 x2x4)(1 x3x4)’

where 0"i denotes the ith elementary symmetric function of Xl, x2, x3, x4.
For arbitrary n ->_ 2, we prove that

P,,(xl, x2, ,x,)
(1.6) & Hl<--i<]--n (1 xix])’
where P, =- P,(xl, X2, Xn) is a symmetric polynomial in X1, X2, Xn with integral
coefficients.

Generalizing (1.1), we put, for 1 _<- j _<- n,

(1.7) S,,, Sn,](X 1, x2, Xn) E a a,
Xl X2 Xn

where now the summation is over all nonnegative al, a2,. ", a, such that

(1.8) jai<=ax+a2 +.. .+a (i 1, 2,...,n).

Clearly

(1.9) Sn,E(Xl, x2, ", x,,)= S,(xl, x2,""", x,).

For j 1, the conditions (1.8) are automatically satisfied; hence

1
(1.10) Sn,1

(1-x1)(1-x2)’"’ (1-x.)"

For ] n, (1.8) implies

n(al +. .+a,,)<-n(al +. .+a,,).

Thus the inequalities become equalities, so that a a2 a,. Hence

1
(1.11) S.,.

1 --XlX2 Xn"
We shall show that

(1.12) Sn,n-1
n-2l+p+...+p

(1-p/xl)(1-p/x2)" (1-p/x.)’

where p XlX2 Xn.
In view of these special results it seems plausible that S,,,i is a rational function of

Xl, X2 Xn

(1.13) S.,i=N.,JD., (1_-<]_-< n),

where N,,i is a symmetric polynomial in X l, X2, Xn and

(1.14) D,,i 1-[ (1-xlx2""" xi),

the product extending over all products of of the x.
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A variant of (1.8) that is somewhat more symmetrical is the following’

(1.15) al+az+" .+a,,=jai+(n-j)bi (i 1, 2,... ,n),

where both the ai and bi are nonnegative integers. Note that (1.15) implies

n ai =] ai+(n-f) bi,
i=1 i=1 i=1

so that
al +a2+" "+an bl + bz + "+ b,,.

We now put

(1.16) Sn,j’Sn,j(X1, X2, ,X,,)=X’X "X ’",, (0</’<n),=

where the summation is over all nonnegative a, b satisfying (1.15). Note that

Sn, Srt, 1, Sn, Sn.n.
We shall show that S,,,i satisfies the relation

(1.17) S.,i(x, xi.) g,,,,,-i(px-t"-i), px-"-i)) (O <=] <- n),

where p xx2.." x,,. Indeed if we let

b.(1.18) F,a(xx,"’,x,,; yl,""", y,,)=E x"""’ x"y’"y,,,
where the summation is over all nonnegative a, b satisfying (1.15), then

(1.19) F.,i(x,’",x,,; y,"’, y.)=F..._.(y,..., y.;x,... ,x.) (0=</’=<n).

It is clear from the definitions that the various power series defined above have
coefficients equal to zero or one. If in any of the series we take x x. x, we get a
number of simple combinatorial results. For example (1.4) reduces to

3l+x
S3(x)

(1 x2)3"

It follows that the number of solutions in nonnegative a l, a2, a3 of the system

a + a2 + a3 N,

2ai <-N, (i 1, 2, 3)

is equal to

(1.20)
2

(N 2m),

2
(N=2m+l).

More generally (1.12) reduces to
n(n--2)1 +x +. .+x

S.,.-
(1 X._,)n

It follows that the number of nonnegative solutions of the system

aa+a2+’’ + a,, N,

(n 1)ai-<N (i 1, 2,. , n)
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is equal to

(1.21) (k+n-s-1)n-1
(N=k(n-1)+s, 0-<_s<n-1).

The special result (1.5) implies the following: Let f4(m) denote the number of
solutions in nonnegative ai of

Then

al + a2 + a3 + a4 m,

2ai=<m (1 <= =<4).

f4(2m + l)=4 (m + 2)3

f4(2m)=1/2(m + 1)(2m2+4m +3).

In the last section of the paper we define the multiple Dirichlet series

fn,](S1, S2, s.) m-Slms- m-" (1 =<f<--n),

where the summation is over all positive integers m, m2," ", mn satisfying

ilmim2’’’ m, (1 =<i =<n).

For example

(I)n,l(Sl, S2,""", Sn)--" ($1)(S2) (Sn),

l)n,n(S1, S2, ", Sn) (Sl + S2 +’’" + Sn),

where r(s) is the Riemann zeta function.
We shall show that

.,j(s 1, sz, ", s.) I-I s.,i(P -sl, p-S2,.. ", p-S.),

where S.,i is defined by (1.7). In particular, we have

(1.22) .,.-1(sl, s2," ", s.)
’(cr)r(r- sl)" r(r- s2)

r((n 1)o-)

where o- s + s2 +" + s..
As an application of (1.22), it is proved that 6.(m), the number of solutions of

mlm2 mn m,
n--1

mi m (1 =</=<n),

satisfies

6.(m) E r.(b)t,(c),
a.b n-1)=m

where tx is the Mbius function and

sr"(s) E r,,(m)m-,
m=l

so that r,,(m) is the number of solutions of mxm2. m, m.
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2. Proof of (1.4) and (1.5). We first prove (1.4). The conditions

C: al<=aE+a3, a2<=al+a3, a3<al+a2,

Ca: al>a2+a3, a2=>0, a30,

C2: a2>al+a3, al=>0, a3-->0,

C3: a3>al+a2, aa=>0, a2=>0
are mutually exclusive. Moreover their union is

al=> 0, a2-->0,

It follows that

1
(2.1)

(1 xl)(1 x2)(1 x3)

Now

a3O.

(C1C2 E) al--83+ Xl X22X33.
C3

E E E
C1 a2,a3=O al =a2+a3+l

+a +1
12X

(2.2) x2x33
az,a3 0 1 X

Xl 1

l--X1 (1--XaX2)(1--XlX3)

X11

and similarly for Yc and c3. Substituting in (2.1), we get (1.4).
To prove (1.5) we consider the conditions

C: aa -< a2 + a3 + a4,

CI: aa>a2+a3+a4,

C2: a2 > al + a3 + a4,

C3: a3>aa+a2+a4,

C4: a4>al+a2+a3,

a2 --< aa + a3 + a4, a3 aa + a2 + a4,

a2-->O, a3_--> O, a4O,

ax _->0, a3O, a4-->O,

ax --> O, a2 --> O, a4 _-> O,

a120, a2=>O, a3O.

a4 a + a2 + a3,

The conditions C, Ca, C2, C3, Ca are mutually exclusive and their union is

al=>0, a2=>0, a3=>0, a40.

It follows that

(2.3)

where

(1 x 1)( 1 x2)(1 x3)(1 x4)

4

=S4-E E,
i=1 C

E E X22X33244 E Xl
C a2,a3,a4=O al =a2+a3+a4+

X+a2+a3+1E X22X33X44
a2,a3,a4-’O

X1

1

1-xa (1--XlX2)(1--XlX3)(1--XlX4)
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and similarly for Y-c2, c3, c,. Thus (2.3) becomes

S4
1 Xl 1

(1--Xx)(1--X2)(1--X3)(1--X4) 1-x (1--XlX2)(1--XlX3)(1--XlX4)

X2 1

1-x (1-XlX2)(1-xExa)(1-XEX4)
(2.4)

x3 1

1--X3 (1--XlX3)(1--X2X3)(1--X3X4)

x4 1

1-x (1-XlX)(1-XEX4)(1-XaX4)"

It is clear from (2.4) that $4 is rational and that the denominator is at most

(1 Xl)(1 x2)(1 x3)(1 x4)(1 XlX2)(1 xlx3)(1 x lX4)(1 x3x3)(1 x2x4)(1 X2X4).

We now show that the factors

l--x1, l--x2, l--x3, 1--X4
drop out when S is written in reduced form. Consider

1 Xl 1
(1--Xl)(1--X2)(1--X3)(1--X4) l--x1 (1--XlX2)(1--XlX3)(1--XlX4)

l--x1 (1--XE)(1--X3)(1--X4) (1--XlX2)(1--XlX3)(1--XlX4)

The quantity in braces {...} vanishes when xl 1. Hence the factor l-x1 drops out.
Similarly for the remaining three factors

l--x2, l--x3, l--x4.

Thus the denominator is at most

(2.5) (1 xlx2)(1 XlX3)(1 x lX4)(1 x2x3)(1 x2x4)(1 x3x4).

Not all the factors in (2.5) can drop out since $4 is clearly not a polynomial. Thus at least
one factor, say 1 xlx2, remains. But since S4 is symmetric in xl, x2, x3, x4 it follows that
the remaining ones also survive.

We may accordingly write

N4(2.6) S4=(I_xIX2)(I__xIX3)(I_xIX4)(I_x2x3)(I__x2x4)(I__x3x4)
where N4 is symmetric in xl, x2, x3, x4. Also it is evident from (2.4) that N4 is of degree 8
and that it reduces to 1 when Xl x2 x3 x 0.

Since

S4(X1, X2, X3, 0) S3(Xl, X2, X3),

comparison of (2.6) with (1.4) gives

(2.7) N, 1 + 0"3 + 0"4(a04- al0"1 + a20"2 + a30"3 4- a40"4),

where 0"1, 0"2, 0"3, 0"4 are the elementary symmetric functions of x 1, x2, x3, x4 while ao, a 1,

a2, a3, a4 are independent of the xi.

In order to evaluate coefficients ao," ", an we examine the coefficients of the
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monomials

xxxx, xxxx, xxxx, x,xxx, xxxx
in the right hand side of (2.6.). This leads to the following relations:

3+ao= 1,

3+a1 1,

3+ao+a= 1,

6+3a+a= 1,

6+3a0+a 1.

Hence ao =-2, a =-2, a 0, a 1, a 1, so that

(2.8) N 1 +g-2g-214+ga+a.
This completes the proof of (1.5).
For Xx x x x x, (1.5) reduces to

1 + 2x + 4x + x
S4(x) S4(x, x, x, x)= (1--X2)4

(2.9)
1-x +3x2+x
(1- x)(1-x2)3"

3. Rationality o[ . We now prove the following
THEOREM 3.1. For arbitrary n 2,

P,(x,x:, ,x,)
(3.1) S,(x,x2,"" ,x,)=x<, (1- xx)’
where P, P, (Xx, x2, , x,) is a symmetric polynomial in x, x2, ", x, with integral
coecients and of degree n (n 2).

Proof. The proof is similar to the proof of (1.5). Let C, C denote the conditions

C" 2aia+a2+...+a, ’= 1,2,.. , n),

C" 2a>a+a2+...+a,, aiO (i,=1,2,...,n).

The conditions C, C, C2, , C, are mutually exclusive and their union is

a0, a20,...,a,0.
It then follows that

(3.2) $,,
1 E Z x"x2 x,,.

(1-xx)(1-x2)’"" (1-x.) i--x Ci

We have

X2 anX x;’x ..x. E x. E x
C1 a2,’" ",an =0 al =a2+" "+an +1

+’"an+lX122 x ...x.
a2,...,an--O 1 X

X1 1

1-xa (1-xxz)" (1-xx,,)
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and similarly for the remaining c,. Substituting in (3.2), we get

1 Xl 1
(3.3) S. -Y’.

(1-xl)(1-x2)... (1-x.) l-x1 (1-xlx2)... (1-xlx,,)

where the sum on the right denotes a symmetric sum.
From (3.3) it is evident that S. is a rational function of the xi and that the

denominator is at most

I-I (1-x). 1-I (1-xx).
lin l]<kn

To show that the linear factors drop out, consider

1 Xl 1
(1-x)(1-x2)""" (1 -x.) 1--Xl (1--XX2)""" (1--XlX3)

1 1

1-x (I-x2)"" (1-x.) .1}(1-x,x2)" (1--XlXn)

For x 1 the quantity in braces vanishes and therefore the factor 1- X does indeed
drop out of the denominator. Similarly for the remaining linear factors. As for the
factors 1- XjXk, since S, is not a polynomial, at least one, say 1- XlX2, must remain. But
then by symmetry the remaining ones must also survive.

Finally it follows from (3.3) that the degree of the numerator P,(Xl, x2," , x,) is
equal to n (n 1) n n (n 2), as stated.

4. The sum S.,j. Let 1 _-< ] -<_ n and put

(4.1) S. Sn j(Xl X2, Xn) E xalxa an
2 "Xn

where the summation is over all nonnegative a that satisfy

(4.2) ]ai <- al + a2 +" + a. (1 _<- _<- n).

For ] 1, (4.2) is automatically satisfied so that

1
(4.3) S.,1-

(1 Xl)(1 -x2) (1-x.)"

For n 2 it is evident that

(4.4) Sn,2(Xl, X2, ", Xn) Sn(Xl, X2," Xn),

where S.(Xl, xz," , x.) is defined by (1.1) and (1.2).
For j n, the conditions (4.2) imply

n(ax+az+’"+a.)<-n(al+az+ +a.),

so that the inequalities become equalities. It follows that al= a2 a. and
therefore

(4.5) Sn,n(Xl, X2, Xn)
1 XlX2 Xn

We shall now show that

(4.6) Sn,n-l(Xl, X2, Xn)
n-21 +p+... +p

(1-p/xx)(1-p/x2)" (1-p/x.)"
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Put

(4.7)

where

Then

so that

(4.8)

Also, by (4.7),

(4.9)

bi=s-(n-1)ai (1 <- i_-< n),

s=al+a2+’’ "+an.

bi=ns-(n-1) ai,
i=1 i=1

bl +b2+" .+b. s.

bl ------ b2---" b, s (mod n 1).

Conversely, if bl, b2,’’’, b, are nonnegative integers satisfying

(4.10) bl -= b2 =-" b, (mod n 1)

and we define s by (4.8), we can solve (4.7) for the ai.
It is convenient to define

(4.11) S(k)
n,n-1 Z X X2 Xn (O-<k <n-l),

where the summation is over all nonnegative a satisfying

(n-1)ai<-a+a+ .+a, (l_<-/<_-n)

and

(4.12)

Then by (4.10),

a+a2+.. "+a,=-k (modn-1).

bl b2" b. k (mod n 1).

Put

(4.13) b (n 1)ci + k (i <- <= n),

where the ci are nonnegative integers. Moreover the ci are otherwise unrestricted.
Hence (4.11) becomes

s(k) ]s-b )/(n-l) (s-bn)/(n-1)
n,n-1 --E X Xn

+’"+cn+k Cl+’"+cn_l+kE Xl Xn
Cl,’",C =0

(XlX2""" Xn) k E (X2""" Xn)Cl(XlX3 Xn)c2’’" (Xl""" Xn-1)cn
Cl,’" ",Cn -----0

(XIX2" Xn) k

(l--x2""" X.)(I--XIX3" Xn)" (l--x1""" Xn-1)"

If we put p xxz x,, this becomes
k

(4.14) .() P
’"’"-x (1 -p/x1)(1 -p/x2)’" (1 -p/x.)

(1 =< k < n 1).
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Summing over k, we get

(4,15) Sn,,-x
n-2l+p+...+p

(1-p/xx)(1-p/x). (1-p/xn)"

This completes the proof of (4.6).
A refinement of Sn,n-1 may be mentioned. Let il, i2,’", in be nonnegative

integers and put

(4.16) alX2Sil,"’,in "-’Z axla2 anXl Xn",

where the summation is over all nonnegative ai satisfying

(4.17)

Then

(n-1)ai =<al+a2+. "+an (1<i <

Zl Zn2
il,’",in=O ix in 1,’",an

(xxeZ) (xneZ,).,

where again the summation is over all nonnegative a satisfying (4.171. Hence, by (4.6),
we get

(4.18)

where

Z S* Zll Zn
il.’" ’,in

il,’",in=O ix! in
Sn,n-l(Xl e z,, ", x, e z")

1 +pz +’". +p.-2
(1--pz/Xx eZ) (1-pz/x,, eZ")

Pz XIX2 Xn e zx+z2+’’’+z’ p e z*+z=+’’’+z".

5. The sums S.,j and F.a. Let 0 <= j <= n. We define

(5.1) $-,.=-S-,.(x,x2, ,x,)=Y. xTx x"
and

(5.2t fnj--F,,j(Xl xn"

where, in each case, the summation is over all nonnegative ai and bi that satisfy

(5.3) jai+(n-])b,=ax+. .+a,

Summing over i, we find that (5.3) gives

Hence

(5.4)

(1-</-n).

i=1 i=1 i=1

al +" + an b +" + b.,

so that the conditions (5.3) are symmetrical in the ai and the bi, It follows that

(5.5) Fn,i(Xl, Xn Yl," Yn) Fn,n-i(Yl, Yn XI, Xn).
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In the next place, by (5.1) and (5.3), we have

E (x-"+"x x.)’’’ (x... x._xl.-"+)"
y’, (px-"+i)(px"+i)... (px’"+i),,

where p xx...x,. Therefore

(5.6) S-d(Xil, x) S-,,_i(px-("-i), px("-i)).
It is immediate from (5.1) and (5.2) that

(5.7) Sn,i(Xl," ", x,) F,a(x,. ’, Xn 1," ", 1),

SO that S,,i is expressible in terms of F,.. We can also express F,,i in terms of S,,i. Indeed
it follows from (5.3) that

n-i, n-i)F,,,i XI,’’’,Xn, Yl "’’, Yn

E X s--ia s--jz
11 "’’Xn Yl Yn

(Xly-iq)ql (Xny-iq)a’

Thus

(5.8)

where q yxy2 Yn.
We have also

F, i(Xil, x n,Yl,"" ",Yn)
s-(n-j)b n-j)b b=Xxx "’’x, ybl...y,

E (X-(n-i)YxP)b" (X-(-i)YnP)b"
It follows that

(S al +" +an)

(q YlY2" Yn).

Fn,j(Xl, ", Xn; y-J, ", y-i)= S"nd(Xly-iq, x,yiq),

(5.9) Vnd(Xil, X Yl," ", Yn) S"n ,,-i(x-("-i)yxp,
where p XlX2 Xno

Comparison of (5.9) with (5.8) again gives (5.6).
We shall now show that when/" and n are relatively prime, S,,i and F,,i can be

"evaluated". It follows from (5.3) that when (/’, n)= 1 then

ax=-a2=-...=-a, (mod n -i)

bx=-b2-’"=b,, (modj).

Moreover, by (5.3),

nai =- s (mod n -j), nbi =- s (mod j) (1 <- <- n),

where s al +’ + an b +. + bn. Hence if we define n’ by means of

nn’-- 1 (mod ](n -)),

we get

ai n s (mod n /’), bi =- n s (mod j) (l<-/<_-n).
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Thus we may put, for 1 <_-i <_-n,

ai (n -])ci + u (0 <-_ u < n -j),
(5.0)

b d + v (0 <_- v <

where c and di are nonnegative. Substituting from (5.10) in (5.3) and (5.4), we get

cl + c2 +" + c,, + u v j(ci + di)
(5.11) (1-i_<-n).

dx + d2 +" + dn + v u (n -])(ci + di)

It follows immediately from (5.11) that c + d is independent of i; we put

ci + di (l_<-/<_-n),

C1 +2 +. "-[-Cn "" U V ]t
(5.13)

dl + d2 +. + d, + v u (n -])t.

Note that adding together corresponding sides of the two equations in (5.13) results in a
tautology.

Suppose t, u, v fixed. Choose c 1, cz, , c, so that 0 <- c -< t, 1 <- =< n, and the first
of (5.13) is satisfied. Then the d obtained from (5.12) will satisfy the second of (5.13).

Returning to (5.2) it follows from (5.10) that

(5.14) F,i

where

p=xlx2"" x,, q =yly2" y,;

the summation in (5.14) is over t, u, v, c, d satisfying (5.12) and (5.13). It will be
convenient to define

(5 15) ,..o Z x"-’ x(,,-i), yld, id

where t, u, v are fixed and the summation on the right is over c, d satisfying (5.12) and
(5.13). Thus, by (5.14),

n--j--1 j-1

(5.16) F,,.i
t-O u0 u=0

To evaluate @,.u.v consider the product
nt

O.(kt)Z k(5.17) [I (1 + xiz + x?z
k =0

where r r (x,, , x) is a symmetric polynomial o weight k. It follows that

i’-<> (x’-’y-’, ., x yi)(5.18) ’,.u,o =q ,-u+v

Therefore, by (5.14) and (5.16),
n-j-1 j-1

(5.19) F,= Z Z Z p,q,+v_<,> --...,-u+v(X y’, .,x-’yX) (0<j<n).
t0 uO 0

We may accordingly state
THEOREM 5.1. The series

F.F.(xx,...,x; yx,’’’, y) ((n, j) 1)

(5.12)

so that (5.11) becomes
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defined by (5.2)and (5.3)satisfies (5,19), where

(xO’k O" 1

is a symmetric polynomial in the Xg of weight k.
In particular, for/" 1, (5.19) reduces to

n-2

Vn, E E pUqn, (,)(xn-1O’t-u
t=O =0

(O<k<nt)=

n-1
Xn )21,

n-2

2 pU 2 _nt (t+u) i--1 n--1 1q r, (x y-;,.",x, y ).
u=0 t=0

It is clear from (5.17) that

Hence

(k<-t<t’).

nt (t+u) --1 n--1E q O’t (X Yl,’’’,Xn Yn)
=0

I] (1 + (xgyg) "-1 + (xgyg)2"-2 +. .)
i=1

fi (1--(xiYi)n-’) 1.
i=1

It follows that

Vn, l(Xl," Xn; Yl,""’, Yn)-"
n-2l+p+...+p

H’=I (1--(XiYi)n-1)"
For y y, 1, this reduces to

n-2l+p+...+p
i=l(1--Xi

hence by (5.6)

(5.21) Sn,n_l(pX-(n-l), "’, px’(n-l))
n-2l+p+...+p

n-1
i=1 (1 Xi

since S.,.-1 S.,._1. Now if we put

-(n-l)
ig px (i= 1,2," ", n),

then

np-(n -(n- 1)
/5 =p

-1) p, Xi "-’P/i.

Thus (5.21) is equivalent to (4.15).
This furnishes a partial check on (5.19). Unfortunately the method does not enable

us to simplify (5.19) for 1 </’ < n 1.

(6.1)

6. Some applications. In (4.15) take X1 Xn X and we get
2n n(n-2)l+xn+x +...+x

Sn,n-l(X) (l_x--)-
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where
Sn,n--l(X)--Sn,n--l(X,X,

The right hand side of (6.1) is equal to

n-2
n] ( n + k- l’ Cn-a)k(6.2) E x E x E x"

i=o .k =o \ ]k =0

The equation

(6.3) nj+(n- 1)k m (0j<n- 1; k =>0)

y (n+k-1).n-1ni+(n-1)k

has at most one solution (], k). For assume a second solution (]’, k’). Then

n (i-]’) =,-(n 1)(k k’),

which implies n- 1 IJ-J’ and therefore j j’.
Given the solution (], k) of (6.3) we may write

m (n- 1)(/’ + k) +/’.

Hence (6.3) is solvable if and only if

(6.4) m=(n-1)r+s (O<=s<n-1;s>=r).

It follows that the right hand side of (6.2) is equal to

(n+r-s-l)(6.5) E x
m=0 n 1

where r, s are uniquely determined by (6.4).
As for the left hand side of (6.1), we have

Sn,n_l(X)=EX al+a2+’’’+an

where the summation is over nonnegative xi such that

(n-1)ai<=aa+a2 +. .+a, (1<-i <=n).

It follows that the coefficient of x" is equal to the number of solutions of the system

al +a2+" +an m,
(6.6)

(n-1)ai <-m (l<-i<=n).

If we denote the number of solutions of (6.6) by N, (m) we have therefore

(6.7) N,(m) (n + r-s-1)n-1

where r and s are determined by (6.4).
On the other hand the number of solutions of the system

(6.8) a + a2 +’ + a,, m, ai =< t,

is evidently equal to the coefficient of x in

(l+x+ .+-xt) (1-xt+l) () (n+k-1) k(-1)
n

x i(’+a) Z x
1 x i=o ] =0 n 1

x" (-1)
n+k-1

m=O j(t+l)+k=m El 1
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For [m/(n- 1)], (6.7) reduces to (6.6). Thus we obtain the binomial identity

(6.9) (_1) (n)(n+m-](t+ 1)-1)= (n +r-s-l)
’(t+l)<-_. ] n 1 n- 1

where [rn/(n- 1)] and r, s, if they exist, are determined by

rn =(n-1)r+s (O<=s<n-1;s<=r).

We remark that, by finite differences,

o (-1) n n + m -](t + l)- I

= ] n-1
=0.

Moreover, in the sum on the left of (6.9), ] n provided

n +1 -<_m,
n-1

so that
m m m
< +1<__,
n-1 n-1 n

which is impossible. Similarly ] n 1 is ruled out.
Put

m =t(n-1)+s, 0<-s<n-1.

Then the maximum admissible value of ] is determined by

(t+l)]<-t(n-1)+s,

that is

t(n-1)+s n-l-s
]=< =n-l-.

t+l t+l

Hence for large n, there may be approximately n/(t+ 1) excluded terms in the left
number of (6.9).

It would be of interest to give a direct proof of (6.9). The formula is apparently
in neither [1] nor [3].

7. Other applications. In (4.18) take

X Xn X, Z Zn Z.

The extreme right member of (4.18) reduces to
n(n-2) n(n-2)z1 +xne -t"" "+X e

(1 x"-l)"
n-2

in ]nz n + k- 1
=Y.x e 2 x

i=o k=O n- 1

2 x 2 e
m=O ]n+k(n-1)=m n 1

Exactly as above, the inner sum on the extreme right is equal to

(7.1) (n+r-s-1)n-1
e
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where r, s are uniquely determined by

(7.2) m=(n-1)r+s (O<-s<n-1;s<=r).

If this cannot be satisfied the sum in question vanishes.
The sum (7.1) is equal to

(7.3) ( n + r s -1) (sn z--r
n- 1 o

Hence if we put

(7.4) Nn(m,f)=Y.
i1! "" in!

a11"" an’

where the summation is over all nonnegative al,. , an, i,..., in satisfying

al+a2+’’’+an=m

(7.5) (n 1)a. -< m (1 =</" <- n)

i+i2+. .+i,, =f,

it follows from (7.3) that

(7.6) Nn(m, f)= (n + r-s-1) (sn)r,
n-1

where r, s are determined by (7.2)
Comparison of (7.6) with (6.7) gives

(7.7) N, (m, f) (sn)N, (m).
In the next place, it is not difficult to show that

f!Nn(m,f, t)=
i! in!

a?

where the summation is over all nonnegative al,. ., an i,. ., in satisfying

a + a2 + + an m,

ai<--t

i1+i2+’’ "+in=,

is equal to the coefficient of x in

’!1 x
(snl

(1 <_-h _-<n)

Hence, taking t= [m/(u- 1)], we get

(7.8) N,, (m, f) (sn)f
](t+l)-<-m

(-1);
] n- 1

Thus comparison of (7.8) with (7.6) again leads to the identity (6.9).
Another simple application is implied by (2.9). We state this equation in the form

(7.9) 2xal+a2+a3+cl4 1 + 2X 2 + 4X 3 + X
4

(1 --X2)4
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where the summation on the left is over all nonnegative a l, a2, a3, a4 such that

2ai<-_ax+a2+aa+a4 (i_-< i_-<4).

Let f4(rn) denote the number of nonnegative solutions of the system

a q- a2 -{- a3 -+- a4 m

2ai<-m (1<_- i_-<4),

so that the left hand side of (7.9) is equal to

2 (m)x.
rn--0

The right hand side of (7.9) is equal to

It follows that

(1 + 2x 2 + 4x 3 + X 4) Y’ X
,n----O 3

(7.10)

2r/1

8. Consider the multiple Dirichlet series

(8.1) dp /1,i s s2, s/1) Y’. m -{ m 82 rn S, (l_--<]--<n).

where the summation is over all positive integers ml, m2," ", m,, satisfying

(8.2) m ilmlm2 m/1 (1 <-i<-n).

Corresponding to F,,.j(xx,..., x/1 y l, , yn) we may define

/1,j (Sl, S/l, S -,, -s ,-s,,
1, .,s,)=Emls m,, rn m, (O<=<-n),

where the summation is over all positive integers rnl,. ", rn/1, rn 1, , rn, satisfying

mlm2 mn m tn-jm (1 =<i--<--n).

However we shall not take the space to discuss properties of
(n,j(Sx, Sn; Si

For f 1, the conditions (8.2) are satisfied and therefore

(8.3) (I)n,l(S1, $2,""", Sn)-" ’(S1)’($2)

where r(s) is the Riemann zeta function. For/" n, (8.2) implies

rn lrn2 rn/1 (mime"" rn/1)

and so each vertical bar in (8.2) becomes equality. It follows that rn rn2
Hence

(8.4) lffn,n(SX, S2," ", Sn) "(Sl -[- S2 -1"" "-[- Sn),

For 1 -< j -< n, it is easily seen that

,.(s, s:, ., Sn) I1 ,.,,(s, s, ., s),
P

+ 2 + (m + 1)(2m 2 + 4m + 3).
3 3 3
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where the product extends over all primes p, and

(I)n,i,p(S1, S2, Sn) E p-as-a2s2 anSn

where the summation is over all nonnegative a, a2," ", a, such that

jai<=aa+az+. .+a, (l<=i<-n).

It follows at once that

(8 5) (n,j,p(S1, $2, ", s,,) s,,i(p -sl, p-’2, ,P-S"),

where Sn.j is defined by (4.1). Therefore

--S2 --Sn).(8.6) ...(Sl, s2, s.) 1-I $,,a(P -sl, P ," ",P

In particular, for/" n 1, we have by (4.15),

S.,._a(p-S, p-S2,
-(n-2)o-l+p-o-+...+p

(l_p-o-+Sl)(l_p-o-+s2)... (l_p-o.+n)

1 _p-(n-1)s
(l_p-o.)(l_p-o-+s)(l_p-o-+s2)... (1 p-o.+s,)

where
O" S1 "q-S2 "1- "]" Sn.

It therefore follows from (8.6) that

’(r)(r- s)(r- s)" ’(r- s.)
(8.7)

’((n ))

We now take s s. s. Then (8.7) reduces to

(8.8) .,n-l(s) ...-1(Sl, sz," ", s.)=(ns)n((n 1)s)
((n(n-1)s)

while (8.1) yields

6n(m)
(8.9) .,._l(s)

m--1 m

where 6n (m) is defined as the number of solutions of

(8.10)

Put

mlm2 mn m

n--1
mi ]m (1 _-<_ <_- n).

(m)
C"(s) 2

m=-I m

so that z,,(m) is the number of solutions ml, m2," m, of mlm2" m, m. Then

(n(n 1)s) -a=l a b=l b (n-1)s
c=lC

u(c)
n(n-1)s

m=l m anbn-lcn(n-1)=m
-.(b).(c).
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Therefore, by (8.8) and (8.9), we have

(8.11) a, (m
anbn_l cn(n_l)__D r, (b )tz (C ).

For a discussion of arithmetic functions see for example [2, Chap. 4].
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ANALYTIC FUNCTIONS RELATED TO THE DISTRIBUTIONS OF
EXPONENTIAL GROWTH*

RICHARD D. CARMICHAEL"

Abstract. We study the relationship between certain classes of analytic functions in tubes, the dis-
tributions of exponential growth ’/’,, p _--> 1, and the Fourier transform spaces K, p => 1, of such distributions.
Representations of the analytic functions are obtained in terms of the Fourier-Laplace transform of
distributions in , and when the analytic functions are considered as elements in K we obtain represen-
tations of them in terms of the Fourier transform in K, of certain elements in 7{. In every case the
distributions which yield these representations are analyzed. Further, we obtain strong boundedness
properties of the analytic functions when considered as elements of K,, and certain of our analytic functions
are shown to have distributional boundary values in the strong (and weak) topology of K,. Our results are
motivated by analysis of V. S. Vladimirov who has considered similar problems to those that we study but for
spaces of analytic functions that are properly contained in the spaces that we define in this paper. The spectral
functions of Vladimirov which are associated with his analytic functions are distributions in 6e’ which are
defined by continuous functions of power increase in R while the distributions which correspond to spectral
functions in this paper are distributions in ’{ which are defined by continuous functions of exponential
growth in R", a more general situation than that of Vladimirov.

1. Introduction. V. S. Vladimirov [17, Chap. 5] has obtained considerable
information concerning the relation of analytic functions defined in tubes and the
tempered distributions 6e’. He has characterized the analytic functions in tubes which
obtain distributional boundary values in 6e’ and has studied the relation between certain
classes of analytic functions and the associated spectral functions [17, p. 230] of
elements of the class.

In this paper we shall be concerned primarily with the distributions of exponential
growth 7/’, p > 1 and their Fourier transforms K’p, p -> 1, which are larger classes of
distributions than ". Sebastio e Silva [13], [14] was the first to define distributions of
this type. The spaces ff/’-= Aoo and K =’ were defined by Sebasti.o e Silva in
1-dimension and were later extended to n-dimensions and studied by Hasumi [8],
Yoshinaga [18], and Zieleny [19]. Recently Sampson and Zieleny [10] have defined
and studied the distributions 7{,, p > 1, and their Fourier transforms K, p > 1, in
n-dimensions.

The principal motivation of this paper is the work of Vladimirov first contained in
[16] and later contained in [17, 26.4]. We define two different types of spaces of
analytic functions in tubes both of which are more general than the Hp(A; C) spaces of
[17, p. 238] by considering functions whose growth is known for Im (z) in some sense
bounded away from the origin in n, a situation motivated for this author by the
researches of Beltrami and Wohlers [1], Lauwerier [9], and Swartz [15] and also
motivated by properties of the Fourier-Laplace transform of certain elements in the
spaces of distributions of exponential growth 3’’;, p-> 1. We study the relationship
between our new analytic functions and the distributions 2/’;,,p => 1, and their Fourier
transforms K’, p _-> 1, both of which properly contain 6e’. We show that elements in our
analytic function spaces can be represented as the Fourier-Laplace transform of certain
distributions in 7{ and analyze these distributions, as Vladimirov has done with respect
to his H,(A; C) spaces and the associated spectral functions. We further present
representations of the analytic functions as elements in K; in terms of Fourier
transforms in K; of certain elements in /’; and present boundedness information for

* Received by the editors September 15, 1977, and in revised form March 27, 1978.

" Department of Mathematics, Iowa State University, Ames, Iowa 50011. Permanent address:
Department of Mathematics, Wake Forest University, Winston-Salem, North Carolina 27109.
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the analytic functions considered as elements in K. Further, for one of our new type of
spaces of analytic functions we show that the elements in these spaces obtain dis-
tributional boundary values in the strong (and weak) topology of K and present a
general condition under which analytic functions in tubes have distributional boundary
values in K in the strong (and weak) topology of K.

2. Notation and definitions. In this section we state the basic notation to be used in
this paper. Let R and y Rn. We define (t, y) tlyl +" + ty and similarly define
(t, z), ", z C". Let a denote an n-tuple of nonnegative integers. D denotes the
differential operator D DID D" where D. -1/(2zri)(O/Otj), 1,. , n.
Similarly we define D. If k (kl, k2,’’ ", kn) is an n-tuple of integers, we define
k= tk’’’ k" with similar definition for z k. When the components of k are non-
negative integers we also define Ikl=kl+kz+...+k, and k!=k!k2!...k,!.
Throughout this paper N(0, m) will denote the closed ball in " of radius m > 0 having
center at the origin.

A set C cn is a cone (with vertex at zero) if y C implies Ay C for all positive
scalars A. The intersection of C with the unit sphere lyl 1 in " is called the projection
of C and is denoted pr (C). Let C’ be a cone such that pr (C’) c pr (C); C’ will be called
a compact subcone of C. O(C) will denote the convex envelope of C. Tc will denote
Tc + iC, a subset of C ". Tc will be called a tubular cone if the cone C is open and
will be called a tubular radial domain if C is both open and connected. The function

uc(t)= sup (-(t, y))
ypr(C)

is the indicatrix of the cone C. Throughout the paper the sets C* and C, will denote
C* ={t R": uc(t)<-O} and C, =n\C*. It follows that C* ={t: (t, y)->0, yC} and
C, {t: (t, y) < 0, y C}. For any cone C, C* will be called the dual cone of C. Note that
both C* and C, are cones in ". The number

Uo(c)(t)
pc sup

,c. Uc(t)

characterizes the nonconvexity of the cone C [17, p. 220], and we have pc -> 1 always
17, p. 220]. We shall be considering open cones having a finite number of components

in this paper; so throughout this paper 1 <- pc < oo [17, p. 220, Lemma 3] for all cones C.
Let C be a cone. We have [17, 25.1]

(2.1) -(t, y)<-[yluo(c)(t), Uo(c)(t)<-pcUc(t), teC,, yeO(C).

Let C be an open connected cone and let C be a compact subcone of C,. There
exists a number > 0 depending on C such that [17, eq. (28), p. 241]

(2 2) 4’1tl < Uc(t) < Itl 6 C’I

Let b(t)e LI(N"). We define the Fourier transform of b(t) by

(x) --’[b (t); x] In-b(t) e 2"i(x’’> dt

while the inverse Fourier transform of b(t) is

--x[&(t); x] fa, b(t) e -2ri(x’t) dt.
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Throughout this paper all needed definitions and terminology concerning dis-
tributions, such as support of a distribution, will be that of L. Schwartz [11]. We shall
denote the support of a function f and of a distribution V by supp (f) and supp (V).
All terminology from the theory of topological vector spaces and their dual spaces used
in this paper such as bounded set in a topological vector space and strongly bounded set
in a dual space, can be found in Edwards [4] and Friedman [5, Chap. 1].

The notion of distributional boundary value of an analytic function in the weak or
strong topology of a distribution (generalized function) space, with the function being
analytic in a tubular radial domain, will be exactly the same in this paper as discussed in
[2, p. 767, last paragraph].

3. The test spaces Y/’, and K,, p>-1. YFp, p-> 1, is the space of all functions
b C([) for which the products (exp (klt[)DT(4(t))), ]a]-< k, are bounded over
for k 0, 1, 2,. . We define the system of norms

(3.1) 1111 sup ekl’l"lDT(rb(t))[, k 1, 2,...,
l

in ff{. These norms have increasing strength; that is, pllb[l =< ollbll/, k 1, 2,. . If
we put M(t)=exp (kltlo), k 1, 2,. ., we recognize that fifo is an example of the
K{M} spaces of Gel’fand and Shilov [6, p. 86]. We define the topology of ff/’o by the
norms (3.1), and fifo becomes a complete countably normed space [6, p. 88] and a locally
convex topological vector space. We further note that {M(t)} {exp (klt])} satisfies
the properties (M) and (N) of [6, p. 111]. Thus the system of norms

(3.2) ollll;,: sup f e ltllDT(b(t))l dt, k 1, 2,...,
lal---<k Jl

is equivalent to the system (3.1) in YFv [6, pp. 111-112]. Any C(") function which is
7(exp (kltl)) for some constant k is a multiplier in Y{. The convergence of a sequence
{bo} in Y{o is determined by the topology of Y{o. Thus a sequence {b} is said to converge
to zero in Y{o as v Vo if bo e Y{o for each v and lim-,oo ollbll 0 (or equivalently
limo-,o ollbll, 0) for each k 1, 2,. . It is easy to prove that Y{o c__ y{, p >__ r >- 1; and
if a sequence converges to zero in Y[, the same sequence converges to zero in

Ka is the space of all C(N") functions which can be extended to C" to be an entire
analytic function such that

(3.3) xllll sup (1 + Izl)14,(z)[ < oo, k 1, 2,...,
z Vk

where Vk {z C"" Jim (z)l -< k,/’ 1,. , n}. The topology defined by the semi-
norms (3.3) makes K into a locally convex topological vector space. Any C(")
function which can be extended to be an entire function of polynomial growth in any of
the sets Vk is a multiplier in K. A sequence {4’} converges to zero in K as v- v0 if

0v gl for each v and limo-,oo l[[///vl[ 0, k 1, 2,.. .
Ko, p > 1, is the space of all C(N") functions which can be extended to be entire

analytic functions such that

(3.4) ,llOll sup (l+[zl) exp[-(lyl"/k)]lO(z)l<o, k=l,2,...,
zC
=x+iy

where 1/p + 1/q 1. Kp becomes a locally convex topological vector space under the
topology defined by the semi-norms (3.4). A sequence {o} converges to zero in K, as
v -> Vo if ,o e Kp for each v and limo_,, lloll 0, k 1, 2,. .
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THEOREM 3.1. The Fourier transform is a topological isomorphism of Y{p onto
Kp, p >- 1. The inverse Fourier transform is a topological isomorphism ofKo onto 77, p >- 1.
d K satisfies O(x) (x), b Y{p, if and only if (t) -l[(x); t].

Proof. For p 1 the results have been obtained by Hasumi [8, pp. 97-99] and
Zieleny [19, p. 113] and for p > 1 by Sampson and Zieleny [10].

The following lemma will be useful.
LEMMA 3.1. The space 77, p >-_ 1, is a Frgchet nuclear space, a perfect space, and a

Montel space.
Proof. See [10], [6, Chap. 2], [7, pp. 178-182], and [5, Chaps. 1 and 2].

and K,, p> 1 The distribution spaces Y{, and4. The distribution spaces 3f
K’p, p _-> 1, are the spaces of continuous linear functions on Y{, and K,, respectively.

Sampson and Zieleiny [10] have obtained the following characterization of
Y{, p >_- 1, in which ’ refers to the distributions of L. Schwartz [11].

THEOREM 4.1 1 0]. A distribution V ’ is in Y{’, p >-_ 1, if and only if there exist
an integer k >- O, an n-tuple a ofnonnegative integers, and a bounded continuousfunction
[(t) on " such that

(4.1) Vt D7 (ekltl"f(t)).

Recall from 3 that Y(p
_

Y{r, p--> r-> 1, and convergence of a sequence in {
implies convergence of that same sequence in Y{r. It follows that Y{"

_
yr, p __> r -> 1, and

the injection is continuous in the strong (and weak) topology. In particular Yg’
_
Y{ for

all p _-> 1. The reader is asked to remember this important fact.
Sampson and ZielOny [10] have defined the Fourier transform of elements

V 6, p _-> 1. Each V Y{, has a Fourier transform U Q o%[ V] which is an element
in K, defined by the Parseval formula

(4.2) U, V, (), cb 77{, g, Kp, ( cb (-

Similarly the inverse Fourier transform of an element U K’p, p _-> 1, is the element
V -1[U] Y/’ defined by the relation

(4.3) (V, b)= (U, ), ff 6 Kp, 6(t) ,--1[I/(x); t]6 {’o, (x)= (-x).

Because of Theorem 3.1 we have the following basic result.
THeOReM 4.2 [10]. The Fourier transform defined by (4.2) is a topological

isomorphism of ?7{’p onto K’, p >-1. The inverse Fourier transform defined by (4.3) is a
topological isomorphism ofK’p onto Y{’p, p >- 1. U K’ satisfies U [V], V ?7{’p, ifand
only if V -[U].

5. Technical results. The results obtained in this section will be used to establish
the main results of this paper which are contained in 7-9. From 2 recall the
definitions of the dual cone C* {t: Uc(t)<-_ 0} of a cone C, the cone C, [R"\C*, the
convex envelope O(C) of C, and the convexity function Pc.

The first two lemmas in this section concern inequalities involving functions which
are defined on compact subcones of the cone C,.

LEMMA 5.1. Let 3’ be an n-tuple of nonnegative integers. Let n >-1 be an integer,
R > O, and q > 1. For the open connected cone C we have

(5.1) (1 + It[)"+l+lvl =<M exp [2rR(uc(t))], C’, c C,,

where C, is an arbitrary compact subcone of C, and the constantM depends on C,.
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Proof. Given C c C, there exists a number : > 0 depending on C such that (2.2)
holds for C,. For any R > 0, (2.2) yields

(5.2) O<exp[2zrR([t[)]<-_exp[27rR(uc(t))], t C’,.

But ((l+]tl)-"-a-Ilexp[2zrR(]t[)]) as Itl- for t". This fact and (5.2)
combine to show

(5.3) ((l+]tl)-"-x-Ilexp[ZTrR(uc(t))])o asltlo,tC’,.

Further, if we restrict our attention to any closed ball N(0, m) of the origin in [" of
radius m > 0, it is evident that we can choose a constant Q,, > 1 depending on m > 0
such that

(5.4) O,, l + [tl)-"-l-lvl exp [2zrR (lt[)] >- l, 6 N(O, m ).

By (2.2) and (5.4) we now have

(5.5) O,,(l+ltl)--l-I’lexp[2zrR(uc(t))]>=l, tN(O,m)OC’,.

The conclusion (5.1) can now be obtained from (5.3) and (5.5).
LZMMA 5.2. Let C be an open connected cone and y O(C) be arbitrary but fixed.

be anLetp and q be real numbers related by lip + 1/q 1, p > 1, and letB >0. Let C,
arbitrary compact subcone of C, "\C* and let > 0 be the number of (2.2). For every
r/6 (0, 1) we have

sup exp [2rlyl(pc)uc(t)- 2zrB(1- 2qq)(Uc(t))]
(5.6) ,c

_-< sup exp [2zrly I(pc)6 2zrB (" 2q)6"].
>0

Further if q (0, 1) is now fixed such that ( 2q1) > 0 ]:or the fixed > 0 and q > 1, the
inequality (5.6) is continued as

1 / ].(5.7) <-exp[(7)(qB(,q_2qr) Oclyl

Pro@ Using (2.2) we have for all e C c C, that

(5.8) -2rB (1 2qn)(Uc(t)) <- -2’B(q 2qn)ltl

and

(5.9) 2zrlYl(pc)Uc(t) <= 2zrly[(p)lt[, C C,.

Combining (5.8) and (5.9) yields

exp [2zr]yl(pc)uc(t)- 2 zrB (1 2qq)(Uc(t))
(5.10)

<-exp [2zr[yl(pc)[tl-2zrB( 2qrt)ltl], C C,.

Again using (2.2) we have It[--> uc(t) > 0 for C c C, "\C* {t" Uc(t) > 0}. By
this and (5.10) the inequality (5.6) follows.

Recall that r/ (0, 1) is arbitrary in (5.6); that is, (5.6) holds for every r/ (0, 1).
Now fix r/6 (0, 1) such that (:-2qrt)> 0 for the fixed > 0 depending on C and
q > 1. Consider the function

(5.11) f(6)=exp[27rlYl(pc)6-2zrB(-2qn)6], 6>0.

By considerations from the calculus and recalling that lip + 1/q 1, p > 1, q > 1, we
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see that [(6) attains its maximum at

Thus

(5.12)

a=( lylc )-)qB(o 2qrl

sup exp [27fly I(Pc)6 27rB(q 2qq )6q
6>0

27rB (" 2qn)(qB(q 2q,1

Since 1/p+ 1/q 1, p > 1, q > 1, then some simple, but tedious, arithmetic yields

From this last equality and (5.12) we obtain (5.7). The proof is complete.
The following two lemmas show various properties of certain integrals over

arbitrary compact subcones of C, "\C*.
LEMMA 5.3. LetCbe an open connected cone and let C’ be an arbitrary open compact

subcone ofO(C). Let C’, be an arbitrary compact subcone ofC,. LetB > 0 and q > 1. Let
g(t) be a continuous function of which satisfies

(5.13) Ig(t)l<-K(C’., q) exp [-27rB(1-qq)(Uc(t))q], C’, c C.,

for every 1 (0, 1), where K(C’,, 1) is a constant depending on C’, and on r Let
Zo 6 Tc’ + iC’ be arbitrary butfixed and let z N’(zo, r) Tc’, where N’(zo, r) is an
open neighborhood ofZo with radius r > 0 whose closure is in Tc’. Then for any n-tuple y
of nonnegative integers, the integral

[ tVg(t) e 2ri(z’t) dth(z)

converges absolutely and uniformly for z N’(zo, r).
Proofi From (2.1) we have

(5.14) -(y, t) <= lyl(pc)uc(t), C,, y O(C).

For z=x+iyN’(zo, r) we can choose a real number T>0 such that ]yl-<T,
y Im (z). Combining this fact with (5.13) and (5.14) we have for all z =x +iy
N’(zo, r) that

]h(z)l<---g(c’,, n) f Itl e -2"<y’’> exp [-27rB(1-qrl)(Uc(t))] dt
ac

(5.15)

Ic 1)"+1+1"1
<-K(C’,, t) exp [2rY(pc)Uc(t)_2rB(l_qq)(Uc(t))]

(1 +]t
; (l/ltl)"+a

dt

where n is the dimension. Replace lyl by T in (5.9); then (5.8) and (5.9) yield (5.10) with
[y] replaced by T. Thus using (5.1) with R Bq,1 and using (5.10) with T replacing ly[,
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we continue (5.15) and get

r/) [ exp [27rT(pc)Uc(t)-27rB(1-qrl)(uc(t))q][h(z)l <- Mg(C’,,

(5.16) .exp [2rBqrl(Uc(t))’](1 + It[)-"- dt

MK(C, ) _, exp [2T(Oc)lt[-2n(-2q)[tlo](1 +[tl)--a dt

where (C)>0 is the number of (2.2), the constant M depending on C is
obtained from (5.1); and (5.16) holds for every (0, 1). We now fix (0, 1) such that
( 2q) > 0. With this choice of , the proof of Lemma 5.2 combined with (5.16) now
yields

(1 + I/I)-"-a dtIh(z)lMg(C, n)exp qB(O_2qn ocT J
(5.17)

K,(C, ) exp [(2)( 1
qB(" 2qn)

andon thefor all z N’(zo, r), where K’(C, ) is a constant depending on the fixed C,
now fixed (0, 1) such that (-2q)>0. Everything on the right of the last
inequality of (5.17) is independent of z N’(zo, r). Thus the integral defining hv(z)
converges absolutely and uniformly for z N’(zo, r). The proof is complete.

LZMMn 5.4. Let C be an open connected cone and let C be an arbitrary compact
subcone of C,. Let g(t) be a continuous function oft " which satisfies (5.13) for C
with B > O, q > 1, and n (0, 1) being arbitrary. Let (C > 0 be the number in (2.2)
and let

-+-=1.
pq/ P q

Then for any n-tuple y of nonnegative integers

(5.19) t’g(t) e’ dt NK’(C,, n) exp 2A q 2qn,
andforz x +iy T(c)= + iO(C), whereK’(C, n) isaconsmntdependingon C,

on n (0, 1) which is now fixed such that ( 2qn) > O.
Proof. Condition (5.14) holds for all C, and y O(C). Thus the analysis of

(5.15), (5.16), and (5.17) with T replaced by ]y[ proves (5.19).
In the following two lemmas we prove (e-Z=(Y">g(t)) L, 1 r <, under certain

assumptions on the function g(t) for y in a cone.
LEMMA 5.5. Let C be an open connected cone and let C’ be an arbitrary compact

subcone of O(C). Let m m(C’) > 0 be fixed depending on C’. Let g(t) be a continuous

function of " such that

(5.20) [g(t)l <-- K(C’, m exp [2zr((lI, t) + A[f[")],

where A >0, p > 1, K(C’, m) is a constant depending on C’ and on m, and (5.20) holds
independently of II(C’\(C’fqN(O,m))) for arbitrary C’cO(C). Further, for any
compact subcone C’, c C, let g(t) satisfy

(5.21) [g(t)l<M(C,, r/) exp [-2orB(1 qrt)(Uc(t))q], C,,
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for every *1 (0, 1) where

(5.22) B= 1(.1_:_/ 1 1
-+-= 1,

q \Ap/ p q

and M(C’,, ,1) is a constant depending on C’, and on ft. Then

(5.23) e-2<Y’t>g(t)

for y (C’\(C’ N(O, m))) arbitrary but fixed.
Proof. Let r be arbitrary, 1 <-r < c. Let y be arbitrary but fixed in (C’\(C’tq

N(0, m))). Then y s C’ and ly[> m >0. Choose a real number sr such that 0< (m/lyl) <
r < 1. Now put fl ry. Since y s C’ and C’ is a cone then fl sty s C’. Further,
]ll[ ’[yl > m; thus II ’y (C’\(C’ ON(O, m))). Since (5.20) holds independently of
fie (C’\(C’ fqN(O, m))) we choose fl sty and obtain from (5.20) that

[e-2r<Y’>g(t)[ <-Kr(C’, m) e -2’<’> exp [27rr(’(y, t) +Arlyl)]
(5.24)

<-g(c’, m) exp [2rrA’"ly exp [-2zrr(1 -’)(y, t)]

for all
For the arbitrary compact subcone C’ of O(C) we apply [17, Lemma 2, p. 223] and

obtain a number >0 and an open cone (C*)’ both depending on C’ such that
C* (C*)’ and

(5.25) (y, t)_-> a[yl [t], y s C’, t s (C*)’.

Since (1-r)>0 in (5.24) then using (5.24) and (5.25) we have

I( [e -2=(y’t>g(t)] dt
C*)’

(5.26)

<-Kr(C’, m) exp [27rrA’[y p] [ exp [-27rrt (1 ff)lyl [t[] dt.
C*)’

From (5.26) and Schwartz [12, p. 39, Theorem 32] we obtain

I( le-2=<Y">g(t)l dt
C*)’

(5.27) <-K(C’, m)Z exp [2rrA’lyl] s-exp[-2-r(1-)lyls]ds

K(C’, m)Z, exp

where Z is the area of the unit sphere in N and we have integrated by parts (n- 1)
times on the last integral in (5.27).

Let us now put C N \(C*). Since C* c (C*)’ and (C*)’ is an open cone then C,
is a compact subcone of C, and (5.21) holds for this C by hypothesis. By analysis
exactly like that in Lemmas 5.3 and 5.4 we have

(5.28)

where M’(C’,, q) is a constant depending on C and on the r/s (0, 1) which is now fixed
such that (scq-2qrt)> 0 for sc (C )>0 being the number in (2.2)corresponding to
our present compact subcone C c C,.
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The open cone (C*)’ for which (5.27) holds is fixed depending on the compact
subcone C’ O(C). Then the compact subcone C C, for which (5.28) holds was
defined by C =n\(C*)’. Thus (C*)’LI C =n and (C*)’fq C . Using these
facts together with (5.27) and (5.28) we conclude that (e-2’(Y’t>g(t)) Lr, 1 -<_ r < oo, for y
arbitrary but fixed in (C’\(C’ N(0, m))). The proof is complete.

LEMMA 5.6. Let C, C’ c O(C), and m m(C’) > 0 be as in Lemma 5.5. Let g(t) be
a continuous function of which satisfies (5.20) for p >-1 and A >-_ 0 and which
satisfies supp (g)_ C*. Then (5.23) holds for y (C’\(C’ f-)N(O, m))).

Proof. The open cone (C*)’ for which (5.25) holds contains C*. Thus by the proof
of Lemma 5.5 leading to the inequality (5.27) and the fact that supp (g)_ C*, the
desired conclusion (5.23) is obtained.

In several of our proofs below it is important to know that the estimate (5.20) in fact
implies the estimate (5.21). We prove this now.

LEMMA 5.7. Let C, C’ O(C), and m m(C’) > 0 be as in Lemma 5.5. Let g(t) be
a continuous function of which satisfies (5.20) ]:or A > 0 and p > 1; and suppose
(5.20) holds independently of 12 (C’\(C’ f3 N(O, m))) ]:or arbitrary C’ O(C). Then ]’or
any compact subcone C’, C,, g(t) satisfies (5.21) where 7 (0, 1) is arbitrary, 1/p +
1/q 1, and B is given by (5.22).

Proof. Throughout this proof C is an arbitrary but fixed compact subcone of C,.
By [17, Lemma, p. 241], for arbitrary (0, 1) there exists a compact subcone
C’ C’(C’ there., t) of C

_
O(C), depending on C and on , such that for any C,

exists a point y0 pr (C’) where

(5.29) -(t, yt )>-_(1-q)Uc(t).

Throughout the rest of this proof C’ will denote the compact subcone of C c_ O(C) just
obtained corresponding to the arbitrary *7 (0, 1) and represents an arbitrary point in
C, C,. Let us put

(5 30) y, yt(uc(t)q/
\Ap]

Since C’ is a cone, yO 6pr (C’), and Uc(t)>O for 6 C C,={t" uc(t)>O}, then
yt e C’ c C for any e C’

We now choose a real number R > 0 such that

(5.31) R >(Ap(mP/q))/

with m m (C’) > 0 being the fixed number in the hypothesis corresponding to the now
fixed C’ depending on C, and on r/e (0, 1) and with :=(C)>0 being the fixed
number in (2.2) depending on C. Consider C such that [tl > R > 0. For such the
point yt e C’ of (5.30) satisfies

(Uc(t)q/p >(lt]q/o(5.32) lY,[
\ Ap ! \Ap]

> > m

where we have used (2.2), (5.31), and the fact that yo e pr (C’). Thus for e C, such that
Itl > R > O, y, (C’\(C’ N(0, m))). Applying the hypothesis (5.20) where we let 1)

Yt, we have

(5.33) Ig(t)l<=K(C’,m)exp[2zr((yt, t)+Aly,[O)], teC’,, Itl>e.
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By (5.29) and (5.30) we have for all C that

(5.34)
\ Ap ] (Yt’t)<=-(1-rl)Uc(t)\ Ap ]

Also for all C we have by (5.30) that

u (t h .
ap

since y pr (C’). Using (5.34) and (5.35) in (5.33) we get

[g(t)]<K(C’, m)exp [2a(Uc(t)q (t))q/]Ap ]
-2(1-n)Uc(t)

(5.36)
tC, ItI>R.

Using the fact that lip + 1/q 1, p > 1, the number B in (5.22), and some simple, but
tedious, arithmetic we obtain

(5.37) 2Ax Ap ] -2(1-n)uc(t)X Ap ]
=-2rB(1-qn)(uc(t))"

Putting (5.37) in (5.36) we have

(5.38) Ig(t)lK(C’,m)exp[-2B(1-qn)(uc(t))"], tC, [tl>e.
We now obtain a growth like (5.38) for C such that [tl R for the fixed R > 0

of (5.31). For the point yO pr (C’) of (5.29) corresponding to C, c C, put

(5 39) y, 0

for fixed O > m > 0. Then y’t (C’(C’ N(0, m))) for each C. Again recalling that
(5.20) holds for all t independently of O(C’(C’ N(O, m))), we now choose

Y in (5.20) and obtain from (5.20), (5.29), and the fact that y0, pr (C’) that

(5.40) [g(t)lK(C’,m)exp[2AO]exp[-2O(1-)uc(t)], tC.
Now 6 (0, 1) in (5.29) and recall that uc(t) > 0 for C C,. Thus

(5.41) exp [-2wO(1-n)uc(t)] 1, C.
Using (5.40), (5.41), and (2.2), we have the following inequalities for all C such that
[tl R and for B being the number in (5.22)"

Ig(t)l g(C’, m) exp [2AOo] exp [2B(1 q)(Uc(t))

(5.42) exp [-2wB(1-q)(Uc(t))]

K(C’, m) exp [2AQ] exp [2BR] exp [-2B(1 -qn)(Uc(t))o].

Now (5.38) holds for all C such that It[ > R and (5.42) holds for all C such
that It[ e. Recall that the compact subcone C’ C O(C) constructed by using [17,
Lemma, p. 241] in the sentence culminating in (5.29) depends on both C and on

(0, 1) and it is this C’ that we have used to obtain both (5.38) and (5.42). Since
m m(C’) depends on C’, it too depends on C and on (0, 1). Thus combining
(5.38) and (5.42) we can choose a constant M(C, ) depending on C = C, and
on (0, 1) such that (5.21) holds for all C C.. This completes the proof of
Lemma 5.7.
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The proofs and conclusions of Lemmas 5.5-5.7 hold equally well if the m > 0 is
arbitrary and independent of the C’c O(C). We need this fact in 9.

The next two lemmas concern elements of Yf, p .-> 1.
LEMMA 5.8. Let V 27f’, p >-_ 1. Then {exp (-2zr(y, t)) Vt" y 6 ", [y[ -< Q} is a

strongly bounded set in ’ where Q > 0 is arbitrary but fixed.
Proof. We first note that V implies (e-2"(Y’t>Vt) Yf’ for any y [" because

e -z=(y’t> is a multiplier in Yfp, p _-> 1, as a function of 6 ’. Applying Theorem 4.1 we
have Vt D’ (exp (k It[P)f(t)) for some n-tuple a of nonnegative integers, some integer
k _-> 0, and some bounded continuous function f(t) on [". Let be an arbitrary bounded
set in Yfp and let & . We have by the generalized Leibnitz rule that

(e-2Y’tVt, qb(t)) (V (ekltlPf(t)), e-2Y’t&(t))

(5.43) (-1)ll ln ekltlPf(t) E
0+=/3 t3,t

y e ((t)) dt

where

(-1)11 o+=/3 !3"
YIy(3’)

(5.44) Iy(3") In-eltlf(t) e-Z’(Y">DVt((t)) dt.

We first prove our result for p 1. For y e R" such that lyl -< O, O>0 being
arbitrary but fixed, we have

(5.45)
M Cn[- e -1’1 e (z+z=)l’l [D?((t))[ dt

where M>0 is a bound on the bounded continuous function f(t). Choose r=>

max (11, 2k + 2zrO) and recall that 3’ satisfies I1--< I1 since 3" +/3 a in (5.43).
Continuing (5.45) we obtain

(5.46) II(,)]<-MIn. e-"l e’"’lD, ((t))l dt<=Mlll[l fn.e -’’’ dt

since q c__ Y{1. But being a bounded set in Y{1 implies the existence of a constant Wr
such that 111 11 --< for all . Thus from (5.46) we have for each %/3 + 3" a, that

(5.47) II(r)l <- MW, fn" e-kltl dt M’r

for all , and the constant M’r > 0 in (5.47) is independent of cp. Thus for p 1
and y [n such that lyl--< O, we have from (5.43) and (5.47) that

with the bound being independent of q. Hence
Y ", lY] -< O} is a bounded set in the complex plane. Since q is an arbitrary bounded
set in Yf, this proves that {e-Zw(Y’t)gt y n, lY] <- O} is a strongly bounded set in Yf’ as
desired.
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We now prove the lemma for the case that p > 1. Let 1/p+ 1/q 1 and let
m (q-l(kp)-(q/P)) for the fixed integer k -> 0 in the representation of V Y[. Let y n
such that ]y[ <_-Q and let b . From (5.44) with p > 1 we have

(5.48)
II(v)[-<_ MIn. (e-kl’lOe-Z"<Y’t>)(e(2k+l)l’lPlD(d(t))[)e

since

-ItlP dt

-kltlp -2,rr(y,t) < ml2"rryl 1 1
e e =e -+-= 1,

P q
m (q-(kp)-(q/P)),

by a technique in Sampson and Zieleny [10]. Choose r -> max (la l, 2k + 1) and recall
that ]y] =< in (5.43) since/3 +,/= a there. Continuing (5.48) we get

(5.49)
IIY(Y)l<-Me"(2")" IR. (ert’tlDV’ (Ob(t))l) e-I’l" dt

-Itl dt.

Applying the fact that b , a bounded set in ff{,, we have the existence of a constant Wr
such that for all b . Using this fact, (5.49), and (5.43) we continue now
exactly as in the case p 1 and obtain that {e-2"<Y">V,: y [n, lyl <- Q} is a strongly
bounded set in ff{’ for p > 1 where Q > 0 is arbitrary but fixed. The proof is complete.

LEMMA 5.9. Let V Y{’, p >- 1. Then

(5.50) lira e-2Zr(y’t)Vt-- Vt
y0

in the strong (and weak) topology of
Proof. Let b be an arbitrary element of Y{’o. Noting the first two sentences of the

proof of Lemma 5.8 and using the generalized Leibnitz rule, we have by a calculation as
in (5.43) that

(5.51) (V,(e G(t, ,)

where

(5.52)

Since

) e -2’<y’t> -Dt(1))DVt(qb(t)) dt.

(.) I1
-2,<y.,> I e-2’<Y"> I, /3 (0, 0, 0),

yO e -D (1)
(.)ylItl a e_2,<y,0, /3 (0, 0,. 0),

then no matter what the n-tuples of nonnegative integers B and , are,/ + ,/= , we
have

(5.53) limy=.o ekltlf(t)((i)ltlye-2"<Y’t> -DO(l)) D(qb(t))=O
y([n
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pointwise for almost all R ’. Since we desire a convergence result as y O, y [n, in
this lemma, it suffices to consider y n such that lYl--< Q for some fixed Q > O. For such
y we have for each/ and 3", fl + 3’ a, and all " that

ell(t) yOe-(,,_DO(i) D((t))
(5.54)

Mel’O[DT((t))[(O e’l+ 1)

where M>0 is the bound on/(t); and the right side of (5.54) is an L function on ",
since ff{, which is independent of y such that lY O. Because of this and (5.53)
it follows from the Lebesgue dominated convergence theorem that the integral Iy (,
of (5.52) satisfies Iy(, T)0 as y 0, y ", for each and T, + T a. By this and
(5.51) we get the convergence (5.50) in the weak topology of ff[ since is an arbitrary
element of . But by Lemma 3.1, ff[o is a Montel space. Hence by Edwards [4,
Corollary 8.4.9, p. 510] we have the convergence (5.50) in the strong topology of ff{ as
well. The proof is complete.

6. The analytic functions. In this section we define the analytic functions with
which we are concerned in this paper. In each of the definitions which follow C is an
open cone in " and C’ is an arbitrary compact subcone of C. Also p 1 and A 0 are
real numbers.

We first recall the functions Ho(A; C) of Vladimirov [17, p. 238]. A function
belongs to the class Ho(A; C) if it is analytic in the tubular cone Tc + iC C" and
satisfies

(6.1) [(z)]K(C’)(l+lz)(l+y-)e211, z=x+iyrC’="+iC’,

where C’ is an arbitrary compact subcone of C, K(C’) is a constant depending on C’,
and N and M are nonnegative real. numbers which do not depend on C’. Further we
define

(6.2) H(A + e; C) Ho(A’ C), Ho(C) H(0; C).
A’>A

The 2 in the exponential term in (6.1) simply reflects the way we have defined the
Fourier transform in this paper and putting it there does not alter the Ho(A; C)
functions of Vladimirov [17, p. 238].

Let m>0. Throughout the rest of this paper T(C’; m) will denote the set
T(C’; m)=+ i(C’k(C’ N(O, m))) where N(0, m) is a closed ball in " of radius
m > 0 and with center at the origin.

We shall say that a function f(z) belongs to the class G(A; C) if for each compact
subcone C’ of C there exists a fixed m m(C’)>0 depending on C’ such that f(z) is
analytic in T(C’; m) and satisfies

(6.3) ](z)]K(C’,m)(l+z)Ne1, z=x+iyr(C’;m),

where K(C’, m) is a constant depending on C’ and on m and N is a nonnegative real
number which does not depend on C’ or on m.

We shall say that a function f(z) belongs to the class Fo(A; C) if, for each compact
subcone C’ of C, f(z) is analytic in Tc’= + iC’ and satisfies

(6.4) [(z)K(C’,m)(l+z)e2Alyl, z=x+iy T(C", m),

where m > 0 is arbitrary and independent of any quantity or object, K(C’, m) is a
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constant depending on C’ and on m, and N is a nonnegative real number which does not
depend on C’ or on m.

The three spaces of analytic functions in tubular cones which we have defined in
this section are related as follows:

Hp(A;C)CFp(A;C)cGp(A;C), p>-l, A>-O.

In the remainder of this paper we shall analyze these spaces of analytic functions.
In general we have been motivated in our research to consider analytic functions in

tubular cones which satisfy growth conditions like (6.3) and (6.4), in which Im (z) is in
some sense bounded away from the origin in the cone, by the researches in I dimension
of Beltrami and Wohlers [1], Lauwerier [9], and Swartz [15]. In the present paper the
spaces Fp(A; C) and Gp(A; C) are particularly motivated by properties of the Fourier-
Laplace transform of elements in 0’{,, p => 1, as we shall see in 7-9, and by the
Hp(A; C) functions of Vladimirov. The representation of analytic functions in tubular
cones by the Fourier-Laplace transform of generalized functions is of fundamental
importance in problems of quantum field theory.

7. The simees G(A; C). Throughout this section C will be an open connected
cone. For such cones, elements of Gp(A; C) satisfy properties as given in the following
theorem.

THEOREM 7.1. For the open connected cone C let f(z) Gp(A; C). For any compact
subcone C’ c C let m m (C’) > 0 denote the fixed real number depending on C’ from the

definition of G(A; C). There exists a unique element V D(g(t)) Y{’, where a is an
n-tuple of nonnegative integers and g(t) is a continuous function of ", such that for
p >- 1 and A >-0

(7.1) f(z)= z"[e-2=<Y">g(t); x], z x + iy T(C’; m),

with the Fourier transform being in the L2 sense. If p >-1 and A 0 or if p > 1 and
A > 0, (7.1) becomes

(7.2) f(z) (V, e2=i<">), z T(C’; m).

For p >- 1 and A >-0 we have

(7.3) f(z) --[e-2=(Y">V], z =x +iy6 T(C’; m),

with the equality (7.3) homing in K’, for each r >- 1 and

(7.4) {f(z): y Im (z) (C’\(C’ fqN(O, m))), lyl<-Q,,} is a strongly bounded set in
K’, for each r >- 1 where Q,, > m > O.

Further, for p >- 1 and A >- O, g(t) satisfies

(7.5) Ig(t)l<=g(f’,m)exp[27r(Aly[+[yl[tl)],

where C’ C is arbitrary, the inequality (7.5) is independent of y (C’\(C’ fq N(0, m))),
and the constantK C’, m) depends on C’ Cand on m. Ifp >- 1 andA 0 or ifp 1 and
A >=O, then supp(g)=supp(V)_{t: Uc(t)<-A}; while ifp> 1 andA>O, then forany
compact subcone C’, C, Rn\C*, g(t) satisfies

(7.6) Ig(t)l<-M(C’,, q) exp [-27rB(1-qn)(Uc(t))o], C’, C,,
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where q (0, 1) is arbitrary, 1/p + 1/q 1,

(7.7) B
1 (pp)q/q

andM(C’., r/) is a constant depending on C, c C. and on 7.
Prool. Throughout this proof C’ represents an arbitrary compact subcone of C and

rn m(C’) > 0 is the dependent number from the definition of Go(A; C) corresponding
to [(z). Let p => 1 and A => 0 for the moment. Let e > 0 be fixed. For [(z) Go (A; C) we
choose an n-tuple a (c1,. ", cn) of nonnegative integers such that

(7.8) Iz-f(z)l<-g’(f’,m)(l+lzl)-"-e2=all", z=x+iy T(C", m),

for some constant K’(C’, m) where n is the dimension of Cn. We emphasize that a is
independent of C’ and of m since the choice of c depends only on N in (6.3) which is
independent of C’ c C and of m. We put

(7.9) g(t) In, z-f(z) e-2i<z"> dx, z=x +iy6 T(C’; m),

which is a continuous function of R ". By an application of the Cauchy-Poincar6
theorem [17, p. 198] as in the proof of [3, Thm. 1, p. 846] we have that g(t) is
independent of y Im (z) (C’\(C’ f)N(O, m))) because of (7.8). From (7.8) and (7.9)
we get for all R" that

(7.10)

]g(t)[ <-K’(C’, m) e2=alyl e

<-K(C’, m) exp [27r((y, t)+AlYl)]
where K(C’, m) is a constant, and (7.10) holds independently of y
(C’\(C’ fqN(O, m)))since g(t)is independent of such y Im (z). The desired conclusion
(7.5) follows immediately from (7.10) for p >= 1 and A -> 0.

Now let A > 0 and p > 1. Since g(t) is a continuous function of R" and satisfies
(7.10) for [" where C’ is an arbitrary compact subcone of C

_
O(C) and (7.10) holds

independently of y (C’\(C’ f-)N(O, m))) then by the proof of Lemma 5.7, g(t) satisfies
(7.6) for B being given by (7.7).

We now obtain (7.1). Because of (7.8) we have (z-f(z))L f-lL2 as a function of
x Re (z) for arbitrary but fixed y (C’\(C’ fqN(O, m))). Thus we can write (7.9) as

(7.11) e-2(Y"g(t)=-l[z-’f(z);t], z=x+iyT(C’;m),

with this inverse Fourier transform being in the L1 or L2 sense. Using the Plancherel
theory for Fourier transforms we have (e-2"<Y’t>g(t)) L2 and

(7.12) z-f(z) [e-Z’<Y">g(t); x], z x + iy T(C’; m),

where this Fourier transform is in the L2 sense. Equation (7.1) follows immediately
from (7.12).

Because of the growth (7.5), the fact that g(t) is a continuous function of n, and
Theorem 4.1 for p 1 we have g(t) 77{’. Hence

(7.13) V D7 (g(t)) {’1.

Since { Y{"r, r -> 1, we also conclude that V Y{"r for each r -> 1. (It is in fact easy to
prove directly that any continuous function g(t) in which satisfies a growth condition
like (7.10) or (7.5) is a continuous linear functional on Y{ for any r _>- 1; hence g(t)



1056 RICHARD D. CARMICHAEL,

from which it follows that V DT(g(t))-%"r, r--> 1. This comment applies in all the
proofs of our theorems in 7, 8, and 9 and will not be repeated.)

Now let p _-> 1 and A 0 or let p 1 and A -> 0. Using exactly the same proof as in
I-3, last paragraph on p. 846 through the top of p. 847], which works in our present
setting, the inequality (7.8) and the definition (7.9) of g(t) yield supp (g)

_
{t" Uc(t) <- A}

for either of the cases p => 1 and A 0 or p 1 and A => 0. In particular when A 0 we
have supp (g)

_
C*. Since {t" uc(t) <=A} is a regular set [11, pp. 98-99] then supp (V)

supp (g), and we have obtained another of our conclusions.
We now prove (7.2). Let p => 1 and A 0 or p > 1 and A >0. The function g(t)

satisfies (7.10) for R when p => 1 and A -> 0. Further g(t) satisfies (7.6) when p > 1
and A>0. Thus when p>l and A>0, g(t) satisfies (5.20) and (5.21), and we
conclude by the proof of Lemma 5.5 that (e-2"r(Y’t>g(t))L r, l<_-r<c, for y
(C’\(C’ f’IN(O, m))). Also recall that if p -> 1 and A =0 we have proved supp (g)_ C*.
So if p ->_ 1 and A 0, g(t) satisfies the hypothesis of Lemma 5.6, and in this case also we
have (e-2"(Y’g(t))Lr, 1 <_-r < c, for y (C’\(C’ f’qN(O, m))). So for either of the cases
p >_- 1 and A 0 or p > 1 and A > 0 the Fourier transform in (7.12) (i.e. in (7.1)) can be
considered to be the L transform as well as the L2 transform. We now form
(V, e 2"(z’). As will be seen in the proof of Theorem 7.2, this is a well-defined analytic
function of z T(C’; m) because of our concluded results on g(t) for either of the cases
p _>- 1 and A 0 or p > 1 and A > 0. Using distributional differentiation we have

(V, e 2i(z’t>) (-1)l’l(g(t), D(e2i(z’t>))
(7.14)

z’ JR. g(t) e 2zri(z’t) dt z’[e-2(Y’t>g(t); x]

for z T(C’; m), and the Fourier transform is in either the L or L2 sense because
(e-2r(Y’t>g(t)) Lr, 1 -< r <, as we have seen. Thus for p -> 1 and A 0 or p > 1 and
A > 0, (7.1) and (7.14) combine to prove (7.2).

It remains to prove (7.3) and (7.4) for p_-> 1 and A =>0. Recall that we have
concluded V 6 Yr’r for each r => 1. For any such r let 4,(x)6Kr. Let (t) Y{r be that
element such that ,(x)= [b(t); x] (Theorem 3.1). Then 4,(x)= [4(t) -x ], (t)=
b(-t), and (t)= -114,(x);-t] so that

(7.15) e-2r(Y’t)t(t)-- I,, l(X) e 2zri(z’t) dx

for y arbitrary but fixed in (C’\(C’ fqN(O, m))). We have (e-2(y’t>qb(t))?{r for any
4 if{r; hence V {’r implies (e-2<y’t>Vt)?7{’r. Further, f(x + iy)sK’r as a function of
x s Rn for y (C’\(C’ fqN(O, m))) because of the growth condition (6.3). So for y
Im(z) (C’\(C’ f)N(O, m))) we use (7.1) and obtain

2"n’(y t)(7.16) ([(z), 4,(x))= z 4,(x)[e- g(t); x] dx

with the Fourier transform being in the La sense. Recalling our analysis immediately
preceding (7.12) we remember that (e-<r">g(t))L, y (C’\(C’ N(O, m))), for
p -> 1 and A -> 0; and since 4’ Kr then (z’4,(x)) L f-) L as a function of x Re (z).
Thus a familiar property of the L2 Fourier transform yields

(7.17) I.z’O(x)o[e-2<Y’t>g(t);x]dx I.e-2<">g(t)[z4,(x); t]dt

and the Fourier transform on the right of the equality in (7.17) is an L transform as well
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as an L2 transform since (zS$(x))L ("IL2. Combining (7.16) and (7.17) we have

(f(z), (x))=In.e-2=<y’t>g(t) Ia.z’(x) e2=i<"’t> dx dt

(7.18) In-g(t)In. zS(x)e2"i<z’t>dx dt

=(-1)’s’ I,g(t)(DT In.(x) e2"iz" dx) dt

where the differentiation under the integral sign is valid. Now using (7.15), the fact that
(e-Z(Y’t>gt).9’{rr, and (4.2), we continue (7.18) and obtain

(f(z), 4(x)) (- 1) I1 In- g(t)D7 (e-Z=">c(t)) dt

(V,
(7.19) (e-’Y">V, b(t))

([e-Z’Y"> V,], 6(x)).

Here is an arbitrary element of Kr and our calculations (7.15)-(7.19) hold for

y Im (z) (C’\(C’ fIN(O, m))). Thus (7.19) proves (7.3) for each r _-> 1.
To prove (7.4) we note that by the proof of Lemma 5.8, {e-Z’<Y’t>gt y_

(C’\(C’ fqN(O, m))), ly[-<_ O,,}, O,,, > m >0, is a strongly bounded st in Yg"r for each
r-> 1 since V Yd’ for such r. But the Fourier transform is a strongly continuous
mapping from Yd’r onto K’. Using (7.3) we thus obtain

{/(z)" y Im (z)(C’\(C’ fIN(O, m))),

([e-2"<Y">V,]: y 6 (C’\(C’ (qN(O, m))), ly[_-< O,.}
is a strongly bounded set in K’, this proves (7.4). The proof of Theorem 7.1 is complete.

We emphasize again that the constructed V=DT(g(t))?7{’x of Theorem 7.1 is
independent of the compact subcones C’ = C because the choice of the n-tuple a for
which (7.8) holds depends only on the numberN of (6.3) which is independent of C’ = C
and of m m (C’) > 0.

We now obtain converse results to Theorem 7.1. Notice that in its most general
sense, inequality (7.5) states that the function g(t) grows no faster than a constant times
exp [kltl] for ", where k > 0 is a constant. This is the reason for the assumed growth
(7.21) below. Our first converse result will be for p > 1 and A>0. Recall that O(C)
denotes the convex envelope of a cone C and that pc characterizes the convexity of C.

THEOREM 7.2. Letp > 1 andA > O. Let Cbe an open connected cone in . Let Vbe
a finite sum
(7.20) V=EDT(gs(t))

where the gs(t) are continuous [unctions of t" such that [or each n-tuple a of
nonnegative integers gs(t) satisfies
(7.21) [gs(t)[ <=Ks e ’ltl

for some constant Ks and some ks >= 0 depending on a. Further assume that each gs(t)
satisfies
(7.22) [g(t)l <=M(C’,, n) exp [-2rB(1 -qn)(Uc(t))"], C’, C,,
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where C’, is an arbitrary compact subcone of C, ["\C*, r/ (0, 1) is arbitrary, 1/p +
1/q 1, B >0 is given by (7.7), andMa(C’,, l) is a constantdependingona, C’., and
Then V Y{’. Further the function f(z) (V, e 2=i(z’t>) and any derivative of it belong to
Gp(AEp; O(C)) for some constant E, and (7.3) and (7.4) hold for z T(C’; m),
C’ c O(C), m m(C’) > O.

Proof. Each ga(t) Y{’I because of (7.21), the continuity of ga(t), and Theorem 4.1.
Thus V Y/’

_
Y/"r, r >- 1, as desired.

We now consider

(7.23) f(z) (V, e2"i(z’’>) Ea za In" ga(t) e z’i(z’t) dt.

(Here we have formally differentiated distributionally. By our succeeding analysis this
calculation is valid for certain z and we specify these z below.) We shall prove the
existence and analyticity of f(z) for certain z. To do so it suffices to consider the function

(7.24) ha(z) In. ga(t) e z=i(z’t> at

for each a in the sum in (7.23). Let C’ be an arbitrary compact subcone of O(C). By 17,
Lemma 2, p. 223] there exists a real number 6 6(C’) > 0 and an open cone (C*)’, both
depending on C’, such that C* (C*)’ and

(7.25) (y, t)_->,lYl Itl, y c’ c O(C), (c*)’.

is a cone, C tA (C*)’= n andFor this cone (C*)’, we put C \(C*)’. Then C,
C.’ f3 (C*)’ . Further, we have that C.’ is a compact subcone of C, n\C* since
C* c (C*)’. We also now choose the real number ma ma(C’) > 0 depending on aand
on C’ to be

(7.26) ma (ka/(2zr6))+ 1

where ka __-> 0 is from (7.21). If y C’ and [y]> ma then by (7.26) we have

(7.27) ka 2zrSly < -2zr6 < O.

We are now ready to cnsider ha(z) for each a. Because of the properties of the
cones (C*)’ and C obtained above we can rewrite ha(z) in (7.24) as

(7.28) ha(z) I(c.), ga(t) e 2"n’i(z.t) dt+ | ga(t) e 2,<z,t> dt I (z) + I’ (z).

For the chosen m, >0 in (7.26) let z0 be an arbitrary but fixed point in T(C’; ma)
+i(C’\(C’ f’)N(O, ma))). (For purposes of the proof of Theorem 7.2, we assume
without loss of generality that the arbitrary compact subcone C’ O(C) is in fact open;
any compact subcone of O(C) is contained in some open compact subcone of O(C).)
Choose an open neighborhood N’(zo, r) of z0 with radius r>0 whose closure
is contained in T(C’; ma). Let z N’(zo, r) and let 3’ be an arbitrary n-tuple of
nonnegative integers. Corresponding to I’ (z) in (7.28) and the ma in (7.26), we apply
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(7.29)

g Ic.), Itl exp [(ks -2rly [)[tl] dt

g f Itl e -:1’1 dt
C*)’

I0 slVl/"-I e-Es ds KsZ,,(IVl + n 1)!(2zr) -Il-n.<- KsZ,

Here we have used [12, Thm. 32, p. 39] and integration by parts (13’1 + n 1) times in the
last two steps in (7.29), where Z,, is the area of the unit sphere in [n. Inequality (7.29)
proves that the integral on the left there converges absolutely and uniformly for
z N’(zo, r) and for any 3’. Thus the differentiation Dzv can be taken under the integral
sign in I’ (z) for z N’(z0, r) with the resulting integral converging absolutely and
uniformly. We conclude that the integral I (z) in (7.28) and any derivative of it exists
for z N’(zo, r) and for any n-tuple y of nonnegative integers which proves that I’ (z) is
analytic at z0.

Recall that C R’\(C*) constructed above is a compact subcone of C,. Using
the assumption (7.22) and Lemma 5.3 we conclude that the integral defining I (z) in
(7.28) and any derivative DVz(I’(z)) of it converges absolutely and uniformly for
z N’(zo, r). Thus Dz(I(z)) exists for any n-tuple 3’ of nonnegative integers with
z N’(zo, r), and I (z) is analytic at z0. We can now conclude that hs(z) given in (7.24)
is analytic at Zo since both I’ (z) and I (z) of (7.28) are. Since z0 is an arbitrary point in
T(C’; ms) then hs(z) is analytic in T(C’; ms). For each of the finite number of n-tuples
a in the sum (7.20) there is an ms given by (7.26). We now put

(7.30) m max {m,,}.

It follows that for each c the corresponding integral hs(z) in (7.24) is analytic in
T(C’; m) for the m chosen in (7.30). Hence the sum on the right of (7.23) is analytic in
T(C’; m). For z T(C’; m) the use of the distributional derivative in (7.23) is justified,
and we conclude that f(z)=(V, e 2ri(z’t)) is analytic in T(C’; m), C’c O(C), for the
fixed m > 0 chosen in (7.30). It follows that any derivative of f(z) is also analytic in
T(C’;m).

For any compact subcone C’c O(C) and the corresponding rn >0 chosen in
(7.30), we now show that f(z) satisfies the desired growth. By (7.22) and Lemma 5.4
with y=(0,..., 0) in (5.19), we have for each a in (7.20) and the corresponding
integral I (z) in (7.28) that

(7.31) [I(z)[<-M’(C’,,q)exp[27rAEpc[y]], z=x+iyTc’, C’O(C),

where M’ (C r/) is a constant and

(7.32) E ( 2qr/

Here " (C,)> 0 is fixed corresponding to the fixed C’., I/p+ 1/q 1, and r/ (0, 1)
is fixed from Lemma 5.4 such that (o_ 2qr/)> 0.

For any of the a in (7.20) we now consider the integral I(z) of (7.28) for
z T(C’; m) where m > 0 is given in (7.30). Since m _-> ms for each ms chosen in (7.26)
then (7.27) holds if ly[ > m, y C’. Thus by the analysis of (7.29) with 3’ (0,. , 0)
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there we have

(7.33) II’;(z)]<=KZ,(n-1)!(2zrS)-"=O(C’)<oo, zT(C’;m),

where the constant O(C’) depends on a and on the compact subcone C’ c O(C) since
6 6(C’) depends on C’. Combining (7.28), (7.31), and (7.33) we get for each c in
(7.20) and for z x + iy T(C’; m) that

(7.34)
Ih,(z)l [I (z)[ + II (z)[ Q(C’)/M’ (C’,, "o) exp [2AEpOcly[]

<- (Q,,(C’) +M’ (C’., r/))exp [2zrAEply[ o]

for E being given in (7.32). Recall that the choice of (C*)’ in (7.25) depended on C’ so
that C Rn\(C*) also depends on C’. Further r/ (0, 1) has been fixed in (7.31) such
that (q-2qr/)>0. Combining (7.23), (7.24), and (7.34) we see that f(z) satisfies the
growth (6.3) for z T(C’; m), where m>0 was chosen in (7.30), with A in the
exponential term in (6.3) being replaced by (AEpc). We conclude that f(z)6
G,(AEp; O(C)) as desired.

Again let C’ be an arbitrary compact subcone of O(C) and let m m(C’)> 0 be
chosen as in (7.30). Let 3’ be any n-tuple of nonnegative integers. Using (7.23), (7.24),
(7.28), and the generalized Leibnitz rule, we have

(7.35) Dz(f(z))=, Y’. 3"! Dz(Z)[D"z(I?(z))+D"z(I(z))], z T(C’; m),

where/3 and/x are n-tuples of nonnegative integers. By our analysis above and our
definition of the differential operator Dz" in 2 we have

(7.36) D"z (I (z)) (-1)I"11(c., t"g,,(t) e2"(z’t> dt, z T(C’; m),

and by the proof of Lemma 5.3

(7.37) D(I (z)) (-1)I"1 f t"g(t) e )’i(z’’> dt, z T(C’; m),
Jc

Dz (I1 (z)) Z T(C’ m),for each a in (7.20) By (7.27) and the analysis of (7.29), "
given by (7.36) is bounded by a constant depending only on a,/x, and C’ O(C) and not
depending on z T(C’; m). Further, by the proof of Lemma 5.4, Dz(I2(z)),ze"
T(C’; m), given by (7.37) satisfies the growth (5.19) for any/x. It is important to note
that the constant term on the right of (5.19) depends only on C and on the now fixed
r/ (0, 1) such that (:q-2qr/)> 0 and not on z; and in our present situation C,
Nn\(C*)’ in I (z) depends on C’ O(C) since (C*)’ does. Using these facts along with
(7.35), (7.36), and (7.37), we see that DVz(f(z)), z T(C’; m), satisfies the growth (6.3)
with the exponential term being exp [27rAEoc[y] p] for any n-tuple 3" of nonnegative
integers where E is given by (7.32). Thus for any % Dz(f(z))e Gp(AEpc; O(C)) as we
desired to show since we had previously concluded that any derivative of f(z) is analytic
in T(C’; m), C’ being an arbitrary compact subcone of O(C), m m(C’)>0 being
chosen as in (7.30).

It remains to prove the desired conclusions (7.3) and (7.4) in the present theorem.
Let O e Kr, r => 1, and recall that V e Y/"r for each r-> 1. For an arbitrary compact
subcone C’ c O(C) and the corresponding m m(C’) > 0 we use (7.23) and a change of
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order of integration, which is valid here, to obtain

(f(z)’ O(x)) Y" zO(x) f. g,(t) e2i<’t> dt dx

(7.38) " g(t) I. z’(x) e2iz" dx dt

(- 1)1=1fa= g’(t)(DTfn, 6(x)e2=gz">dx) dt

for z x + iy T(C’; m). Now constructing the function 4;(0 -x[f(x); -t] Yfr such
that (7.15) holds as in the proof of Theorem 7.1 and arguing as in (7.19), we see that the
conclusion (7.3), namely

(7.39) f(z) ,.[e-2W(y’t)Vt], Z X + iy T(C’; m), C’ O(C),

with this equality holding in K’r for any r _>- 1, follows from (7.38) for the V in (7.20).
Now that we have (7.39) the conclusion (7.4) in the present theorem follows from (7.39)
exactly as (7.4) followed from (7.3) in the proof of Theorem 7.1. This completes the
proof of Theorem 7.2.

By combining Theorems 7.1 and 7.2 we obtain the following interesting corollary.
COROLLARY 7.1. Let C be an open connected cone and let p > 1 and A > O. If

f(z)6 Go(A; C) then f(z) and any derivative of it can be extended to be an element of
Gp(AEpPc; O(C)) for some constant E >0.

Proof. By the proof of Theorem 7.1 there exists V=DT(g(t))Y{’ for which
(7.2) holds, where g(t) is continuous over " and satisfies (7.5) and (7.6). The proof
of Theorem 7.2 now yields Dz((V, e2=<z">)) Go(AEpc; O(C)) for any n-tuple 3’
of nonnegative integers. Hence for any compact subcone C’ O(C) there exists
an rn m(C’)>0 such that (V, e 2"i<z’t>) is analytic in T(C’; m). Thus using (7.2) to
extend f(z) to sets T(C’;m), C’O(C), m=m(C’), we have that Dz(f(z))6
G(AEpPc; O(C)) for any n-tuple y of nonnegative integers. The proof is complete.

Theorem 7.2 is a converse of Theorem 7.1 for p > 1 and A > 0. We now obtain a
converse of Theorem 7.1 corresponding to the conclusions of Theorem 7.1 obtained for
when p _-> 1 and A 0.

THEOREM 7.3. Let C be an open connected cone. Let V be a finite sum, V
,DT(g(t)), where each g(t) is a continuous function in " which satisfies (7.21) and
has support in C* {t" Uc(t) _-<0}. Then V Yf’x, f(z) (V, e 2wi(z’t)) and any derivative of
it belong to Go(0; O(C)), p >= 1, and (7.3) and (7.4) hold for z T(C’; m), C’ O(C),
m=m(C’)>O.

Proof. V Yf
_

Yf’, r -> 1, as in the proof of Theorem 7.2. Since supp (g) C* for
each a, (7.23) becomes

(7.40) f(z) (V, e 2wi(z’t)) z f g,(t) e 2wi(z’t> dt.

Let C’ be an arbitrary compact subcone of O(C). Then the open cone (C*)’ obtained
from [17, Lemma 2, p. 223] for which (7.25) holds contains C* {t" Uc(t)<= 0}. Thus
using (7.25), (7.26), and (7.27), we argue exactly as in (7.29) to conclude that each of the
integrals on the right of (7.40) is analytic in T(C’; m) for the m m(C’) chosen in
(7.26). Then defining rn as in (7.30) we have from (7.40) that the sum on the right is
analytic in T(C’; m). Further for these z the distributional derivative calculation in
(7.40) is valid. We conclude that f(z)= (V, e 2wi(z’t)) is analytic in T(C’; m). Now using
analysis as in (7.29) with y (0,. , 0) there, we obtain a growth like (7.33) for each of
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the integrals on the right of (7.40) for z T(C’; m). From this and (7.40) we have that
f(z)=(V,e2i(z’t>) satisfies the growth of the space Gp(0; O(C)), p >-_ l, and f(z)
Gp(0; O(C)) as desired. Further, any derivative of the present f(z) also belongs to
Go(0; O(C)) by a similar argument as in the proof of Theorem 7.2. The results (7.3) and
(7.4) holding for zT(C’;m), C’cO(C), m=m(C’)>O, follow now by exactly
the same arguments as in the proof of Theorem 7.2. This completes the proof of
Theorem 7.3.

Theorem 7.3 is a generalization of [2, Thm. 2]. We note here that the boundary
value conclusion of [2, Thm. 2] is false; however, we can conclude results like (7.2) and
(7.3) in [2, Thin. 2]. The boundary value conclusion in [2, Thm. 2] is false because the
constructed m in the proof is fixed and not arbitrary; f(z) in [2, (19), p. 775] is defined
for z T(C’; m) for fixed m >0 and we can not let Im (z)0 as indicated there. As we
shall see in succeeding sections in this paper, the m in T(C’; m) must be arbitrary in
order to obtain boundary value results.

The following corollary results from Theorems 7.1 and 7.3 just as Corollary 7.1
followed from Theorems 7.1 and 7.2. The proof will be left to the reader.

COROLLARY 7.2. Let C be an open connected cone. Ill(z) Gp(0; C), p _-> 1, then
f(z) and any deriv.ative of it can be extended to be an element of Go(0; O(C)).

8. Distributional boundary values of the spaces F(A; C). In this section and the
next we show that elements of the spaces Fo(A; C) obtain distributional boundary
values in K, p ->_ 1. In the present section we study the spaces FI(A; C), A >-0, which
generalize the functions G defined in [2, p. 772]. (The growth (6.4) of elements in
FI(A C), A _>- 0, is known for Im (z) being arbitrarily bounded away from the origin in
compact subcones and the constant K(C’, m) in (6.4) depends on how Im (z) is
bounded away from the origin. This is more general than the growth [2, (12), p. 772].
Note also that the arbitrary r >0 in [2, (12), p. 772] is actually unnecessary for the
results obtained forG in [2].) We generalize the results [2, Thms. i and 3, Corollary 1]
for the spaces El(A; C), which are more appropriate spaces in which to obtain results of
this type, and obtain new information.

Our first theorem in this section generalizes and considerably strengthens [2, Thm.
1]; we show by the following result that the weak convergence in [2, Thm. 1] can be
replaced by strong convergence in fff’r, r -> 1, and that more information concerning the
analytic functions is obtainable.

THEOREM 8.1. Let C be an open connected cone. Let C’ be an arbitrary compact
subcone of C. Letf(z)Fx(A; C), A >-0. There exists a unique element V D(g(t))

’ with supp (V)
_

{t" uc(t) <- A} such that

(8.1) f(z) z[e-2"(Y’g(t); x], z x + iy Tc’,
with this Fourier transform being in the L2 sense,

(8.2) f(z) [e-2r(y’t)vt], Z X + iy Tc’,
with the equality (8.2) holding as an equality in K’r for each r >= 1,

(8.3) {/(z): y Im (z) C’, [y[ <- Q} is a strongly bounded set in K’r
for each r >- 1 where O > 0 is arbitrary but fixed,

and
(8.4) f(z) ..[ V] K’ in the strong (and weak) topology ofK’ for

each r >= 1 as y Im (z) O, y C’ C, with this boundary
value being obtained independently of how y 0 in C’ C.
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The function g(t) is a continuous function oft e" with supp (g)_ {t" Uc(t) <=A} which
satisfies
(8.5) [g(t)[<--M(C’,m)exp[ZTr((y,t)+a[yl)], t",

independently of y (C’\(C’ fqN(0, m))) for each C’ c C with m >0 being arbitrary
where M(C’, m) is a constant depending on C’ and on m.

Proof. Let C’ be an arbitrary compact subcone of C and let m > 0 be arbitrary.
f(z) FI(A; C) satisfies the growth (6.4) with p 1. As in the proof of Theorem 7.1 we
choose an n-tuple a of nonnegative integers such that

(8.6) [z-f(z)[<-_K’(C’,m)(l+[zl)-n-ezalyl, z=x+iy T(C", m),

for some constant K’(C’, m) with n being the dimension and e >0 fixed. Here a

depends only on N in (6.4) and hence is independent of C’c C and of the arbitrary
m > 0. We define

(8.7) g(t) f z-’f(z) e -2i(z’t) dx, ", z T(C’; m),

and V=DT(g(t)). By (8.6), (z-f(z))eLafqL as a function of x=Re(z) for y e
(C’\(C’ (3N(O, m))). Thus from (8.7) we have

(8.8) e-2"(Y’t>g(t) -[z-f(z); t], z x + iy T(C’; m),

with this inverse Fourier transform being in either the L or L sense, and we
have (e-’(Y’t>g(t))eL2 for ye(C’\(C’f’)N(O,m))) from Plancherel theory. We
can now proceed by exactly the same details as in the proof of Theorem 7.1 to obtain
that g(t) is a continuous function of t6[, g(t) is independent of y
(C’\(C’ f3 N(0, m))), C’ = C, m > 0 arbitrary, g(t) satisfies (8.5), V ?7{’, and
supp (V)=supp (g)_{t" Uc(t)<=A}. Notice also that V=DT’(g(t)) is independent of
C’c C and of m > 0 because both a and g(t) are. Further, from (8.8) and Plancherel
theory we have

(8.9) z-f(z) [e-2(Y’tg(t); x], z x + iy T(C’; m),

with this inverse Fourier transform being in either the L or L2 sense, and we
have (e-2"(Y’t>g(t))L2 for y(C’\(C’fqN(O,m))) from Plancherel theory. We
can now proceed by exactly the same details as in the proof of Theorem 7.1 to obtain
that g(t) is a continuous function of ter g(t) is independent of y,
(C’\(C’ ON(O, m))), C’ = C, m >0 arbitrary, g(t) satisfies (8.5), VY{’, and supp
(V) supp (g)

_
{t: Uc(t) <-A}. Notice also that V D7 (g(t)) is independent of C’ = C

and of m > 0 because both a and g(t) are. Further, from (8.8) and Plancherel theory we
have

Statement (8.4) remains to be proved. As in previous theorems we have V Y{ c_
Y{’r, r->_ 1. Using Lemma 5.9, the fact that the Fourier transform defined by (4.2) is a
strongly continuous mapping from Yf’r onto K’r, and (8.2) we obtain (8.4). The boundary
value [V]K’r is obtained independently of how y-0, y 6 C’c C, since V is
independent of such y. The proof of Theorem 8.1 is complete.

If A --0 in Theorem 8.1 we can conclude a further result as seen in the following
theorem which generalizes [2, Thm. 3].

THEOREM 8.2. Let C and C’ C be as in Theorem 8.1. Let f(z) FI(0; C). There
existsa unique element V6Y{ with supp (V)_ C* {t: uc(t)<-_O} suchthat (8.1), (8.2),
(8.3), and (8.4) hold and such that

(8.10) f(z) (V, eZ=i<z"), z e Tc’, C’ c C.
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Proof. The unique element V DT(g(t)) :7{’ with supp (V)_ C* such that (8.1),
(8.2), (8.3), and (8.4) hold is obtained from Theorem 8.1 with A 0 there, where g(t) is
defined in (8.7). By the proof of Theorem 8.1, supp(V)=supp(g)C* and g(t)
satisfies (8.5) independently of y Im (z) (C’\(C’ fqN(O, m))) for C’ c C, rn >0 arbi-
trary, and A 0. Thus by Lemma 5.6 and the fact that m > 0 is arbitrary, (e-Z’<Y">g(t))
Lr(Rn), 1-<_r<, for yC’cC; hence the Fourier transform in (8.1) can be inter-
preted in both the L and L2 sense here. With this fact, a computation as in (7.14), and
the conclusion (8.1) in our present theorem, we obtain (8.10) as desired. (With the
properties obtained for g(t) in this theorem, we shall prove in Theorem 8.4 that the
form (V, e z’i<z’’>) is a well-defined element of FI(0; O(C)). Thus there is no problem in
forming (V, e 2"i<z’t>), z Tc’, here.) The proof is complete.

The following interesting theorem is of independent interest since it gives a general
condition under which analytic functions in tubes obtain boundary values in K’r,r->l.
Let Q > 0 be fixed. Let rn > 0 be arbitrary such that 0 < m < Q. Let C be an open
connected cone and let C’ be an arbitrary compact subcone of C. Put

T(Q; C’; rn)= T(C’; m)fq{z TC" llm(z)l< Q}.

THEOREM 8.3. Let C, C’c C, Q, m, and T(Q; C’; m) be as in the preceding
paragraph. For each C’ c C let f(z) be analytic in TC’f){z IIm (z)[< Q} and satisfy

(8.11) If(z)l<-K(C’, m)(1 +lzl) z e T(O; C’; rn),

where rn > 0 is arbitrary, K C’, m) is a constant depending on C’ Cand on m, andNis
a nonnegative real number which is independent ofC’ Cand ofthe m > O. There exists a
unique element V :K’I such that f(z)-> [V] K’ in the strong topology ofK’ for each
r >- 1 as y Im (z) --> O, y C’ C, with the boundary value being obtained independently
of how y --> 0 in C’ C.

The proof of this theorem is obtained by using essentially the proof of Theorem 8.1
and will be omitted.

We now obtain a converse to Theorem 8.2 which generalizes [2, Corollary 1].
Recall in Theorem 8.2 that the constructed V Y{’ has the form V D’ (g(t)) where
g(t) is continuous in Rn, has supp (g) C*, and satisfies (8.5) for A 0 independently of
y (C’\(C’N(O, m))) for each C’ C with m >0 arbitrary. This accounts for our
assumption on V in the following theorem.

THEOREM 8.4. Let C be an open connected cone. Let V be a finite sum
V=DT(g(t)), where each g(t) is a continuous/’unction on ff" with support in
C*= {t: Uc(t) <-0}. For each compact subcone C’ O(C) let each g(t) satisfy

(8.12) [g,(t)l<M(C’,m)e2a’t t

independently oi" Iq6 (C’\(C’CIN(O, m))) for m>0 arbitrary where M(C’, rn) is a
constant depending on C’ O(C) and on rn>0 for each a. Then V eY{’ with
supp (V) C*. Further the function f(z) (V, e2"i’’) and any derivative of it belong to
F(0; O(C)) and (8.2), (8.3), and (8.4) hold for C’ O(C).

Proof. The conclusions V e t{
_

.%", r >= 1, and supp (V) C* follow from the
assumptions on the g (t) by similar arguments as we have used before. Now as in (7.40)
we formally write

(8.13) f(z) (V, e 2"<z’t>) z Ic. g(t) e 2"i<z’’> dt

where each integral is taken over C* since supp (g) C* for each a. Let C’ be an
arbitrary compact subcone of O(C), and as in the proof of Theorem 7.2 we can assume
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C’ is open. Let z0 be an arbitrary but fixed point in Tc’= R + iC’. Let N’(zo, r) be an
open neighborhood of z0 with radius r > 0 whose closure is in Tc’. Let z N’(zo, r).
There exists a fixed Q > 0 such that lyl IIm (z)l > Q for all z N’(zo, r). Recalling that
(8.12) holds for m >0 arbitrary and independently of fie (C’\(C’ N(O, m))) we now
choose m Q/2 and ll y/2 for z x + iy N’(zo, r). Then I 1---[yl/2 > 0/2 m,
and D,=y/2C’ since C’ is a cone and y=Im(z)C’. Thus ll=y/2
(C’\(C’ fIN(O, Q/2))) for any z x + iy N’(zo, r) and (8.12) holds for this m Q/2
and I y/2. Let y be an arbitrary n-tuple of nonnegative integers. With z N’(zo, r)
and the choice l-I Im (z)/2 as above we apply (8.12) and (7.25) (i.e. [17, Lemma 2, p.
223]) to obtain a real number 6 6(C’)> 0 such that

2i(z’t> dt] <=M(C’’ Q/2) Ic.
<=M,(C’, Q/2) Ic, I/l e -<y,t> dt

(8.14) <=M,(C’, 0/2) fc. Itl e-=Sltl dt

<= M(C’, Q/2)Zn Io s I/l+n-1 e-rSOs ds

M(C’, Q/2)Zn([3"l + n 1)] (zrSQ)-Ivl-n

where Z, is the area of the unit sphere in [". (Here we have used [12, p. 39, Thm. 32]
and integrated by parts (1 1 + n 1) times as in (7.29). We have also used the fact that for
z x + iy N’(zo, r), [yl> Q for our above chosen Q. Thus in (7.25) we have (y, t) ->
ly[ Itl > ,Qltl for any z N’(zo, r) and s C* since C* c (C*)’ in (7.25).) Inequality
(8.14) proves that we can differentiate under the integral sign with respect to z for any of
the integrals on the right of (8.13) and for any differential operator Dz, z . N’(zo, r);
and the resulting integral converges absolutely and uniformly for z N’(zo, r). Thus
each of the integrals on the right of (8.13) is analytic at Zo Tc’. Since z0 was arbitrary in
Tc’ we conclude that the sum on the right of (8.13) is analytic in Tc’, the calculation in
(8.13) is valid for z Tc’, and f(z) (V, e 2’i<z’t)) is analytic for z Tc’ where C’ is an
arbitrary compact subcone of O(C).

We now show that f(z) satisfies the growth (6.4) for A 0. Let m > 0 be arbitrary.
and let C’ O(C) be arbitrary. Let z x + iy T(C’; m). Choose II y/2, y Im (z),
in (8.12). Applying (8.12) with fl= y/2(C’\(C’ N(O, m/2))) and using (7.25) we
have for each a and z x + iy s T(C’; m) that

(8.15) I.Ic, g(t) e 2i<z’t> dt[ <-M,,(C’, m/2)Z,(n 1)!(zr6m)-"

by analysis as in (8.14) where Z, is the area of the unit sphere in [". From the sentence
containing (7.25) we have 8 (C’) > 0 depends on C’ O(C) in (8.15). It follows from
(8.15) and (8.13) that f(z)=(V, e 2"ri<z’t>) satisfies (6.4) with A =0 for z T(C’; m),
C’ O(C), m > 0 arbitrary. Thus f(z) FI(0; O(C)) as desired.

Let 3’ be any n-tuple of nonnegative integers. Let C’c O(C) be arbitrary and
rn > 0 be arbitrary. From (8.13) and the generalized Leibnitz rule we have

(8.16) Dz(f(Z)) 2 E 3"I. )[[ fC 2ri(z,t)

o+.=,/3!tx !Dz(Z’)(-1 t’g(t) e dt, z Tc’,
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where the differentiation under the integral has been seen to be valid for any z Tc’.
(Recall (8.14).) Using (8.16) and analysis as in (8.15) it follows that (6.4) holds for A 0
with z T(C’; m), rn >0 arbitrary. Thus Dz(f(z))eFl(O; O(C)) for any n-tuple y of
nonnegative integers as desired.

Now using (8.13) and analysis exactly like that of (7.38) and (7.39) we obtain the
conclusion (8.2) in the present theorem. Now that we have this equality in K’r for each
r >-1, the conclusions (8.3) and (8.4) in this theorem follow exactly as (8.3) and (8.4)
followed from (8.2) in the proof of Theorem 8.1. The proof is complete.

Of course we could have stated Theorems 8.2 and 8.4 for Fp(0; C) and
Fp(0; O(C)), respectively, p -> 1, since for A 0 the exponential term in (6.4) is 1 for
any p>-l.

We formulate the following corollary of Theorems 8.2 and 8.4.
COROLLARY 8.1. Let C be an open connected cone. If[(z) FI(0; C) then f(z) and

any derivative of it can be extended to be an element ofF1(0; O(C)).

9. Distributional boundary values of the spaces F(A; C), p > 1, A > 0. In this
section we obtain results like those of 8 for the spaces F(A; C), p > 1, A >0. In
general the ideas, techniques, and much of the analysis needed to prove the results in
this section have been developed in 7 and 8. Thus we shall simply state the results of
this section and invite the interested reader to supply the proofs. Our first result
corresponds to Theorems 8.1 and 8.2.

THEOREM 9.1. Let C be an open connected cone and let C’ be an arbitrary compact
subcone of C. Let f(z)eFp(A; C), p > 1, A >0. There exists a unique element V
D(g(t)) ?7{’, where a is a fixed n-tuple of nonnegative integers and g(t) is a continuous

function of R n, such that

(9.1) f(z) z’[e-2"<Y’t>g(t); x], z x + iy Tc’,
with this Fourier transform being in the L2 sense,

(9.2) f(z)--(V, e2ri(z’t)), Z Tc’,
(9.3) f(z)-" [e-2Zr(y’t)wt], z x + iy Tc’

with equality (9.3) homing in K’r ]:or each r >= 1,

(9.4)

and

{f(z)" y Im (z) C’, ly[ O} is a strongly bounded set in K’
for each r >- 1 where Q > 0,

(9.5) f(z) [V] K’, in the strong (and weak) topology ofK’,for
each r >= 1 as y Im (z) O, y C’ c C, with this boundary
value being obtained independently of how y 0 in C’ C.

Further, g(t) satisfies
(9.6) ]g(t)[<-M(C’,m)exp[2rr((y,t)+Aly[)], tR",

independently of y (C’\(C’ (3N(O, m))), m >0 being arbitrary, where M(C’, m) is a
constant depending on C’ and on m andfor any compact subcone C’, C, n\C* we
have

(9.7) [g(t)l<-M(C’,, l)exp[-2zrB(1-ql)(Uc(t))], tC’, C,,
where rt (0, 1) is arbitrary, 1/p+ 1/q 1, B is given by (7.7), and M(C’,, q) is a
constant depending on C’, and on
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It is interesting to note that when p > 1 and A > 0 in Fp(A; C), the knowledge (9.7)
on g(t) and hence on V takes the place of the knowledge supp (g)=supp (V)_ C*
obtained for Fp(0; C), p => 1, and the knowledge supp (g) supp (V)_ {t" Uc(t)<=A}
obtained for FI(A; C), A > 0, in the theorems of 8. The same comment holds with
respect to the analysis of 7 also.

We now state a converse to Theorem 9.1.
THEOREM 9.2. Let C be an open connected cone. Let C’ be an arbitrary compact

subcone o]’ O(C) and let m > 0 be arbitrary. Let p > 1 and A > O. Let V be a finite sum,
V= ,DT(g(t)), where the g(t) are continuous functions o]’ n such that ]’or each
n-tuple a of nonnegative integers and each C’ c O(C)

(9.8) Ig(t)l<=M,,(C’, m)exp[2zr((fL t)+Alf[)], tn,
with this inequality holding independently o]’ f 6 (C’\(C’ f-) N(O,. m))), m >0 arbitrary,
and M(C’, m) is a constant depending on a, C’, and m. Further, assume that each g,(t)
satisfies
(9.9) Ig=(t)l <-M(C’., q) exp [-27rB(1 -qrl)(Uc(t))q], C’. c C.,

where C’, is an arbitrary compact subcone of C, [n\C*, r/6 (0, 1) is arbitrary, l/p+
1/q 1, B is given by (7.7), and M,,(C’., 7) is a constant depending on a, C’,, and *1.
Then V Y{’I. Further the ]’unction ]:(z) V, e 2=i(z’t>) and any derivative o]’it belongs to
F(AEp O(C)) ]:orsome constantE > 0 and (9.3), (9.4), and (9.5) hold]or C’ c O(C).

Note that the analytic functions in Theorems 9.1 and 9.2 satisfy the hypothesis of
Theorem 8.3 and hence are guaranteed to have strong K’ r_>- 1, boundary values by
Theorem 8.3.

COROLLARY 9.1. Let Cbe an open connected cone. Ill(z) Fo (A; C), p > 1, A > O,
then f(z and any derivative ofit can be extended to be an element ofF(AEpc; O(C)) ]’or
some constant E > O.
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ON A HILL’S EQUATION WITH TWO GAPS IN ITS SPECTRUM*

WALLACE GOLDBERG AND HARRY HOCHSTADT

Abstract. It is known that when the potential in a Hill’s equation is such that there are two gaps in the
spectrum of the equation then the potential satisfies a certain nonlinear fourth order differential equation.
This equation cannot be solved by any other standard methods. However, a method is presented whereby,
one can show that for suitable choices of the parameters in the equation, one can find solutions which are
periodic and furthermore, are also elliptic functions. This generalizes a comparable result when there is only
one gap in the spectrum.

1. Introduction. We consider the Hill’s equation

y"+ [A q(z)]y =0,
(1)

q(z + cr) q(z).

(Relevant background information can be found in references [2], [6], [9].) The
spectrum of (1) consists of an infinity of intervals

() (;0, ) (;’2, hi), (,2, h3), (x’4, /3),

These intervals are called stability intervals while the intervals

(3) (-, ;0),

are called instability intervals. All but the first interval in (3) is finite and may shrink to a
point under special conditions. Erd61yi [3] discovered situations where all but a finite

number of the finite instability intervals vanish when q(z) is a suitable elliptic function.
Lax [8] showed that a function q(z) which satisfies the nth order Korteweg-de Vries
equation requires (1) to have no more than n nonvanishing finite instability intervals.

If all finite instability intervals vanish, then q(z) in (1) is necessarily a constant.
Proofs of this fact may be found in [1], [6].

When precisely one of the finite instability intervals does not vanish, then, as was
shown by Hochstadt [6], q(z) satisfies the nonlinear differential equation

(4) q" 3q2 +Aq +B

where A and B are suitable constants. If precisely n finite instability intervals fail to

vanish, then q(z) satisfies a differential equation of the form

(5) q<2n) H(q, q’, , q<:Z,-:)),

where H is a polynomial of maximal degree n + 2. This result was established by
Goldberg [4] who also showed [5] that (5) is equivalent to the nth order Korteweg-de
Vries equation. Therefore, (5) isboth necessary and sufficient for n finite instability
intervals to fail to vanish.

In particular, for the case n 2, Goldberg !-4] showed that (5) reduces to

(6) q(4) lOqq" + A(q"- 3q2) + 5(q’)2- 10q3 + Bq + C,

where A, B and C are suitable constants.

* Received by the editors June 13, 1978.
f Queens College of CUNY, Flushing, New York 11367.
t Polytechnic Institute of New York, Department of Mathematics, Brooklyn, New York 11201. The
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When one instability interval fails to vanish, Hochstadt [7] showed that a q(z)
which satisfies (4) must be of the form q(+z + ) where q(z) is an even function. From a
different approach, McKean [10] proves the existence of 2 potential functions
corresponding to (5).

Magnus has conjectured that (6) has solutions which can be found by the following
"Ansatz." Let

(7) q 2/3S 2 + ’y

and seek solutions of (6) that also satisfy

(8) (S’)2 S
4 + as 3 + bs z + cs + d

where/3, 3’, a, b, c and d are constants to be chosen appropriately. We are then led to the
following theorem.

THEOREM. For a suitable choice ofconstants A, B and C, (6) will have two solutions
ql(z), qz(z) which have period 7r. These two potentialfunctions, when inserted in (1), lead
to Hill’s equations with at most two nonvanishing instability intervals. Only one of these
potentials, say q(z), will also satisfy (4).

The second potential, say qz(z), will satisfy (6) but not (4) and will lead to a Hill’s
equation with precisely two nonvanishing instability intervals. All other such potentials
found via (7) and (8) are of the form qz(+z + ’), where qz(z) is an even function and - anarbitrary translation.

For two nonvanishing finite instability intervals, our approach produces two periodic
potential functions which, as follows from (8), are elliptic functions.

2. Preliminary results.
LEMMA 1. Equation (6)

q(4) lOqq" + A(q"- 3q2) + 5(q,)2_ 10q3 +Bq + C,
where A, B and Care real constants, has realperiodic nontrivial solutions with realperiods
if A, B, and C are chosen appropriately.

Proof. By replacing q by q-A/IO, (6) takes on the somewhat simpler form

(9) q(4) lOqq" + 5(q’)2- 10q 3 + Bq + C.

Next, we show that it is possible to find solutions of (9) such that

(7) q 2fls 2 + y,

where

(8) (S’)2 S
4 -" as 3 + bs 2 + cs + d

for some real constants/3, 3’, a, b, c and d. From (7) and (8)--(see the Appendix for
details)rowe obtain the following identities.

q(4) 240fls6 + 336/3as + (105/3a 2 + 240/3b )s4

(10) +(18013c +130ab)s3+(84flac + 32b2+144d)s2

+ (30/3bc + 60flad)s + (3Bc2 + 163bd),

We are indebted to Wilhelm Magnus for suggesting this approach and for many helpful discussions.
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and

lOqq" 240/32s6 + 200/32as 5 + (160/32b + 120Tfl)s4

+ (120flc + 100flay)s 3 + (80/3d + 80flby)s 2

+ (60/3yc)s + (40/3yd),

5(q’)2 802S6 -[- 80fl2as + 80fl2bs4 + 802cs3 -+- 802 ds 2,
-lOq3 __803S6 120flETs4__60fl),Es2 10y3

Bq + C 213Bs2 + TB + C.

The right hand side of (9) becomes

(320/32- 80/33)s 6 + (280/32a)s 5 + (240/32b + 120y/3 120/32y)s4

(11) + (200Zc + lOOCay)s3 + (2flB +1602d + 80by 60y2)s2

+ (60flyc)s + (C + 40flyd 1073 -I- yB ).

Comparing coefficients of s 6 in (10) and (11) we get

(12.1) 240/3 320/32-80/33
which has roots/3 0, 1, 3. For nontrivial solutions of (6) it is necessary that/3 0.
Therefore

/3=1 or /3=3.

Comparing coefficients of s in (10) and (11) we get

(12.2) 336/3a 280/32a.
Since/3 0, we must have

(12.3) a =0.

A comparison of the coefficients of s4 now gives us

(12.4) 240/3b 240/32b + 1203,/3(1-/3).

For fl 1 (12.4) is an identity and 3’ remains arbitrary, while for fl 3 we get

(12.5) 3, 2b.

The coefficients of S
3 in (10) and (11) now imply that

(12.6) 200/32c 180/3c.

Since/3 -0, we must also have

(12.7) c =0.

The coefficients of s 2 and 1 give us

(12.8) 32fib 2 + 144/3d 2/3B + 160/3d + 80by-60y2

and

(12.9) 16bd C +40yd 103,3 + yB,
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respectively, while the coefficients of s lead to an identity. To summarize, for/3 1 the
results in (12) are

a c 0, y arbitrary,

(13) B 16b 8d 40by + 303,2

C 414bd y(5y2- lOby + 4b2 + 8d)]

while for/3 3 (12) gives us

(14)

a=c=0, y=2b,

B=56(b2-3d)
C 16(9bd 2b 3).

From the above, we conclude that (9) is equivalent to

(15) (s’)2=s4+bs2+d
under the change of variable (8). Nontrivial solutions can arise only from the choices
/3=1orfl=3.

If we let s’= V, then s"= V(dV/ds) and a differentiation of (15) with respect to z
yields

dV s(2s2+b)
(16) d-- V

For b _-> 0, a simple phase-plane analysis shows that solutions of (16) are never
closed curves. For large s and V the solutions behave asymptotically as

g --[-s 2.
For b < 0, we can replace V by (-b/2) V and s by (-b/2) a/Zs so that, without loss of

generality, we can consider

dV 2S(S2- 1)
(17) d--- V

which has solutions of the form

(18) V2 s4 2S2 + K.

Equation (17) has three critical points in the (s, V)-plane, namely (0, 0) and (+/-1, 0). The
origin is a center and (+/- 1, 0) are saddle points. The solutions of (17) which pass through
(+/- 1, 0) are the separatrices

V= + (s- 1).

Figure 1 illustrates what happens in the phase plane. All real periodic solutions of
(17) must correspond to closed loops in the interior of the region bounded by the
separatrices.

LEMMA 2. Equation (4)

q" 3q2 + Aq + B,

where A and B are real constants, is equivalent to

(8) (St)2 S
4 "+" as 3 + bs2 + cs + d,
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V

FIG.

s

under the change of variable

(7) q 2/3s 2 + 3/

only when/3 0, 1. When/3 1 (8) takes on the form
(15) (s’)2 S

4 "]" bs2 + d.

Proof. If we replace q by q- A/6, (4) takes on the simpler form

(19) q"=3q2+B.
Using (7) and (8) in (19)--(see the Appendix for details)--we get the following
identities.

(20) q"= 12/3s4 + lOas3+8bs2+6Ctcs+4Cld
and

(21) 3q2+B 12/32s4+ 12/3s2+3/+B.
Comparing coefficients of s4 in (20) and (21), we get

(22.1) 12/3=12/32
which has roots/3 O, 1. When/ 1, the coefficients of s 3 and s in (20) and (21) imply
that

(22.2) a =c =0

while the coefficients of s 2 and 1 give us

(23.3) b =-5’
and

(22.4) 4d 372 + B.

For nontrivial periodic solutions of (4) to exist, we must have/3 1 and (22.3) requires
that .y < 0.

Therefore, if q(z) is a nontrivial real periodic solution of (4) then q(z) also satisfies
(6) and can only correspond to the choice/3 1.

LEMMA 3. If (17) has realperiodic solutions with a given real period, then there exist
two such solutions that are also even functions of z. If the period is denoted by 2 T, then in
the interval (0, T) such a solution is a monotonic function of z.

Proof. Suppose such periodic solutions correspond to the closed loop in Fig. 1. The
solution of (15) corresponding to that loop is given by

( dS) 2

W2 s4 2s2+2a2 a4(23)
\dz]
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This curve is symmetric with respect to both s and V axes and passes through (a, 0) and
(-a, 0).

One solution of (23) which is even is given by

f(z) )/2(24) z
(r4- 27-2 + 2a2- a

Clearly

(25) s(T) a

and (24) defines s for 0 =< z <= T. Now s is extended to (-T, 0) as an even function and
beyond (-T, T) as a periodic function. Clearly s(z + T) will also be even and periodic.
The two choices of/3 give rise to four nontrivial even periodic solutions of (6).

From the preceding discussion it is clear that periodic solutions of (6) can be found
by solving (15). Then

(26) d.__s (s4 2s2 + 2a 2 a4 1/2

dz

where 2a 2 a 4 is a suitable constant of integration. For 0 -< a < 1, periodic solutions are
found and their period is given by

(27)
dr

4)1/2"2T =4 (7-4-27-2+2a2 a

For a 1 we get the separatrices and for a 0 we get the constant solution s 0.
LEMMA 4. The period 2 T, as a function ofa (0 <- a < 1), is monotonically increasing.
Proof. Equation (27) is rewritten as

2T=4
(a 2

-7-2) 1/2(’-a 2 7.2)1/2’
We now substitute 7. a sin 0 into the above to obtain

(28) 2T 4 f0
"rr/2 dO

(2 a 2 a 2 sin2 0) 1/2"

The Maclaurin series of the integrand of (28) as a function of a2 is

(29) /-+1 (2n -1)(2n2n-l/2-3)... (5)(3)(1 + sin2 0) na 2n.
n=l 2

Every coefficient of a 2 is positive, so as a increases so does the sum of the series. Hence,
T is a monotonically increasing function of a.

We note that, had we not simplified (16) into (17), the leading term in (29) would
have been (-2b)-1/2. By choosing b suitably, it is now easy to show that the minimum
period is less than 7r, the period of q(z) in (1).

In the Ansatz (7), (8) it was assumed that q and (s’)2 are polynomials in s of degrees
2 and 4, respectively. One might well ask whether polynomials of other degree could be
used. The following lemma will address itself to this point.

LEMMA 5. If we assume that (6) can be solved by setting

(30) q ais
i=0
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where

k

(31) (St)2 bjs,
i=O

then necessarily k n + 2. This procedure can be expected to work in general only ifn <- 3.
Proof. A direct calculation (of the type outlined in the appendix) shows that

(32) degree q(4) n + 2k -4,

(33) degree of righthand side of (6) max (3n, 2n + k 2).

Since the degrees of the left and right sides of (6) must be equal we see that necessarily
k=n+2.

In (30) we have n + 1 and in (31) n + 3 unknown coefficients. Thus we have a total
of 2n + 4 unknowns. Equation (6) will reduce to a polynomial of degree 3n, which has to
vanish identically. This leads to 3n + 1 equations. In order to solve for 2n + 4 unknowns
we now require that

so that

3n+1<=2n+4

n__<3.

It might still be possible to use this procedure for n > 3, but then the 3n + 1
equations could no longer be independent.

N.B. The seven equations in the proof of Lemma 1 do in fact reduce to six.

3. Proof of the theorem. When precisely two finite instability intervals fail to
vanish, (6) must be satisfied. Lemma 1 and Lemma 4 show the existence of two
nontrivial periodic solutions of (6) with period 7r. Lemma 2 tells us that only one of these
two solutions satisfies (6) and fails to satisfy (4). Lemma 3 now gives us an even function
q2(z) which is periodic with period 7r, satisfies (6) and doesn’t satisfy (4) such that

q =6s2+T
where (s’)2 is a polynomial in s.

Appendix. In this section we indicate how (10), (11), (20), (21), (32) and (33)
were calculated.

If q 2/s2 + 3/where (s’)2= P(s), a polynomial in s, then

q’ 4flsx/,

and

dP
q"= 2s -s + 4P,

dP+ d2p]/q’"= [6/3s 2fls -s2 j

(4) ( dP] dP dEp d2p d3p
3/3 \-s] +/3Ss -ds+8/3Ps+2sPds----.

P is differentiated a sufficient number of times with respect to s and is then substituted
into the above terms.
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ALGEBRAIC METHOD FOR SOLVING LINEAR PARTIAL
DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS.

II: FUNDAMENTAL SOLUTIONS*

SERGE VASILACH"

Abstract. This paper is devoted to the construction of fundamental solutions of linear partial differential
equations with variable coefficients, by means of the algebraic method which is given in previous papers by S.
Vasilach (SIAM J. Math. Anal., 1975 and 1979).

Introduction. For an introduction to the algebraic method for solving linear
differential and partial differential equations with variable coefficients see our previous
papers [1], [2]. This method is based on the composition product of tensor products of
kernel distributions (on the general definition of the composition products of this kind,
see our papers [1], [2], [3], [4]) and is characterised by the fact that all operations for
determining fundamental solutions are algebraic operations.

Fundamental solutions in ’(+rxy)(R) ’(-raB).
1. Preliminaries. In [2, 5] we have shown that the fundamental solution of the

equation

m-1 n-1

(1) a’+"’E-------=" + Y E aik(X, y) 8(x--a) (R) 8(y--B)
OXmOy /=0 k=0 OXiOy k

in which (a/k), (j, k) [0, m 1] [0, n 1], are operators of multiplication in
@/rx) @-r), is given by

(2) (E}={6(x-a)(R)6(y-/3)+ Y’. (-1)H((x, y,a, fl)}o(Y(x-a)"o Y(y-/3)n}

where Y(x-a)" (resp. Y(y-/3)n) is the ruth (resp. nth) composition power of
Heaviside’s kernel Y(x a) (resp. Y(y -/3)), and H( is the vth composition power of
the function

m-l n-1 0j+k ((X a)m-1 n-1

)(3) H(x, y, a,/3) E E (-1)/+k (Y-B)
(a,/3)

/=o k=0 Odk (m--l)!
(R)

(n--l)! a/k

Likewise, in [2, 5, No. 3.2], we have given as example, the fundamental solution
of the hyperbolic equation

(4)
O2{E}
+a(x, y){E} 6(x -re) (R) 6(y -/3).
0xOy

In the present paper, we will determine the fundamental solutions of other linear
partial differential equations with variable coefficients by applying the same algebraic
method.

2. Fundamental solutions of first order linear partial differential equations. In [2,
No. 1.3], we have seen that @+r) -ro) is a right (resp. left)^ composition module
over the composition algebra @(-rx) (R) @+r,) (resp. @’(+r) (R) @(-r)).

* Received by the editors March 28, 1977, and in revised form July 24, 1978.

" D6partment de Math6matiques, Universit6 Laval, Qu6bec 10, Canada. This article was written while
the author was a visitor at University Paris VI (France) in 1976, in the French-Canadian cultural exchange
program. Present address: R6sidence Les Charmes, 34 Place Champ de Ville, 27400 Louviers, France.
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Consider now the equation

(5’) a (x, y)
0{T} 0{ T}

+ b(x, y) + c(x, y){T}= S(x, y)
dx dy

where a(x, y), b(x, y), c(x, y) are operators of multiplication and S(x, y) is a given
element of +rx,)( @-ro). The fundamental solution {E} of (5’) is given by the
equation

O{E} O{E}
(5) a(x, y)--x +b(x, y)-y+c(x, y){E}=a(x-a)(R)(y-B).

For a(x, y) # 0 in (+Fxy), equation (5) is equivalent to the equation

Y) 0{El} c(x, y) a(x-c) (R) a(y-/)O-El- b-x,
_

{El}=(6)
Ox a (x, y Oy a (x, y) a (x, y

The composition of (6) to the left with Y(x-o)(R) 8(y-/3) yields

Y(x-a)(R)6(y-)
(7) [6(x-a)(R)6(y-fl)+{Hl(X, y, ce, fl)}] {El}

a(, )

where, by virtue of [2, formula (3.42)], one has

(8) {Hi(x, y, a, fl)}= Y(x-a)
b(a, y)
a(-a, y)8’y(y fl) + Y(x-a)c(a, y)

8(y -fl)
a(a, y)

and from (6) and (7) we deduce

(9)
a(a, /) ,,=o

y (-1){H1} (Y(x -a) (R) 8(y -/3))

in which {H1} is the vth composition power of {H1}.
Thus, for v 2 we obtain

(10)

{H1}(2)= I: b(’ Y)
d O{ b(a’y)6’ (Y-B)}}a(:,y) -y a(a, y)

For b(x, y) : 0 in (+Fxy), equation (5) is equivalent to the equation

(11)
a(x,y) O{E2} c (x, yy))O{Ez___} + + {Ez}

Oy b(x, y) Ox b(x, b(x, y)

(12)

In a similar way one can show that the solution {E2} of (11) can be expressed as

{E2}=
b(a,/3)

(-1){H2} 8(x-a) (R) Y(y-/3)
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in which {H2} is the vth composition power of the kernel

a(x, ) c(x, fl) 8(x-a)].(13) {H2}: Y(y -fl) b(x, fl) 8’x (x-a) +b(x, )
In brief, the formal solution of (5) is given by

(14) {E}

a(,)
(-1)V{H1}’ (Y(x-a)(8(Y-))={E1}

with a(x, y) # 0 in (+Fxy),

b(a,) ---o2 (-1){H.} o((x-c)(R) g(y-))={E}

for b(x, y)# 0 in (+Fxy).

Keeping in mind the expressions (8) and (13) of {Ha} and {H2} respectively, we find
that the fundamental solution {E} of the equation (5) given by (14) is an element of
(+r) (-r).

Then, the solution {T} of (5’) may be written in the form (cf. [2, 1.2 formula (12)]):

{T} {E}o {S} (E(x, y, ’, r/), S(, r/, a,

and has meaning if {S} belongs to the composition algebra (-rxy)(@ +ro). Under
these conditions {T} is an object of @ +rxy) ( @!-r.), considered as a right composition
module over the composition algebra (+r) (R) @ -ro).

In particular, for a, b, c real or complex constant functions we obtain

and

But

{H1}- Y(x -a) () (bsy (y -)+ C(y /3))a

{El} -1 E (-1){H1} (Y(x -a)(R) 8(y B)).
a v=O

8y (y-B)+-8(y-fl)
a (B,y)

where (a, x) (resp. (B, Y)) means that the composition powers are taken with respect to
the pair of variables (a, x) (resp. (/3, y)).

Then we have

( /{H1} (Y(x -a) (R) 8(y -))= Y(x 0) v+l b t(,x)(R) -Sy(y-fl)/ (y-/3)
a a (t3,y)

whence

{El}
1
E (-1)"Y(x-o) "+1 C

(,,x) (R) 8y (y-/)+--8(y-
a v=O a a (o,y)

_-_1 E (-1)" (R) -Sy(y-/3)+-8(y-/3)
a v=O /. a a (,y)

Now, the series

y (_1)
(x-a)"

v=O

_, c ))______(R) b (y_/3)+_(y_/3
a a (B,y)
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may be considered as a Taylor’s expansion series of the composition exponential kernel

exp -(x -)(R) __b, (y -/3)+-(y -fl)
a a

(5)
=exp --(x-) exp -(x-)@

a a ’ (y-)

Therefore we have

(16) {E}=ly(x-a)exp C(x_a) exp -(x -a) (R)
b
6y (y -/3)

a a a

Consider, on the other hand, the Dirac kernel 8(y--(b/a)(x-a)) as a dis-
tribution with respect to (/3, y) and as an indefinitely differentiable function with respect
to (a, x). Then, the expansion in Taylor’s series of this kernel gives us

=exp [-(x-a)(R) b
s’r(Y fl)]a

Therefore the solution {El} of the equation

b 0{El} c
(17)

0{E1} ]- -{E1}
Ox a Oy a

,(x -,) (R) ,(y -/3)

in which a, b, c are real or complex constants is given by

(18) {El} 1y(x-a)exp [ C(x-a)] 8(y fl-b(x-a))a a a

In a similar way one can show that the solution {E2} of the equation

where a, b, c are real or complex constants, is of the form

(20) {Ez}=Y(y-fl)exp --(y-fl) 8 x-a-(y-/)
where 8 (x -a -(a/b)(y -fl)) is a distribution in (a, x) and an indefinitely differentiable
function with respect to the pair of variables (/3, y) with:

(21) 8 x-a--(y-fl) E (-1) (R) (x-a).
v=0

Consequently, the fundamental solution (E) of the equation (5) is given, for a, b, c
real or complex constants, by

1y(x a) exp [ C(x-a)]8(y-fl-b(x-a))={E1}a a a

with 8(y--(b/a)(x-a))’ ) ,,,"(+Fy)(-Ft)
(22) {E}

1 [aexp- ](y -/3) (x a
b
(y -/3)) {E2}

with 8(x -a -(a/b)) +r)(-r)
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Of course, the solution of the equation (5’) is given by

(23) {T}={E}o{S}.

Remark. For a 0,/3 0, {E} coincides with the solution obtained by means of the
algebraic operational calculus of distributions with support in R, which constitutes a
commutative convolution algebra without zero divisors (cf. [5, Chap. IV, 4, No. 4,
formula (21)]).

3. Fundamental solutions of linear partial differential equations of order -> 2. In
this section it is required to find the fundamental solution of the equation

+ b(x, y), ,S(x -a) (R) (y -/3)(24) a(x, y) Ox" Ox ’
in which a(x, y) and b(x, y) are operators of multiplication in +ry) ) -ro).

For a(x, y)# 0 in (+ Fxy), (24) is equivalent to the equation

b(x, y) O{E} (x-a)(R)(y-/3)
(25)

Or{E1}
+Ox" a(x, y) 0y a(x, y)

According to our algebraic method, the composition to the left of (25) with the
kernel Y(x-a) (R)(y-/3) gives, for the solution {El}, the formal series

(26) {El}=[ 1 ]a(a, /3) ,,=oX (-1)"{H}" (Y(x -a)v (R) 6(y -/3))

where {H } is the ,,th composition power of the kernel

(27) {Hi} Y(x-a)r’b(a’ y) (y)(y-/3).
a(a, y)

Then we have

{H}= (x -a) (R) (y -3),

{H1}1 y(x_a)v b(a, y) 6(0)(Y-3),a(a, Y)

{H1}2 {y(x-a)vb(a Y) 8()(y -3)}u
a(a, y)

(p 1)! (p- 1)! a(f, y) [a(a, Y) (y-/3)

(28)

{H1}
(X )p-1 b (:, y)d d:l(p- 1)! a(:, y) (p- 1)!

(p- 1)! (p- 1)!

0" [b(l,y)0 (b(’2, y))]

0y a(:_, y) 0y a(a; y)
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Likewise, for b(x, y) 0 in (+ F,,y), the fundamental solution {E2} of the equation

O’{Ez_..._}_t__(29)
a(x, y) O{Ez} 6(x-a) (R) 6(y -/3)

Oy ’ b(x, y) Ox ’ b(x, y)

is given by

(30)
1

(-1)’{H2} (3(x -a) (R) Y(-/3)’){E2}=
b(a,) =o

in which the kernel {H2} has the expression

(31) {H2} 6’) (x a
a (X, ) ).
b(x, fli Y(y-fl

(32)

Assume now that a, b, c are real or complex constant functions. Then we obtain

{HI} Y(x a)p @ _b,(q)(Y-B)

whence

{Ha},, y(x_a), (R)
b (q) (y_)

and

(33) {El} E (-1)Y(x-a)’ (R)
b

6() (Y-B) l(y(x-a)’ (R)6(Y-B)).
v=o a

In particular, for p q 2, the fundamental solution {E} of the equation

(34)
0)-{E} 02{E}

a Ox2,.+b OY
=6(x-a)(R)6(y-)

is given by

(35) {E}=-I E (-1)Y(x -a)2 (R)
b 8(2)y (y-/3) o(Y(x-a (R)8(y-/3)).

a

Now, if we set {El} 1/2{E1}2, and if we write

)2v+l (2{El} Y(x a (R)
=0

") (y -/3 (Y(x-a)(R)6(y-fl))

where /----]; then by adding and subtracting in the right handside of (35) the term

(y2u-1) (y 11)] (Y(x -a) (R) 8(y -/3))
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we obtain

1[ /{E1}=a Y(x-a)(R)8(y-3)+{(x-a)}(R) -6; (y-J3)

+
2

8;(y-3)+...

(x-a)} ( ) ()(y B)+ ] Y(x a)8(y fi)..+, ..,,,
(X

+
2t

8’(y B)

..+(-1) (x-a)} (4) (’(y-B)+...JoY(x-a)8(y-B)u! 8y

But, we have

(37)
(x-) () (x-a)E (R) (Y-fl) =8 Y-fl+i

u=O /2!

and

(38) E (-1)
(x-c)

u=0 P!

Therefore

(39)

1
{ElI=aY(X-a) y--

+8(y-B-i(x-a))]o Y(x-a)(R)8(y-B)

where 6(y-/3 +i’d(b/a)(x-a)) should be considered as distributions in (/3, y) and as
indefinitely differentiable functions in (a, x).

Likewise, by writing the solution of (34) in the form {Ez} given by

a0Z{E2} 6(x-a) (R) 6(y
(40)

2{E2}
+ 2Oy z box b

we find

(41)

(41) {Ez} 2- Y(y-B) 8(x-a + -(y-/3)

( a
+6 x-a-i (y-/) o(x-a)(R)Y(y-).

with 8(x-a +ix/(b/a)(y-/)) considered as distributions in (a, x) and as indefinitely
differentiable functions in (J, y).
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Let us show that {E} given by (39) (resp. (41)) satisfies the equation (34). For {El}
we obtain

3{E1} 1
Y(x-o) (R) 6(y-fl)

8x a

1 /-_ [ ( - / )+-a Y(x-a) 6’y +i (x -)

-8’(y--i(x-a))]o Y(x-a)8(y-)

and

O2{E1} 1
=-(x-) (y-)

Ox a

1
Y(x-a) 8" y-fl+i (x-a)+2 a

+8" y--i (x-a) y(x-a)8(y-fi)

1 [06,()=L6(x-a)6(Y-B)+ -i y-B+i (x-a)

+i y-B-i (x-a) y(x-a)@8(y-O)

i [ ( .=ls(x-a)8(y-B)+ Y(x-a) 6’ y-B+t (x-a)

Furthermore, we have

2{E’}syz 21y(x-a)[6"(y + (x )

( )]+8" y-B-i (x-) oY(x-a)8(y-B)

{ I2 [6"(,-B + 4(X-,))+ 6"(,-B-i 4(X-
But

and

Therefore

02{E1}

6" y + -d x - --8 y fl + - x

6"(y-[3-i-(x-) =-i -- (Y-B-/ (x-)

( f ) ] ( - )2-a 8 y-/3+i -d(x-a) +a 8 y--i -d(x-) oY(x-t)
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whence

In a similar way or by reason of symmetry one shows that {E2} given by (41) satisfies
also the equation (34).

Let us return to {El} given by (38). If we set A x//a we obtain

1
{E1}--da Y(x-o) 8(y--/3 +h(x-a))+8(y-/3-h(x-c))]o Y(x-a) (R) 8(y-)

1

___12a hl[y(Y /3+h(x a)) Y(y /-A(x

where Y(y -/3 + h (x a)) (resp. Y(y -/3 h (x a)) is defined by the Taylor series

Y(y +1(x )) A y(y_)
=o u! Oy

resp. (-1)I
(x-)

y(y-)
=0 v! Oy

Therefore

1 [y(y_/3_i/-__b(x_a))_y(y_B +i/(x(42) {Ex} 4--- a

Likewise, for {Ez} given by (41), we obtain

[y(x_a_i a
(43) {Ez}:2/- ;(Y-B))-Y(x-a+i a(y /3))

In particular, for a b 1, the elliptic equation

3:{E} O{E}
+. 6(x -a) (R) 8(y -/3)

OX 2 Oy z

has the fundamental solution

(44)

Y(x a)[8(y -/3 + i(x -a))

+6(y--i(x-a))]o Y(x-a)(R)6(y-)={E1}

with 6(y-/3 + i(x-a)) considered as distributions in

(/3, y) and indefinitely differentiable functions in (a, x);
{E}=

Y(y-B)[8(x-a + i(y-/3)

+6(x-o-i(y-))]o 6(x-a)(R) Y(y-[3)={Ez}

with 8(x-a + i(y-/)) considered as distributions in

(a, x) and indefinitely differentiable functions in (/, y).
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Keeping in mind (42) and (43), we find that (44) is equivalent to

(i/2)[Y(y--i(x-a))- Y(y- +i(x-a))]

with Y(y- +i(x-a)) distributions in (/3, y) and

indefinitely differentiable functions in (a, x);
(45) {E}

(i/2)[Y((x-a)-i(y-))- Y(x-a + i(y -/3))]

with Y(x-a +i(y -/3)) distributions in (a, x) and

indefinitely differentiable functions in (/3, y).

4. Fundamental solution of the hyperbolic equation. For a 1, b -A 2, / > 0, the
fundamental solution of the hyperbolic equation

is given by

(46) {E}=

OZ{E} 202{E}x =a(x-)(R)a(y-t)ax ay

1/2 Y(x-a)[6(y-fl +A (x a))

+ 6(y -/3 -A (x -a))] Y(x -a) (R) 6(y -fl)= {El}

with 6(y -fl +/- A (x a)) considered as distributions in
(fl, y) and indefinitely differentiable functions in (a, x);

Y(y-) (x-+-(y-))

with 6(x-a(1/X)(y-B)) distributions in (a,x) and
indefinitely differentiable functions in (B, Y);

(47) {E}

which is equivalent to

1/- Y(y-/3 +A(x-c))- Y(y-/3-A(x-c)) ={El}

with Y(y-/3 +/-X(x-c)) distributions in (/3, y) and

indefinitely differentiable functions in (c, x);

Y(x-a-(y-fl))-Y(x-a+-(y-fl)) ={E2}

with Y(x-B + (1/A)(y-/3)) distributions in (a, x) and

indefinitely differentiable functions in (/3, y).

5. Fundamental solution of parabolic equations. For p 2, q 1, a (x, y) # 0 in
(+l-’xy), the equation

a{E} a{E}
+ b(x, y)= a(x -c) (R) a(v -/3)(48) a (x, y) ax 2 ay
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has the formal solution

a(c,/3) ,=o
y" (-1)"{H1}" (Y(x-a (R) 8(y-/3))

where, according to (27)

)2b(ce, y)
{H1} Y(x-o

a(a,y)

and

{Hx}(v)= Y(x-a)
zb(a’ Y)
a(a, y)

Likewise, for b(x, y) 0 in (+Fxy) we obtain the formal solution

(49) {E2} [ 1

=0 b(c, )
(-1){H2}] (8(x -a) (R) Y(y -/))

in which, according to (31),

}(v){H2} Y(y-/3) a(x’ ee) 6’x’(X-a)
b(x,)

In particular, for a 1, b =-1, we obtain for the parabolic equation the
fundamental formal solution

{El} Y (X 0)2v+1
=o (2v+1)!

(R)..y (y-8)=formalseries

belonging to the ring [[(gx (R) gy)]] of formal series whose
(50) {E}

terms belong to the composition algebra gx

{E2} 6) (x a) @
{( y fi) }, as an element of

v=0

[[(x ) ]1;

on the composition ring of the form [[((-r=) ’(+ro))]] (cf. [2, } 4.2]).
Remark. For =B =0, the solution (50) coincides with the solution of the

parabolic equation

O2{E} 3{E}
2 a(x) a(y)ax y

obtained by means of our algebraic operational calculus of distributions (cf. [8, formula
(6)]).

Our next paper will be devoted to the boundary value problems and to the
problems of convergence of the formal solutions obtained by our algebraic method.

Acknowledgment. The author wishes to thank the referee for numerous helpful
suggestions.
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STABILITY OF LINEAR VOLTERRA INTEGRODIFFERENTIAL
EQUATIONS OF ORDER n*

R. K. MILLER" AND A. N. MICHEL.?.

Abstract. A result is proved which relates integrability of the set of resolvent functions for an nth order
Volterra integrodifferential equation with integrable kernels and a certain natural Laplace transform
condition.

The authors wish to provide a proof of a result announced in [4]. This result
generalizes the work in V of [2] concerning the integrability of the set of resolvent
functions for an nth order Volterra integrodifferential equation with L1-kernels.
Related work on the problem where only the integral resolvent is considered can be
found in the interesting work of Callier and Desoer [1]. Shea and Wainger [5] have
provided an interesting generalization of the work in [2] for the first order case. Jordan
and Wheeler [3] have improved the results of Shea and Wainger.

THEOREM. Let A be constant matrices for j=0, 1,..., n, let Bi6LI(O, c) be
integrable matrix valued functions for j 0, 1,. , n + 1, and define

( Ait -i t
a(t) B,/(t)+ i=oE (n -])+. B,-i(ti+) dti+l dh

Assume that Ao + Bo(t) O. Let ro(t) be the resolvent of a(t), that is, ro is the unique
solution of

(1) ro(t) -a(t)+ a(t-r)ro(r) dr, >-_0,

and for j O, 1," n define- I0 I0tln! IO r(tn+l) dtn dt}d
(2) rn+l_i(t) --I +1""

or equivalently in terms of Laplace transforms
r (s) -(1- a*(s))-la*(s), rf (s) s-i(I- a*(s))-1.

Then the following are equivalent:
(a) det s"+X(I- a*(s)) 0 ]:or all s with Re s => 0.
(b) rieL(O, oo) forj=O, 1,. ,n+l.
Remark 1. If n =-1 so that a--B0 L1(0, c), then this theorem reduces to the

following result of Paley and Wiener [6, p. 60]: roe L1(0, oo) if and only if det (I-
B (s)) 0 when Re s -> 0.

Remark 2. If B,+x =0, then the equivalence of (a) and (b) was proved in [2].
Remark 3. It was shown in [2] that (a) implies that r0e LI(0,
Remark 4. This theorem corrects an error in the original result---Theorem 1 of [4].
Proof. Assume that (a) is true. By Remark 3, ro L (0, oo). It remains to show that

r L(O, oo) for 1 -<_j <- n + 1 in order to see that (b) is true. Let b+l(t) be a C-smooth

* Received by the editors December 19, 1977, and in revised form June 1, 1978.

" Mathematics Department, Iowa State University, Ames, Iowa 50011. The work of this author was

supported by the National Science Foundation under Grant MCS77-03863.
$ Electrical Engineering Department, Iowa State University, Ames, Iowa 50011. The work of this

author was supported by the National Science Foundation under Grant ENG75-14093.
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function with compact support in [0, oo) such that

Io lbn+(t)- Bn+x(t)] dt < e.

Choose e so small that if

ao(t) b,+a(t)+{a(t)-B,+l(t)},

then

(3) det s"+l(I ao* (s)) 0 for Re s --> 0.

This is possible because (a) is true.
Define AB =B,,/a-b,,/l and let po be the resolvent of ao, that is p(s)=

-(I-a*o(S))-la’(s). Let b C(R +) be a given, fixed bounded function. Define

/(t)= () a,

and let x(t) be the solution of the equation

x(t)= f(t)+ a(t-r)x(r) d’.

If * denotes the convolution integral, then this can be expressed as " I, 4 and
x- f+ a x. Equivalently x solves

x =f+ao* x +AB x,

or

x-ao* x =f+AB x.

Since po is the resolvent of ao, then

x =f+AB X-po*f-po* AB x

or

(4) x (I po * I) b + (AB Po * AB) x.

By Remark 2 and by (3) it follows that Oo LI(0, ) and pa =I-po * I LI(0, c).
Since zB- po * AB La(0, ) and since

det (i zB*(s) +O (s) AB*(s)) det {(I-a (s))-(I-a (s) + zB*(s))}

det {(I a (s))-l(I a*(s))} 0

for Re s =>0, then by the Paley-Wiener theorem (Remark 1) the resolvent H of

AB-Po * AB is in La(0, c). The solution of (4) can be written as

x (I- po * I) b-H (I- go * I) b
(pa-H p) b Ha * b

where H1 p H p La(0, ). On the other hand the solution x of x f+ a x,
f=I* 4 is

x =f-to * f=(I-ro * I) 4,

and rl= I-to* L Thus rx and H1 are the same function. Since HIL then rx
LI(0, c).
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A similar argument can be used for the functions rE, r3, rn+l successively. Let
f I I and let x solve

x =f+a * x =f+ao* x +AB x

where ao and AB are as defined above. If p0 is the resolvent of a0, then as before

x =f-po*f+(hB-po* AB), x

=02 * b + (AB -po * AB) * x

and there exist functions H, p2 I pl and H2 p2-H * p2 all in L2(0, m) such that

x =p2, e-H* p2*

(OE-H * OE) * H * .
Thus rE HE e LI(0, ). Continue in this manner to see that (b) is true.

To prove that (b) implies (a) assume that (a) is false. Then there is a point So with
n+l *(So)) O. This means thatRe So _-> 0 such that det So (I a

(s) s-’-l(I- a*(s))-1rn+l

has a singularity at s So. Thus r+l cannot be in L1(0, ) and (b) is false. Q.E.D.
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THE UNSETTLED PROBLEM OF M. G. KREIN ON NONNEGATIVE
POLYNOMIALS IN T-SYSTEMS*

R. K. S. RATHORE- AND P. N. AGRAWALt

2mAbstract. The unsettled problem of M. G. Krein was as follows’ If {ui}i--0 (m 1, 2,. .) is a T-system on
[a, b] and T ={tl, tz," , tk}c[a, b] is a set of distinct points containing only one of the end points a, b and
k =< m, then does there always exist a nonnegative linear combination of ui’s vanishing precisely on T in
[a, b]? In this note we settle this problem by furnishing a counterexample for which such a linear combination
does not exist.

In this note we furnish a counterexample for the unsettled problem of M. G. Krein
on the existence of nonnegative polynomials in T-systems {ui}/o (m 1, 2,. .) on an
interval [a, b], vanishing precisely on a given set T {tl, t2, , tk} containing only one
of the end points a or b.

The problem arose in the following manner. M. G. Krein [2] (see Karlin and
Studden [1, Thm. 5.1, p. 28]) proved the following result.

THEOREM 1. Let {Ui}=0 be a T-system on [a, b]. Let T---{tl, t:z," ", tk}c[a, b].
Define

2, ti (a, b),
w(ti)

1, ti=a orb.

Then, (a) /f Ek
i--1 w(ti) <-n, there exists a nontrivial, nonnegative polynomial u(t)=

in=o [3iui(t) vanishing precisely on Tand at no other point of [a, b ]. The only exception is
that if n 2m and exactly one of the end points a or b is in T then u(t) may vanish at the
other end point as well.

(b) If any one of the following further conditions holds then without exception the
polynomial may be constructed to vanish precisely at tl, t2, , tk

(i) {Ui}’- (i.e. the setoffunctions Uo, Ul, u2, un-1 excluding un) isa T-system.
(ii) {ui} 7=o is a T-system on an interval [a’, b’] containing [a, b where a’ < a < b <

b" (iii) {ui}=o is an ET-system of order 2 on [a, b].
Regarding the exceptional case in the above theorem Karlin and Studden 1, p. 30]

remark that "it is worthwhile to notice the slightly weaker conclusion in the case where
only one of the end points a or b is contained in T (and n 2m). Whether or not this
exceptional case can be eliminated from the theorem has not been settled."

In the sequel we show that this exceptional case cannot be eliminated from the
theorem. For this purpose we employ an interesting example of a T-system due to
Zielke [3].

PROPOSITION 1. The set {Pi}=o offunctions defined by

po(t) 1,

p(t)=(1-t)t,

pi(t) (1 t)ti-2(t2-1), =2, , n,

is a T-system on [-1, 1]/f n 2m (m 1, 2,...).
To render the paper self contained we first give an elementary new proof of the

above proposition.

* Received by the editors December 9, 1977.
t Department of Mathematics, Indian Institute of Technology, Kanpur, India.
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Proof. Let P(t)= Y,=0 aipi(t) be a nontrivial polynomial in {pi(t)}i=o where n is
even. To prove the proposition we have to show that P(t) can have at most n distinct
zeros on [- 1, 1].

We notice first that if a/1 0, then P(t) is a polynomial of degree at most n and
hence it can have at most n zeros on [-1, 1]. Thus without loss of generality we can
assume that a/1 > 0. The rest of the proof is divided in six parts:

(i) If ao> 0, since Y’.i= aipi(t) is zero at I and tends to- as - +, it follows
that P(t) has at least one zero on (1, ). Hence P(t) (being a polynomial of degree n + 1)
can have at most n zeros on [-1, 1].

(ii) If ao<0 and al->0,i=l aipi(t) is -2a1<-0 at t=-I and tends to + as
-. Hence P(t) must have one zero on (-, -1) and therefore at most n zeros on

[-1,1].
(iii). If ao, aX < 0 and P(t) has n + 1 distinct zeros, on [-1, 1], by Rolle’s theorem

P’(t) has n distinct zeros on [-1, 1]. However, P’(1) -ax >0 and P’(t)- -oo as -.
Hence P’(t) has a zero on (1, oo), which is a contradiction, since P’(t) is a polynomial of
degree n.

(iv) If a0=0 and al >0 then P(t)/(1-t) is -al <0 at t=-i and tends to +oo as
t--oo and therefore has one zero on (-,-1). Hence also P(t) has one zero on
(-oo,- 1) and consequently at most n zeros on [-1, 1].

(v) If ao=0 and ax<0 then P(t)/(1-t) is ax <0 at t= 1 and tends to + as- +oo. Hence P(t)/(1 t) and therefore also P(t) has one zero on (1, c). Thus P(t) has
at most n zeros on [-1, 1].

(vi) Finally if ao o1.1 O, P(t) has a double zero at 1. Hence P(t) can have at
most n distinct zeros on [-1, 1].

This completes the proof of the proposition.
Our counterexample to the possibility of the elimination of the exceptional case in

Krein’s theorem is the following.
PROPOSITION 2. Let T={ti}ki=l be any subset of [-1, 1] such that

-1 <tl <t2<" "<tk 1.

Then there exists no polynomial u(t)=i=oiPi(t (/7--2m; m 1, 2,...) which is
/7onnegative and which vanishes only on T in [-1, 1].

Proof. Assume on the contrary that there exists a polynomial u(t) Yi=0 iPi(t) >= 0
vanishing precisely on T in [-1, 1]. Since tk 1, we have u(1)=0. Since pi(1)=0,

1, 2, , n, and po(1) 1 # 0, we have/30 0. Thus

u(t)= iPi(t).
i=1

Since pi(-1)=0, i=2, 3,..., n, p1(-1)=-20 and u(-1)0 as -1 T, it follows
that/31 0.

Now

u(t)=(1-t){fllt+(t2-1) fliti-2}
i=2

=(1-t)O(t),

say. Then Q(-1) -/31 and Q(1) =/31. Hence since fll is nonzero, Q(t) changes sign on
(-1, 1). But (1- t) is positive on (-1, 1). Therefore (1- t)Q(t)= u(t) changes sign on
(- 1, 1). This contradicts the assumed nonnegativity of u (t) on [- 1, 1 and completes the
proof.
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In view of the above proposition and the theorem of Krein we obtain the following
three additional properties of the T system {pi(t)}in=o (n even)"

(i) {pi(t)}-o is not a T-system on any interval [a, b] properly containing the
interval [- 1, 1 ].

(ii) {pi(t)}’=o is not an ET-system of order 2 on [-1, 1].
(iii) The subspace spanned by {pi(t)}in---o contains no even dimensional subspace

generated by a T-system.
The property (iii), in particular, entails the result of Zielke [3-1 that the subspace

spanned by {pi(t)}’=o has no Markov basis.
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ASYMPTOTIC EXPANSION OF MULTIPLE FOURIER TRANSFORMS*

P. N. SHIVAKUMAR AND R. WONGf

Abstract. Asymptotic expansion of multi-dimensional Fourier transforms is derived. An explicit
expression for the remainder term is also given, from which an error bound can readily be obtained.

1. Introduction. Let f(x) be a complex-valued locally integrable function on R n,
and let T[f] denote the Fourier transform of f, i.e.,

(1.1) T[f]
(2zr)n/2 Jn" f(x)

e dx,

where x (xl," ,xn), a (al,. , an) and a x =alX+ +anxn. In (1.1) we
only assume that the Cauchy limit

lim f f(x) e i’x dx
Loo dIxI<L

exists for every a R n, where [xl 4x1 +"" + x 2.. Thus the function f need not belong
to L(Rn).

The problem of finding the asymptotic behavior of T[f], when n 3 and as
[a[.oo, was first considered by Duffin [4], and subsequently treated in more detail,
when n 2, by Duffin and Shaffer [5]. In both papers [4] and [5], the function f(x) is
assumed to be expressible in the form

(1.2) f(x) Y’. coxOr + q (x).
P,q

Here q e C(R"), q is a real number, p (Pl, Pn) is a multi-index of nonnegative
integers x p x’1 p, 4X1+ +x2x r and the sum is finite.

In Duffin’s analysis use was made of so-called mollifierfunctions. Due to a degree of
arbitrariness of these functions, his derivation will not lead to the construction of error
bounds for the asymptotic approximations of [4] and [5]. The main purpose of this
paper is to provide an explicit expression for the remainder term in the asymptotic
expansion of T[f] from which error bounds can readily be obtained. Indeed, we show
that if f has continuous partial derivatives of order up to and including 2m in R (except
possibly at the origin) and satisfies (1.2), then under certain additional assumptions

(1.3)
T,,,[f] E’ cp,L(q) O([al--")

+ _," cp,L*(q) o([l/log I 1)+ (rn(),
where L(q) and L*(q) are explicitly given constants and

(-1)
(1.4) ,3,,,(c) ic12. T,[+/-’,].

In (1.3), Y’ excludes those q’s for which q + n is a negative even integer, while Y"

* Received by the editors October 11, 1977, and in final revised form May 11, 1978. This research was
supported in part by the National Research Council of Canada under Grants NRC-A-8783 and NRC-A-
7359.

t Department of Mathematics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada
R3T 2N2.
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includes only those q’s for which q +n =-2/, a negative even integer. In (1.4), A
denotes the Laplacian.

The secondary purpose of this paper is to present a true extension of the asymptotic
expansion of the one-dimensional Fourier transform to the multi-dimensional case. In
several directions, our results are more general than the corresponding ones given in [4]
and [5]. The approach presented here is based on a concept recently used by Olver in
obtaining error bounds for stationary phase approximation [8].

Results like those of our paper, which deal with the asymptotic expansions of
multi-dimensional Fourier transforms, have been given by Jones [6, Thm. 9.7, p. 328].
However, Jones considers Fourier transforms of generalized functions and gives no
error estimate for the approximation. For other results concerning asymptotic evalua-
tion of multiple integrals of Fourier type, which involve only one large parameter, see
Jones and Kline [7], Chako [3] and Bleistein and Handelsman [1].

2. Assumptions. We shall use rather standard notation. For a multi-index p
(pl," , p,,), we let D’ D’1 D- be a differentiation of order [Pl Pl + + P,,,
where D =O/Oxj. For any open set D,c R and for each nonnegative m, the set C" (f)
consists of all complex functions f in f whose derivatives DPf exists for each multi-
index p with [p[ <_-m, and are continuous functions in f. The Laplacian is denoted by
A "-02/0X21 -[-- -[-O2/OX 2 In polar coordinates x (r, 01, On--l)’-(r, 0),

0z n-1 0 1- +-L(O, Do),(2.1) A
Or r Or r

where L(O, Do) is a second-order linear differential operator with the independent
variables 01," , 0,_a. To simplify some of the formalism, we also use the symbol

(1 0___’]pl. (1 0x_)p.(2.2) 0= (i)-IlD" 70XI] 7
The following assumptions are similar to those adopted in [8] for the one-

dimensional case.
(A 1)f C2" (R"/{0}), rn being a nonnegative integer.
(A2)f(x) is expressible in the form (1.2) with q + ]p[ > -n for all multi-index p and all

real numbers q under the summation sign. Let Q max {q + ]p[} with the maximum also
taken over all p and q in (1.2). We require

(2.3) 2m-l<=Q+n<2m+l.

As r- 0+, we assume

(2.4) (Nq)(x) O(ro-2i+x ), f 0, 1," , m,

if Q + n # 2m 1, and

(2.5) (Aio)(x) O(r-Zi+2), ] O, 1,..., m,

if O+n=2m-1.
(A3) For some p > O, the integrals

(Aif)(x) e i’’x dx, i O, 1,’’’, m,
x[o

converge uniformly for all sufficiently large [a [.
Remarks. (i) if f C(Rn/{O}) then there always exists a nonnegative integer rn

satisfying (2.3). If f is an odd number of times continuously differentiable, a result
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similar to Theorem 1 (below) can be obtained. The statement of the result is, however,
more complicated, and we shall not give it explicitly.

(ii) In (Az), if O + n 2m 1 and if A0 satisfies (2.4) instead of (2.5) then we must
stop the series at the term preceding the last and let q denote the new remainder term.
For j 0, 1,..., m- 1, q(x) satisfies

(a;)(x) O(r-).
This condition will lead to an asymptotic expansion of T[f] with one less term than that
to be obtained under the condition (2.5).

(iii) The assumptions (A1), (A2) and (A3) ensure that the original Fourier trans-
form (1.1) converges uniformly for all sufficiently large values of a e R n. Moreover,
they imply that the Fourier transform

(2.6) To,[Amqg] (2rr)n/2 (ZX’)(x) e dx

also exists uniformly for all sufficiently large values of a R". We shall prove this
assertion only for the case Q + n # 2m 1 in (2.3). The case when Q + n 2m 1 can
be handled similarly. First we note that by (2.4)

(A’g,)(x) O(r-2’’+1) as r 0+.
Since Q + n > 2m- 1, near x 0 the improper integral in (2.6) exists absolutely and
uniformly for all values of a. Next we observe that from (1.2) and (2.1), it follows that

(A’q)(x) (A"/)(x)- Y’. tbpq (0)rIvl+q-z’,
where the pq’s are linear combinations of products of the sine and cosine functions of
0 (01, , 0,-1). Since Q + n < 2m + 1, the powers of r in the last sum are all less than
1- n. Hence, by condition (A3) with/" m, the integral in (2.6) also exists at infinity,
uniformly for all large values of a R". This establishes our assertion.

(iv) If f(x) is a function of r only, say f(x)= g(r), then it is well known that T[f]
depends only on [a[. More specifically, we have

(2.7) T[f] I1 <-")/2 Io r"/2g(r)J<"-2)/2 (llr) dr,

where J(r) denotes the Bessel function of the first kind; see [2, Thm. 40]. The integral
on the right side of (2.7) is known as the Hankel transform of g(r). Asymptotic
expansions of Hankel transforms are available, complete with error bounds; see [10].

3. Abel limits. For each e > 0 the Abel mean A (f) is defined to be the integral

(3.1) A(f) In,f(x) e -lxl dx.

It is clear that if/ L (R ") then lim_.oA (f) R" f(X) dx. However, these Abel means
can be well-defined even whenf LI(R"). In this section, we wish to explicitly evaluate
the Abel limit.

(3.2) lim T,[e-x’r’], [p[ + q + n > O.
e0

LEMMA 1. For IP[ + q + n > 0 but q + n O, -2, -4,. ,
(3.3) lim T[e-"xr

e-0
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where

(3.4) L(q) 2q+"/2F(q + n) /F( -)2

Proof. If [Pl 0 and q + n > 0 then it is known that

(3.5) lim ro,[e-rrq] L(q)

see [6, p. 230]. Examining the derivation of this result in detail reveals that the desired
identity (3.3) can be obtained by simply differentiating (3.5) with respect to

If q + n < 0 then we must proceed in a different manner. First we make the change
of variables x r: so that

1 I Plo ivlpl+q+n-l-(e-il3)rT,[e-xPrq

(27r),,/2 e dr dSe
(3.6)

I :P(e- i/3) -q-n-lpl dSe(2)

where fl = kk and dSe is the surface element on the unit sphere I[ 1. Next we
observe that as long as q + n is not a negative odd integer, (3.6) can be rewritten as

(3.7) T,[e_x,rq]=
F(Ip[+q+n) I(2rr),/2(q + n)lp

O,
51 =1

(E i)-q-" dSe,

where (h)s h ( + 1)... ( + s- 1). To evaluate the last integral, we subject it to an
orthogonal transformation

(3.8) :, bkij
j=l

with determinant + 1 and bli--cei/[o[, j 1,..., n; see [2, p. 70]. Then we have

(3.9) E s,2 Y s, 1, / 2 akk =[alSCl,
k=l k=l k=l

and the right-hand side of (3.7) becomes

r(Ipl+q+n) oo l(2zr)"/(q+n)lpl 1=1

Taking the limit in e --> 0 yields

(3.10)

(e ilc I:i)--" dSe,.

The integral in (3.10) can be evaluated by using polar coordinates "=(1, 0)=
(1, 01, , 0,-1) with

sin 0,-1 sin 0n-2" sin 02 sin 01

and

dSe, sinn-2 On-1 sin’-3 On--Z sin 02 dO1"’" dOg-1.

lim T,[e-xPrq]
F(lPl+q+n)

O([cl_._.
-o (2zr)"/2(q -I- n)lpl

(-i)-q-" I (’1)--" dSe,.



MULTIPLE FOURIER TRANSFORMS 1099

If :’ varies on the unit sphere, then 02, On--1 vary each in the interval (0, 7r), whereas
01 varies in the interval (0, 27r). Thus

()-q-n dS, 1 + (- 1)-q-n] sin-q-n+/0 dO.

Furthermore, it follows from the identity

r[(t + )/)
sin’0d0

F[1 +(t/2)]
(t >= 0)

that

(3.11) (-i)-q-n I ()--ndSe,=n/22q+nF(q+n)/(F(q+n)F(-))
5’1=

77"
2

Upon inserting (3.11) into (3.10), we obtain from (3.4)

(3.12) lim T[e-xPrq] L(q)
e0

provided that q + n is not a negative odd integer.
To show that (3.12) also holds when q+n is a negative odd integer, we put

q + n -m and observe that

(3.13) 0 (e i/3) log (e i)--k= - (e i/3)IpI-"

In place of (3.7), we now rewrite (3.6) in the form

T[e-xPrq]=(2zr)n/2m OP (e-i) log(e--i)--k,- dSe.
1=

The orthogonal transformation (3.8)-(3.9) then gives

(3.14) lim T[e-Prq]
0 (2m 0(lal) log dSe,.

(Note that 1’1= dS, 0 if m is an odd integer.) The integral on the right-hand side
of (3.14) can be evaluated by using polar coordinates, as in (3.11). The result is

+ +/ r[(m + )/](3.15) , r[(m+n)/2]"

Inserting (3.15) into (3.14), we again obtain (3.12) with q + n -m and m being an odd
integer. This completes the proof of Lemma 1.

LEMMA 2. ffor [pl+ q + n 0 and q + n -2l, 0, 1, 2,. ,
(3.16) lim T,[e-rxPr] L*(q) o(ll2/log

L*(q) (-1)/+1 21l!F [n(n + 2)... (n + 21- 2)]

i]’/= 1,2,. .
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Proof. Since the argument here is similar to that for Lemma 1, we only give a sketch
of the proof. In place of (3.13), we use the identity

(3.17) 0[(e -i/)2 log (e -i/3)]
r(Ipl- 2z)(2t)t 

(e ifl)lpl-2/

Equation (3.14) then becomes

(-1)+
(3.18) lim T,,[e-x"rq] a(la] logl) ’12 dS,.

-,o (27r)"/2(2/) :’1=

(Note that 0 (1 12’) -0.) The last integral can be evaluated as in (3.11), and we obtain
(3.16) as desired.

We close this section with one further result concerning the Abel limits, which we
shall need later in our discussion.

LEMMA 3. Iff is locally integrable on R and

(3.19) lim f f(x) dx L
O--*0 dlxl<p

exists then the Abel mean A (f) converges to L, i.e.,

lim f f(x) e -lxl dx L.(3.20)
---}0 "JR

Proof. This result is well-known when n 1; see [9, p. 26]. The general case follows
from this special one, when the integrals in (3.19) and (3.20) are expressed as iterated
integrals in polar coordinates.

4. Main theorem. With the preliminary lemmas established in the preceding
section, we are now ready to state and prove our main result concerning the asymptotic
expansion of T,,[f].

THEOREM 1. Assume that conditions (Ax), (A2) and (A3) hold. Then

(4.1) T,[f] ’ Cpqt(q)0([al-q-")+ cpt*(q)0(11=’ log

where, in ’, we exclude those q’s for which q + n is a negative even integer, while, in ",
we include only those q’s for which q + n 2l, a negative even integer. The error term is
given by

(4.2) 3re(a)
(-1)"

Proof. For any e > 0, we have from (1.2)

(4.3) T[e-rf] E cpT[e-xPrO] + T[e-rq]

Since T,,[f] exists, by letting e 0 in (4.3) and applying Lemmas 1, 2 and 3 we obtain

(4.4)

where

(4.5)

T[f]-- ’ cpqL(q) O(]al-q-’)+ cpL*(q) o(lal2/log I 1)/(),

We must show that

(4.6)

&.(a) lim T[e-rqg].
e--0

(-1)
lim_,o T[e-r rP] [a [2m
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Put u(x) e-r+ix and recall that as r- 0+, (Aq)(x) O(r-2j+1) if O + n >
2m 1 >- 1 and (Mq)(x) O(r-+2) if Q + n 2m 1 R 1. By Green’s theorem

xo x=o u- d

where d is the element of surface area on Ix] p. A simple calculation shows

[ 2ie (n- 1)el2

" x_ll2U e u.

We first substitute this into (4.7), next observe that

e [Aq + 10 12(,/9] dx e x dr-
xl<o xl=o Or xl=o

again by Green’s theorem, and finally let p oo. The result is

(4.8)

T,[e- (Aq +la[2q)]= e T[e 2ieT, e
t"

By using Lemmas 1, 2 and 3, it can be shown that the limits, as e 0, of To,[e-ero],
T[((a. ,)/r)e-rq] and T,,[(1/r)e-q] all exist. Hence the right-hand side of (4.8)
tends to zero as e 0, and

(4.9) lim T[e-] lim Ta[e ].
e0 [0

This procedure can be repeated m times and finally leads to

(-1)
(4.10) limo T[e-"]= 1,12 lim0 T[e- h]"
Since T[A] exists by Remark (iii) in 2, we have

lim T[e-]
(-1)

0 I12
by Lemma 3. This demonstrates (4.6), and completes the proof of Theorem 1.

5. Asymptotic properties and error bounds. If g L(R ") then by the Riemann-
Lebesgue lemma

(5.1) Zrg] 0 as

see, e.g., [2, p. 57]. However, it can easily be shown that (5.1) holds as long as T[g]
exists uniformly for all suciently large values of a R". Taking g A, we have by
Remark (iii) of 2

(5.) () o(11-) as Il .
This confirms the asymptotic nature of (4.1).

To obtain a bound for the error term 8(a), we replace assumption (A) by

(A) For some p > 0 and for each ] 0, 1,. , m 1, the integral

(?)(x) ei’ dx
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converges uniformly for all large [a[. Furthermore, Ilxl=o I(A"f)(x)[ dx is finite;

and require, instead of (2.3),

2m-l<=O+n<2m.

Under these conditions, A"p is absolutely integrable and

(5.4) 18(a)l <_-

We now give a generalization of the asymptotic expansion of the one-dimensional
Fourier transform; see [8, Theorem 2]. We write

(5.5) f(x)"Y CpqXOrq asrO+

to mean that if we truncate the series after a finite number of terms and if we let Q be the
maximum of IP[ + q taken over all p and q under the finite sum, then the remainder q(x)
satisfies either p(x) O(r+2) or p(x) O(r/l), as r - 0, depending on whether or not
Q + n is an odd integer. (In (5.5), we of course assume that q + IPl > n for all p and all
q). The following result is an immediate consequence of Theorem 1.

THEOREM 2. If (i) f is a C function on R except possibly at the origin; (ii) f
possesses an asymptotic expansion of the form (5.5); (iii) the asymptotic expansion ofany
derivative of f is obtained by differentiating (5.5); and (iv) each of the integrals
(Aif)(x) e i’x dx,
then as [al-c, the asymptotic expansion of T[f] is obtained by substituting (5.5) in
(1.1) and integrating formally term by term in the sense of (3.3) and (3.15).

Example 1. Consider the double Fourier transform

(5.6) I(a,, a2)=---
where r x/x + y2. In order to apply the results in 4, we write

1 -3/2 _1_ q9 (X, y).3/2[ 1 r
r + (x + y)2]

Note that p C1(R2). Since the function on the left is absolutely integrable and
Wait-3/2] exists uniformly for all large values of [a[, so does T [p]. In the notation of 2,
we have

From (4.1) it follows that

O=-, n =2, m =0.

r=(1/4)
(5.7) I(1, 2)= 27r111/2 + 1(1, 2),

where 8(a, a)= T[]. Since LI(R2), the error estimate (5.4) does not hold for
m 0. However, by Lemma 3, we have

(5.8) 8(al, a2)= lira T[e-r] 12 lira T[e A].
e0 e0

The last equality follows from (4.9). A simple estimation gives

52
’A’ r3/[1 +(x + y)]’
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which implies that Ao LI(R 2) and lim_,o T,[e Aq]= T,,[Aq]. Therefore

1(O1, 2)1 r3/2[1 + (x + y)2] dx dy,

in view of (5.8). The integral on the right can be explicitly evaluated. The final result is

52r(
(5.9) 21/4112
It should be pointed out that T[z] does not exist and hence the technique employed
in (5.8) can not be repeated to obtain a bound of a lower asymptotic order of magnitude.

Example 2. Consider the triple Fourier integral

(5.!0) (a, a2, a3) (2)3/2 (1+ r)
e dx dy dz,

where r #2 + y2 + Z 2. Note that the function xyz/(1 + r)6 is not absolutely integrable
on R 3. Put

XyZ 2)
(1 + r)6

xyz(1 --6r + 21 r + q(x, y, z).

Then, in the notation of 2, we have

0=5, n=3, m=4.

From (4.1) it follows that

(5.11) I(al, a2, C3)-"

where the multi-index p is given by p (1, 1, 1) and the remainder satisfies

(5.12) a(Ox, 02, 03)-- [-[8ra [A4q].
To estimate T[A4q], we write o(x, y, z) xyzF(r) and observe that

(d2 8d)4

A4o(x, y, z)- xyz -r2 + F(r)r
An elementary estimation gives

C]A4I--< r2(1 + r)

with C 304283520. Thus by (5.4)

(5.13) [(O1,2,3)1 -<- ’ll8.
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HOMEOMORPHISMS OF COMPACT, CONVEX SETS AND THE
ffACOBIAN MATRIX*

ANDREU MAS-COLELLt

Abstract. Let K c R be a compact, convex polyhedron and f: K R" a C function. The problem of
existence of a global inverse for f is studied. It is shown (Theorem 1) that f has an inverse, if, for every x K,
the Jacobian of f at x, Jr(x), is such that for every linear space spanned by a face of K containing x the
determinant of the linear map from L to L formed by projecting Jr(x) on L has positive sign. Theorem 2 is a
similar result for K with smooth boundary. The theorems generalize the well-known Gale-Nikaido theorems,
which originated in some problems of mathematical economics.

1. Introduction. Let K c R be a compact, convex set. Without loss of generality
we assume that K has a nonempty interior. Let F: K--> R be a C function. The
derivative map of F at x is denoted DF(x). Given a coordinate system the Jacobian
matrix of F at x K is denoted JF(x). We want to find sets of local conditions, i.e.,
conditions on JF(x) only, implying that F is one to one and so, a homeomorphism.

It is well known that the nonsingularity everywhere of JF(x) will not do; see Fig. 1.

FIG.

A set of sufficient conditions is provided by the theorems of Gale and Nikaido ([2],
[6, Chap. VIII), which were stimulated by some problems in mathematical economics:

(i) Let K be a rectangle. If for every x K, JF(x) is a P matrix (i.e., every principal
minor of J(x) has positive sign), then F is a homeomorphism.

(ii) If for every x K, JF(x) is positive quasidefinite (i.e., v’JF(x)v >0 for all
x R n, v 0), then F is a homeomorphism.
It will be shown here that the result can be obtained under substantially weaker

hypotheses. In particular, for points x Int K our analogue of (i) will impose sign
restrictions only on the principal minor of order n.

More specifically, consider (i) above. The set K is a rectangle, i.e., it is of the form
K {x Rn: S X ri}. For every nonempty subspace L c R let 1-IL: R --> L denote
the perpendicular projection map. The condition that JF(x) be a P matrix is equivalent
to the requirement that for every coordinate subspace L cR ", the linear map
IlL DF(x): L - L preserves orientation, i.e., has a positive determinant. We will show
that, with K a general polyhedron, F is a homeomorphism if for every x K and every
subspace L cR spanned by a face of K which includes x, the linear map
IIL. DF(x): L-L preserves orientation, i.e., has positive determinant (the subspace

* Received by the editors March 13, 1978, and in final revised form September 18, 1978. This paper was
written in April 1977 while the author was visiting Bonn University, made possible by the financial support of
the Sonderforschungsbereich 21.

" Department of Economics and Mathematics, University of California, Berkeley, California 94720.
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spanned by a convex set is the translation to the origin of the minimal affine space
containing the set). So, if K is a rectangle, JF(x) needs to be a P matrix only at the
vertices of K and for x e lnt K the only requirement is that JF(x) have a positive
determinant.

Observe also that, in contrast with (i), our conditions are coordinate free, in the
sense that their formulation does not rely on a previous choosing of coordinates. This
will be emphasized in the statement of the theorem. Consider now (ii) and suppose that
the boundary of K, denoted OK, is smooth (a C hypersurface, say). For x OK, Tx is the
tangent plane of OK at x (see Fig. 2). We will show that F is a homeomorphism if: (a)
JF(x) has a positive determinant for every x K, and (b) for every x OK, JF(x) is
positive quasidefinite on Tx, i.e., v’JF(x)v > 0 whenever v 0 and v 6 Tx.

FIG. 2

The mathematical tool for the proofs is fixed-point index theory (see Milnor [5],
Guillemin-Pollack [4]), in particular, the powerful Poincar6-Hopf theorem. That index
theory could be the key to the sort of generalization of the Gale-Nikaido theorem given
here was surmised by H. Scarf [8] in view of the Eaves and Scarf analysis in [1] of the
index theory associated with the linear (and nonlinear) complementarity problem (see
also Saigal and Simon [7]).

It is worth emphasizing that our results are not of a purely differential topological
nature; they hold for domains K which are convex sets. It should be clear from the
inspection of Fig. 3 how counterexamples can be constructed for nonconvex K and
maps F satisfying (a) and (b) of the paragraph previous to the last.

FG. 3

2. Statement of theorems. Terminology and notation are as in the Introduction.
THEOREM 1. Let K R be a compact, convex polyhedron offull dimension and

F: K R a C function. Iffor every x K and subspace L R spanned by a face ofK
which includes x, the map I-I. DF(x): LL has a positive determinant, then F is
one-to-one and so, a homeomorphism.

THEOREM 2. Let K R be a compact, convex set of full dimension with a C
boundary OK and F: K R a C function. If for every x K, DF(x) has a positive
determinant and iffor all x OK, DF(x) is positive quasidefinite on Tx (i.e., v’DF(x)v > 0
for v T, v 0), then F is one-to-one and so, a homeomorphism.



HOMEOMORPHISMS OF COMPACT CONVEX SETS 1107

3. Demonstration.
1. It may be useful if we first sketch the main idea of the proof, which is very

simple. We first extend F to the whole of R in a certain simple manner which preserves
differentiability except in a set of measure zero and has the property that whenever
differentiable the extended function has a positive Jacobian determinant. Now take any
point of R n, say, 0 R ". It turns out that for our purposes we can assume that F-l(0) lies
entirely in the region of differentiability. This means that the sum of the indexes of F at
points x F-l(0) equals the sum of the signs of the Jacobian determinant, i.e., the sum is
=> 1. But, after verifying that the extended F satisfies appropriate boundary conditions,
we appeal to a topological index theorem to conclude that the sum must be =< 1. Hence
F-l(0) is a singleton set.

2. We let K R" be a general compact, convex polyhedron of full dimension and
prove Theorem 1. We shall see at the end that Theorem 2 is essentially a corollary of
Theorem 1.

We note first that it suffices to prove that Flint K is one-to-one. Indeed, we can
always extend F to a K’ containing K in its interior and sufficiently similar to K for all
hypotheses on DF(x) to be still satisfied.

3. For every x R let z (x) K be the foot of x, i.e., z (x) is the (unique) element of
K minimizing IIx zll for z K. Of course, z(x) x for x K; see Fig. 4.

x

FIG. 4

We now extend F: K - R" to the whole of R by letting a function/" R R be
defined by l(x)=F(z(x))+x-z(x); see Fig. 5. For any y F(K) define/6y. R" -R"
by/6y (x) =/6(x)- y.

x

FIG. 5

4. Let Sr, B, be, respectively, the sphere and ball of radius r. We claim that for any
y F(K) artd any r sufficiently large, F. IS, has degree one, i.e., it is homotopic, with
respect to R"\{0}, to the identity in Sr. Indeed, it suffices to verify that for r sufficiently
large and any y F(K), if x Sr, then x’Fy(x) > 0. Take r >
maxzc,yv()[IF(z)- z yll- s. Then

llxll=- x’(z(x) + y-F(z(x)))

IIxll=-Ilxll Ilz (x)/ y -F(z(x))[[ >-_ r:z- rs > O.
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5. The region A {x R n./6 is not C at x} contains no open set. This is clear
since z(x) is C everywhere except at x K with x z(x) perpendicular at z(x) to more
than one face of K and those x are contained in a finite number of hyperplanes. Since/
is Lipschitzian,/6(A) contains no open set.

6. We now state the basic lemma. The proof is postponed to 8.
LEMMA 1. LetK be a polyhedron and Fsatisfy the hypothesis of Theorem 1. Then if

x A, ID(x)l is positive.
Of course, ID/(x)l denotes the determinant of the linear map D(x).
7. Let r>0 be a fixed number with K Br and/6 St of degree one for any

y F(K). By the Poincar6-Hopf theorem (see Milnor [5]), if/-1 (0)(3 A , then

Y..e;(o)n, sign lD/r(x)] 1, which, by the lemma, means that /-(0)0B is a
singleton set.

Suppose now that Flint K were not one-to-one, i.e., there are Xl, x2 Int K with
X x2 and F(Xl) F(x2). By the implicit function theorem there are disjoint open sets
Va, V2 c2 Int K with x V1, x2 V2 and F(V) (q F(V2) 7 open. Since F(A) contains
no open set, there is y 6F(V)f’IF(Vz) such that y (A). But then/1 (0)CIA
and F-l(y)c/6-I(0)B is not a singleton set. This contradiction establishes that

Flint K must be one-to-one and concludes the proof of Theorem 1.
8. We now prove Lemma 1.
Let x A. Then x- z(x) is perpendicular to a single face of K, which, of course,

includes z(x). Let L be the subspace spanned by this face and L- the subspace
orthogonal to L. We then have that for small v eL, z(x +v)= z(x)+v and so,
(x + v) F(z(x) + v) + x z(x); hence, D(x)v DF(z(x))v. For v Ll, z(x + v)
z(x) and so, /(x + v) F(z(x)) + x + v z(x); hence DP(x)v v. Therefore, if we
choose an orthogonal coordinate system whose k first coordinates generate L, JF(x),
the matrix of DF(x) with respect to this coordinate system, takes the form

J/6(x)= [JkF(Z(X)) ], where JkF(Z(X))are

the first k columns of JV(x). So IDa(x)[ ]J/6(x)[ [JkkF(Z(X))[, where JkkF(Z(X)) are
the first k rows of JkF(Z(X)). BUtJkkF(Z(X)) is the matrix of II. DF(z(x))" L - L which

by hypothesis is positive.
9. We now prove Theorem 2.
LEMMA 2. Under the hypothesis of Theorem 2, if x OK and L T is a subspace,

then II DF(x)" L L has a positive determinant.
If the lemma holds, the proof is concluded since we can approximate K by a

polyhedron K’ and if K’ is sufficiently close to K, Lemma 2 implies that the hypotheses
of Theorem 1 are satisfied.

Lemma 2 is a well-known fact. Choose an orthogonal coordinate system such that
the first k coordinates generate L and the nth is perpendicular to T, and let JF(x) be the
matrix of DF(x) in this coordinate system. Then J,,_,_lF(X), the matrix formed by
deleting the nth row and column is positive quasidefinite. This is the assumption of the
theorem. But any principle minor of a positive quasidefinite matrix is positive (see, for
example, Nikaido [6, p. 374]); this applies to JkkF(X), the matrix of IlL DF(x)" L - L,
and yields the lemma. Q.E.D.
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Universitiit Bonn for the academic year. The stay was made possible by the financial
support of the Sonderforschungsbereich 21 which is gratefully acknowledged. The
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APPLICATIONS OF A CONVOLUTION THEOREM TO
JACOBI POLYNOMIALS*

JOHN L. LEWISt

Abstract. In this paper we use a convolution theorem to study certain polynomials in the unit disk whose
coefficients are constant multiples of Jacobi polynomials. We show these polynomials have no zeros in the unit
disk. This result extends a theorem of Ruscheweyh on Gegenbauer polynomials, and is related to results of
Askey and Gasper on Jacobi polynomials.

1. Introduction. Let A {zlzl < 1}, and T {z" Izl-- 1}. Given o-, -oo < o- <= 1, let
$(cr) be the class of normalized starlike functions of order o- in A. An analytic function f
in A is in S(o-) if and only if [(0)= 0, f’(0)= 1, and

(1.1) Re [zf’(z)/f(z)]>=o-, z A.

Using the Poisson integral formula and integrating (1.1), it follows that f $(o’) if and
only if

(1.2) log (f(z)/z)=-2(1-o’) Irlog (1-e-iz) dlx(ei), z A,

for some probability measure tz on T. Observe from (1.2) that

(1.3) If(z)/zl >- 2-(1-), z e A.

The function

(1.4) z/(1-z)2(’-)= [(2-2r),_,/(n-1)!]z,
n=l

where (a)0 1, (a), a (a + 1). (a + n 1), n _-> 1, is in $(r), as follows easily from
(1.1). Let C(o-) denote the class of analytic functions g in A satisfying g(0) 0, g’(0) 1,
and the condition that

(1.5) Re [zg’(z)/h(eiz)]>-O, z A,

for some h $(o’) and 0 real.
For fixed o-, -oo< o-=< 1, and f, g, analytic in A with f(0)= g(0)= 0, define the

convolution of f and g [denoted (f, g),] as follows: if f(z)=n=l a,,z", g(z)=,,__ b,,z", then

(f * g)(z)= 2 [(n- 1)!a,b,/(2-2r),_a]z",
n=l

when z A. In [11], Ruscheweyh, and in [8], the author, independently obtained the
following generalization of a theorem of Suffridge [14].

THOnM A. Let f $(r) and g C(r). Then (f * g), C(r).
Let P(’) denote the Jacobi polynomials defined by

P(:’)(x) [(1 +a),/n!]F[-n, n +a +/3 + 1, 1 +a, (1- x)/2].

Here F is the hypergeometric function. Clearly, P(,’’) (1) (1 + a ),/n !. In this paper we
use Theorem A to prove

* Received by the editors March 29, 1978, and in revised form August 14, 1978.
? Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506.
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THEOREM 1. Let 0 <= h <-- a + and a >-_ 13 > -c. Then, P("’) (x) k(1.6)
(l+h)n_k (l+h)k

P(k’-5--z SO n 1 2,...
k=O (n-k)! k! (1)

for -l <=x <= l and z 6 A.
If we let z ->- 1 in (1.6), it follows that

(1 +h)n_k (1 +h) P(k’’t)(X)>_ 0 n 1 2,...(1.7) k=O (--1)k -r:5 ]ii k’. P("’)(1)

when 1 -<_ x _-< 1. We note that Askey and Gasper in [2], and Gasper in [5], showed that
(1.7) holds whenever either (a) 0 -<_ A -<_ a +/3, a >= 1/2, or (b) 1 < A <-_ a +/3, 1/31 <= a.
Also Bustoz and Savage [3] proved that (1.7) is valid for 1 < A < 2 and a =/3 1/2. Askey
[1] verified (1.7) for A 2, a =/3 21-, and pointed out that this inequality is false when
> 2, a =/3 1/2. Thus it appears likely that the restrictions on in Theorem 1 can be

relaxed. However, the assumption a _->/3 in Theorem 1 cannot be replaced by a </3.
Indeed, if n 1, x 1, then the polynomials-in (1.6) have a zero at

z (1)/[P]"’ (-1)] (1 + a)/(1 +

and Izl< 1 when
Next we note that Ruscheweyh [12] proved Theorem 1 when a =/3 >_-0 and A 0.

We sketch his proof. In this case the function in (1.6) can be written in the form:
--1 (Z) whereZ (f * zg’)(1/2-,)

(1.8) f(z)= z(l + zZ-2xz)-(’+1/2), z A,

g(0) 0, and

g’(z) (1 z"+l)/(1 z), z e A.

It is easily checked that f S(1/2-a) and g C(1/2-a). Hence by Theorem A,

z(f * g)l/2-o)(Z)-- (f * zg’)(1/2-o)(Z)---- p(eiz)P(z), zA,

for some q S (1/2 a), 0 real, and P analytic in A with Re P > 0. From (1.3) we conclude
that (1.6) holds when a =/3 _-> 0 and h 0.

Our proof of Theorem 1 is similar. However, the functions involved in the
convolution are more complicated when a >/3 and 0 < h _-< a //3. In 2 we study, for
fixed a,/3, as in Theorem 1, the following generating function for Jacobi polynomials
(see [10, 132]):

G(z, x) z(1 z)-(l+’+O)F[1/2(1 + a +/3), 1/2(2 + a +/3), 1 + a, 2(x 1)z/(1 z)2]
(1 + a +/3), P(,"’)(x) n+l(1.9) E p(, --V--- z

,=o n! (1)

Observe that G(., x) f in (1.8) when a =/3. Using Lemma 1 we show in Lemma 2 that
G(.,x) is in S(1/2(1-a-fl)) when [/3[<_-a and -l<_-x<_-l. In 3 we consider the
polynomials q, (., h), n 1, 2, , defined by

(1.10) q,(z,h)=
(1 /A)n-k (1 /A)k k

=o (n :i k-, z"
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In Lemma 3 we prove that n!q,(.,h)/(1 +h),, is the derivative of a function in
C(1/2(1-a-B)) when O=<h _-<a +/3 and n 1, 2,.... Since (1.6) can be written in the
form"

(1.11) -1
Z (G(., x) $ Zqn(’, ,))(1-a-B)/2(Z) O,

when -1 _-< x <_- 1 and z A, it then follows from Theorem A, as in the previous special
case, that Theorem 1 is true.

2. Several lemmas. We first prove
LEMMA 1. Let a and B be as in Theorem 1. Then the function

z-zF(l+a+13,1+[3,1+a,z), zA,

is in S (1/2(1 a fl )).
Proof. Lemma 1 is trivial if a =/3, since the above function is then of the form (1.4).

Hence we assume /3 <a. Let a l+a +/3, b 1+/3, c l+a. We write F for
F(a, b, c, z). Recall that F satisfies in A the differential equation:

(2.1) z(1 z)F" +[c -(a + b + 1)z]F’- abF= O.

Let w be the meromorphic function in A defined by

(2.2) zF’/F= aw/(1-oo).

To prove Lemma 1 it clearly suffices to show Re [zF’/F]>=-a/2, in A. Since the
function, z az(1 z)-1, maps A onto {st: Re sr > -a/2}, this inequality is equivalent to

I,ol < 1. To show I,ol < 1, we employ a useful technique (see [6], [9], [13]). First note that
I,ol < 1 in {z: Izl < s}, provided s > 0 is small enough, since w(0) 0. Second, let p be the
supremum of the numbers s > 0 for which Io[ < 1 in {z: Iz[ < s}. If p < 1, there exists z0
with ]Zo] =p for which I,o(zo)l- 1. From the maximum modulus theorem, we have
]ZI-I[(.0(Z)[ /9-1 in {z: [z] <_-- p}. Hence if z re,

log (Izl-llo(z)l)l=zo -Im (zo’/o)(Zo)= o

3
r--log (Izl-al o(z)l)lz=zo Re (zw’/oo)(Zo)- 1 >=0.
Or

We conclude that

(2.3) ZoW’(Zo) tro(Zo), >= 1.

Multiplying (2.2) by F and differentiating, we get

(2.4) z(zF’)’= zF’aw(1 o.))-1 + aFzw’(1 --(.0)-2,
for Izl< O. From (2.1),

z(zF’)’=zF’+zZF
(2.5)

-[c (a + b + 1)z]zF’/(1 z) + abzF/(1 z) + zF’,

when [z] < p. Equating (2.4) to (2.5) and combining terms in zF’ and F, we obtain

[abz/(1 z)- azw’/(1 w)2]F
zF’[((a + 1)w 1)/(1 -w) + (c -(a + b + 1)z)/(1 -z)].
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Multiplying this equality by (1-z)(1-to):/F and using (2.2), it follows that

):[abz(1 to azto’(1 z)] ato [(1 z)((a + 1)to 1) + (c -(a + b + 1)z)(1 to)].

We let z - Zo in the above equality, and use (2.3) to replace Zoto’ by tto. Rearranging
terms in the resulting equality, we get

Azo B,

where

and

)2A=ab(1-to +atto+ato((a + l)to-1)+ato(a +b+ l)(1-to)

a[b + (a b + t)to],

B ato[t +(a + 1)to 1 + c(1-to)] ato[t +c- 1 +(a + 1 c)to].

We now substitute the expressions for a, b, and c in terms of a and/3, in the above
equalities. Since [to 1, >_- 1, a >/3, and a +/3 >_- 0, it follows that

[a[ IB] =(l+a +/3)la +t+to(l+/3)l>0.
Hence, ]Zo[ p 1. We have reached a contradiction to our assumption that p < 1. This
concludes the proof of Lemma 1.

Next we observe for a,/3, as in Theorem 1, that the function

wF(1/2(l+a+),1/2(2+a+), l+a, w)

is analytic in {w’w [1, az)}. Also, this function and its derivative have continuous
one-sided limits as w - r > 1 from either above or below [1, m) (see [16, chap. 14]).
Since z 2(x- 1)z/(1-z)2 maps A univalently onto {w" wc[(1-x)/2, o)}, it follows
that G(., x) in (1.9) is analytic in A for -1 --< x <_-- 1. If x cos q, 0--<_ q <--_ r, z e, and
z - 1, then

(2.6) 2(x-1)z/(l-z)Z=sin2 (q/2)/sin2 (0/2).

Hence, 2(x 1)z/(1 z)2 1 in A U T only for z e We also note for later use that

(2.7) 2(x- 1)(Im z) Im [z/(1- z)2] =< 0,

when z A and -1 _-< x <_- 1. From (2.6) and the first observation, we see for -1 -<_ x _-< 1
that G(., x) in (1.9) and its derivative extend continuously to A U T-{l, e+i}, when
x cos q, 0-<_ q _<- zr.

We use these facts to prove
LEMMA 2. Let and be as in Theorem 1. Then G(.,x) is in $(1/2(1-a-fl)) for

-1__<x<=1.

Proof. Lemma 2 is trivial if x 1, since

G(z, 1) z(1-z)-(l+’+t) z cA

Also if x --1, then from (1.9) and the fact that

P(,’)(-1) (-1)"(1 +/3),/n!, n =0, 1,. ,
we find

G(z, -1) zF(l + a + fl, l + fl, l + a, -z), z e A.

From Lemma 1 we conclude that G(.,-1) is in $(1/2(1-a-/3)).
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For fixed x, -1 < x < 1, define o- in A by

(2.8) 2(x-1)z/(1-z)2=-4o’(z)/(1-o’(z))
From the remarks preceding Lemma 2, we see that cr is analytic in A, extends
continuously to , and 1o-[ <- 1. If z A and Io’(z)] <= 1/2, then from (2.8)

Io’(z)/zl 1/2](x 1)(1 -o-(z))2/(1 z)l-> Ix 11/32,

while if I1 -> , then

Io’(z)/zl>-1/2>=lx 11/32.
Using these inequalities, (2.8), and (1.3), we get

[z-aG(z, x)l I[(1-cr(z))/(1-z)](l++t)l [G(o’(z),-1)/r(z)[

[2lx ll-llr(z)[/Izl](++)/2 a(r(z), -1)[/lr(z)l
__> 16-(+’+t)/22-(1++t)

8-(l+ez+B).

If x cos 0, 0 < r < rr, then from this inequality and the remark preceding Lemma 2, we
deduce that zG’(.,x)/G(.,x) is analytic in A and extends continuously to ALl T-
{e +/-’,.1}.

If " -4z/(1 z)2, let

(dF/d()[(1 +a +B), 1/2(2 + c +/3), 1 +c,-4z/(1-z)2]
H(z) F[1/2(1 + + t), 1/2(2 + + t), 1 + , -4z/(a z)]

when z A. Taking the logarithmic derivative of G(., -1), we get

Re [zG’(z,-1)/G(z,-1)]= Re [1 +(1 +a + B)z/(1-z)]

-4 Re [z(1 +z)(1-z)-SH(z)],
for z A O T-{+I}. If z e T-{+I}, note that

Re [1 + (1 + a + B)z/(1 z)] (1 -a -B)/2,

(2.9) Re [z(1 + z)/(1 z)s] 0,

(Im z) Im [z(1 + z)/(1 z)]< 0.

These inequalities and the fact that G(.,-1) is in $(1/2(1-a-/3)) imply

(2.10) (Imz)(ImH(z))<-O, z T-{+I}.

Again, if x cos q, 0 < q < rr, is fixed, then

(2.11) Re [zG’(z, x)/G(z, x)]

Re [1 + (1 + a + B)z/(1- z)]+ 2(x- 1) Re [z(1 + z)(1-z)-3H(o-(z))],
where r is as in (2.8) Let r {e -q < 0 < q}. If z e r- {1}, then from (2.6) wesee that
2(x-1)z/(1-z)2> 1, and thereupon from (2.8) that o-(z) e T-{+I}. Also from (2.7),
we deduce

(Im z)(Im r(z))> O, z e z-{l}.
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(2.16)

Using (2.11), (2.9), (2.10), and the above inequality, we obtain

Re [zG’(z, x)/G(z, x)]

(2.12) 21-(1 a -/3) + 2(1 x) Im [z(1 + z)(1 z)-3] Im H(tr(z))

_->1/2(1 -a -),
whenze--{1}.SupposenowthatzT--andz#e .Then0<2(x 1)z/(1-z)2<
1, and so, -1 < tr(z) < 1. Hence, Im H(tr(z)) 0, and the second function on the right
hand side of (2.11) is zero at z. Thus (2.12) also holds for z T-- and z # e

It remains to examine the behavior of zG’(., x)/G(., x), near e and 1. To do
this let a 1/2(1 + a +/3), b 1/2(2 + a +/3), c 1 + a, and suppose that

(2.13) a +b-c =1/2+/3 integer.

Under this additional assumption on/3 we have

(2.14) F(a, b, c, w) A 1F(a, b, a + b -c + 1, 1 w)

+ A2(1 w)C-(a+b)F(c a, c b, c a b + 1, 1 w),

when larg (1 w)[ < r, and

(2.15) F(a, b, c, w) Bl(-W)-aF(a, 1 c + a, 1 b + a, w -1)
+ Bz(-w)-bF(b, 1 c + b, 1 a + b, w-l),

when larg (-w)l < r. Here arg denotes the principal argument and

A1 r(c)r(c-a-b)/[r(c-a)r(c-b)],

32- r(c)r(a + b-

B1 F(c)F(b a)/[F(b)F(c a)],

B2 F(c)F(a b)/[F(a)F(c b)],

(see [4, 2.10] for these formulas).
If c (a + b) > 0, then from (2.14)

F’(a,b,c, w)=-Alab/(a+b-c+l)+Az(a+b-c)(1-w)C-a-b-l+o(1),

as w -) 1, in such a way that [arg (1- w)[ < r. Moreover,

F(a, b, c, 142) -1 [ax + A2(1 w)c-(a/b)]-1 + O([1 W[),

as w --) 1, with ]arg (1- w)l < r. Therefore,

(2.17) F’(a, b, c, w)/F(a, b, c, w)=-ab/(a + b-c + 1)

+ A.(a + b -c)(1 w)C-"-b-l[A1 + A2(1 W)-("+b)]-1 + O(1),

as w--)l, ]arg(1--w)l<r. Put w=2(x-1)z/(1-z)2, where x=cosq, 0<q<r.
Observe from (2.6) that w 1 as z --) e i. If c-a -b > 1, then from (2.17), we clearly
have

(2.18) Im [F’(a, b, c, w)/F(a, b, c, w)] =Im H(tr(z))-O,
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as z e i’. If 0 < c a b < 1, observe from (2.16) that A2/A < 0o Let N be the largest
positive integer such that N(c-a-b)< 1. Then from (2.17) we have

(2.19) ImH(tr(z))=(c’-a-b)Im (l-w)-a 2 [(IA21/IA,I)(1-w /o(1),
k=l

as w 1, larg (1- w)l < r. Note that the function

r _) (1 r)-v, 1-’= 1,

maps {r. Im r _<_ 0} into itself for 0 < 3’ < 1. Since by (2.7),

(Im z)(Im w) <_- 0, z A,

it follows from this observation and (2.19) that

(2.20) lim sup Im H(o’(z)) <= O,

when O<c-a-b<l.
We now observe from (2.9) that

Re [z(1 + z)(1- z)-3] O(Iz-ei’l)- O([1- wl),

as z --> e i’. Hence, from (2.17),

zliem_., Re [z(1 + z)/(1 z)3]lH(o’(z))l O.

This equality, (2.9), (2.11), (2.18), and (2.20) imply for c-a-b >0,

lim inf Re [zG’(z, x)/G(z, x)]

(2.21) >=1/2(1-a-)+2(1-x) lizmief {Im[z(l +z)(1-z)-3]ImH(o’(z))}
__>(--).

If c-a- b < 0, we rewrite (2.14) in the form:

F(a, b, c, w) (1 w)C-’-’g(w),

where

O(w) A 1(1 w)’/b-CF(a, b, a + b c + 1, 1 w)

+A2F(c-a,c-b,c-a-b+l, l-w)

A 1(1 W)a+b-c "1"

as w -) 1, larg (1 w)l < 7r. Hence

O’(w) A 1(c a b)(1 w)a/b--l- A:z(c a)(c b)/(c a b + 1)+ o(1),

as w --) 1, larg (1 w)l < 7r. Taking the logarithmic derivative of F(a, b, c, ), we get

F’(a, b, c, w)/F(a, b, c, w)

(2.22) (a + b c)/(1 w)+[A 1(c a b)(1 w)’/b-c-1

-A2(c a)(c b)/(c a b + 1)][A1(1 w)’+b- + A2]-a + o(1)

=(a +b-c)/(1-w)-(c-a)(c-b)/(c-a-b+ l)+J(w)+o(1),



JACOBI POLYNOMIALS 1117

as w -+ 1, larg (1- w)l < 7r, where

J(w)=Al(C-a-b)(1-w)a+b-c-l[Al(1-w)a+b-c +A2]-.
As in the proof of (2.18) and (2.20), it follows that

NOW,

2(x 1) Re [z(1 + z)(1 z)-3(1 w)-]
2(x- 1) Re [z(1 + z)(1- z)-l(1 + z-2xz)-]
Re [-2(1 z)- +(1-e-i’z)-1 +(1-eiz)-1]

(2.24)
>-1/2 + Re [-2(1 z)-1 + (1 e’Wz)-1]
_->1/2-1/2+o(1)

=o(),

as z e ’. Here we have used the fact that Re (1 ’)- =for " in T. From (2.9), (2.11),
and (2.22)-(2.24), it follows, as previously, that (2.21) holds when c a b < 0. Since,

Re [zG’(z, x)/G(z, x)] Re [2G’(2, x)/G(2, x)], z e A,

we conclude from (2.21) that

(2.25) lim inf Re [zG’(z, x)/G(z, x)]-> (1 -a -/).
e-t,

Finally, we examine the behavior of zG’(., x)/G(., x) as z -> 1. From (2.15) and
the fact that b-a 2, we have

F(a, b, c, w) =- (-w)-[BF(a, 1 c + a, 1 b + a, w-)
+ B(-w)-l/eF(b, 1 c + b, 1 a + b, w-i)]

(-w)-[B1 + B2(-w)-1/2 +

as w -+ oo, larg (-w)l < rr. Taking the logarithmic derivative of F(a, b, c, ), we get

F’(a, b, c, w)/F(a, b, c, w)=-a/w +[Bz(-W)-3/a+O(Iwl-)][B1 +O(Iwl-1/2)]-1

-a/w + (Bz/2B1)(-w)-3/2 + O([w1-2)

as w -oe, [arg (-w)[ <_- zr. Using this equality with w 2(x- 1)z/(1-z)2, the fact that
a (1 + a +/3), and (2.11), we obtain

zG’(z,x)/G(z,x)

1 +(1 +a +)z/(1-z)-(1 +a +/3)(1 +z)/[2(1-z)]

-(B2/2B)[2(1-x)z]-/2(1 + z) + o(1)

1/2(1 ce -/3)-(B2/B1)[2(1 x)]-1/2 + o(1)

as z -+ 1. Since by (2.16), B2/B1 <= O, it follows that

lim Re [zG’(z, x)/G(z, x)]-> (1 -a -/3).
z-+l

(2.23) lim suplm J(w) <= O.
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From this inequality, (2.12), (2.21), (2.25), and the minimum principle for harmonic
functions, we conclude

Re[zG’(z,x)/G(z,x)]>1/2(1-a-), z cA.

This proves Lemma 2 when 1/2 +/3 integer. To prove Lemma 2 when 1/2 +/3 is an integer,
it suffices to observe for fixed z A and -1 _-<x _<- 1 that zG’(z, x)/G(z, x) is continuous
as a function of a and/3.

3. Proof of Theorem 1. We now consider the polynomials qn(’, A) defined in
(1.10). We prove

LEMMA 3. If A _-->0, then n!qn(.,A)/(l+A) is the derivative of a function in
C((1-A)) for n 1, 2,....

Proof. First observe that q,(z, A) is the nth coefficient in the Maclaurin series
expansion of the function"

w (1 zw)-(l+X)(1 w)-(l+x) w 6 A

Hence by Cauchy’s theorem,

q,(z,A)=(1/(27ri)) I (1-zw)-(l+)(1-w)-(l+) dw/w"+l’

when z A U T and p < 1. Let z e i and w e-i/2(. Changing variables in the above
equality, we get

(3.1)

where

qn(ei A)=(1/(27ri)) ei"/2
l=o

(1-2
ei"/Zol+X[COSn (0/2)],

0 )
-(1+;)

cos sr + sr2 dsr/,n+l

Ql+X [(2 + 2A)./(+ A)n]P? +1/2";t+1/2)

is the Gegenbauer polynomial of degree n corresponding to 1 + A. It is well known that
Q,l+X has n distinct zeros in (- 1, 1). Hence qn (. A) has its zeros on T. Moreover, if
Xl =cos (01/2) and x2 =cos (02/2), 01 < 02, are two zeros of Ql+Xn then an argument
similar to 15, Thm. 6.3.1] shows that

(3.2) 02- 01 > 27r/(n + 1 + A ),

for , 0. Let arg qn , A) Im log qn (., A) in A, where Im log q, (0, A) 0. Let E
{0" qn(e i, A) 0} and put

arg q, (e i, A lim arg qn (r e i, A ), 0 el E.
rl

Note that arg q,(., A) is continuous on T-{e i" 0 E}, and

(3.3) lim[argqn(ei+,A)-argq,(e i(-), A)] -Tr,
0

when 0 E.
We claim for (491, q92 i E and (,/91 < q92 that

(3.4) arg q,(e ’2, ,) arg q,(e i1 ,) >-rr--(1 + )(o2- ql).

To prove this claim choose q(, so that 2-q is divisible by 27r, and ql < q -<-ql + 2rr.
Suppose that q,(-,A) has rn zeros on the arc" {e i’" ql-<_q_-<q}. Then from the
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periodicity of arg q,(., A), and (3.1)-(3.3), we get

arg q,, (e ’2, A )-arg q, (e uaa .
n(q q91)/2- mrr

-(n + 1 + A)(rp qOl)- mr- 1/2(1 "+" )((. (41)

> -rr 1/2(1 + a ((42

Lemma 3 follows from (3.4) and an argument similar to either Suffridge 14, Thm. 2] or
Kaplan [7]. We prefer to argue as in Kaplan. Let

p(e) [argq,,(e’,a)+1/2(l+a)O]-1/2(l+a)-rr/2.

Clearly,

sup

p(e ’’) >= arg qn(e i’, )-’n’/2,

Also, from (3.4) we deduce

p(e i’#) <= arg q,(e i’, A + rr/2,

Hence,

(3.5) Ip(ei’)-arg q,(e i’, A )1 <= rr/2,

It is easily seen that p is periodic of period 2rr, and

(3.6) p(ei2)-p(ei’)>=-(1 +A)(2- 1),

when (491 < (492.

We now define f analytic in A by the Poisson integral,

[ l+e-’zlog (f(z)/z) P(e’)
1 e-iz d,

Observe for z r e i" that

ZA.

2,’gr

(3.7) arg(f(z)/z)=(1/(2rr))(1-r2) Io p(ei(’+a’))(l+r2-2rcsr)-I dq.

(3.6) and (3.7)imply that

arg [e-i<f(r e"%]- arg [e-"’f(r e’<)] >- 1/2(1 + a )(02- 01),

when 01<02 and 0<r<l. Hence, fff(O)eS(1/2(1-a)). From (3.5), (3.7), and a
corresponding Poisson integral for arg q,, (., a), it follows that

larg (f(z)/z)-arg q,,(z, a )l <- rr/2.

Thus,

zq. (z, a f(z)P(z), z e A,

where P is analytic in A with positive real part. If If’(O)]-lf’(O)= e , let

h(z)= f(e-iOz)/(lfl(O)l), z

and define g analytic in A by g(O)= O,

g’(z) n !q,(z, a )/(1 + a ),, z e k.
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Then h S(1/2(1-/)) and g, h, satisfy (1.5), so g 6 C(21-(1-1)). Hence Lemma 3 is true.
We remark that Lemma 3 fails when -1 < h < 0, essentially because inequality

(3.2) is reversed in this case. To prove Theorem 1 first observe that (1.6) can be written
in the form (1.11). Second, observe that C(1/2(1-h)) is contained in C(1/2(1-a -fl)) for
0 <_- h _-< a +/3. Theorem 1 follows from these observations, Lemmas 2-3, and Theorem
A, as in 1. We omit the details. The proof of Theorem 1 is now complete.
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A SENSITIVITY ANALYSIS OF SYSTEMS CONSISTING OF
LINEAR BLOCKS*

VACLAV DOLEZAL?

Abstract. The paper presents a simple yet quite general method for analyzing the sensitivity of a
performance characteristic of a system consisting of linear blocks. The analysis is based on properties of a
gradient of an abstract function. Applications in network theory and in the theory of feedback systems are
discussed.

Introduction. In this paper our main objective is the sensitivity analysis of systems
consisting of finitely many linear blocks. The basic idea concerning sensitivity is
standard, but the present setting is much more general. In the traditional sensitivity
analysis it is assumed [1], [2] that some elements of the system under consideration
depend on a real parameter K. Here, the "parameter K" has a broader meaning; it can
be, for example, an operator describing some particular block, a vector, etc.

To describe our approach in more detail, consider a system S, whose specified
performance characteristic F depends on certain quantities X1, X,..., X. Assume
that these quantities are in some Banach space , and that they are allowed to vary
within certain limits. Thus, the performance characteristic F appears as a function of an
n-vector X. (X1, X2, , Xn), which lies in a given vicinity U0 of the nominal n-vector
X= (X, X2, , X). Suppose that we can find linear operators fa, f2," ",fn such
that

(i) F(X) F(X) E .fi(Xi X +(X X)
i=1

for every X in Uo, where the size of the quantity qz(X-X) is much smaller than the
numbers IIX-XTII, i= 1,2,..., n, i.e., q(X-X) can be neglected in the first
approximation. Then we can adopt the operator fi or its norm I[]][ as a measure of the
sensitivity of F to variations Xi-X of the nominal value X/.

Note that we did not specify the nature of the quantity F(X); it can be an operator,
element of some fixed Banach space , etc.

As it is suggested by equation (i) the operators fi, 1, 2,. , n are the entries of
the (strong) gradient of F at X. This fact turns out to be particularly useful, if the
quantities X/, 1, 2,. , n have the meaning of operators describing certain blocks
which constitute our system S. Note that the essential fact in this situation is that F(X) is
obtained by forming finitely many sums, products and inverses from operators
X1, X2,""" ,Xn.

To develop these ideas, in the first part of the paper we will study the properties of a
gradient which concern linear combinations, products and inverses of differentiable
mappings. At the same time, we will be concerned with the "size of the wastebasket
term qt(X-X) in (i)" so as to have an estimate for the accuracy of replacing
F(X)-F(X) by the term Y,=a f(Xi-X).

Then we will discuss certain applications of our results in the network theory and
the theory of feedback systems.

* Received by the editors June 16, 1978, and in revised form September 14, 1978.
t Department of Applied Mathematics and Statistics, State University of New York at Stony Brook,

Stony Brook, New York, 11794. This research was supported by the National Science Foundation under
Grant MPS7505268.
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In the final part of the paper we will give simple rules which permit us to calculate
the gradient of performance characteristics usually encountered in systems analysis.

1. Operator-valued functions. We will use the following notations.
Let R be the real n-dimensional Euclidean space with norm Isl (Y.’=l s)1/2.
If H is a Banach space and n ->_ 1 is an integer, we let H be the n-fold Cartesian

product of H. For each X (X1, X2," , X,) H we define the norm Ilxll’ by

(1.1) Ilxll’- _2 Ilxill2 /2.
i-1

If X H and r > 0 denote

(1.2) Br(X) {X"X H", IIx- xll’ <
Finally, if H, H2 are Banach spaces over the same field of scalars, we let [HI, H2]

be the Banach space of all linear bounded operators A" H1 --> H2 which is equipped with
the customary norm A supllxll= 1.xH, I[Axll.

DEFINITION 1.1. Let , be fixed Banach spaces, and let D c" be a nonempty
open set. Furthermore, let F" D--> g and let X D. If

(i) there exist operators fi [, ], 1, 2,. , n and
(ii) for some r>0 with Br(X)cD there exists a function

continuous and vanishing at 0 3f" such that

(1.3) ][F(X + Z)-F(X)
i=1

for all Z (Z1, Z:,. , Z,) B, (0),
then F will be called differentiable at X and the n-vector

OF (fl, f2,’" ", f,) e [,

will be called the gradient of F at X. Also, any satisfying (1.3) will be called an error
function of F on Br(O).

Observe that from (1.3) it follows that

(1.4) IIF(X + Z)-F(X)II IIWII" II211 + IlZll’ (Z)
i=1

for all Z Br(0).
Moreover, from (1.4) we have by (1.1),

(1.5) IIF(X+Z)-F(X)II<-(IIoFII+*(N))" II/ll’
for all Z B(0). Hence, F is continuous at X.

Before proceeding further, let us emphasize the fact that the operators fk,
1, 2, , n are determined uniquely by our definition. Indeed, suppose that there exist

f [Sf, ], 1, 2, , n and, for some > 0 with Be(X) D, a function " Be(0)
[0, oe), continuous and vanishing at 0 " such that

i=1

for all Z B(0). Choose an index 1 <_-/" <_- n, and let e > 0. By continuity of and at 0,
there exist rl > 0 and r2 > 0 such that 0 _-< (Z) < e/2 for I]ZI]’ < rl, and 0 -<_ cI)(Z) < e/2
for ][Z[[’<r2. Put ro=min[r, r2]>0, choose W with IlWIl<ro and let Z=
(0, 0, , 0, W, 0,..., 0) w", where W stands at the/’th place. Then [IZI]’= WI] < ro
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and (1.3), (1.6) yield by triangular law

(1.7)

Since fi, ] are linear, (1.7) holds for any W 6. Hence, I ][I--< e, and consequently,

To give an example of a differentiable mapping, let h be a Banach space, and let
H h, f= [h, hi. If Ao [h, hi and ai, 1, 2,. , n are scalars, define F" n by

(1.8) F(X) ao + ,
aiXi.

i=1

Then it is easy to see that, for anyX n, F is differentiable at X, and the gradient OF
at X is given by OF (aI, a2l, , a,I), where I is the identity operator in [, ].
Also, cI)= 0 is an error function of F on B(0) with any r > 0.

THEOREM 1.1. LetD be a nonempty open set, let F, G" D -> be differentiable
at X e D, and let a be a scalar. Then F + G and aF are also differentiable at X and

(1.9) O(F+G)=OF+OG,

(1.1 o) O(aF) a OF.

Moreover, if and Po is an error function of F and G on B(0), respectively, then
6 + &o and ]a] is an error function ofF + and aF on Br(O) respectively.

Proof. The proof follows trivially from Definition 1.1.
THEOREM 1.2. LetD be a nonempty open set, let F" D - [H, Hal be differen-

tiable atX D, and letA [Ha, H], B [Ho, H1]. Then the mapping G" D - [Ho, H],
defined by

(1.11) o(x) AF(X)B,

is differentiable at X, and for the gradient 0G (g, ga,""", g) [, [Ho, H]] we
have

(1.12) g,(W)= Af(W)B

for all W and 1, 2, , n, where (fl, f2, , fn) OF. Moreover, if P is an error

function ofF on Br(O), then I]a]]. ]]B[] is an error function of G on Br(O).
This assertion is again a trivial consequence of the Definition 1.1.
THEOREM 1.3. Let D c be a nonempty open set, and let the mappings FI: D

[H1, H2] and Fa: D[Ho, H] be differentiable at XD. Then the mapping
(F F2): D - [Ho, Ha], defined by

(1.13) (F Fa)(X) F(X)Fa(X),

is differentiable at Xo, and for the gradient O(F F2) (gl, g2," gn) G [d’, [Ho, H2]]
we have

(1.14) g,( W) f W)F2(X) +F (X)f (W)

for each W ), 1, 2,..., n, where OF (fil, f, fi), j 1, 2.
Moreover, if pl and qo2 is an errorfunction ofF andF2 on B,(O), respectively, then

the function , defined by

(1.15) O(Z) IIFl(X)llO2(z) + IIFa(X)IIO(Z) + (IIoF’II + ol(z))(llaFall + o2(z))llzll
is an error function ofF F2 on Br(O).
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Proof. Choose Z Br(0). Then we have by (1.13) and (1.14),

i=1

IIf(X)(f(X +Z)-F(N))+ (F(X +Z)-fl(x))f(X)

(1.16)

o 2. (f (Zi)F2(X) +F (X )f (Zi))
i=1

+" (fl(x + Z)-fI(X))(Fz(X + Z)-

+ IIFI(X + Z)-FI(X)[[ IIF:(x + z)
F:(X)[

Invoking (1.3) and (1.6), it follows that

m =< IIF’(X)ilC,*(z)llzII + IIF(X)llc,x(z)llzil
(1.17)

+ (IIoF’II + @I(z))(IIoF21I + ,:’(z))llzII’ ,:I:,(z)llzll’.
Since gi [’, [Ho, H2]] by (1.14) for 1, 2, , n, and @ is continuous and vanishing
at the origin 0 ", (1.16), (1.17) show that (1.3) holds for F F2. Hence the
uniqueness of the gradient concludes the proof.

For the proof of the next theorem we will need the following assertion.
LEMMA 1.1. Let H1, H2 be Banach spaces having the same system of scalars, let

A e [H1, H2] be invertible, and let 0 < a < 1. IfA [H1, H2] and

(1.18) Ila -all <_- [la-l[[-1;

then A is invertible, A -1 [H2, H1] and

(1.19) ][A-111 _-< (1 a )-[[A-1]],
(1.20) [[A-X-A-X[[(X-og)-11]A-1[[2

Proof. First observe that A-X [H2, HI] by virtue of the open mapping theorem.
If A [Hi, H2] satisfies (1.18), let

(1.21) B =I +(A-A)A-1 [H2, H2].

Then clearly A BA.
Next, choose y e H2 and define the operator Cy" H2 -+ H2 by

(1.22) Cyx -(A-A)A-lx + y.

If xl, xz 6 H2, we have by (1.18),

IICx- Cx211-<_ [[(A -A)A-Xl]. Ilxx- x211
_-< I[A -All. IIA-all. Ilxl- x211--< llXl- x211.

Thus, Cy is a contraction on H2, and consequently, there exists a unique x e H2 such that
x Cyx, i.e., by (1.22) and (1.21), Bx y. Hence, B is invertible.
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Furthermore, let yl, y2EH2 and put x. B-lyi, ] 1, 2. Then we have by (1.22),

(1.23) [IXl-X2[[---llCyxxx-Cy2x21l---l]-(A-A)A-l(xx-x2).q- YI- Ya]]

Hence, from (1.23),

(1.24)

Since B-a is linear, (1.24) shows that B -1 is bounded and
Since A B A, it follows that A is invertible and A

[H2, Ha] because A-1 [H2, Ha], B-1 [H2, Ha], and [[A-al] <-[lA-11l IIB-II_-<
(1- IIA-111 which confirms (1.19).

Finally, we have by (1.19),

[IA -a -A-all IIA-a(A A)A-’II

IIA-II IIm-lll IIA-All
__< )-(1-a IIA-II.IIA All,

which proves (1.20).
THEOREM 1.4. LetD n be a nonempty open set, let the mappingF D - [Ha, H2]

be differentiable atX D, and let F(X) be invertible. Then there exists r* > 0 such that
F(X) is invertible for each X Br,(X), and the mapping G: Br,(X) - [Ha, H1] defined
by

(1.25) G(X)=[F(X)]-a

is differentiable at X. Also, for the gradient OG (ga, g2," ", gn)E [’, [H2, H]] we
have

(1.26) gi(W) -[F(X)]-af(W)[F(X)]-1

for all W G and 1, 2,. , n, where (fl, f2," , f) OF.
Moreover, if is an error function of F on B,(O), where r >0 is so small that

0 <= (Z) <= 1 for each Z B(O), and if 0 < a < 1, then with

(1.27) r* min [r, a (ll0Vll + 1)-ll[v(x)]-ll- > o,

the function * defined by

(1.28) *(Z) -[[[F(X)]-lll2{(Z) / (1 a )-lllEf(X)]-ll[(llOF[I / 1)211Zll’}
is an error function of G on Br* (0).

Proof. From Definition 1.1 it follows that, for a given F and X e D, we can always
find r > 0 such that 0 =< (I)(Z) -<_ 1 on B,(0) and satisfies (1.3) for every Z e B(0). Fixing
such an r > 0, we have by (1.6),

(1.29) [[F(X + Z)-F(X)[I <= (ll0fl[ / 1)llzll’
for every Z E Br(0).

Choose now 0 < a < 1 and define r* > 0 by (1.27). If Z Br.(O), we have by (1.29)
and (1.27),

IIF(X /Z)-F(X)II _-< (lloF]l / 1)llzll’ -< (lloFll / 1)r*
(1.30)

<_- ll[F(X)]-lll-a.

Hence, by Lemma 1.1, F(X + Z) is invertible, G(X +Z) [F(X + Z)]- [Ha, Ha],
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and, by (1.20), (1.30),

(1.31)
IIG(x /z)- G(X)ll <- (1 )-’II[F(X)]-llZllF(X / z)-F(X)ll

-<_ (1 c)-lll[F(X)]-lll2(lloFl] + 1)lIzll’.

Moreover, by (1.26), (1.30) and (1.31) we have for such Z Br*(0),

(x +z)-(x) E g,(Z,)
i-1

][[F(X + Z)]-I{F(X + Z)-F(X)}[F(X)]-
[F(X)]-lf,(Z,)[F(X)]-’II

i=-I

(1.32) [F(X)]-I{F(X+Z)-F(X) fi(Zi)}[F(X)]-1
i=1

+ ([F(X + Z)]-1 --[F(X)]-I)(F(X + Z)-F(X))[F(X)]-lll
<-[I[F(X)]-II=O(z)IIzII’ / (1 c )-ll[[F(X)]-lll3(lloFll + 1)2llzll’2

Since clearly gi [-, [H2, H1]] for i= 1, 2,’’’, n, and O* is continuous and
vanishing at 06 n, (1.3) holds for G and OG. Hence, the uniqueness of the gradient
concludes the proof.

The .rules for the gradient we derived are easy to memorize because they resemble
the corresponding rules on partial differentiation (in fact they reduce to them in the
particular case of f HI H2 R1). For example, (1.14) and (1.26) is an analog of the
rule O/Oxi(FG) (OF/Oxi)G +F(OG/Ox) and O/Oxi(1/F)= -(1/F)(OF/Oxi), respec-
tively.

Also, we can easily prove an assertion which is similar to that concerning a total
differential and partial derivatives of a function. Indeed, let us define the following
concept"

DEFINITION 1.2. Let w, y be fixed Banach spaces, let D n be a nonempty open
set, let F: D --> Y and X D. If 1 _-</" -< n, let

(1.33) Dj ={W: W, (X,X, ,X-I, W,X+I,. ,X,,)D}.
We will say that Fpossesses a derivative by X at X, if the mapping F." Dj -> 3f, defined
by

(1 34) /).(W) F(N, X, o

is differentiable at W=X. Then the gradient of F/ (a 1-vector) will be called
the derivative of F by X. at X and denoted by 8iF.

Clearly, 6.tF [, ], and we have:
TI-IFORM 1.5. Let D c be a nonempty set, and let the mapping F: D Y be

differentiable atX D. Then, forj 1, 2, , n, Fpossesses a derivative 6iFby X. atX,
and

(1.35) OF= (61F, 62F, 6nF).
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Proof. Choose 1 <_-j <_-n. Referring to Definition 1.1, choose W so that Z
(0, 0,..., 0, W, 0,..., 0) B,(0). Then we have by (1.3) and (1.34),

Ilf(x +z)-F(X) -f,.( II (X, + g’)- )- f,(  )11
(1.36)

<-Ilzll’e(z)

However, defining i(IX/) for each I/ with < r by i(ff’)
(0, 0,..., 0, W, 0,..., 0), we see readily that i is continuous and vanishing at

if" 0. Hence, by (1.36),/ is the gradient of F. at X. By uniqueness of a gradient it
follows that f. 8-tF and (1.35) is proved.

A converse of Theorem 1.5, of course, does not hold.
Observe also that if F "does not depend on X.," then 8iF 0. In more detail, we

have the following obvious proposition"
If F" D - fig and there exist 1 _<- j _-< n and ro > 0 such that

F(X,X,...,X?_I,W,X/I,...,X,,)=F(X,X,...,X) for all W with
W X < To, then 8.iF exists and is zero.

Before we turn to applications, let us discuss the interpretation of a gradient from
the viewpoint of sensitivity analysis.

Consider a system S whose performance characteristic F depends on quantities
X1, X2,’’ ", X,, which are allowed to vary in a certain vicinity of a nominal point
X (X, X,. X,). If F is differentiable at X, then, by virtue of (1.3) and (1.35),

(1.37) F(X+Z)-F(X) 2 (SiF)(Zi)+O(Z)
i=1

for all Z Br(O) with some r > 0, where [lO(z)ll-<-II211’ ,(z). Thus, for 1, 2, , n,
we can adopt the operator (3iF, or possibly its norm, for a measure of sensitivity of F to a
variation Zi of the nominal quantity X. If, in addition, the function (Z) is known, we
have an estimate for the accuracy of replacing the increment F(X + Z)-F(X) by the
linear combination 2i=1 (SitTg)(Zi)

Let us point out the fact that our setting is quite general, since no asstamption has
been made about the nature of quantities X1, X2,’’’, Xn and values of F.

If, in particular, the Xi’s are numbers, i.e., R 1, we get the traditional setting for
sensitivity analysis. On the other hand, for the Xi’s we can take the operators describing
certain blocks in our system S. As we shall see below, in this case it is easy to find the
gradient of F by using Theorems 1.1 through 1.5.

As far as the nature of values of F is concerned, the following three cases are of
interest"

For each X (X1, X2," , X,) D, F(X) is
(i) an operator taking inputs x in a given Banach space H1 into outputs y F(X)x

in a Banach space/-/2,
(ii) the output yo e H2 corresponding to a fixed input Xo H,
(iii) the value (yo), where yo e H2 is the output corresponding to a fixed nominal

input Xo H1, and 6e is a fixed functional in [H2, R 1].
To give an example illustrating the case (iii), assume that H2 [C[0, 00)]k, where

C[0, 00) is the space of all continuous bounded functions on [0, 00) with the sup norm. If
Y =(Yl, Y2, yk)H2, we can put (y) y,(to), where l<-r<-k and to->0 are fixed.

It is clear that, if F" D Yg, then Yg [HI, H2] in case (i), He in case (ii) and
Y= R in case (iii).

The case (i) is particularly important, because if the gradient of F at a nominal point
X is known, we can immediately establish gradients for the corresponding cases (ii)
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and (iii). Indeed, if Xo HI is a nominal input, then for the output yo HE we have
yo F(X)xo. Thus, if we let FI(X)= F(X)xo, then.F1: D- HE and we have by (1.3)

(1.38)

FI(X+Z)-Fl(X) E f(Zi)xo
i=1

Since ][Xo][(Z) is continuous and vanishing at Z 0, (1.38) shows by the uniqueness of
gradient that (f, f,..., f,) with f [, H2] defined by

(1.39) f (W) f(W)xo,

1, 2,..’., n is the gradient 0F of F at X.
Similarly, if 5PE[H.,R1] is fixed, then for F2:D->R defined by F2(X)

5(F(X)xo) we have by (1.3),

Hence, (f2, f2,..., f2) with f/2 [, R 1] defined by

(1.40) f, (w) :e(f, (W)xo),

1, 2,. , n is the gradient OFz of F2 at X.
Finally, let us emphasize the fact that the sensitivity results following from our

approach are stronger than those based on the traditional parametrization of system
elements. Indeed, suppose that an operatorX [H, H] describing a nomimal system
element is replaced by a function Xk(’): (-a,a)-[H,H] satisfying the condition
Xk(O) X Then the values Xk(a) fill out only a certain subset of the ball Br(XOk)C
[H, H], which may reduce to a segment, if Xk(a) is linear in a.

On the other hand, in our approach the allowed variations XkOf X fill out the
entire ball Br(X). Thus, our measure of sensitivity takes into account all posssible
increments of X, not only those restricted to segments or the like, and consequently, it
provides more information than a measure using parametrization.

2. Applications in network theory.
A. As a first example, let us consider the parallel connection N of 1-ports

N1, N2,"., Nn. Assume that the 1-port Ni has an impedance X,. [H, HI, i=
1, 2, , n, where H is a fixed Banach space. Our objective is to study the sensitivity of
the impedance of N to variations of impedances X/. We are going to show that the
following assertion is true"

THEOREM 2.1. Let X [H, H], 1, 2, , n be such that
(a) X-I exists for each i,

Ox?l(b) Zo (Ei:I )- exists.
Then there exists r*> 0 such that

(i) the mapping

(2.1) ( )_1U(X)-" X?
i=1

is well-defined on Br,(X) with X= (X1, Xz,. Xn) [H, H]n,
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(ii) U is differentiable at X and OU
[[H, Hi, [H, Hi] is given by

(2.2) ui(W) ZoX,
for each W [H, Hi and 1, 2,. , n,

(iii) (I)*: B,.(0) - R 1, defined by

(2.3) *(Z) 2[[Zol12{4na3 + [[Zoll(/a2 +

with a maxi=l....., I[X-111 is an error function of U at B,.(0).
Proof. Let &o= [H, Hi, and, for ] 1, 2..., n, let Fi: f" be defined by

F(X) X.. Referring to the example of a mapping defined by (1.9) it follows that F is
ditterentiable at X and 0F (0, 0,..., 0, L 0,..., 0), where I is the identity in
[, ]. Also, i-0 is the error function of F on B(0) with any r >0. Note that
IIOFill 1.

Next, invoking Theorem 1.4 we see that, for a 1/2, F/(X) is invertible for each
X B,.(X), where by (1.27) r --1/41lX -1. Thus, putting

(2.4) Gi(X) [F.(X)]-1

for X eB,.(X), it follows that Gi is differentiable at X and OGi
(0, 0, , 0, gi, 0, , 0), where

(2.5) gi(W) -X[1W X[a
for each W w. Moreover, by (1.28),

(2.6) O(Z) 8[lX/
is an error function of Gi on B,.(0).

Now, putting i IIx)-1 II, ]- 1, 2,..., n and A max,. i, it follows that with
ro =1/4A -1 the mapping

(2.7) G=
i=I

is defined on Bo(X). Hence, by Theorem 1.1, G is differentiable at X, and OG
n OGi, i.e. OG (ha h2 h,) wherei=1

(2.8) hi(W) -X-[’ W X-j1
for ] 1, 2, , n and W e. Also, by (2.6),

(2.9)
Oo(Z) 8 IIzI

i=l

is an error function of G on B,o(0). Note that if we put O min [To, (8 F,j= /3. )-1], then
0 _<-- O(Z) _-< 1 on Bo (0).

Finally, since G(X) Y’q=l X-[ is invertible by our hypothesis, by Theorem 1.4
there exists r* > 0 (given by (1.27) with r and F replaced by 0 and G, respectively) such
that G(X) is invertible for each X eB,.(O). Thus, putting U(X)=[G(X)]-1 for
XB,.(X), it follows that U is ditterentiable at X, and by (1.26),
OU (Ul, U2, Un), where ui(W) [G(X)]-1 X-I W X;1 [G(X)]-1

ZoX[ W X-[1Zo for/" 1, 2, , n and W e. Hence, (2.2) is confirmed.
Invoking (1.28) and (2.9), we see that

211Zoll(lloall/l)=I.IIzII is an error function of U on B.(0). Since
El=IllX; <-’-m2 and Ei=I :/3. <=nA3, it follows that O+=<@* with
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being given by (2.3). Hence, * is an error function of U on Br.(O) and the proof is
complete.

B. Consider now a finite network N, whose variables (voltages and currents) are in
a fixed Hilbert space H with inner product (., ). Let the structure of N be described by
a finite oriented graph G having c2 => 2 branches, which contains at least one loop, and
let the element in branch b., j 1, 2, , c2 be described by an operator X. [H, H].
Also, assume that there are no mutual couplings between individual branches. Thus,
our network N is modeled by a Hilbert network (0, G) overH [3], where the operator
0, ../4c He= is defined by

(2.10) 2x (XlXl, Xzx2, ., Xc2xc2).

Again, our objective will be to study the sensitivity of the admittance of N to variations
of elements in branches. (Note that by the admittance A of N we mean the operator
A: Hc=-+Hc which carries a c2-vector e of branch voltages in.to a c2-vector of branch
currents.)

Before solving our task, let us present certain results on Hilbert networks which
will be needed.

If d is the c2 Cl incidence matrix of G (rows and columns of d correspond to
branches and nodes of G, respectively), let Y be a c2 Co matrix, whose columns
constitute an orthonormal basis in the solution space of the equation dT. : 0, : R c:.
(Note that Co is equal to the number of loops in any complete set of line.arly independent
loops in G). Also, let the operator Y: HC"-H be defined by Yx Y [xk], x [Xk]

Moreover, if the linear space H, c_-> 1 is equipped with the inner product
(x, Y)’==l(Xj, y.), then H is again a Hilbert space, and we can show [3] that
r [H, H3 and vii a.

Also, it is known that the admittance A of N exists :the operator Y* ZY: Hc

H is invertible. (Here, Y* [H=, H] is the adioint of Y). In this-case,

(2.11) A Y Y* 2Y)- Y*.

Having assembled these preliminaries, we can state a result on sensitivity of A.
THEOREM 2.2. Let Y 6[H",H] have the same meaning as above, and let

0 < a < 1. For each X (X1, X2, , X) [H, H], let the operator F(X) [Hc, H=]
be defined by

(2.12) F(X)x (XlXl, X2x2, ", Xc2xc2).

Assume that

(a) X e [H, H], j 1, 2,..., c2,

(b) the operator Oo Y*F(X) Y [H, H] with X (X1, X2,. , X) 6

[H, H] is invertible. If

(2.13) r a(/22 + 1)-’110’ II,
then

(i) the mapping A: B(X) --> [Hc=, H=] defined by

(2.14) A(X) Y(Y*F(X) y)-I y,

is differentiable atX,
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(ii) the gradient OA (al, a2,’’’, ac2)E JIM, H], [HCz, Hc2]]c ofA atX is given
by

(2.15) ai( W) -Ao(E w)ao

for j 1, 2,. c2 and W [H, H], where

(2.16) Ao YO Y*

and E [[H, H], [Hc2, HCq] is defined by

(2.17) E/x-(0, 0,..., Wx, 0,..., O)

with Wx standing at the f-th place,
(iii) dOa defined by

(A(Z) (1- ce)-1(42 + ):llo;’ IIllzll
is an error jhnction ofA on Br (0).

Proof. From the definition (2.12) of F it follows readily that truly F(X) [Hc2, Hc]
for each X6[H,H]c2, that F is differentiable at X, and the gradient OF=
(fl, f2,"’, fc) [[H, HI, [Hc2, HC2]]c2 at X is given by

(2.18) f. E..
Also, @v --- 0 is the error function of F on Br(O) with any r > 0.

Define now the mapping O: [H, H]c2 [Hc, Hc’’] by

(2.19) O(X) Y*F(X) Y.

Invoking Theorem 1.2, it follows that O is differentiable at X, and for 00
(ql, q2, "’, qc) [[H, H], [Hc, HC]]c we have

(2.20) qj(W) Y*(EiW) Y.

Also, OF 0 is the error function of F on Br(O) with any r > 0.
Next, by (2.20)we clearly have Ilqi(W)ll--< IIY*II" IIwll, IIYII--< wll, so that IIq;ll <--

1. Hence,
Referring to Theorem 1.4 it follows that, with

(2.21)

O(X) is invertible for each X Be (X), and the mapping K: B(X)- [Hc, HC],
defined by

(2.22) g(x)=[O(X)]-1,
is differentiable at X. Moreover, for the gradient aK=(kl, k2,"’,kc)e
[[H, H], [Hc, H%]] we have by (1.26) and (2.20),

(2.23) k( W) _o-l Y*(EW) yo-l.

Also, by (1.28)

(2.24) ,(Z) (1- )-lllOg’ II(lloOll + 1)2llzll
is an error function of K on B. (0).

However, since [looll -< c, we have by (2.21),

(2.25)
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Consequently, the function c defined by

(2.26) Z) (1 a)-111Og1113(4+ 1)211zii
is an error function of K on B(0).

Finally, let A B(X) - [Hc, H=] be defined by

(2.27) A(X) YK(X) g*.

Then, by Theorem 1.2, A is differentiable at X, and by (2.23), the gradient OA
(a, a2, ac=) e [[H, H], [H=, H]]c is given by

(2.28) a.(W) YQ-d Y*(EiW) YQ-d Y* -Ao(EiW)Ao

(see (2.16)) for ] 1, 2,. , c2 and all W [/4, H]. Hence, claims (i) and (ii) hold.
Moreover, the function A IIYII" Ilr*[] is an error function of A on

B(0). Thus, (iii) holds by virtue of (2.26) and the proof is complete.
The Theorem 2.2 has the following interesting interpretation which generalizes the

result given in [2, paragraph 3.6].
Let e0 Hc be a fixed nominal voltage vector which produces a nominal current

vector i0 Aoeo H in our network N. Assume that we are interested in the sensitivity
of io to variations of the element in the jth branch, i.e., variations of X. Thus, we have
to consider the mapping i: Br,,, "+ H defined by (X) A(X)eo.

Recalling (1.39) and (2.15) we see that for the gradient Oi (i’1, i, , tc:)’* we
have

(2.29) if (W) -Ao(EiW)Aoeo

for each W e [H, HI. Hence, if the impedance X7 is changed by increment W, then the
nominal current vector i0 changes by if (W) with an accuracy better than Ilwll (z),
where Z (0, 0,..., 0, W, 0,..., 0).

Now, from (2.29) it is easy to see that if (W) is the current vector in N which
corresponds to the voltage vector (0, 0,..., 0,- WiT, 0,..., 0), where i is the jth
component of the nominal current vector i0. Thus, using physical terminology, the
change if (W) is given by the current distribution in N corresponding to the excitation
by a single voltage source Wi7 inserted into the/’th branch, provided W is sufficiently
small.

3. Applications in the theory of feedback systems. In this part we will briefly
discuss applications of our results for establishing the sensitivity of input-output
characteristics of a linear feedback system given in Fig. 1.

Let H be a fixed linear space, and let A1, A2: H-H be linear operators. If
(U l, U2) H2 (inputs), then a pair (e, e2)G H2 (errors) will be called a solution of the
feedback system {A 1, A2} corresponding to (u,, u2), if the equations

el- Ul--Y2, yl Alel,
(3.1)

e2 u2 q- Yl, Y2 A2e2
are satisfied. This fact will be symbolized by writing (Ul, u2)-+ (el, e2).

The following result is well known [4], [5]: For any (Ul, U2) GH2 there exists a
unique solution (el, e2)H of {A,A2} corresponding to (Ul, u2):> the operator
N I +A2A is invertible. In this case,

(3.2) (ex, e2)-(N-l(ul-A2u2), u2+A1N-(Ul-A2u2)).
Moreover, we have the assertion [6, p. 315]:
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FIG.

Let M =I +AIA2; then M is invertiblec:>N is invertible. In this case,

N-1 -1(3.3) AI =M-IA1, N-IA2=AzM
Using this fact and (3.2), we easily confirm the following proposition:

(i) If (ul, 0)--> (el, e2), then

(3.4) (el, ez)=(N-lul, AIN-lUl).

(ii) If (0, u2) --> (e ], e ), then

(3.5) (el, e) (-AzM-lu2, M-lu2).

Since our feedback system {A 1, A2} is linear and enjoys a symmetry exhibited by
equations (3.4) and (3.5), we can abridge our attention to transmission characteristics
given by operators N-1 and AIN-1. Thus, turning to our sensitivity problem, let us
prove the following assertion.

THEOREM 3.1. Let H be a Banach space, let A 1, A2 fi [H, H], a. [IA/[I, j 1, 2,
and let 0 < a < 1. Furthermore, assume that the operatorN I +A2A is invertible, and
let

(3.6) r min [1, a(al + a2 + 1)-1[IN-111-1].
Then the operator I +XzX1 is invertible for every X (X1, Xz) Br (X) with X
(A 1, A2), and the mapping El" Br (X) [H, H] defined by

(3.7) E1(X) (I q- X2X1)-1

is differentiable at X. If OE1 (kl, k2) E [[H, H], [H, H]]2, then

(3.8) kl(W)=-N-1AzWN-1, kz(W)=-N-1WAIN-1

for each W [H, H]. Also,

(3.9) (I)l(z) -[IN-Ill2{1 + (1 a)-l(al + a2 + 1

is an error function of EI on Br (0).
Moreover, if Ez: B(X) --> [H, HI is defined by

(3.10) Ez(X) Xx (I -}- X2Xx)-1

then E2 is differentiable atX, and]or the gradient
have

(3.11) hi(W)-- M-1WN-1, h2(W)-- -AIN-1 WAIN-1

for all W [H, H], where M I +A1A2. Also,

(3.12) 2(Z)-llN-11lZ{al +az+(1 +al)[1 +(1-a)-lllN-l[[(al+a2+
is an error function ofE2 on B(0).
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Proof. Let F’(X)=X.,j= 1,2. Then F is differentiable at X and OF1=
(I, 0), OF2= (0, I), where I is the identity operator in [[H, H], [H, HI]. Thus, [[0F’[]
IIOF211 1. Also, 0 is the error function of both F and F2 on Br(O) with any r > 0.

Next, put if" F2o F1. By Theorem 1.3,/5 is differentiable at X, and by (1.14)
we have for OF

(3.13) gl(W)--A2W, g2(W) WA1

for all W[H,H]. Also, by (1.15)2 &..(Z):I!OFI[ Ila  ll Ilzll’=llzll’ is an error
function of/ on Br(O) with any r > 0.

Putting F(X) I +F2(X)FX(X) with I [H, HI, then clearly OF Off" and the
above (b is an error function of F on Br(0) with any r > 0. Also, observe that, by (3.13),
Ilgll_-< IIAII- a, Ilgll_-< IIA1]]- al, and consequently, IlaFll_-< (a + a)’/:z <- ax + a2.

Now, let r 1. Then 0-<(Z) -< 1 for Z BI(0). Since F(X) N is invertible,
Theorem 1.4 shows that F(X) is invertible for each X Br* (X), where

(3.14) r* min [1, a (IIOF[[ + 1)-1[[N-X[[-1].
Hence, our mapping El" Br*(X) In, HI is differeotiable at X, and for 0El (kl, ka)
we have (3.8) by virtue of (1.26). Also, by (1.28),

(3.15) *(Z) -IlN-Xll={1 / (1 a)-’llN-1l]([loF]] / 1)=)llzll
is an error function of E1 on Br.(O).

However, since Ilofll-< a + aa, we have r* >- r with r being defined by (3.6). Also,
by (3.15) and (3.9), * =<1 on Bro, (0). Consequently, 1 is an error function of E1 on

Br (0) and the first part of our theorem is proven.
Finally, define /2: Br,(X)[H,H] by Ea(X)=F’(X)EI(X)=XI(I+XaXI)-1.

Invoking again Theorem 1.3 it follows that Ea is differentiable at X, and for
0E2 (h., ha) we have by (1.14) and (3.3),

h,(W) WE1(X) +F (X k (W)

WN-’-A1N-’AaWN-’
(I-AIN-1Aa)WN-1

(I-M-IA1Aa)WN-1

M-’(M-A1A2) WN-’ M-1 WN-1.
Similarly,

ha(W) F (X)k2(W) -A1N-x WA,N-x,
which confirms the formulas (3.11).

Moreover, by (1.15),

(3.16) *(z) IIA 11]-(I)l (Z) -[-IIoFII(IIaEII + O1 (z))llzll’
is an error function of E2 on Br, (0). However, since

[IoFIII 1, IIOEII <-- [IN-1II:(IIA II:z

and [[ZI[’_-< 1 for Z Br (0), we see readily that O:-< O2 on Br,,, (0) with 02 given by
(3.12). Hence, 2 is an error function of E2 on Br, (0), and our theorem is proven.

The gradients ’1 and 0E2 appear as transmission characteristics of input-output
systems built from two original feedback systems {A,, A2}. Indeed, consider, for
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[---W
A A h(W)u

A A

example, the gradient OE2 (hi, h2). Recalling the formulas (3.11) and (3.4), (3.5), we
see easily that the operator hl(W)6 [H, H] is the input-outpu characteristic of a
system whose block diagram is given in Fig. 2. Similarly, h2(W) has a meaning apparent
from Fig. 3.

Analogous block diagrams can be constructed for the entries k l, k2 of 0El.
Thus, these facts generalize the results given in [2, paragraph 6.8].

FIG. 3

A

4. Comments. The sensitivity analysis developed above can be simplified (and
mechanized, too) considerably, if the variations of the system elements are assumed to
be very small. In other words, under this assumption the quantity i=1 fi(Zi) appearing
in (1.3) is accepted as a sufficiently good approximation to F(X+Z)-F(X), and
consequently, the value of IIZII’(Z) is neglected. Also, the actual size of the ball
Br(X) is immaterial.

Thus, in this case, the gradient 0F is the only thing that matters. However, finding
0F is a relatively easy task, provided F has a particular form currently encountered in
systems analysis. To be more specific, let us carry out the following consideration.

First of all, referring to the Definition 1.2 of a derivative and Theorem 1.5, we see
that our results can be summarized and written in a perhaps more tangible form as
follows:

Rule 1. Let F and G be defined on a ball B,.(X) [H, H]", and be differentiable at
X. If a, b are scalars and A, B are "constant" operators, then the mappings aF +
bG, AFB, F G are defined on Br(X), differentiable at X and we have

(i) 6(aF + bG)(. a(6F)(. + b(6;G)(. ),
(ii) 6i(AFB)(. A(6F)(. )B,
(iii) 6i(F G)(. (6F)(. )G(X) +F(X)(6iG)( ).

If, in addition, F(X) is invertible, then the mapping [F]-I(X) (F(X))- is defined on
a ball Be(X) with 0 < <= r, is differentiable at X and we have

(iv) 6i[F]-a( .)= -[F(X)]-l(6iF)( .)IF(x)]-.
Let us point out the essential fact that forming linear combinations, products and

inverses (under the assumption of invertibility at X) of mappings differentiable at X
yields again mappings differentiable at X. On the other hand, the elementary
mappings Fi, 1, 2, , n defined by F (X) X., are differentiable at any point X.

Combining these facts, we are led to the following useful result:
Rule 2. Let X (X, X,. , X) [H, HI", and assume that F(X) is obtained

from operators X,X,... ,X,., by forming finitely many linear combinations,
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products and inverses. (We understand that these inverses exist.) Define F(X) for
X (X1, X2," , X,,) by formally replacing X? in F(X) by X, 1, 2,. , n. Then
there exists r > 0 such that F(X) is meaningful for each X Br(X) c [H, HI", (i.e., the
inverses involved exist), and the mapping F is differentiable at X. Moreover, the
gradient OF can be found by applying the above formulas (i) through (iv).

Thus, if the operators X,/" 1, 2, , n describe linear blocks which constitute a
system S, and F(X) is a performance characteristic of S, then F(X) has the form
considered in Rule 2, and consequently, F is differentiable at X.

To show how easily the Rule 1 and 2 can be applied, consider a 2-port P given in
Fig. 4. Assume that Aj [H, H],/" 1, 2, 3 has the meaning of the admittance of the
corresponding 1-port, and that the operator A1 + A2 +A3 is invertible.

i
AI A

A3

FIG. 4

A simple argument will convince us that the admittance matrix A [Aik], i, k
1, 2 of P is given by

(4.1)
A11=A1(A1+A2+A3)-l(A2+A3); Ale=-A1(A1+A2+A3)-lA2;

A21 =-A2(Al+A2+A3)-1A1; A22=A2(A1+A2+A3)-1(A1+A3).

Suppose that we want to establish the sensitivities of entries Aik to variations of
admittance A3. Referring to Rule 2, put F(X) X1 +X2 / X3, Ao A /A2 /A3 and

(4.2)
G11(X) XI[F(X)]-’(X2 / X3), G12(X) -XI[F(X)]-Ix2,
O21(X) -X2[F(X)]-lXl, O22(X) X2[F(X)]-l(Xl + X3).

Since we are interested in t$3Gik, we treat Xl, X2 as constants while applying Rule
1. Thus, we have by (iv),

(4.3) -1WA-I63[F]-(W) -[F(X)]-I(63F)(W)[F(X)]-1 -Ao

Similarly, by (4.2) and (iii),

t3 G11(W) Al{t33[F]-1( W)(A2 +A3) +A 1t3(X2 / X3)( W)}

-AI{-A-WA-I(Az+A3)+A-Iw} AIA-XWA-IA 1.

Also, by (ii),

3012(W) -A 3[F]-I W)A2 AIA-1WA-IA2.

A further easy calculation yields

t3G21(W) A2A- WA A1,

63(22(W) AzA-1WA-IA2.



A SENSITIVITY ANALYSIS 1137

As a final example, let us reconsider the mapping E2(X -’-XI(I +XzX1)-1 we
discussed in Theorem 3.1. We get readily by Rule 1,

61LZz( W) 3IXI W)N-1 + A131(I + XzX1)-1

WN-l-A1N-161(I +XzX1)(W)N-1

WN-1 A1N-1A -1
2 WN- M- WN

and

2E2(W) A (2(I + X2X1)-I(W)
-A1N-12(I +X2X1)( W)N-1 A1N-1WA1N-1

which agrees with (3.11).
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ON THE ASYMPTOTIC SPECTRUM OF A CONVOLUTION*

OLOF J. STAFFANS?

Abstract. Let B be a reflexive Banach space, and let L2(R B) denote the set of locally square
integrable, B-valued functions on R whose L2-norm over intervals of length one is bounded. We show that
the asymptotic spectrum (i.e. the spectrum of the limit set) of the convolution * q of a finite, scalar-valued
measure with a function q L2(R" B) is contained in the asymptotic spectrum of . This work is motivated
by a recent result on the asymptotic behavior of the bounded solutions of a B-valued, nonlinear Volterra
equation, and it strengthens that result.

1. Introduction. In [8] and [9] the author studied an abstract nonlinear Volterra
equation of the form

(1.1)

x’(t) +

x(0) =xo

q(t- s) dx(s) f(t) (tR+);

(prime denotes differentiation). Here is a given measure, f is a given function, and q
depends in a nonlinear way on the solution x of (1.1) (one gets q by cornposing x with a
nonlinear function). The functions x, q and f map R + [0, ) into a reflexive Banach
space B, and/. is a complex measure on R + (also operator-valued measures were
allowed in [8]). We suppose that we have a solution x of (1.1) which is bounded on R +,
and for which 0 in (1.1) is bounded in a sense to be made precise below. As a result of
the work in [8] and [9], under certain additional assumptions one has some a priori
"information on the asymptotic behavior of the function q in (1.1). The purpose of this
work is to combine (1.1) with that information to obtain similar information on the
asymptotic behavior of x. The results we obtain are extensions to Banach-space valued
equations of the main theorems in [7].

The principal difference between this work and [7] (apart from the fact that we now
work in a Banach space) is that we give up the continuous dependence of q on x in (1.1),
which played a crucial role in [7]. As a consequence we have no longer the limit
equations derived in [7] at our disposal. This turns out to be only a minor inconvenience,
and the main conclusions of this paper, specialized to the scalar-valued case, are only
slightly weaker than those of [7] (see 6).

Here we suppose throughout that the kernel in (1.1) is a finite measure. In [7] a
somewhat more general kernel was allowed (the sum of a finite measure and a function
of bounded variation).

2. Preliminaries. We first recall some background material from [8-1 and [9].
Throughout we let B be a reflexive Banach space, and let L(R; B) be the set of

measurable, locally square-integrable, B-valued functions on R, whose L-norm

1 112,oo- sup Iq(s) ds

is finite. The spaceL(R B) is the dual of a Banach space, and most of the time we give
it its weak*-topology. We let - be the left-translation operator" ztq(s)=q(s+t)

* Received by the editors February 23, 1978.
5" Institute of Mathematics, Helsinki University of Technology, Espoo, Finland.
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(S, tR). For each qLZ(R; B)we define the limit set F(q) by

r(q) {g, L2(R B) 1%0 --, 4, weak* in L2oo(R B), for some sequence tk -+ oo}.

The weak*-closure of the set {rlt R +} in L(R; B) equals {r It R +} U F(q), and it
is compact and metrizable in the induced weak*-topology.

We denote the distribution Fourier transform of a tempered (complex-valued or
B-valued) distribution u by . We write o’(u) for the support of , and call o-(u) the
spectrum of u. In particular, this is how one defines the spectrum of a function
p L(R; B). The spectrum o-(F(q)) of the limit set F(q) is defined by

r(r’()) U

and it is called the asymptotic spectrum of q.
The set of all (finite, complete) complex Borel measures on R is denoted

BM(R; C), and m stands for the Lebesgue measure (in integrals we replace dm (t) by
dt). We write [x[ for the total variation measure of x, and I111 for the total variation of
on R (i.e. I[/xl[ It, I(R)). The statement "for a.e. [m] 6 R" should be read "for almost
every t R", with the understanding that "almost every" refers to the Lebesgue
measure.

The characteristic function of an interval I is denoted

3. On convolutions. We next prove a sequence of auxiliary lemmas.
LEMMA 3.1. Let Ix BM(R; C), q L(R; B). Then for a.e. [m] R, the

function s-p(t-s) is tz-integrable, and the convolution Ix * # defined a.e. Ira] by

/x * q(t) JR q(t--s) dtx(s)

belongs to L(R B).
Remark 3.1. For each x 6 BM(R C) the convolution operator q x * in fact

maps all mixed LO-spaces into themselves, but we need only the case mentioned in
Lemma 3.1.

Proof of Lemma 3.1. We begin the proof by observing that the function (t, s)
(t- s) is m -measurable [8, Lemma 2.2] (here m is the completed product of
m and ); hence the function s(t-s) is -measurable for a.e. [m] R [1, Prop.
22.10].

Before considering the general case we prove a simplified version of Lemma 3.1.
Take B R, and suppose that both and are (real-valued and) nonnegative. Then,
by [2, Thm. 7.12], the function is defined a.e. [m (with values in R + U {}), and it
is m-measurable. Fix n Z, and compute

(t-s) d(s) d/llull [(/-s)]2 du(s) dt

n+l

where we have used the Schwarz inequality, Fubini’s theorem [2, Thm. 7.12], and the
obvious inequality

n+l

f, [q (t- s)]2 dt <- (sR).
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Thus in this case Ix ,oL(R;R) (and in particular, Ix q(t)<oo a.e. [m] so that
s--q(t-s) is Ix-integrable for a.e. [m] tR).

Now consider the general case. It follows from the preceding argument combined
with the Schwarz inequality that for each n 6 Z the function (t, S)--Xtn.n/11(t)q(t--s) is
m (R) Ix-integrable (cf. 1, Thm. 11.10]). This implies that for a.e. [m 6 In, n + 1 the
function s--q(t-s) is -integrable, and that the convolution Ix, q, restricted to
In, n+ 1] is m-measurable [1, Thm. 22.12]. As n was arbitrary, s--o(t-s) is Ix-
integrable for a.e. [m] R, and Ix 0 is m-measurable. Moreover, since obviously
[IX *qg[(t)<=lixl*[q[(t) whenever both sides make sense, one has Ilix *(4112,oo
2a/zllix[I IIq[I2.oo. This shows that Ix q e LZ(R; B), and completes the proof of Lemma
3.1.

LZMMA 3.2. Let L2(R C), rt (R C). Then q q BUC(R C).
Here ow is the set of rapidly decreasing, C-functions, and BUC is the set of

bounded uniformly continuous functions. The convolution r/can be interpreted as
the convolution of a test function with a distribution, or alternatively, it can be defined
by the absolutely convergent integral

q * rl(t)= IR q(t--s)rl(s) ds (tR).

Proof o" Lemma 3.2. Using H61der’s inequality it is easy to show that q, r
L(R; C). Applying the same argument to the derivative (q, r)’ =q, r’ one
concludes that (o r)’ L(R; C). Thus 0 * *7 is uniformly continuous, and the proof
of Lemma 3.2 is complete.

LF,MMA 3.3. Let IX BM(R; C), o L(R; C), r 9’(R; C). Then (ix o) *
rl(t) Ix * (o * rt)(t) (t R).

By Lemmas 3.1 and 3.2, both the double convolutions in Lemma 3.3 can be
defined by absolutely convergent integrals:

(ix o) * rt(t)= fR (Ix * q)(t--S)rl(S) ds,

IX * (q * rt)(t)= fR (q * n)(t-s) dix(s).

To prove Lemma 3.3 it suffices to apply Fubini’s theorem, justified by either
Lemma 3.1 or 3.2.

4. The main result. The following two theorems are the key ingredients in the
proofs of our new versions of [7, Thms. 3.1 and 3.2] (cf. 6).

THEOREM 4.1. Let tx BM(R; C), q9 LE(R; B). Then tr(F(ix * q)) o’(F(q)).
THEOREM 4.2. Let IX BM(R C), q L2(R B). Moreover, suppose that tr(F(q))

is countable, and that/2(to) 0 (to tr(F(q))). Then ’tlx * q -0 weak* in LE(R B) as

By Lemma 3.1, Ix q L(R;B), so that F(IX q) and tr(F(ix * q)) are defined.
The conclusion of Theorem 4,2 can be written in two more equivalent ways. Even

under the hypothesis of Theorem 4.1 it is true that the distance from ’tix * to F(IX )
tends to zero as t [9, Lemma 3.1]. Thus the statement rtix. 0 weak* in
LE(R;B) is equivalent to F(IX )= {0}, which in turn is equivalent to tr(F(ix q))=. The last formulation is the most convenient one in the proof.

We begin the proofs of Theorems 4.1-4.2 by a reduction to the scalar case.
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Proof of Theorems 4.1-4.2, assuming them to hold when B C. Suppose that
Theorems 4.1-4.2 hold when B C, and let B be an arbitrary complex reflexive Banach
space.

In the case of Theorem 4.1, put A r(F(q.)), and in the case of Theorem 4.2, put
A . We have to show that r(F(ix q))c A.

Let B’ be the dual of B. For an arbitrary B-valued tempered distribution one has

o-()= U o-(c,),
B’

where c: is the complex-valued distribution one gets by composing " with a (see [4,
Chap. I, p. 61]). From this one concludes that

r(r( ))= U o-().
B’
5F(t*0)

Thus, as A is closed, in order to prove Theorems 4.1-4.2 it suffices to show that for each
a B’, : e F(IX q) one has o-(a:) c A.

Fix a B’, F(IX q). Then by [8, Lemma 3.6], a F(a(ix q)). But Ix q is
defined a.e. [m] by an absolutely convergent integral, and so a(ix q)=ix aq. In
particular a: F(IX a). We claim that cr(F(ao)) c r(F(q)). This is true because, by
[8, Lemma 3.6] (or rather, its generalization to a reflexive Banach space), every
4’ F(aq) is of the form a4, with , F(0), and trivially o-(a) o(4). Now we observe
that we can apply the scalar versions of Theorems 4.1-4.2 (in particular, in Theorem 4.2
we have /2(w)=0 for each wo-(F(at)) since o’(F(aq))ccr(F(q))), and they give
o-(a:) A. This completes the proof of the reduction to the scalar case.

5. Proof of the scalar case. The proofs of the scalar versions of Theorems 4.1-4.2
are based on

LEMMA 5.1. Let tx BM(R; C), o L2(R; C). Then F(Ix * q) {ix * Plw 6

r(,,o)}.
In the proof of Lemma 5.1 we make use of the fact that for Ix 6 BM(R; C) the

convolution operator q Ix q is weakly sequentially continuous from 3’ into itself
(’ is the space of bounded distributions; see [3, p. 200] for the definition of ’ as the
dual of @L). The convolution of Ix 6BM with q 6 3’ is defined e.g. as in [3, Thm.
XXVI, p. 203] (note that BM @.,), and in the special case when q 6L2(R;B) it
coincides with the convolution defined in Lemma 3.1. One way to describe weak
convergence of a sequence o, 6 5’ to o 6 N’ is to say that for each r/ @L, (p,,-
q} * rt (0) - 0. The weak sequential continuity of the convolution operator q Ix q in
N’ is an immediate consequence of the facts that rt -’ix * rt maps c into itself, and
that convolution is commutative (if (q,-q), r/(0)0 for all r/6@, then also
((,-q),(ix r/)(0)0 for all r/@, and (0-(),(ix r/)(0)=(ix *q.-
t .o) n (0)).

Proof ofLemma 5.1. Take e F(o). Then %o --> weak* in L(R C) for some
sequence t --> oo, and so in particular, %o --> in ’ (throughout in this proof ’ carries
its weak topology as the dual of @c, ). By the sequential continuity of the convolution
operator o -* tt * o from ’ into itself, % (tt * ) =/.t % tt * , in ’. But the set
{,( o)lt m R+}U F( o) is compact in the weak*-topology of L(R; C), and as a
compact topology coincides with every weaker Hausdorff topology, we have
%(ix )--> Ix #J weak* in L(R; C). This shows that Ix e F(IX * q), and we have
proved that {ix 414’ F(q)} m F(Ix 0).
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Conversely, pick some : F(z. ) and take some sequence tk oo such that

%(x q) : weak* in L(R C). Pass to a subsequence sk of t such that
F(q) weak* in LZ(R;C) (this is possible because of the sequential compactness of
{ztq It R /} U F(q)). By the first part of the proof, : =/x . This shows that
{x [ F(q)}, and completes the proof of Lemma 5.1.

Remark 5.1. An alternative method to prove Lemma 5.1 without making use of
the weak continuity of the convolution operator q - x q in 3’ is to first show that this
convolution operator also mapsL2(R C) into itself (for the definition ofL(R C), see
[8]), and that convolution is commutative in the sense that x BM(R; C),
L(R; C), r L(R; C) implies (/x q) *7 q * (/x r/). This immediately yields the
weak*-continuity of the map q -x ( from L2(R C) into itself, and [8, Lemma 3.6]
can be applied.

Proofs of Theorems 4.1-4.2 with B C. First consider Theorem 4.1. By Lemma
5.1, F(tx * ) {ix * 0]4’ F(q)}. Thus, in order to prove Theorem 4.1 it suffices to show

2that tx BM(R; C), 0 L(R; C) implies cr(/x * O) c o’(0). Fix tz and as above. Let
r/, be an approximate identity in ow (i.e. r/, (t) nr/(nt), where r/is some fixed function in
5e with (0)= 1). Then (/x * 4’) * r/n - x * 4’ in 5e’, and thus it suffices to show that
o’((tz * 0)* r/n) C r(4,). By Lemmas 3.2, 3.3 and [7, Lemma 1.9], cr((tz *
o’(0 * r/n). But (4’ * r/n)^= On, and so trivially, o’(O r/n) o’(O). This completes the
proof of Theorem 4.1.

The proof of Theorem 4.2 is completely analogous to the proof of Theorem 4.1,
and it is therefore omitted. The only essential difference is that one applies [7, Lemma
1.12] instead of [7, Lemma 1.9].

6. A, Volterra equation. Applying Theorems 4.1-4.2 to (1.1) we get
THEOREM 6.1. (i) Let q LZ(R +’, B), f L2(R +’, B), and suppose that the solution

x of (1.1) is bounded on R +. Then o" (F(x’)) c o" (F(q)) and cr (F(x)) c cr(F(q)) LI {0}. (ii) If
moreover o’(F(q)) is countable and /2(w)=0 (wcr(F(q)), then ztx’O weak* in
L(R B), and x(t + s)- x(t) 0 (t oo) weakly in B, uniformly on compactsubsets ofR.

By the solution x of (1.1) we mean the (unique) locally absolutely continuous
function on R + which satisfies (1.1) a.e. [m on R +. We define F(x) and F(q) as above,
extending x and q to R by x(t) x0, q(t) 0 (t < 0). Clearly, if we moreover extend/x
and f to R by dx(t)=f(t)=O (t <0), then (1.1) becomes

x’(t),+ ,(t) Z(t),

and it holdsa.e. [m] on R.
In particular, by Lemma 3.1 and the hypothesis of Theorem 6.1, x’ L(R C) (so

that F(x’) makes sense), and x BUC(R;B).
Before proving Theorem 6.1 we state
LEMMA 6.1. Let xBUC(R;B), x’L(R;B), where x’ is the (distribution)

derivative of x. Then o-(x) r(x’) U {0}.
The proof of Lemma 6.1 is omitted, as it is quite straightforward (first reduce it to

the scalar case as in 4, then use a smoothing process, and finally apply [7, Lemma
1.10]).

Proof of Theorem 6.1. It is. easy to see that f L(R B) implies F(f) {0}, and
therefore F(x’)= F(t * p). Thus the claims (r(F(x’)) r(F(p)) and ’x’-> 0 weak* in
L(R;B) follow directly from Theorems 4.1-4.2.

In order to verify the inclusion (r(F(x)) o’(F(p)) t,J {0} it clearly suffices to show
that (r(F(x)) (r(F(x’))[3 {0}. We claim that each y F(x) is locally absolutely continu-
ous, and satisfies y’ e F(x’). The proof of this claim is an easy modification of the proof of
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[8, Lemma 3.6] (choose some sequence tk such that %x y, pass to a subsequence Sk SO

that %x’ z c F(x’), and observe that y(t) y(O) + z(s) ds). Combining the fact that
y’6 F(x’) for each y F(x) with Lemma 6.1 we get the desired inclusion cr(F(x))c
r(F(x’)) U{0}. In particular, r(F(x))c o’(F(q))U{0}, and in the case (ii), tr(F(x))c {0}.

The only thing left to prove is that tr(F(x))c {0} implies that for each a B’,
a(x(t + s)- x(t)) 0 as on, uniformly for s in compact sets. This statement essentially
concerns complex-valued functions: If ax y BUC(R; C) and o’(F(y)) c {0}, then
y (t + s) y (t) 0 as oe, uniformly for s in compact sets. Fix M> 0. As oe, the
distance from zty to F(y) tends to zero [6, Lemma 2.1]. This implies that given e > 0 we
can fio.d T(e)>0 such that for each t> T(e) there exists some ytF(x) such that
I’,-,x(s)-y,(s)l< for Isl_<<:M [6, Lemma 2.2]. But as o-(F(y)) c {0}, the functions yt are
necessarily constants, and so

Ix(t + s)- x(t)l- Ir,x (s)- r,x (O)l 2e

for t>= T(e), [s[<=M. Thus y(t+s)-y(t)O as too, uniformly for s in compact sets,
and the proof of Theorem 6.1 is complete.

Before one can compare Theorem 6.1 with [7, Theorems 3.1 and 3.2] one must
apply either [8, Theorem 6.1] or [9, Prop. 5.1] to get an inclusion of theform
r(F(q)) c Z(/z) (of course, a number of assumptions must be added before either of
these results apply). The second conclusion of Theorem 6.1(i) then becomes

(6.1) o-(r(x))=o-(r(,t,))t_J{O}, and o-(r())= Z-(g),

which is quite similar to the conclusion

(6.2)
y e r(x) ff (y) = (go y) tA {0},

g y F(g x), and cr(F(g x)) Z(/x)

of [7, Thm. 3.1] (here g x corresponds to q; (6.2) has been reformulated in a way
which makes it correspond more closely to (6.1)). Clearly (6.2) is stronger than (6.1), as
the link g y is missing in (6.1). However, the main inclusions of (6.2) are preserved in
(6.1). It is only natural that nothing can be said about g y without any continuity
assumption on g.

The conclusion of Theorem 6.1 (ii) corresponds in a similar way to the conclusion of
[7, Thm. 3.2]. In the situation of Theorem 6.1(ii) it is still true that every y F(x) is a
constant, but of course, without any continuous dependence of q on x there is no hope
of getting q(t) 0 (t oe) as in [7, Thm. 3.2].
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ON A CLASS OF FIRST ORDER EVOLUTION INEQUALITIES
ARISING IN HEAT CONDUCTION WITH MEMORY*

J. NAUMANNf

Abstract. This paper deals with the evolution problem

u’ + aou + a(t- s)u(s) ds + b(t- s)Bu(s) ds + Oo(u) .f, u(0)= Uo,

on an arbitrary interval [0, T], where aol and a, b: [0, T]I are given functions; B is a linear bounded
mapping from a Hilbert space V into its dual, while &0 denotes the subditterential mapping of a proper,
convex and lower semicontinuous functional o: V(-oo, +oo]. We prove an existence and uniqueness
theorem for a solution u to the above problem. The existence is established by combining the Galerkin
method with a regularization of the functional 0. An application of the abstract result to a Volterra
integrodifferential equation arising from the theory of heat conduction in materials with memory is also given.

Introduction. Let H be a real Hilbert space with scalar product (.,.) and
norm I. ]. Suppose we are given a second real Hilbert space V with scalar product
((.,.)) and norm I1" such that

V cH compactly, densely.

In addition, the space V is assumed to be separable.
We denote by V* the dual of V, by (x*, x) the dual pairing between x* e V* and

x e V and by I1" II, the dual norm on V*. In what follows, the space H will be identified
with its dual. This yields the continuous and dense imbeddingH c V*, and in case h H
and x e V the dual pairing between these elements coincides with their scalar product in
H.

Let a(. and b(. be real functions on [0, T] (0< T < oo), and let B be a mapping
from V into V*. Finally, let 0: V - (-oo, +oo] be a proper, convex and lower semicon-
tinuous functional with effective domain

D(q) {x V: q(x) < +}

and subdifferential mapping

Oq(x)={x* V*:q(y)>-q(x)+(x*, y-x) y D(q)}.

Let us then look for a function u L(O, T; V) such that

I0 I0(1) u’ + aou + a(t-s)u(s) ds + b(t-s)Bu(s) ds +cqg(u) f

for a.a. (0, T), and

(2) u(0)= u0

where ao is a fixed real, while f and Uo are given data. The derivative u’= du/dt is to be
understood in the sense of vector-valued distributions.

Nonlinear Volterra equations with multivalued mappings have been intensively
studied in recent years. We refer to the works [1]-[3], [5], [10], [11] where a number of
results about the existence, uniqueness and the asymptotic behavior of a solution to

* Received by the editors November 4, 1977, and in final revised form June 29, 1978.
Sektion Mathematik, Humboldt-Universitiit zu Berlin, 1086 Berlin, Postfach 1297, East Germany.
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equations of this type may be found. In these works, the basic idea for proving
the existence of a solution consists in replacing the equation under considera-
tion by an equation that involves the Yosida regularization of the multivalued map-
ping, solving the latter equation and then letting the regularization parameter tend
to zero.

The aim of the present paper is to present an existence and uniqueness result for a
solution to (1), (2) ( 1) under conditions which are rigorously motivated by the physical
problem we are going to consider in the second section. The proof of the existence of a
solution to (1), (2) rests on the Galerkin method combined with the regularization of the
functional q. Although based on the same idea, this approach differs from that used in
the above mentioned works at many points. Section 2 is concerned with an application
of the abstract result to the history value problem for a Volterra integroditterential
equation which arises from the linearized theory of heat conduction in materials with
memory [7]. The Sobolev space setting of the problem under consideration leads in a
straightforward manner to an evolution problem of type (1), (2) by noting that the
corresponding constitutive equations are only valid for sufficiently small departures
from a fixed constant temperature field.

1. An existence and uniqueness result.
1.1. Statement of the main result. Let a(.) and b(.) be two real functions on

[0, T] possessing the following properties:

(1.1) a(.)e C1([0, T]);

(1.2) b(0) > 0, b(. e C2([0, T]).

Next, let B be a linear bounded mapping from V into V* such that

(1.3)
(Bx, x) / A Ix 1= e bollxll= Vx v,
h const _-> 0, b0 const > 0;

(1.4) (Bx, y) (By, x) Vx, y V.

Before stating a further condition let us note that the integral ob(t-s)Bu(s)ds
(re (0, T]) is well-defined for any u eLl(0, T; V) and represents a function in
C([0, T]; V*). Indeed, first of all, it is easy to verify that the function s--b(t- s)Bu(s)
is measurable on [0, t] (t e (0, T]); its integrability follows from that of the function
s - lib (t s)Bu (s)l]. (throughout the paper, measurability and integrability of vector-
valued functions are to be understood in the sense of Bochner (cf. e.g. [17])). The
continuity of the function t-- b(t-s)Bu(s) ds from [0, T] into V* is seen at once.

We now impose the following additional condition on the function b(.) and the
mapping B"

(1.5) b(s-r)Bu(r) dr, u(s) ds >-0 ]:or all (0, T] and any u L2(0, T; V).

Sufficient conditions for (1.5) to hold are as follows:

(Bx, x)>=O Yx V;

kdkb(-1) -77-(t)>--0 Vt[O, T] ( 0, , 2)
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(cf. [3]; note that the "energy" equality which implies (1.5) is derived in [10] under
somewhat weaker conditions on b(. )). Conditions on the Laplace transform of b(. that
also guarantee (1.5) may be found in I-2; Chap. IV, 4.1], [12].

Finally, given u e La(0, T; V) we define

(u)
q(u) dt /fqg(u(.)) 6 LI(0, T),

+c otherwise.

The functional is proper, convex and lower semicontinuous on L2(0, T; V) (cf. [4;
Prop. 2.16]). Let D() denote the effective domain of , i.e.

D() {u 6 L2(0, T; V) (u) < +eo}.

We now state the main result of our paper.
TI-IFORZM 1. Let (1.1)-(1.5) be satisfied, and let ao be fixed. Suppose that the

data fulfill the following conditions:

[=+[: f(o) e H,
(1.61 , i e U(0, T; H), , ;, e L-(0, T; V*);

(1.7) q(x) => q(Uo) Vx D(q).

Then there exists exactly one function u Cw([0, T]; V)D() such that

(1.81 u’ L(0, T; H);

Io (u’+au+Ioa(t-s)u(s)ds+ b(t-s)Bu(s)ds, v-u dt

(1.9)

+(v)-rb(u) >- Jo (f’ v u) dt Vv D();

(1.10) u (0) Uo.

COROLt.ARY. Let the conditions (1.1)-(1.5) be satisfied, and let ao
Further, let {f, Uo} (i 1, 2) be data such that

f, f L2(0, T; H), q(x) >- qg(u0) Vx D(0) (i 1, 2).

Denote by uC([0, T]; V)fqD() (i= 1,2) the solution to (1.8)-(1.10) cor-
responding to f f, Uo Uoi, respectively. Then

[Ul(t)-u2(t)lZ<-const(luol-uozlZ+ If(s)-f2(s)l2 ds(1.11t

for all [0, T].
Remark. Since the proof of Theorem 1 we are going to give below does not depend

on any convolution argument, the assertion of Theorem i continues to hold for Volterra
operators with nonconvolution kernels. However, with regard to applications of our
result to the theory of materials with memory we have not pursued any extension into
this direction.

Further, it is easy to see that the techniques used in the recently developed theory
of multivalued Volterra integrodifferential equations (cf. [1]-[3], [5], [10], [11]) do not
apply to our case. Theorem 1 thus differs substantially from the results obtained in these
works.
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Remark. The inequality in (1.9) is equivalent to

u’(t)+aou(t)+ a(t-s)u(s)ds+ b(t-s)Bu(s)ds, x-u(t) +(x)-(u(t))
(1.9")

>_- (f(t), x u(t)) for a.a. (0, T) and all x D(q9)

(cf. [4; Prop. 2.16]).

1.2. Proot o Theorem 1. Uniqueness. Let u, 5 Cw([0, T]; V)fqD() be two
functions that fulfill (1.8)-(1.10). Observing that both u and 5 satisfy (1.9") we easily
find

1 d- d-]u(t)- a(t)l2 + aolu(t)- t7 (t)l 2

+( a(t-s)[u(s)-a(s)]ds, u(t)-5(t)

( Io+\ b(t- s)B[u(s)- a(s)] ds, u(t)- a(t) <-_ 0

for a.a. e (0, T). Integrating this inequality over [0, t] one gets by virtue of (1.5)

lu()- a(t)l_-_ 21aol lu(s)- a(s)l ds

-2 a(s--)[u(-)-a(-)]d-,u(s)-5(s) ds

-<_ const lu(s)- a(sl ds

for all [0, T]. Thus, by Gronwall’s Lemma, u 5.
Existence. Let us begin with some preliminaries which are necessary for our

following discussion.
Given x V and e > 0 we define

((x) min
1

yv e-e Ilx y[I2 +

(cf. [4; Prop. 2.11 ]). The functional ( is convex and Fr6chet differentiable on the whole
of V; its Fr6chet derivative o’" V V is moootone and Lipschitzian (with Lipschitz
constant 1 / e). Further, without any loss of generality we may assume that 0 0( (Uo) (cf.
(1.7); indeed, otherwise we replace ( by 5 where qS(x)= q(x)-(U*o, x) for x D(),
Uo* 0(u0) being arbitrary but fixed, while -u0* will be identified with a function in
L2(0, T; V*) and incorporated into the right-hand side f). Then ’ (Uo) 0 for all e > 0
which is easily seen when observing that ( coincides with the Yosida regularization of
the subdifferential mapping 8, the latter being understood in the present situation as a
mapping from V into itself.

Next, we introduce a mapping C" V--> V* by

(C(x), y)= ((’(x), y)) Vx, y e v.
Setting (,(u))(t)= C(u(t)) for any u G L2(0, T; V) and for a.a. (0, T) it is easy to
check that (u) L’(0, T; V) and that the mapping is monotone and Lipschitzian
from L2(0, T; V) into L2(0, T; V*).



1148 J. NAUMANN

Finally, defining for any u L2(0, T; V) and any e > 0 the functional

(u) man {1 }
we have

T

(u)= J0 0(u) dt

-llu-(u)lt=(o, r; +0((u))

where (I + e 00)-1 (I identity in L2(O, T; V),
T

O.(u)={z6LZ(O, T; V):.(v).(u)+[ ((z,v-u))dtVveD(.)}
(cf. [4; Prop. 2.16]).

1..1. Approximate solutions. Let {Wl, w2, "} be a system of elements in V such
that

(i) the elements w1," , w, are linearly independent for each n;
(ii) w.},= V, V where V, span {Wl,

One may assume that u0 e V, for a certain natural number n0.
We then consider the following initial value problem for the real functions

gn l, gnn"

(u’(t), wi)+ao(u,(t), wi)+( a(t-s)u,(s) ds, w

(1.12)

(1.13)

where

+\( b(t-s)Bu.(s) ds, w +(C(u.(t)), wi)

(f(t), wi) (i 1," ., n; n >= no, e > 0),

u.(O) Uo

u,,(t)= g,,i(t)wi.
i=1

Observing the equivalence of all norms on Vn the existence of functions g,i

C1([0, T]) (i 1,..., n) that satisfy (1.12), (1.13), can be proved by applying the
contraction mapping principle within the space [C([0, T])]" when furnishing it with the
usual maximum-norm weighted by e -k’ (k being an appropriate positive constant). A
somewhat different argument for solving a system of type (1.12), (1.13) is used in [12;
pp. 566-567].

1.2.2. A priori estimates. Setting 0 in (1.12) yields

(1.14) lu’(O)l<-lf(O)-aouo[ Vn >-no, Ve >o.

Next, the function C(u,(. )) being absolutely continuous from [0, T] into V*, one
concludes from (1.12) that the functions g,,a,’", g,, are absolutely continuous
on [0, T]. Since the function C(un(. )) is differentiable for a.a. t(0, T) (cf. 14;
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Appendice]) we may differentiate (1.12) term by term and obtain

(u (t) wi) + ao(u’.(t), wi)+a(O)(u.(t), wi)

Io+\( a’(t-s)u(s) ds, +b(O)(Bu,(t),

+(Io’b’(t-s)Bu.(s) ds, wi) +(-tC(u.(t)), wi)
(f(t), wi)

for a.a. e (0, T). Multiplying the ith equation of the latter system by g’.(t), summing on
1,. , n, integrating the result over the interval [0, t] (t e (0, T]) and then adding the
term b(0)A lu(t)l to both sides of the equality obtained we get

luX(t)l + Ilu.(/)ll=

NClkl+( +C2 (f(s), u(s)) ds

(1.15)

-c a’(s-r)u() r, u(s) s

b’(s r)Bu.(r) dr, u’ (s) ds--C2

for a.a. e (0, T), where we have used the estimate (1.14) and the inequality

G(u(t)), u(t) 0 or a.a. e (0, T)

(c, ca are positive constants depending neither on n nor on e).
The second term on the right hand side of (1.15) can be evaluated by the aid of an

integration by parts as tollows:

(1 16a) ([i(s) u’(s))d llu()ll+const 1+ II.(s)ll
4Ca

for all [0, T]. Next, the estimate

[o’(o" a’(s-r)u.(r) dr, u;(s) ds

(1.6b)
N const (lu(s)lz +llu.(s)ll) ds, e [0, Z]

is readily seen. Again using integration by parts, we obtain for the last term on the right
hand side of (1.15) that

Io’ (f; b’(s-r)Bu.(r) dr, u(s)) ds

(.6c)
llu.(t)lla+const Ilu.(s)ll ds, te[0, r].
-4ca

Inserting the estimates (16a)-(16c) into (1.15) gives

lug(t)]2+}lu.(t)ll2 c3 1 + (luX(s)lz+llu.(s)ll2) ds
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for a.a. (0, T). Hence

(1.17) lu’, (/)l + Ilu. (t)[[ _-< c4

(Ck const > 0, k 3, 4).

Vt6[0, T], Vn->no, re>0

1.2.3. Passage to limit n-c (e>0 arbitrary, but fixed). From (1.17) we
conclude (by going to a subsequence if necessary) that

(1.18)

Un "-) Re

Un "- Re

Un "-) Ue

weakly* in L(0, T; V),

strongly in L2(0, T; H),

weakly* in L(0, T; H),

weakly in L2(O, T; V*)

as n (note that the second convergence property in (1.18) follows from a compact-
ness theorem (cf. [9; Chap. I, 5])).

Combining the first and the third convergence property in (1.18) with an integra-
tion by parts we find

(1.19) u(0) Uo Ve >0.

Let now @((0, T)) (= the set of all real infinitely differentiable functions having
their support in (0, T)) be arbitrary, let io => no be an arbitrary natural number, and let ai

(i 1,..., io) be arbitrary reals. We multiply the ith equation in (1.12) (n =>io) by
O(t)ai, sum on 1,. ., i0 and integrate the result over the interval [0, T]. Letting then
n- one obtains by virtue of (1.18)

T

fo (ute(t)+aoue(t)+ Io a(t-s)u(s)ds+ Io b(t-s)Bue(s)ds

+ w* (t)-f(t), O(t) Y. aiw dt 0

or, equivalently,

Io Io’(1.20) u(t)+aou(t)+ a(t-s)u(s)ds+ b(t-s)Bu(s)ds+w(t)-f(t)=O

for a.a. e (0, T).
To show that w (u), let v L(0, T; V) be arbitrary. Taking into account

(1.12) one gets

(1.21)

T

0<-- Io (C(v)-C(u,,), v-u,) dt

T T=Io (Ce(t)’ v-un) dt-lo (Ce(un), t) dt

T

+ fo (f u’n aUn fo a(t- s)un(s) ds’ un) dt

T
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(n ->no). Observing the hypothesis (1.5) and using (1.18) as well as (1.19), (1.20) we
obtain by taking the lim sup on both sides of (1.21)

T T

O<-- fo (Ce(v), v-ue) dt- fo (w*, v) dt

T

+ Io (f -u’ -aoue-lo a(t-s)ue(s) ds, ue)
-Ior(Iotb(t-s)Bu(s)ds, u) dt

T

Jo (C(v)- w*, v u) dt.

Thus, by a standard device from the theory of monotone operators, w* (u) and
therefore

IOu’(t)+aou(t)+ a(t-s)u(s) ds
(1.20")

I0+ b(t-s)Bu(s) ds+C(u(t))-(t)=O

for a.a. e (0, T) (and all e > 0).

1..4. Psge ilii e O. Since the estimate (1.16) continues to hold for the
functions u and u’, without any loss of generality we nay assume that

Ue ---- U(1.22) u - u

weakly* in L(0, T; V),

strongly in L2(0, T;H),

weakly* in L(0, T; H)

as e 0. By the same device as above, u(0)= Uo. Further, it is readily verified that
u Cw([0, T]; V).

Let v D() be arbitrary. Multiplying (1.20) by v(t)-u(t) and integrating over
[0, T] yields

Io (u’+au+Ioa(t-s)u(s)ds+ b(t-s)Bu(s)ds, v-u dt+*(v)-*(u)

T
1 .23 | (f, v u) dt.

Jo

Setting v Uo in (1.23) we find

for all e > O. Hence

(1.24)

as e- 0.

const -> (u)

1
>- L2O,T;V) + Tq(Uo)
2e

[[u (u)112

(u) u weakly in L2(0, T; V)
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Finally, (1.23) implies
T

u, + aou + a(t-s)u(s) ds, v- u dt

T

+ fo (fo b(t-s)Bue(s) ds’ v) dt+*(v)

T T

>-rb(e(ue))+ Io (Io b(t-s)Bue(s)ds, u,) dt+ fo (f,v-ue)dt.

Observing (1.22) and (1.24) and taking the lim inf on both sides of the latter inequality
we get u D(O) and the desired inequality (1.9).

Proof of the Corollary. Inserting u ui (i 1, 2) in (1.9") one easily finds- d-lu(t)-u(t)l+ b(t-s)B[u(s)-u(s)]ds, u(t)-u(t)

<= (1/2 + laol)lux(t)- uz(t)l2 + 1/21 ’a(t) h(t)lz

-( a(t-s)[u(s)-ua(s)]ds, u(t)-u(t)

for a.a. e (0, T). Integrating this inequality over [0, t] one obtains
T

lug(t)- u(t) uo u0l + Jo I(s)-h(s)l ds

+const lu(s)-u(sl d

for all [0, T]. The inequality (1.11) is now seen at once.

2. Application of the abstract result.
2.1. Formulation of the problem. Let a stationary rigid heat conducting body

occupy the bounded three-dimensional domain . Then the law of balance of energy
requires that

-div q + r in ftx(2.1)
Ot

Here e e(x, t) denotes the internal energy, q q(x, t) {ql(x, t), q2(x, t), q3(x, /)} the
heat flux and r r(x, t) the external heat supply (x {xl, x2, x3} is the generic point in
3).

Inserting e=eo+c((R)-(R)o) (eo=const, c=const>0 specific heat, 19 absolute
temperature, 19o a fixed reference temperature) and q =-kV(R) (k const > 0 thermal
conductivity) [Fourier’s law] into (2.1) we get the classical heat equation. It is well-
known that the theory based on this equation predicts an unrealistic result: a thermal
disturbance propagates with infinite speed.

Gurtin and Pipkin [7] have proposed a (nonlinear) theory of heat conduction in
which the present value of free energy, entropy and heat flux depend on the present
value of the absolute temperature, the summed history of the temperature and the
summed history of the temperature gradient. In this theory thermal disturbances
propagate with finite speeds.
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The theory in [7] is linearized as follows, let T R be an arbitrary, but fixed instant
(without any loss of generality let 0< T<), and let (R)o=const>0 be fixed (00
represents a constant equilibrium temperature field). Then the set of all pairs {(R), V(R)}
which fulfill the condition

(2.2) sup {IO(x, t)- (R)o1 + [V(R)(x,/)1} <-- 6
(-oo T)

(x f arbitrary, 6 const> 0 sufficiently small) is used to form a neighborhood of
{(R)o, (R)o, 0} with respect to a fading memory norm. Differentiating the response
functionals that represent e and q, at the point {19o, (R)o, 0} and replacing these
functionals in the neighborhood under consideration by their first derivatives leads to
the following constitutive equations"

(2.3) e eo + c(R)- a’(s O(r) dz ds,

(2.4) q b’(s) V(R)(z) dr ds.

Here (. and b(.) are certain (ditterentiable) functions on [0, oo), while e0 const,
c const > 0 (cf. [7] for further details).

Without any further reference, in what follows we assume that

I (s)l / ]b(s)l <- kos- Vs e (0, )

(ko=const>0, p > 1; cf. [7; p. 125]). Integrating by parts (for the time being, the
boundary F of f is assumed to be sufficiently smooth) and observing (2.2) as well as the
latter assumption on a(. and b(. the constitutive equations (2.3), (2.4) take the form

(2.3’) e eo + cO + a(t s)(R)(s) ds,

(2.4’) tl b(t- s)V(R)(s) ds.

We are now going to present the "classical" formulation of the history value
problem associated with (2.1) under the constitutive equations (2.3’), (2.4’).

To this end, let

r=0 on l’lx(0, T),

and let r denote a given (real) function on (-, 0] such that

(2.2*) sup {Ig’(x, t)[ / IVY’(x, t)l}
t(--oo,O]

(x f arbitrary).

Next, suppose that F F1U 1-’2 where F1 f-I lP2 Q and either mes (I’k) > 0 or I’k Q
(k 1, 2). Let then X denote a given function on 1-’2 (0, T).

Define

O(x,t)=(R)(x,t)-(R)o ]:or {x, t} s fl (-c, T).

Cf. [7] for the precise notation of this triplet.
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Following [14] the function 0 will be called a solution to the history value problem
corresponding to the thermal history if
(2.5) 0 sr on f x (-no, 0],

(2.6) sup {lO(x, t)l + IVO(x, t)]} _<- 6 (x D, arbitrary),
t(O,T)

+aoO+ a(t-s)O(s) ds-div b(t-s)VO(s) ds

(2.7)
=0 in (0, T)

where

an a(O), a(. a’(. (c normalized to 1),

(2.8a) O(x, t) 0 on r’x (0, T),

(2.8b) qi(x, t)ni(x) X(x, t) on F2 (0, T)2

(n {nl, n2, n3} denotes the outward unit normal along F,

q b(t- s)Vsr(s) ds b(t- s)VO(s) ds).

Remark. Initial boundary value problems for both linear and nonlinear equations
arising from the theory of heat conduction in materials with memory have been
extensively studied in a more or less classical framework (cf. e.g. the papers [8], [14],
[16] and the literature quoted therein). However, all these works only concern the
uniqueness and stability of a solution as well as problems of wave propagation. Let us
further refer to [13] where under relatively restrictive conditions on the data the
existence and uniqueness of a C2-solution to a one-dimensional, partly nonlinear
equation of type (2.7) is proved.

Remark. Condition (2.2*) and satisfying of (2.6) guarantee that the constitutive
equations (2.3), (2.4) (and thus (2.3’), (2.4’)) make sense as linearization of the general
(nonlinear) constitutive relations considered in [7].

Further, without any loss of generality we may assume that 0 < 6 < Oo. Then (26)
implies

(R)(x, t)>0 for {x, t} l’,x (0, T).

Remark. Let y" R 2n be a maximal monotone mapping (i.e. y is monotone and
does not possess any proper monotone extension; cf. [4] for details). Then (2.8b) can be
replaced by the more general boundary condition

(2o8b*) qi(x, t)ni(x)-x(x, t) y(O(x, t)) on F2 (0, T).

Obviously, (2.8b) is a special case of (2.8b*) (set y(r)= 0 for all r 6 R).
We briefly note another example for the mapping 3/. Let gi, h;, k (i 1, 2) be real

numbers satisfying the following conditions"

0 G [gl, g2], hi -<h2, ki >0 (i 1, 2).

In what follows we use the convention that a repeated subscript means summation over 1, 2, 3.
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Let X 0, and define

/(r)

gl ifrhl+gl/kl,

kl(r-hl) ifhl+gl/kl<=r<=hl,

0 ifhl<r<=h2,

k2(r-h2) ifhz <=r<=h2+g2/k2,

gz if r <= h2 + gEl k2.

Boundary condition (2.8b*) now describes a temperature control through 1"2 (cf. [6;
Chap. I, 2.3]).

Letting formally k- +az and gl -oo the corresponding mapping y is multi-
valued. We note that this limit case also possesses physical significance.

In what follows we restrict our attention to (2.8a), (2.8b) only for technical
simplicity. It is easy to see that Theorem 2, presented below, can be readily extended
(with minor modifications) to the case of the more general boundary condition (2.8b*)
(of. [6; Chap. I] for further details).

2.2. Existence and uniqueness of a weak solution to (2.5)-(2.8).
2.2.1. Let h be a fixed influence function, i.e. h C([0, cx3))f’qL2(0, cx3)3 with

h(t) > 0 for all . [0, ) and h(t) - 0 monotonically as
Let X be a real Hilbert space with norm [1" fix. We then denote by L,(-c, 0; X) the

set of al! (classes) of (strongly) Bochner-measurable fuocti.on..s ,4: (-av. 0) X such that

I111-,0;,)- II(s)llh =(-s) as < /,

It is easy to check that L,(-m, 0; X) (furnished with the usual vector space structure) is
complete with respect to the above norm. Let us note that L,(-m, 0; X) is a "space of
histories" in the sense of Coleman and Noll (cf. e.g. Arch. Rational Mech. Anal., 6
(1960), pp. 355-370).

2.2.2,. LEMMA. Let the function a (. satisfy the following conditions:

a’(t) exists for all (0, ),
(2.9)

[a’(tl)]2 _--> [a’(t2)]2 V0 < tx < t2 <

(2.10) -d---(t) h-Z(t) dt < +oo (k --O, 1)4.

Let LZh(--o, 0; X). Then the function g,
o

g(t) I_ a(t-s)(s) ds, tz[0, 7]

is Lipschitz .froWn [0, T] into X and its distributional derivative belongs L(O. T; X).
Proof. Let [0, T]. First of all, it holds

la(t-s)lh-(-s)<-Ia(t-s)lh-a(t-s), s(-, 03.

In [7] a slightly stronger condition is used for technical reasons.
4 The measurability of [a’(. )]2 follows from its monotonicity. Further, the monotonicity of [a’(. )]2 and

(2.10) imply that a’(. is everywhere finite on (0, ).--Note that conditions of type (2.10) are mentioned in
[16; p. 198]; el. also Dafermos, C. M., Arch. Rational Mech. Anal., 37 (1970), pp. 297-308.
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Observing (2.9) and (2.10) it is easily seen that the function s--a(t-s)h-l(-s) is in
L2(-cx3, 0).

Next, the function s--a(t-s)((s) is Bochner measurable from (-, 0) into X; its
integrability follows from the identity

Ila (t s)((s)l[x (la (t s)[h -l(-s))ll(s)llxh (-s)
(for a.a. s (-o, 0)) (cf. [17]). Hence, the integral o a(t-s)((s)ds is well-defined
(even for any real t-> 0).

By an analogous argument as above, the function s--a’(t-s)h-l(-s) is in
L2(-m, 0). Let now e (0, T) and [0, T- ] be arbitrary. Taking into account (2.9)
we get

[[[a(t + -s)-a(t-s)]((s)[lx

(]a’(t + r- s)[h-X(-s))[l((s)[lxh(-s)
<_- 1/2 {[a’(t- s)]2h-2(-s) + [[r (s)llch 2(-s)}

for a.a. s (-c, 0) (r e (0, 1)). Therefore
o

[[g(t + )-g(t)l[x =< j_ [[[a(t+ -{-s)-a(t-s)]((s)[[xds

0

<--1/2"f(Io [a’(r)]2h-2(r)dr+I-oo I[(s)llZxh2(-s)ds)"
The latter estimate is equivalent for the function g to have its distributional derivative in
L(0, T; X) (cf. e.g. [4; Appendice]).

2.2.3. Set H L2(), and

(u, v)= J, uv dx [or u, v H.

In what follows we suppose that the boundary F is Lipschitz (el. [15] for details).
Let then H"() (= W()) (m 1, 2,...) denote the usual Sobolev space of real
square integrable functions in D having generalized partial derivatives of all orders _-< m
in LZ(l)) (note that under our above assumption on F the Sobolev imbedding theorems
and the trace theorems are valid; cf. [15]). Hm(D) is complete with respect to the norm

Ilull  (.) (Olu)2 dx

Dlu U

0x ox ’ 1/I tl+ 12 +

Define

V {u G HI() u 0 a.e. on 1-’1}.

The imbedding V cH is compact and dense (cf. [15]). Next, it is easily checked that

K {u e V" [u(x)[ + [Vu(x)[ <- 6 a.e. in

is a closed convex subset of V.
Further, we introduce a linear bounded mapping B from V into V* by

(Bu, v)= In Oxi
O--u-u OxiO---v dx (u, v V).
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The mapping B obviously satisfies the conditions (1.3), (1.4).

2.2.4. In the sequel we suppose that t’(’, t) L:(F2) for all [0, T]. By the trace
theorem (cf. e.g. [15]), for each [0, T] there exists an element f2(t) V* such that

v) f X(x, t)v(x) dS Vv V.(f.(t),
.F

We then have
THEOREM 2. Let the functions a(. and b(. satisfy the following conditions:

(2.11) the restriction of a(. onto [0, T] is in C1([0, T]),

a’(t) exists for all (T,
(2.12)

[a’(tl)]:>-[a’(t2)]2 /0< tl

(2.13) b(0) > 0,

the restriction orb(. onto [0, T] is in C:([0, T]),

(2.14) dkb
(-1)k-(t) >_- 0 Vt [0, T] (k 0, 1, 2),

b’(t) exists or all
(2.15)

[b’(/1)]: ->_ [b’(/:)]: VT < tl < t: < oo,

f(dadtk ]2 [dt k[dkb ]2)-:((2.16) \! (t) + (t) h t) dt < +c (k 0, 1).

Further, let Lh(--, 0;H:(I")) such that (O/On)(s)=O a.e. on F2 (for a.a.
s (-c, 0)), and suppose that

f, f, f’ L:(0, T; V*),
o o

Finally, let uo K be arbitrarily given.
Then there exists exactly one unction u: (-eo, r]- V such that u(s)= ’(s) for a.a.

s (-ee, O) while the restriction of u onto [0, T] satisfies the following conditions:

(2.17) u e C([0, T]; V), u(t) e g Vte [0, T],

(2.18) u’ e L(0, T; H),
T

(u’+aou+ I_ a(t-s)u(s)ds+ oo b(t-s)Bu(s)ds, v-u) dt

T

(2.19) -->-- Jo (f2, v- u) dt

for all v L:(O, T; V) with v(t) Kfor a.a. (0, T),

u(0) uo.(2.20)

Proof. Define

o(v)= {0 ifveK,
+oo if v V\K.

This assumption in particular implies that qi(x, s)ni(x) 0 a.e. on [’2 (for all s (-o, 0)).
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The functional 0 is proper, convex and lower semicontinuous on V.
Next, set

fl(t) a(t-s)(s) ds, fl(t) b(t-s)B(s) ds

for [0, T]. By the above lernma, fl L=(0, T; H2(12)). Further, taking into account
that (O/On)(s)= 0 a.e. on F (for a.a. s e (-oe, 0)) we get the existence of a (uniquely
determined) function z" (-, 0)H such that

(B((s), v)= (z(s), v) Vv e V,

(for a.a. s (-, 0)). It is easy to verify that z L(-m, O; H). Our above lemma now
implies that the function

0

t[ b(t- s)z(s) ds
d_

has its distributional derivative in L(O, T; H). The definition of z(s) immediately
yields

(fl(/), v)= b(t-s)(B((s), v) ds

0

for all [0, T] and any v V.
The assertion now follows from Theorem 1.
Remark 1. Let be a suNciently regular solution to (2.7), and let v La(0, T; V)

be arbitrary. Multiplying (2.7) by v(t)-O(t) and integrating the fourth term on the left
hand side by parts one obtains

(t)+aoO(t)+ a(t-s)O(s) ds (v(t)-(t)) &

+ ( b(t-s)(s)ds ((t)-(t) dx

q(t)n(v(t)-O(t)) dS 0

for a.a. t(0, T). In order to proceed we let denote Oi(s)=(OO/Oxi)(s), vi(s)
(Ov/Oxi)(s) (for a.a. s e (-m, T); 1, 2, 3). Then

0) ds) x(t)
-)b(t-s)Oi(s) as, vi(t)-Oi(t)

b(t-s)(O(s), vi(t)-Oi(t)) ds

b(t-s)BO(s) ds, v(t)-O(t)
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Hence, t satisfies the equation in (2.19) (for any v L(0, T; V)).
Remark 2. In addition to the above assumptions on

(-oo, 0). Then for the function u obtained in Theorem 2 the constitutive equations
(2.3), (2.4) (and thus (2.3’), (2.4’)) make sense as linearization of the general response
functionals in [7] (i.e. our discussion remains within the range of validity of the
linearized theory in [7]).

Remark 3. In addition to our above conditions on a(.) and b(. suppose that

f (t)= a’(t-s)C(s) ds, f’l (t)= b’(t-s)BC(s) ds

for all [0, T] (this can be easily verified when both a’(.) and b’(.) are uniformly
continuous on [0, o)). Then

for a.a. 6 (0, T) (the constant being dependent on T). This estimate is readily deduced
from the proof of Theorem 1.

Remark 4. Let us now suppose that u(t) C1(1)) for a certain (fixed) (0, T)
(u being the solution to (2.17)-(2.20)).

Define

fo,, {x : ]u(x, /)l + ]Vu(x, t)l
Let ff @ (D,o.t) (= set of all infinitely differentiable functions in 3 having their support
in 10.,) be arbitrarily chosen. Then there exists a real 0< 6*< 8 such that lu(x, t)l/
]Tu(x, t)[ <= 6" for all x supp (4’). Next, the inequality in (2.19) implies

u’(s)+aou(s)+ a(s-’)u(z) b(s-’)Bu(r) dr, v-u(s)

>= f ,V(x, s)[v(x)- u(x, s)] dS

for all s (0, T) and any v K (here we have fixed a representative in the class u’). We
now insert v u(t)+/-eO (e >0 sufficiently small) into the latter inequality (s t).
Observing that

b(t- s)Bu(s) ds, b(t- s) _---(s) ds dx

it is easily seen that u(t) satisfies (2.7) in the sense of distributions in flo,t. Furthermore,
it holds u 0 on F (0, T) (in the trace sense) and u(0) Uo a.e. in

Finally, in addition to our above assumption we now suppose that u(t) H(lq) and
flo,t fl (for the value under consideration). One then obtains

fi. (qi(t)ni g(t))v =0 Vv V.dS

(Note that the functions ni are measurable on F and bounded by 1; cf. [15].) If F F2
the latter relation implies qi(t)ni X(t) a.e. on F (cf. [15]).

Addition. After submitting this paper the author became familiar with a preprint
of the paper by V. Barbu and M. A. Malik, Sernilinear integro-differential equations in
Hilbert spaces. This work is concerned with the existence, uniqueness and asymptotic
behavior of solutions to integrodifferential equations within a Hilbert space. Although
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the class of integrodifferential equations considered by these authors essentially
coincides with that we have studied in 1, the theory developed in the above mentioned
paper does not apply to our situation" (1) cannot be reformulated as an equation in H
(indeed, the extension of the functional p onto H is proper and convex but need not be
lower semi-continuous on H). Furthermore, we dispense with a condition of type (iii)
used in the above mentioned paper.

Aeknowleflgment. The author is indebted to the referees for their kind advice
when preparing this paper.
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PERTURBATION THEORY FOR DIVISORS OF OPERATOR
POLYNOMIALS*

I. GOHBERG, P. LANCASTER, AND L. RODMAN

Abstract. This paper is devoted to perturbation theory for polynomial divisors of operator polynomials

L(A, tx) IX + At_l(tx)A -1 +... +A a(tx)A + A0(tz),

where A0(),’’’ ,A-I(IX) are operators acting in some Banach space and depending analytically (or
continuously) on tx in some domain of the complex plane. Local behavior of the divisors is studied. For the
case that the Banach space is finite dimensional, the global behavior of the divisors is studied, including
description of the singularities.

Introduction. The classical problem of damped oscillations demands detailed
study of differential equations of the form

(A) + IXB + Cx 0

where B, C are constant Hermitian positive definite matrices and tx is a nonnegative
parameter. It is natural to study this equation as a problem of analytic perturbation of
that for harmonic oscillations:

k’+Cx =0.

In this way, one is led to consider the dependence of solutions of (A) on Ix and, hence, to
the dependence on Ix of eigenvalues and generalized eigenvectors for the matrix
polynomial

L(A, Ix) Ih 2 _+_ IxB/ + C.

This may be described as a spectral perturbation problem.
However, M. G. Krein and H. Langer [12] pioneered a second approach to the

solution of (A). For example, if Ix is small in the sense

Ix < inf {2(Cx, x)I/2/(Bx, x)},
xCn,x#O

any solution of (A) can be written in the form

(B) x(t)=e,Z+xx+e -X2

where Z/, Z_ are solutions of the matrix equation Z2+ IxBZ + C 0 and have their
spectra in the upper and lower halves of the complex plane, respectively. These matrices
depend on Ix and the problem is now to study such matrix valued functions Z/(Ix),
Z_(Ix) for which

Z+(0) iC /2, Z_(O) =-iC/2.

Both polynomials IA- Z+(Ix)= L,2(A, Ix) are evidently right divisors of L(A, Ix), and
this formulation is a problem in the perturbation of divisors of polynomials. In this case,
there are special restrictions imposed on the divisors.
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In developing further some results of R. J. Duffin [2], Krein and Langer also show
that solutions of (A) take the form (B) in the case when Ix is sufficiently large. Thus, the
condition for strong damping is

Ix > sup {2(Cx, x)l/2/(Bx, x)},
xCn,xO

and implies that L(A, Ix) has right divisors of first degree which yield solutions of the
differential equation in the form (B). Our investigations will throw some light on the
existence and behavior of divisors of L(A, Ix) as Ix ranges over all complex values.

More generally, this paper is devoted to analytic perturbation theory for divisors of
operator polynomials

L(A, Ix)= IA’ +AI_I(Ix)A’-I+ .+AI(Ix)A +Ao(Ix)

where Ao(Ix), , AI-I(Ix) depend analytically on Ix in some domain D, of the complex
plane. In particular, suppose that

LI(A) IA +B_IA -1 +... +B1A + Bo
is a right divisor of L at Ix Ixo and that L has its spectrum in the interior of a bounded
closed contour F. Suppose, in addition, that the quotient L2(A) L(A, Ixo)L-1 (A) has its
spectrum outside F. Then L1(A) is called a F-spectral divisor of L(A, Ixo). One result of
this paper shows that there will always exist F-spectral divisors for L(A, Ix) in a
neighborhood of Ix0. This divisor, LI(A, Ix) can be considered as a perturbation of
LI(A)-LI(A, Ix0). If the coefficients Ai(Ix) are merely continuous it turns out that
LI(A, Ix) has coefficients continuous in Ix. Similarly, the coefficients of LI(A, Ix) will
inherit analyticity from those of L(A, Ix). These results, among others, are developed in
the first chapter for the infinite dimensional case. The main tools are theorems about
divisors from our paper [6]. In that paper a correspondence is developed between
divisors and certain subspaces known as "supporting subspaces." In general, this
dependence on Ix of the original polynomial and of this supporting subspace completely
determines the dependence of the divisor on Ix.

The first section of this paper has, in priciple, a local character. In the second the
global properties of divisors are to be investigated and attention is confined to the
finite-dimensional case. The nature of the singularities of divisors is explored as well as
the existence of divisors which do not admit analytic continuation. The simplest

example f the latter is [ A0 A0]’ which is an isolated divisor of [A2Ix h20] at Ix =0.

Section 1 consists of a detailed investigation of the direct and inverse dependence
of divisors and supporting subspaces. This involves the use of a metric on the set of
subspaces of a Banach space which is very close to the "gap’.’ of M. G. Krein, M. A.
Krasnoselskii and D. P. Milman (see [11] and Gohberg-Markus [8]). Sections 1.1 and
1.2 have a preliminary character and in 1.3 and 1.4 the continuous and analytic
dependence of divisors, respectively, are studied.

Section 2, as mentioned above, deals only with the finite dimensional case. A very
important role is played here by theorems of Baumgirtel on analytic perturbation
theory for matrices [1]. In 2.1 the necessary corollaries of Baumgirtel’s results are
developed. In the remaining sections applications are made to continuations of divisors
in the large and to the study of singularities of the divisors.

From the point of view of systems theory the paper is concerned with systems (T, X,
Y) with frequency response function equal to the inverse of a monic matrix polynomial



PERTURBATION THEORY 1163

L. The authors’ earlier work has developed and explored the one-to-one cor-
respondence between factorizations L1L2 of L and certain invariant subspaces of T.
The relevant results are summarized in 1.1. The contributions of this paper include the
behavior of these factorizations and subspaces when the coefficients of the polynomial
depend analytically on a parameter, in both the finite dimensional and Banach space
context.

1. Local perturbations.
1.1. Algebraic preliminaries. Let be a complex Banach space and () the

algebra of bounded linear operators on . A monic operatorpolynomial (more briefly, a
m.o.p.) is a function from the complex numbers to (W) of the form

(1) L(A)=IAI+A-IAI-I+ "+AIA +A0
where Ao, A1,’.’, A-I and the identity I are members of (T). The symbol T
denotes the direct sum of r copies of W. It has been shown in the authors’ earlier papers
[4], [5] and [6] that spectral information about L can be concentrated in certain pairs of
operators. They are defined as follows: Operators X e (/, W) and T e (Tl) form a
standard pair for the m.o.p. L of (1) if

AoX +AIXT +. +At_XTl-1 +XT 0

and the operator Q defined by

X

o= x.r
XT-

is invertible.
An important example of a standard pair consists of an operator X [I 0 0 O]

and T CL, the first companion operator for L defined by

0 I 0 0
0 0 I 0

C=
6 0 0

-Ao -A A-2 -AI-1

In this case the operator Q of (2) is the identity operator on W.
Note that, for any X (wl, W) and T (wl) satisfying only Y.i=0 AiXTi O,

and with Q defined by (2), we have QT CLQ. Thus, X, T a standard pair implies that T
is similar to Co.

The second example of a standard pair (to be exploited in 2) is confined to finite
dimensional spaces T. In this case, let J be a matrix in Jordan normal form representing
CL. Then J is In In and a n In matrix X for which X, J form a standard pair will
necessarily have the chains of generalized eigenvectors (Jordan chains) for L displayed
as its columns. Such a pair is described as canonical.

In earlier papers the authors have studied the correspondence between monic right
divisors of L (i.e., m.o.p. L for which L L2L for some m.o.p. L2) and certain
invariant subspaces of operators T belonging to standard pairs. For future reference we
present this result and the complementary result concerning representation of quotient
polynomials.
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First define an operator Qk I_.)k (1 <- k <- 1) in terms of a standard pair X, T by

X

(3) Qk X.T
Xk-1

PROPOSITION 1. LetL be a m.o.p, on gofdegree with standardpairX, T. Let:g be
an invariant subspace of Ton which Qk, viewed as an operatorfrom /l to k, is invertible.
Then /[ Rr where Rr is the Riesz projector corresponding to T and F:

(4) LI(A)=IAk-xTk(WI+ W2A +" "+ WkA k-l)

where W1, , Wk (g, /l) are defined by

(5) [w w] (O I)-.
Conversely, if F is a contour of regular points and l , Rr is the supporting

subspace l of T such that Qk lt is invertible and (4) holds.
The invariant subspace of T associated uniquely with a divisor L1 is called a

supporting subspace for L with respect to T.
There is an asymmetry about the notion of a standard pair X, T which is removed

by the introduction of standard triples. For a full discussion see [6], but for our purposes
observe that X, T, Y form a standard triple itt X, T are a standard pair, Y (,)
and

0, r=l,2,...,/-1,XTr-Iy--
I, r= l.

This idea is useful in the description of quotient operator polynomials.
A standard triple is used in the following description of the quotient L2 associated

with the right divisor L1 of Proposition 1. First define an operator Rl-k" gTt-kl in
terms of operators T, Y of a standard triple by

(6) Rt-k Y, TY, Tl-k Y].

PROPOSITION 2. LetL be a m.o.p, with standard triple X, T, Y. LetL L2L where
L1, L2 are m.o.p, ofdegrees k and k respectively, andt be the supporting subspace of
L with respect to T. Then

(7) l //1o Rl-k

and the map R: ffl-k "--) R-k generated by R-k is invertible.
For 1 <- <- k define Zk" Rl-k - by

Z1

R-1 Z2

and let P () be the projection on R_ along. Then

(8) L(A I- (Zl +ZA +. +Z/A --I)PT-PY.
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Observe that the standard pair X [I 0... 0], CL generates the triple X, CL, Y
with Y [0 0 0 I]T (where T denotes the transpose) and that, in this case

(9) Rt-k {X T x X2 Xk 0}.

Note also that the operator Qk of (3) has the representation Qk "-[Ik, 0] when using
this standard triple, and /is a supporting subspace iff it is CL invariant and is a direct
complement for5 Rl-k as defined in (9).

There is a class of divisors of a m.o.p. L which are of particular interest because of
the simple relationship of their spectra to the spectrum of L. To define these more
precisely some familiar concepts are needed. First, the resolvent set of L, written
Res (L), is the set of complex numbers A for which L(A) has an inverse in (). Then
the spectrum of L, written o’(L), is the complement of Res (L) in C. Each point of Res (L)
is called a regular point for L. If F is a closed contour in the complex plane consisting of
regular points of L, then a monic right divisor L of L is a F-spectral (right) divisor of L if
L L.LI and r(L1), r(L2) are inside and outside F, respectively. For such divisors a
supporting subspace can be described as the image of a Riesz projector. The
fundamental result in this direction is Theorem 19 of [6] which is now presented, but see
also Theorems 23 and 24 of [5].

PROPOSITION 3. Let L be a m.o.p, with standard triple X, T, Y and let L1 be a
F-spectral right divisor ofL having associated supporting subspace l with respect to T.
Then l Rr where Rr is the Riesz projector corresponding to T and F:

Rr (Ih T)-1 dA.

Conversely, if F is a contour of regular points and All Rr is the supporting
subspace for the monic right divisor L ofL with respect to T, then L is a F-spectral right
divisor.

1.2. Topological preliminaries. Denote by s4 the class of all subspaces of Tt. The
ideas of an "opening" between subspaces and of the "spherical metric" are now to
be introduced. The first of these originates in the work of Krein, Krasnoselskii and
Milman [11] and led to the development of the second by Gohberg and Markus [8].
Good descriptions of the subject can be found in the works of Gohberg and Krein [3]
and of Kato 10].

If x l and J is any subset of ’91, let p(x, J) denote the distance from x to J. If
e , then S will denote the unit sphere in A/. The opening between subspaces

d//, e s4 can now be defined as

0(, W) max { sup O(x, ), sup p(x, :///)}.
xSa xSw

If Pt, Par are any two projections in (W) for which
then

(10)

applies. To see this let x St, so that

IIx Parx IIPx Parx <- IIPt Par[I
and, consequently p(x, W)= inf,llx ylllle -e ll. Similarly, for any y Sar it is
found that o(y,)<=llP-Pxl[. Then (10) follows from the definition of 0.

The opening cannot be used to define a metric on s4 since, in general, it does not
satisfy the triangle inequality ,axiom. However, the spherical metric obtained by
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modifying the definition is indeed a metric. If .////, W s define

(/,.W) max {sup p(x, Sa), sup p(x, Sx)}.
xeSw xeS.a

The opening and the spherical metric are then related by the inequalities:

(11) 0(, W) =< b(, W) -< 20(, W)

for any /, dV" M.
l.LEMMA 1. Let /t, Ylil and /l (Yll If Af and (t, dV’) is sufficiently

small, then

and

(13)

where Pa (P) projects l onto (onto W) along1 and C is a constant depending on
and eel but not on W.

Proof. The decomposition (12) follows from Theorem 2 of [8]. In order to prove
(13) observe that, by use of (11) it is sufficient to prove that

and the left inequality is just (10) which holds for any l, W.
To establish the right-hand inequality in (13) two preliminary remarks are needed.

First note that for any x , y 1, x Pa (x + y) so that

(14)

It is claimed that, for 0(d///, W) small enough,

(15) lie + rll &llell-lllzll
for all z W and y 1.

Without loss of generality assume Ilzll--1. Suppose 0(, W)< 8 and let x
Then, using (14) we obtain

lie / yll--> IIx + yll-IIz xll--> IIell-lllx II- .
But then x (x z) + z implies Ilxll->- 1 and so

Ilz + y 1[--> Ile 11-1(1 8)

and, for 8 small enough, (15) is established.
The second remark is that, for any x ,

(16) IIx -exll <- Coo(x, )

for some constant Co. This follows from the topological equivalence of the complemen-
tary subspace /1 of /(in which x -Pax lies) and the factor space Tl J//with its usual
norm (llx + 11- p(x,

Now for any x Sa, by use of (16),

II(P -P)xII- Ilx -Pxll <-- Cop(x, )<- CoO(JZ,
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Then, if ca e T, IIoll-- 1, and ca y + z, y e , z e

II(e -e)oII- II(e -ex)y Ily IlCoO(,)2Collello(, )
and the last inequality follows from (15). This completes the proof of the lemma.

Let be the class of all monic operator polynomials of degree k acting on W. It is
easily verified that the function q defined on x by

k--1

B E IlBi B(17) IX + XBi, IX +
=0 =0 =0

is a metric and will now be viewed as the corresponding metric space.
Consider the set x consisting of pairs {, L(A)} for which is an

invariant subspace in l for the companion operator CL of L. This set will be called
the supporting set and is provided with the topology induced from x .

Then define the subset consisting of all pairs {, L(A)} where L(A)
and is a supporting subspace (with respect to CL) associated with a monic right divisor
of L of degree k. The set is called the supporting set of order k.

THEOREM 1. is open in .
Proo. Define the subspace l- of ’ by the condition x (x, , Xl) - iff

Xl Xk 0. We have seen ((7), (9)) that, if is a supporting subspace for L, with
respect to CL, then t- l. Conversely, if is an invariant subspace for C and
_

l, then it is apparent that the operator O [I, 0] of Proposition 1 is
invertible on so that is a supporting subspace for L. In other words (, L(A))
is a member of iff l- .

Now let (, L) and let (, ) be in an e-neighborhood of (, ). Then
certainly (,)< e. By choosing e small enough it can be guaranteed, using Lemma
1, that l- l. Consequently, is a supporting subspace for and (,

We now wish to show that, if corresponds to a F-spectral divisor of L
(Proposition 3), then there is a neighborhood of (, L) in consisting of pairs (,
for which the spectral property is retained. A pair (, L) for which corresponds to a
F-spectral divisor of L will be said to be F-spectral.

LEMMA 2. Let (, L) be F-spectral. Then there is a neighborhood of (, ) in
consisting o F-spectral pairs.
Proof. Let L0 t and be close to L in the norm. Then C will be close to C

and, since each isolated part of the spectrum of L is upper semicontinuous [10, Thm.
IV.3.12], L0 can be chosen to that IA C is invertible for all A F. Let be a closed
contour which does not intersect with F and contains in its interior exactly those parts of
the spectrum of L which are outside F. Then we may assume L0 chosen in such a way
that the spectrum of Lo also consists of two parts; one part inside F and the other part
inside .

Define , o,o to be the images of the Riesz projectors determined by (, L),
(, Lo) and (F, L0), respectively. Then

oo l,
(o, L0) is F-spectral, and if Lo L then 0 .

Now let (, L0) be in a neighborhood N of (, L). We are finished if we can
show that forN small enough, 0. First, N can be chosen small enough for both Lo
to be chosen close to L (whenceoto)and to be so close to, that1 ando are
arbitrarily close. Thus the first statement of Lemma i will apply and, ifN is chosen small
enough, then 0 .
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Now ./1 invariant under Co implies the invariance of ,/1 under the projector

Po= (AI-CLo)

Applying this projector to the decompositions Wo o Wo l it is found that
=o.
THEOREM 2. Let (l, L) 74/’k be F-spectral. Then there is a neighborhood of (, L)

in 74/" consisting of F-spectral pairs from
Proof. This follows immediately from Theorem 1 and Lemma 2. !-1
Note that in the discussion of this theorem it is not essential for F to be fixed. For

example, let the coefficients of L depend continuously on a parameter sr and suppose
that there is a F-spectral divisor at st0 containing the part (r(Ll(sro)) of r(L(sro)). Then
provided that the set o-(Lx(’)), for each fixed sr in a neighborhood of sro, is separated
from its complement in r(L(’)), a spectral divisor with respect to a st-dependent
contour F can be constructed. In some cases it will be advantageous to consider
F-spectral divisors of this kind.

1.3. The continuous dependence of the supporting subspace on the coefficients.
Define a map Fk: 14/’k )l-k X )k in the following way: The image of (J//, L) //k is to
be the pair of m.o.p. (L2, L1) where L is the right divisor of L associated with /and L2
is the quotient obtained on division of L on the right by LI. It is evident that Fk is
one-to-one and surjective so that the map F exists.

Introduce the topology generated by (17) to l-k X )k and define the space 0 to
be the disconnected union: 0 .J -=11 ()l-k X )k). In view of Theorem 1, the space
7g/’0 [.J -=11 74rk is also a disconnected union of its subspaces 7g/’, , 7g/’_. The map F
between topological spaces 74/’0 and o can now be defined by the component maps
FI,’’’, F_I, and F will be invertible.

If X, X2 are metric spaces with metrics pl, p2, respectively, the map G" XI - X2 is
called locally Lipschitz continuous if, for every x X, there is a deleted neighborhood
Ux of x for which

p2(Gx, Gy)
sup <.
u O(x, y)

THEOREM 3. The maps F and F-1 are locally Lipschitz continuous.
Proof. It is sufficient to prove that Fk andF are locally Lipschitz continuous for

k 1, 2,. ., l- 1. Let (,t/, L)e 7/irk and

Fk (JI/I, L L2 L1)

Then (Proposition 1) L has the representation of (4), and (Proposition 2) L2 has the
representation of (8). Note also the remarks immediately following Proposition 2.

To prove the required continuity properties of Fk: 7g/k - -k Xk it is necessary
to estimate the distance between pairs (L2, L), (,/21) in l-k X k using the topology
determined by the metric o- of (11). Note first that if Pt is the projection on /along
-k then P I-Pt (the projector appearing in (8)), and that (Qklt)-1 PCk in (5),
where Ck:Wk-- is the imbedding of k onto the first k components of wl. Then
observe that in the representations (4) and (8) the coefficients of L1 and L2 can be
uniformly bounded in some neighborhood of (//, L). Using standard procedures it is
then easily seen that, in order to establish the continuity required of Fk, it is sufficient to
verify the assertion: For a fixed (A/, L) 7/Vk there exist positive constants and C such
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that, for any W" 4 satisfying (A/, V’) < 6, it follows that W’@ ll-k 1 and

IIP PII--< cg(, ),
where PN is the projector of on f along -k. But this conclusion can be drawn from
Lemma 1 and so the Lipschitz continuity of Fk follows.

To establish the local Lipschitz continuity of F we consider a fixed (L2, L1)
t-k X k. It is apparent that the polynomial L L2L1 will be a Lipschitz continuous
function of L2 and L1 in a neighborhood of the fixed pair. To examine the behavior of
the gap between supporting subspaces associated with neighboring pairs we observe an
explicit construction for P, the projection on along t-k (associated with (L2-L1)),
obtained in [4] (see particularly equations (59) and (36)). In fact, P has the represen-
tation

IP1CkLllPICIL_llA(18) PlF
with respect to the decomposition 1= ffk ffl-k, where P1 [I 0... 0]. The local
Lipschitz continuity of 5 (Pt) as a function of L2 and L is apparent from this
representation.

Given the appropriate continuous dependence of L and the conclusion now
follows from the left-hand inequality of (13) (Lemma 1).

Note that if Lo(A IA then for 1 _-< k _-< l- 1, IA k is a divisor of Lo with associated
supporting subspace k. For any 3’ > 0 define

lk (3,) {(,//, L) k :[IP Pekl[ < 3’ and tr(L(h ), Ih 1) 3,}

and then 9(7)= U ,----11 @k(Y). It is claimed that a Lipschitz constant C C(y) can be
chosen for F which will be valid for all (M, L) @(y). Such a result is generally true for
arbitrarily locally Lipschitz continuous functions defined on a compact domain-@ and is
therefore true in the case of a finite dimensional space W. However, it follows from the
proof of Theorem 3 that such a constant can be found for F and any Banach space W.

Similarly, it is possible to choose a local Lipschitz constant C C(3,) for F-1 which
will apply at every (L2, L1) E(T) where E(T)= [_J -21Ek(T) and

Ek(y) {(L2, L1) E l-k >( k:O’(I l-k, L2(A)) _-< 3’ and tr(Ih k, LI(A )) <- 3"}.

COROLLARY 1. Let L(A, ix) Y’,i=o Ai(IX )A be a m.o.p, whose coefficients Ai(ix
depend continuously on a parameter ix in an open set ofthe complex plane. Assume that
there exists for each ix a monic right divisorLI(A, ix) =o Bi(ix )A ofL with quotient

l-kLz(A, ix) Y’-i=o Cj(ix)A Let/l (ix) be the supporting subspace ofL with respect to CL and
corresponding to L 1.

(i) ff/(ix) is continuous on @ (in the metric ) then both L1 and L2 are continuous
on .

(ii) If one of La, Lz is a continuous function of ix on @ then the second is also
continuous on @, as is l (ix).

Proof. Part (i) follows immediately from the continuity of (M, L) and of F since
(Lz, L1) is the image of the composition of two continuous functions.

For part (ii) suppose first that L is continuous in ix on @. Then, using (18), it is clear
that d//(ix) 5 (P(,)) depends continuously on ix. The continuity of Lz follows as in
part (i).
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Given the continuity of L2 on @ consider the m.o.p. L* defined on T* by

L*(A,/x) Y’. Ai(/x)*A
i=0

with L: L*z defined similarly. Then, L*(A, ) LI* (A, tz)L (A, Ix) and, since norms are
invariant under the operation of taking adjoints, L(h,/x) will be continuous in tx on @.
Applying the preceding argument the continuous dependence of L’ on/x, and hence
of L1, is obtained. The continuity of (tx) on @ then follows from the continuity of F-1

proved in the theorem. 7q

COROLLARY 2. LetL(A,/x) be a m.o.p, in A depending conl:inuously on tx in an open
set @ of the complex plane. Let F be a closed contour in the complex plane and, for every

lx , letLl(A, Ix) be a F-spectral (right) divisor ofL with (left) quotientL2(A, tx). Then
L and L2 are continuous functions of Ix on @.

Proof. We have for the supporting subspace (tx) of L(A, ) corresponding to

LI(X, Ix):

The integral determines a family of projectors which depend continuously on
Consequently the irnages, (tx), will also be continuous function on @. Then the
conclusion follows from part (i) of Corollary 1. 71

1.4. Analytic perturbations. In this section we consider a m.o.p. L whose
coefficients depend analytically on a parameter/x. Thus, we write

l-1

(19) L(A,t*) =IA+ 2 Ai(/x)A
i=0

where the coefficients Ai(tx), 1, 2,. , l- 1 are analytic operator-valued functions
defined on a connected domain 1) of the complex plane and with values in (). For this
purpose the following definition will be required: A family (), f, of subspaces of

is an analytic family in 1) if, for every ix0 lI, there exists a neighborhood U(0) 11
such that (tx)= A(tz)0 for every tz e U(0), where A(/x) is an invertible analytic
operator-valued function with values in (), and J/0 is a fixed subspace (depending on
txo) of . This definition is due to M. A. Shubin [14]; see also the paper of Gohberg
and Leiterer [7].

The following result is due to Shubin [14] and will play an important role in the
sequel:

PROPOSITION 4 (M. A. Subin). If J/l(t,) is an analytic family of complemented
subspaces in domain 12, then there exists an analytic projector-valuedfunction P(i) such
that tt (ix) P(l for every I 1.

In the applications that we will make of Proposition 4 the subspaces in question will
be families of supporting subspaces for a matrix polynomial and, as described in
Proposition 2, these are always complemented.

A variant of Lemma 1 will also be needed:
LEMMA 3. Letd/t, /11 sd andl 11 l and letPbe any projector onto At. IfO is

a projector and liP- Oil is sufficiently small, then a 0 dl ffl.
Like the first conclusion of Lemma 1, this is an easy consequence of Theorem 2 of

the paper [8] of Gohberg and Markus.
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THEOREM 4. LetL(A, ) be a m.o.p, of theform (19) with coefficients analytic in f.
For each I 12 let LI(A,/z) be a monic right divisor of L(A, Ix) with supporting subspace
/l(tx) with respect to CL(.,,), and let Lz(A, I) be the corresponding left quotient.

(i) If(lx) forms an analytic family in f, then LI(h, Ix) and Lz(h, Ix) are analytic
in .

(ii) If either LI(A,/z) or Lz(A, Ix) is analytic in , then (i) forms an analytic
family in f and Lz(A, Ix) or LI(h,/z), respectively, is analytic in .

Proof. (i) Let () form an analytic family in f and 0 D.. Then, lay Proposition
4, there is a projector-valued analytic function P(/z) such that (/z) P(/x),/x O..
By use of Lemma 3 it is deduced that there is a neighborhood F(/z0) in which J//(/z) is a
supporting subspace for L(A,/z).

Using the representations (4) and (8) for L1 and Lz it can be seen that, in order to
prove the analytic dependence of these m.o.p, on/z, it is sufficient to prove that the
projector Pat(,) on (/z) along t-k depends analytically on/x. To this end, define an
analytic operator-valued function A (Ix) on WI= (/z0)-k by:

(20) A(tz)l.o P()l.o. A(tz)l,_ I.

It is claimed that, in a neighborhood of/zo, A() is an invertible map onto W. To
see this, first use Lemma 3 to establish a neighborhood of/z0 so that, with/z in this
neighborhood,

(/xo)@Ker P(/x) At (/z) @l_k l.
If x 6 Ker A(/x) and x x + X2, X f/’/(I-g0), X2 O’lotl-k, then X2 0 and P(/z)x 0. Thus
x /(/xo) f-I Ker P(/x) {0} for/. close enough to/xo. Thus, Ker A(/x) 0.

For the surjective property we show that Tl= v/([Ul,)@O’ffl-k C A([.). That
l-k A(tz) is obvious. Then let y 6 J//() and y y + Y2 where y J//(/xo),
yz 6 Ker P(/x). Then A()yl P(/x)yl P(/x)y y so that J//(/x) A(/z) also.

If Po is the projector on (/zo) along -k then A(ix)PoA-l(lz) is a projector with
image (/z) and kernel l-k. Thus,

Pt, A(Ix )PoA- (Ix ).

The analyticity of Pt,) and hence of L (A,/x), L2(A,/z), in a neighborhood of/x0 follows
from this relation. Since/.to is an arbitrary member of f conclusion (i) is obtained.

(ii) Suppose that L (/, ) is an analytic function of/x in 1). Then it is clear from the
representation (18) that Pa, is analytic in II. It follows that /(tz) is an analytic family
in f and, using part (i), that LE(A,/z) is analytic in/z in 1).

Finally, assume it is given that LE(A,/x) depends analytically on/.t in f and write
Lz(A. tx IA l-k _[_ El-k-1=o C(Iz)A. Taking adjoints in (19), we find that

l-1

LI*(A,#) -’/A/+ E Ai(I,z)*Ai
i=o

has a right divisor
l-k-1.

Z(A, Iz) =IAl-k-t- E Ci(I-t,)*Ai.
1=o

Now this divisor has supporting subspace M(/z)+/- in (6*) with respect to C (X, T, Y a
standard triple for L implies Y*, T*, X* a standard triple for L*; cf. Remark 3
following Theorem 9 of [4]). The argument of the preceding paragraph can now be
applied to deduce that M (/z) +/- is an analytic family in f and that L1" is an analytic in D..
Corresponding results for M (/z) and L1 follow..and the theorem is proved.
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THEOREM 5. LetL(A, Ix) be a m.o.p, oftheform (19) with coefficients analytic in f.
Assume that, for each Ix f, there is a separated part of the spectrum ofL, say tr, and a
corresponding F,-spectral divisor LI(A, Ix) ofL(h, IX). Assume also that, for each Ixo
there is a neighborhood U(ixo) such that, for each u U(ixo), tro is inside F,o.

Then LI(A, Ix) and the corresponding leftquotientLE(h, Ix are analyticfunctions ofix
in f.

Proof. The hypotheses imply that, for Ix U(ix0), the Riesz projector P(IX) can be
written

1 r }- 1 r {IA-CL.}-ldAP()=- ,{IA-C("") dA =- -o

from which we deduce the analytic dependence of P on Ix in U(ix0). Let ///()
o P(IX) be the corresponding supporting subspace of L and use (20) to define an
invertible operator function A(IX) in a neighborhood of Ix0 with the property that

(ix) A (ix)///(ixo). Then (ix) is seen to be an analytic family in I and the conclusion
follows from part (i) of Theorem 4.

It is evident that, in the case of a F,-spectral divisor, the projector P(IX), and hence
(ix) and the divisor L (A, Ix) are uniquely defined for each Ix. This is the case whether

the continuation is analytic, as in Theorem 5, or merely continuous, as in Corollary i of
Theorem 3.

2. Global analytic perturbations in the finite dimensional case. In 1 direct
advantage was taken of the assumed dependence of the coefficients of L on Ix by
relating divisors to corresponding subspaces of the operator CL, in which the coefficients
of L are explicitly displayed. Thus the appropriate standard pair for that analysis was
X -[I 0 0], CL (as introduced in 1.1). However, this standard pair is used at the
cost of leaving the relationship of divisors with invariant subspaces obscure and, in
particular, giving no direct line of attack on the continuation of divisors from a point to
neighboring points.

In this chapter we shall need more detailed information on the behavior of
supporting subspaces and, for this purpose, canonical pairs X,, J, will be used. Here
the linearization J, is relatively simple and its invariant subspaces are easy to describe.
The necessity of using canonical pairs means, however, that our attention will be
confined to the finite dimensional case.

2.1. Preliminaries. Let A0(ix), , AI-I(IX) be analytic functions on a connected
domain f taking values in the linear space of complex n n matrices. With I the n n
identity matrix consider the matrix-valued function

I--1

(21) L(A, Ix IA
i=0

Using techniques developed by the authors in [4] and [5] it is possible to construct
for each Ix f a canonical pair of matrices X,, being n ln, and J,, which is In ln, for
L(A, Ix). The matrix J, is in Jordan normal form and will be supposed to have r Jordan

T(i)cells , of size q, 1,..., r with associated eigenvalues Ai(ix), (not necessarily
distinct). In general, r and the qi depend on Ix. We write J, diag ,T),’’ ,,T) }. The
columns of X determine the Jordan chains for L at Ix. Partition X as follows:

x.
(i)where A. has qi columns and each submatrix represents one Jordan chain.
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As outlined in 1.1, the pair Xr, Jr forms an important example of a standard
pair and can be used to form a standard triple Xr, Jr, Yr" Using Proposition 1 we
may therefore couple the study of divisors of L(A, Ix) with the existence of certain
invariant subspaces of Jr ([4] and [5]), and we are now to determine the nature of the
dependence of divisors and corresponding subspaces on/x via the fine structure of the
canonical pairs X

In order to achieve our objective, some important ideas developed in the mono-
graph of Baumgirtel [1] are needed. The first, a "global" theorem concerning invari-
ance of the Jordan structure of Jr follows from Theorem 1 of Section V.7 of [1]. It is
only necessary to observe that Jr is also a Jordan form for the first companion matrix

(22) Cz.(ix)

0 I 0 0

! o i

0 0 I
-A0(ix) -Az(ix) A/-I(IX)

to obtain Proposition 5.
PROPOSITION 5. The matrix valued [unctions Xr, Jr can be defined on f in such a

way that, for some countable set $1 of isolated points in f, the following statements hold:
(a) For every Ix f\S1 the number, r, ofJordan cells in Jr and their sizes ql, , qr

are independent of Ix.
(b) The eigenvalues hi(ix), i= 1,..., r, are analytic functions in )\$1 and may

have algebraic branch points at some points of $1.
(c) The blocks X(i)r i= 1, r, ofX, are analytic functions of Ix on \Sl which

may also be branches ofanalytic functions having algebraic branch points at some points
of SI.

The set $1 is associated with Baumgirtel’s "Hypospaltpunkte" and consists of
points of discontinuity of Jr in as well as all branch points associated with the
eigenvalues.

The next proposition is derived primarily from Baumgirtel’s Theorem 1, Section
IX. 1. It describes the local behavior of canonical matrices in a neighborhood of a point
IX0 Sx. Note that r has the same meaning as in Proposition 5.

PROPOSITION 6. For any Ixo 81 there is a deleted neighborhood N,o in which the
following statements hold:

(a) The number of distinct eigenvalues in Nro is constant.
(b) There exist disfoint sets of integers T1, Ts for which [,-J;=l r/. {1, 2,. ., F}

and all eigenvalues hi(ix), Ti, are determined by the distinct branches of an analytic
function having Ixo as a branch point of multiplicity mj, the cardinality of Ti.

(c) If k, T then qk qt (sizes of the Jordan cells).
"--(i) ri} is determined by the distinct branches of a(d) If Ix Nro, then {Xr

(matrix-valued) analytic function having Ixo as a branch point of multiplicity mi.
(e) For Ix N,o t_J {ix0} and Ti there are expansions:

hi(ix) Ix0 + Y ai(ix Ixo)"/’’,
=1

X(i>= Bi(ix-ixo)r
]=0
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The least common multiple rn of rex, m2," ", ms is called the branch multiplicity
of Ix0.

Let i(/z), ] 1, 2,. , denote all the distinct eigenvalue functions defined on l’l
and let

S2 {/ [’\Sl" i(/.L) (), 1 i, ] t, # ]}.

(Note the following relations: s r ln, = mi r, = qi In.) The canonical
matrix J, then has the same set of invariant subspaces for every (S $2). The set
$2 consists of multiple points (mehrfache Punkte) in the terminology of Baumgartel.
The set S $2 is described as the exceptional set of L(A, ) in and is countable,
having its limit points (if any) on .

Example 2.1. Let L(A, ) A 2 +A + for some constant , and C. Then

2and, for 2, J, =diag{1(), I(I)} where 1,a are the zeros of I+I+
Here, S {2, -2}, S .

Example 2.2. Let

L(A, ,) [(A I)(A -,) 0 )]( -2)( -and fl C. The canonical Jordan matrix is found for every C and hence the sets S
and $2. For {0, 2, 1, },

2J diag {, 1, 2}.

Then

Jo=diag{0, 0, 1, 2, J=diag
0 2

J_x=diag
0 1 ’-1’2 J1 diag 0 1 1 2

0 0 1

J+/-,-= diag [20
It follows that S1 {+ 1, 2, +4}, S2 {0} and, for Ix c f\S1,

2

1 1 /x 1"

2.2. Analytic divisors. As in equation (21), let L(A,/z) be defined for all (A, tz)
C x fI. Suppose that for some/Xo f the m.o.p. L(A,/xo) has a right divisor L1 (A). The
possibility of extending LI(A) to a continuous (or an analytic) family of right divisors
L1(A,/x) of L(A,/x) is to be investigated. It turns out that this may not be possible, in
which case LI(A) will be described as an isolated divisor, and that this can only occur if

txo is in the exceptional set of L in ’. In contrast, we have:
THEOREM 6. If txo [\(S11,.J S2), then every monic right divisor LI(A) of L(h, Io)

can be extended to an analytic family Ll(h,/x) of monic right divisors of L(A,/x) in the
domain fI\(S1 LI $3) whet< $3 is an, at most, countable subset of isolated points of fl\S
and Ll(h,/x) has poles or removable singularities at the points of $3.
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Proof. Let M be the supporting subspace of divisor LI(A of L(A, Ix0) with respect
to the canonical matrix J,o. Then, if L has degree k, define the map Qk (IX) on 12\$1 to be
the restriction of

to J//. It follows from Proposition 1 that Ok (IX0) is invertible. Since (by Proposition 5)
Qk(IX) is analytic on \$1 it follows that Qk(IX) is invertible on a domain (\SI)\S3
where Sa is, at most, a countable subset of isolated points of \$1. Furthermore, as
noted in the preceding section, the invariant subspaces of J, are invariant for Ix l)\Sl.
Hence, by the converse of the theorem just cited there exists a family of divisors
LI(A, IX) of L(A, IX) for each Ix fl\(S1 US3) each divisor having the same supporting
subspace M with respect to Jg. By part (i) of Theorem 4, it follows that this family is
analytic in \($1 U $3).

An explicit representation of LI(A, IX) is obtained in the following way (cf.
Proposition 1). Take a fixed basis in M and for each Ix in fl\Sl represent Qk(IX) as a
matrix defined with respect to this basis and the natural basis for wk. Then, for IX $3
define In x n matrix-valued functions W(ix), , Wk (IX) by

[WI(IX) Wg(ix)] RQ- (ix)

where R is the matrix (independent of Ix) representing the embedding of J//into Wz. The
divisor L1 has the form:

LI(A, Ix I, k xta,Jk {W ix W2(ix)/ -[-" .%- Wk ix
k -1}

The nature of the singularities of LI(,, IX) is apparent from this representation.
Note that more can be said about the orders of the poles of L (h, Ix). First, it is clear

that if Ll(h, Ix) has a pole at Ix then the order of the pole cannot exceed the order of the
zero of det Qk(IX) at IXI. More precisely, there is a factorization of Qk(IX) valid in a
neighborhood U of Ixl of the form

where

Ok(IX) P(IX )D(IX )Q(IX ),

D(IX) =diag {(ix-/J, 1)kl, (/J, [.1) kn}

and D, O are invertible in U (see Gohberg-Sigal [9], for example). Consequently, the
order of a pole of L1 at Ix (if any) cannot exceed maxlih k,..

An important special case of the theorem is
COROLLARY 1. If det L(A, Ix) has In distinct zeros for every Ix

then every monic right divisor of L(A, Ixo) can be extended to a family of monic right
divisors for L(A, Ix) which is analytic on \(S1U $3).

Proof. Under these hypotheses $1 and $2 are empty and the conclusion
follows.

Example 2.3. Let

L(A, Ix)=
-AIx (A-1)2
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Then a Jordan matrix for L does not depend on/x, i.e. for every/z C,

j,=j=diag{[0 1 1 1
0 0],[0

We have $1 and $2 both empty and

X,,=
0 tz 1 0

The subspace spanned by the first two component vectors e and e2 is invariant under

"/1 01.- Thus, for/x 0, /isa supporting subspace for L(A,/x).J and X,[
0

Since

the corresponding divisor is Ih -X.J.(X.l)-1 it follows that
-1

L(h, tx)=Ih-
0 0

and S3 {0}.
COROLLARY 2. Ifthe divisorL ( of Theorem 6 is, in addition, a F-spectral divisor

for some closed contour F then it has a unique analytic extension to a family L1(, tx) of
monic right divisors defined on f\(Sl (_J $3).

Proof. Note that, as remarked after the proof of Theorem 5, LI(h) can be
continued locally in a unique way to an analytic family of divisors. Thus, the continua-
tions determined by Theorems 5 and 6 coincide.

Example 2.4. Consider the example used in the Introduction:

L A, Ix) Ih 2 + txBA + C

with B, C positive definite matrices and 2 C. At/z 0 there is a spectral divisor
LI(A) Ih iC 1/2 associated with the eigenvalues of Ih 2 + C in the upper half-plane.
Corollary 2 implies the existence of a unique analytic family of divisors Ll(h,/x) with
LI(A, 0)= LI(A) defined on the whole of C with the exception of an at most countable
set of isolated points in C.

2.3. Singularities of analytic divisors. The next theorem and example show that
divisors of L may or may not exist at points of $1, the set of exceptional points
introduced in 2.1.

THEOREM 7. Let txo I be a branch point of at least one eigenvalue function of
L(A,/.t) and let m be the branch multiplicity of Izo. Let L (h,/z) be an analytic family of
right monic divisors of L(A,/x) (obtained as in Theorem 6 from some LI(A,/z 1), /1

f\(S1 (_J $2)); then, in a deleted neighborhood U(lxo), L1 has one of the following
representations: Either LI(A,/z) is an analytic function of the form

k-1

O)i/m(23) LI(A, ix)= IA k + E Bi(IA , Bi(tz) 2 Ci( tz
i=1 i=o

in which case L (/, /-t0) is a right divisor ofL at/xo, or, for some positive integer p

(24) LI(A,/-6) =/A+ Z Bi(tz)h i, Bi() Y Gi(-o)(’-’)/.
i= i=0

Proof. Let LI(A,/x) be a right monic divisor of L(A, Ix) in U(/zo) of degree k. As
established in the preceding section, a supporting subspace which is independent of
can be associated with this divisor. Using this subspace define the map Qk(tZ),
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/z U(/zo) to be the restriction to M of

xk A
Then Proposition 6 implies that X,,, J. are analytic functions with algebraic branch
points at o and that Qk(# has a series expansion in nonnegative powers of (# #o)1/.

The argument of Theorem 6 can now be followed to obtain (23), provided
lim...o det Qk(#) O. If, on the other hand, this limit is zero then there is a smallest
integer p such that lim...o (# -o)-PQk(#) 0 and (24) holds in this case.

If (#) is the supporting subspace of divisor Lx(A, ), U(o), associated with
the companion operator then, by use of Corollary 1 of Theorem 3 it is clear that
lim...o (#) will exist in the first case of Theorem 7 but not in the second.

Example 2.5. Let

L(a, ) a
and e. Then for 0, J, diag { /4, i /4, _/4, -i /4} and S {0},
For 0,

X,=[ 1 1 1
/ / / /

Let be the invariant subspace of J, spanned by e and e and, for 0, X, is
invertible so that is a supporting subspace for a divisor. It is lound that

[ (1 + i)N /4 (--1 + i)-/4]
1/4L(I )= II [(-1 + i) /4 (1 + i)

for 0, and there is no monic right divisor for L at 0.
Example 2.6. Let L(I, ) be as in Example 2.2 and be spanned by ea and e3. If
1, is an invariant subspace of J, and X, is invertible so that is a supporting

subspace. The corresponding divisor is

0]
and can be continued to the whole of C.

.4. Isle less. As before, let L(I, ) be a monic matrix
polynomial of degree with coecients depending analytically on in , and let L (I)
be a monic right divisor of degree k of L(I, o), o e . The divisor L(I) is said to be
isolated if there is a neighborhood U(0) of o such that L(I, ) has no family of right
monic divisors L(I, ) of degree k which (a) depends continuously on in U(o) and
(b) has the property that lim,,o L(I, ) L(1).

Theorem 6 shows that il, in the definition, we have o(SUS) then monic
right divisors cannot be isolated. We demonstrate the existence of isolated divisors by
means of examples.

Nxample 2.7. Let C() be any matrix depending analytically on in a domain
with the property that for o e , C(o) has a square root and for o, in a
neighborhood of o, C() has no square root. The prime example here is o 0,
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F 0 0q
C(/x) | |. Then define L(A,/x) IA 2-C(/z). It is easily seen that if L(A,/x) has a

L 13_i

right divisor IA -A(/x) then L(A,/x) IA 2-A2(/z) and hence that L(A,/x) has a monic
right divisor iff C0x) has a square root. Thus, under the hypotheses stated, L(A,/x) has
an isolated divisor at/x0.

It will now be shown that there are some cases where divisors which exist at points
of the exceptional set can, nevertheless, be extended analytically. An example of this
situation is provided by taking xo 0 in Example 2.2.

THEOREM 8. Let txo $2 and LI(A be a nonisolated right monic divisor ofdegree k
of L(A,/zo). Then LI(A) can be extended to an analytic family LI(A,/x) of right monic
divisors of degree k of L(A,/x).

Proof. In effect, this result provides an extension of the conclusions of Theorem 6.
The statements concerning the singularities also carry over but are omitted for brevity.

Note first that with a divisor LI(A,/x) there are associated supporting subspaces
aV(/x) (ff//(/x)) with respect to J, (with respect to CL(,)) and these are connected by the
relationship Ac(/x)= O-l(/x )v/// (/z ), where

O(,)

|X l-k|
L I

(refer to 1.1). We have seen in Corollary 1 of Theorem 3 that if L1 depends
continuously on /x then so does / and it follows from the above observation (and
Proposition 5) that W will also depend continuously on

Since LI(Ix) is not isolated, there is a sequence {Ix,} in D.\(S U $2) such that/x -and there are monic right divisors L(Z,/x) of L(&,/x,) such that lim_ L(&,/x,)
L(,). Since the correspondence between divisors L1 and supporting subspaces W is
continuous, it follows that lim,,_. W(/x)= W(/z0). Since W(Ix,) is invariant under
and all invariant subspaces of J, are independent of Ix in f\(S U S2) it follows that
W(tz0) is invariant under J,. for each n.

From this point, the proof of Theorem 6 can be applied to obtain the required
conclusion.

The following special case is important:
COROLLARY 3. If the elementary divisors ofL(&, Ix) are linearfor each fixed Ix f,

then every nonisolated right rnonic divisorL(, ofL(,, txo) can be extended to an analytic
family of right monic divisors for L(&, tz) on 12\$3.

Proof. In this case S is empty and so the conclusion follows from Theorems 6
and 8.

Our final theorem will describe the continuations of divisors which can be made
from divisors at points of S which are known to be nonisolated. The statement of
Theorem 9 is disarmingly simple. In order to complete the proof, however, it is
necessary to introduce some notions which are familiar in the theory of functions of
several complex variables. We first introduce some of these concepts and two preli-
minary lemmas. In order to maintain some continuity in our argument the more
technical aspects of proof are relegated to the Appendix.

Write z--(z1,..., zt) for a typical point of C. A complex-valued function f
defined on a domain in Co is said to be meromorphic in a neighborhood of the point
a e Co if there exist two functions gl(z) and g2(z) analytic in a neighborhood of a such
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that f(z)gl(z) g2(z) holds in some neighborhood of a which is contained in the
domains of f, gx and g2. The point a is (i) a regular point of f if gx (a) 0, (ii) a pole of f if
gx(a) 0 and g2(a) 0, (iii) an ambiguous point of f if gl(a) g2(a) 0.

Suppose that the domain of f contains a neighborhood U of the point a C. The
set B c U is an analytic set in U if there exists a function f, analytic in U, such that
f(z) 0 for all z B. A set V c U is a variety in the neighbourhood U of a if V is the
intersection of finitely many analytic sets in U.

LEMMA 4. Letfx, , f be meromorphic functions defined on a neighborhood ofthe
origin in C and assume that the origin is an ambiguous point of each function. Assume
that there is a sequence {z (’,} in this neighborhood with the following properties: (a) z (’, is
a regular point offi, i= 1,..., a, n 1, 2,.... (b) z (’,-+0 as n o0. (c) For some
complex numbers bx, ", b, fi(z (n)) -> bi as n -+ oo. (d) With z (’,= (21n, ZI3n), there is
an io such that infinitely many Zgo’, are differentfrom zero. (e) {z (’,} is contained in some
variety X in a neighborhood of the origin.

Then there exist complex valued]unctions gx, go ofthe single complex variable
which are analytic in a neighborhood V of ( 0 and ]’or which:

(i) (gl(’), , go(())eX when V,
(ii) (gl(sr),..., g0(’)) is a regular point of fi, i= 1,. ., a., when ( V\{0}, and

lime+0 f(g(), ", go()) bg, i.= 1,..., a,
(iii) go(’) 0 in V,
(iv) g(0), ., go(0)) 0.
The proofs of this lemma and the next are deferred to the Appendix. Now let be

any topological space and, for z in some domain of C, let g(z) be an analytic family in. Then the family /g(z) is a complete covering for a 4 if (0)= a and, for any
neighborhood V of the origin in C, {(z): z V} contains a neighborhood of a.

LEMMA 5. LetJ be a p p complex matrix and JA an invariant subspace ofJ. There
exists an analyticfamily ofsubspaceslA(e) c Cv, (e CO), which is a complete covering of
J/[ (in the metric ) and a variety X Co such thatfor any neighborhood Vofzero in C,
the set S {JC(e): e X V} consists of subspaces invariant under J and contains all
subspaces in a neighborhood of which are invariant under

THEOREM 9. Let tzo S and assume that there exists a monic right divisorLl(h of
L(A,/z0) which is not isolated. Then either,

(a) there is a family ofmonic right divisors L(h, tz) ofL(h, tz) which is analytic in a
neighborhood of/zo, for which LI(A,/zo) LI(h), and for which tzo is a regular point; or

(b) there is a family ofmonic right divisors Ll(h, Iz) ofL(h, tz) which is analytic in a
deleted neighborhood of/zo, for which limg_.o Ll(h,/z) LI(h), and for which tZo is an
algebraic branch point.

Proof. Since LI(h) is not isolated, there is a sequence {L (h, /z’, )} of monic right
divisors for {L(h, /z’, )} (n 1, 2,. .) where/z ->/zo as n ->c (/z’, /zo for any n) and
LI(h, z’,)-> L(h). We may also suppose that

Let Xg, Jg be canonical matrices for L(h, tz) defined in a deleted neighborhood of

/zo in such a way that they have an algebraic branch point at zo with branch multiplicity
/z. It follows, as in Theorem 7, that Xg, Jg may be viewed as analytic functions of
v (/z -/z0) 1/" in some neighborhood U of zo, and where convenient we may write X,,
J, for Xg, Jg. Note that, although Xgo, Jgo exist, they are not necessarily canonical
matrices for L(h,/zo). However, in a deleted neighborhood of/zo all matrices Jg have the
same invariant subspaces. We may assume that the sequence {/z’,} is in U1.

Now let be the supporting subspace for divisor L(A, Ix,,) with respect to J..
Since the metric space of subspaces is compact there is a convergent subsequence of
{’,}o=. Without loss of generality we may assume that {} is convergent with
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lim,_.oo, and then it is easily seen that is invariant under J, for o, U1.
Using Lemma 5 we assert the existence of an analytic family of subspaces M(e),

(e C), a variety X, and a neighborhood U2 of the origin in C for which M(0) , the
set of subspaces (e) for which e X 71 U2 consists of J,-invariant subspaces
Ul\{tzo}), and , S, n 1, 2,- . Note that there exists a sequence {e (")} C such
that e

(") 0 as n and
There is a neighborhood U4 of the origin in Co in which a family of basis vectors

xl(e), , X,k(e) for (e) exists and depends analytically on e. Now form the matrix
V(v, e) which is the representation (formed using this basis) of the restriction to (e) of

Here, k is the degree of LI(A) (and hence of each LI(A,/n)). If U3 is the neighborhood
of the origin in the ),-plane corresponding to UI in the tz-plane then V(v, e) is an
analytic function in the neighborhood U U3 U4 of the origin in C C. Further-
more, det V(I,, e(") 0 for each n implies that det V(v, e) 0 in U. Hence we may
construct the polynomial

LI(A,,e.)=IAt’-X,.J(WI + W2A +’" "+ WkA k-I)
where

Wl"’" Wk] V(p, E)]-I,
(")) (h where (. zand it is evident that LI(A, Vn, e LI plan Pn 0) 1/u

Furthermore LI(/, /’, E) is a meromorphic function in U and does not have a pole
at the origin since

(n)) LI(A ).lim L (/, Pn, F_,

Let fi(v, e), 1, , a, be all the elements of LI(A, v, e) having an ambiguous point at
(0, 0) in the neighborhood U. Since lim,_. fi(v,,, e,) bi exists for 1, , a (b is the
corresponding element of La(h)) Lemma 4 applies where v plays the role of the io
coordinate in hypothesis (d) and X f3 U (with X as in Lemma 5) plays the role of the
variety X in Lemma 4. Hence there exists a family of divisors LI (/, ) which is analytic
in a neighborhood of the origin in a r-plane and for which limc_o L(A, ’) LI(A). We
write v g(r) 0 and g is analytic in a neighborhood of " 0.

Now we have power series expansions v i=o ar and

(25) LI(A,r) Vi(A)(i.
i=o

Inverting the series for u, write r Yi=o ciui/p where p is the least integer for which
av 0. Finally set v (-zo)1/" and substitute in (25) to obtain

O)i/kL (h /z) E Dg(h )(tz
i=0

where k up. The conclusion follows: Ll(h, tz) is an analytic family of right divisors of
L(A,/x) in a neighborhood of/xo, with the possible exception of a branch point at ix txo
when the branch multiplicity is a divisor of up. 1
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It remains an open question whether the local continuation of LI(/) obtained in
this theorem has a global extension of the kind established in Theorem 6.

Appendix. We prove here Lemmas 4 and 5.
Proof of Lemma 4. The proof consists of two parts; in the first part an auxiliary

result is proved.
(a) Let B c U1 be a variety in a neighborhood U1 of the point 0 e Co. Suppose that

there exists a sequence of points an (zn, , zan) B\{0} such that an 0, and let io
be an index for which infinitely many Zion are nonzero.

Let C1, C2," , C be varieties in the neighborhood U of zero such that

anClUC2l,.J’"" U C,; n=l,2,....

Then there exist scalar functions f(’), , fa (sr) analytic in a neighborhood U= of zero
of the st-plane with the following properties:

(i) (f(0), ., fa(0)) 0;
(ii) (fl(r),..., fa (r))c B for r e Uz;
(iii) o(Sr) 0 for sr e V2\{0};
(iv) (fl(’), fa (’)) C1 (_J C2 J"" C, for sr e U2\{0}.

To prove this statement, we shall use definitions and notation from R. C. Gunning and
H. Rossi [15].

By joining the variety {z e Co [Zo 0} to the set {C1, , C}, we can omit property
(iii). Without loss of generality suppose that C1 tA C LI. [_J C/B (taking C/fq B in
place of C/, if necessary) and B is irreducible (taking the irreducible branch of B in
which there are infinitely many a,,, see [15, Thm. 15, Chap. II El). We suppose also that
an e U1, n 1, 2,. that C1, Cz,. , C are irreducible; that 0 e f"l ’=1 Ci; and that
Ci {0}; 1,. , 3’. Then dim Ci < dim B (see 16, Thm. 9(a), p. 5 3]). Let Pi be the set
of all fl-ples (a l, aa) such that = aizi id Ci; 1, , 3’ (for the definition of
id Ci see [15, Chap. IIE]); let Pv+l be the set of all/3-ples such that aiz id B. Then
is a proer linear subspace in Co (because if Pi Co then Ci {0} or B {0}). Let

3+1f(z) i= aizi be a linear form such that (al, , aa) i= Pi. By definition of
f(z) [_J ’= (id Ci) 1.3 (id B). Then 15, Thm. 14, Chap. III C]:

dim (B f"} Y(f)) dim S 1;

dim (C1 fq Y(f)= dim C1-1.
Now use induction on dim B. (Note that the induction hypothesis is applicable to the
varieties B f"l V(f) and Clfq V(f),..., Cv V(f), because dim (Ci CI V(f))<
dim (B V(f)), and therefore there exists a sequence a e B f"l V(f), a, --> 0, such that
a:i%1 (CCI V(f)). The functions f(r),... ,fa(r) which satisfy (i)-(iv) for the
varieties C/fq V(f), ] 1,. , 3’, B fq V(f), satisfy (i)-(iv) also for the original varieties
C, ] 1,. , % and B.)

So, we have to consider only the case dim B 1, and in this case we can suppose
that 3’ 0 (i.e. there is no C1, , C,/). Now (i)-(iv) follow from the local description of
one dimensional varieties (see Lemma 3.3 in J. Milnor [17]).

(b) Now we shall prove Lemma 4 itself. Let hil(Z) and hi2(z) be analytic functions
in a neighborhood of zero such that

fi(z)hil(Z) hi2(z), i= 1,..., a.

Then hi1(0) hi2(0) 0 (because z 0 is an ambiguous point). Without loss of general-
ity we can suppose that bx -b2 b, 0. Introduce new complex variables sr-
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(’1, ’a) Ca and define analytic sets

Xg {(z, r) Co+ h2(z)- (. hl(Z) 0}, 1, 2,..., a.

Write bin=fi(z(’)); and ’={(z,r)Co+[zX}. Then for n=1,2,...,
(Zx,,Zz,,’",zo,,bx,,bz,,,...,b,,,)6(XafqXz...f"lXo,)f(, and (Zl,,,zz,,"’,
Zt3n, bin, b2n, bo,n) O. Applying part (a) with

C {(z, r) Co+ hga(z) 0}, 1, 2,..., a,

we find a +/ functions gl(r/),""", g+t(r/), analytic in a neighborhood of zero, such
that for r/in sorne neighborhood U of zero in the r/-plane"

(gx(r/),""", gt3+a (r/)) Xl [" X2 [’""" "Xa
and for r/ U\{0},

(gl(’r/), , gt+ (/)) C I,.J... Ca,

g(0) 0, for 1, 2, ,/ + a, and go(7) 0. Then for r/ in this deleted neighbor-
hood (gx(r/), ", go(r/)) is a regular point of fx(z), ", f,(z) and so

fi(gx(’rl),’’’ g (r/))= gt3+i(/); i= 1,..., a,

is well defined, and

lim fi(g(rt), gt(rl)) O.
rl-0

The condition (i) of Lemma 4 follows from the definition of ’.
Proof of Lemma 5. Let q-dim and let Vl, v2,’’ ", v be a basis for ; we

regard vi as vectors written in the standard basis. The matrix W (v l, rE, , v) has
independent columns. Suppose, for example, that the q upper rows in W are indepen-
dent. Then //is spanned by the columns of a matrix W’ of the form

vl v’...v,
where v are (p q)-dimensional vectors.

Since is invariant under J, we have JW’ W’A for some matrix A. Consider the
analytic family of matrices

[ ’W’(e)
(e) v’ (e). v’ (e)Vl 2 q

where

Vil d- Ell

(e) v +
Vi

V i,p--q ’[- Ei,p-q

(here vi’/are the coordinates of vl). So W’(e) depends on q(p-q) complex parameters
e (egi;]= 1,. ,p-q; 1, , q).

Let :///(e) be the subspace spanned by the columns of W’(e). Clearly, :///(e) is a
complete covering of /. The subspace /(e) is invariant under J if and only if
JW’(e) W’(e)A(e) for some matrix A(e). Let J be the matrix consisting of the upper
q rows of J. Then the equality JW’(e)= W’(e)A(e) gives A(e)=J,W’(e). So the
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necessary and sufficient condition for J//(e) to be invariant under J is JW’(e)=
W’(e)JW’(e ). This condition defines the desired (algebraic) variety in a neighborhood
of zero in e-space.
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ON ASYMPTOTIC AVERAGE PROPERTIES OF ZEROS OF
ORTHOGONAL POLYNOMIALS*

PAUL G. NEVAI" AND JESUS S. DEHESA

Abstract. Distribution of zeros of orthogonal polynomials is investigated by means of the coefficients of
the three-term recurrence relation which generates the orthogonal polynomials.

1. Introduction. The purpose of this paper is to study certain asymptotic average
properties of zeros of orthogonal polynomials given by a three-term recurrence
relation. The exploration of these properties is a very relevant problem in many-body
physics, for instance in investigating the nuclear level density in nuclear physics and in
searching for the density of electronic states of disordered systems in solid state physics.
The reason is as follows: the Hamiltonian operator H which completely describes any
physical system appears as a real and symmetric matrix. The conventional way to obtain
its eigenvalues and eigenvectors is tridiagonalization of H and then diagonalization of
the resulting Jacobi matrix. In fact, it is often possible, after some physical approxima-
tions, to write the Hamiltonian of the given physical system as a Jacobi matrix with very
large dimension n, and then one has "only" to diagonalize it to get its eigensolutions.
Much attention has recently been concentrated in obtaining certain average properties
of the eigenvalue spectrum of the Jacobi Hamiltonian of the system such as its
eigenvalue density. This problem is equivalent to investigating the distribution of zeros
of orthogonal polynomials by means of the coefficients of their three-term recurrence
relation.

Let {an}n=0 and {yn > 0}_-o be given sequences of real numbers. Let the system of
polynomials {p,(x)}=0 be defilaed by the three-term recurrence relation

(1) xpn X
3"n -’’-}-l p X -l- Ol. Pn X -t- 3" --’-’-2 pn 2 X
3"n 3"n-1

p-1 0, p0 3’o and n 1, 2,. . It is well known that there exists a positive measure
da acting on the real line such that the support of da is infinite and

(2) I_ p.(X)pm(X) dee(x)=

(See e.g., [2, p. 60].) The polynomials p,(x) and the coefficients in the recurrence
formula (1) can easily be expressed in terms of the measure dee. Let rr be the set of all
polynomials of degree at most n. Define the Christottel function A,(da, x) by

(3) A(dc, x)= min p2(t) da(t).
Pc 7rn_

P(x)--

Then

(4) 2 -1 (da, x)-A -1 (da, x)p.(x) =A.+a

* Received by the editors May 9, 1978 and in revised form November 2, 1978.
f Department of Mathematics, Ohio State University, Columbus, Ohio 43210. The work of this author

was supported in part by the National Science Foundation under Grants MCS 77-06687 and MCS 78-01868.
t Departmento de Fisica Nuclear, Facultad de Ciencias, Universidad de Granada, Granada, Spain.
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ZEROS OF ORTHOGONAL POLYNOMIALS 1185

and

(5) ce, xp z (x) da(x), y,-a= Xpn-l(X)pn(X) da(x).

For this reason we will write cen(da), yn(da) and pn(da, x) instead of an, yn and pn(x)
where da means a positive measure for which (2) is satisfied. This notation is also
justified by the fact that if da isan arbitrary positive measure on the real line such that
the support of da is infinite and x k L2(da) for k 0, 1,... and pn (x), an and yn are
defined by (3), (4) and (5) then both the recurrence formula (1) and the orthogonality
relation (2) will be satisfied. In the following such a measure da will be called a weight.

The zeros of pn(da, x), which are real and simple, will be denoted by
xk,(da): xxn(dce) > Xzn(da) >" > x,n(da).

2. Main result. Our main result is the following
oR+ +THEOREM 1. Let o be a nondecreasing function such that for every fixed

t

q(x + t)
lim 1.
+ (x)

Assume that there exists two numbers a and b >-_ 0 such that the coefficients in the
recurrence relation (1) satisl:y

an(da)
lira a. (n)

and

2yn-l(da)
lim
n-.oo /n(da)q(n)

Then ]:or every nonnegative integerM

where KM is defined by

lim Zk=l [Xkn(d)]M

,-. ig -[----d-i Ku a, b)

aM for b O,
(6) Kt(a, b)= 1 a+b M- [aa-b 4b 2 f--’--a)2 dt for b > O.

The case q 1 of this theorem has been proved in [3]. In order to prove Theorem 1
we will need two lemmata.

In the following, the fundamental polynomials of Lagrange interpolation cor-
responding to {Xkn(dol)}=l Will be denoted by lkn(6a, X)"

ikn(da, x)=
pn(da, x)

p’(da, Xk,(da))[x --Xkn(dce)]

for k 1, 2,. , n. The numbers An (da) defined by

An (da) An (da, xn (da))
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(k 1, 2,. ., n) are called Christottel numbers. The identity

P(x) da(x)= 2 ,(da)P(x(da)),

which is true for every polynomial P of degree at most 2n 1, is called the Gauss-Jacobi
quadrature formula. Sometimes we will omit unnecessary indices and parameters, e.g.
Akn stands for Akn (da).

LEMMA 2. LetMbe a fixed nonnegative integer. Let a be an arbitrary weight. Define
Z(M, da) by

Z.(M, da) L [x,.,(da)]M "L’ x(da, x) da(x).
k=l k=l

Then the inequality

max la;(da)l+2 max
2 0_-<i_-<n+M-l’ l_<-’-<_n+M-1 Tj(da)

holds for every n 1, 2,.
Proof. Since

and

Y p,(x)
k=l k=l ,kn

L(x) d(x).

(See e.g., [2, p. 25].) We can write Z,(M, da) in the form

12kn(X)
zo( ,

k=l .kn
that is

M-I-j
XZ,(M, da)= _, Xk (X,--X)

j=O k=l

lL(x)
d-(x).

Akn

It is well known that

(X --Xkn)lkn(X) Tn-1 hknPn-l(Xn)Pn(X)

(see e.g., [2, p. 114].) Therefore we obtain

(8)

Expand lkn(X) into a Fourier series in {pl(x)}. Since lk(X) is a polynomial of degree n 1
we have

l(x) l f lk,(t)pl(t) da(t)pl(x).

By the Gauss-Jacobi quadrature formula

f: Ikn(t)p(t) da(t)= AknPl(Xkn).
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Thus we get

n-1

lkn(X) Akn E pl(Xk,.,)pl(x).
/=0

Putting this representation for lk,(X) in (8) we obtain

-Zn(U, do) /n-lM-lnl .y’. Ak,,p(Xk,.,)p,,_(X,,)xkM.-1-i
"Yn /=0 /=0 k=l

x’pn(x)p,(x) act(x).

It follows from the orthogonality properties that

x’pn(x)pl(X) da(x) 0

for/" +.l < n. Consequently

-Z,(M, da)= Y"-----2- . Y. AknPl(Xkn)Pn-l(Xkn)XkMn-1-i Xipn(X)pl(X) da(x).
n i=l l=n-] k=l

In this triple sum/" + n + -< 2n +M- 2 < 2(n +M)- 1. Hence, by the Gauss-Jacobi
quadrature formula

n+M

xipn(x)pl(x) da(x) , Am,n+MXm,n+Mpn(Xm,n+M)Pl(Xm,n+M)

Therefore we get the formula

M-1 n-1 n+M
-J-Z,(M, do) "n-1 E E E E ’kn’m,n+MXkMn-1 Xm,n+M.

’n j=l l=n-ik=l m=l

(9)
pt(Xk.)P.-I(Xk.)p.(x..+)pI(X..+).

If M 0, 1 then by (9), Z. (M, da) 0 for every n so that (y) is certainly true. Now let
M> 1. Let X. denote the zero of p.(x) with largest absolute value. Since X. is an
increasing function of n we obtain from (9) that

Tn j=l l=n-j k=l

Ip,,-,(x,,)l Y’.

By Schwarz’ inequality, the expression between braces is not greater than 1. Hence

(10)

M-1 n-1

IN,, (M, da)l <- ’3/n-1 IX,,+MIM-1 E E
’n 1=1 l=n--j

(M 1)M Y’-’IX,+,
2

The next step is to get an estimate for IX. [. It follows from the recurrence formula that

n--1 n--1 n2x Y. p(x) aip(x) + 2
)q

Pi(x)pi+l(X)+
j=0 j=0 j=0 ’j+

Pn-lpn(x).
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Putting here x Xkn (k 1, 2, , n) and using Schwarz’ inequality we obtain

Hence

(12) IXn+MI =< max + 2 max Yi----51.
O<----i<----n+M-1 l<=]<=n+M-1

Now (7) follows from (10) and (12).
LEMMA 3. Let the conditions of Theorem 1 be satisfied. Let M be an arbitrary

nonnegative integer. Then

(13) lim ,n,/ P,t x) da(x)= gM(a, b)

where KM is defined by (6).
Proof. First let b 0. Then, since

M X M-j

o(n
a + , a a

= (n)

the lemma will be proved if we can show that for every natural integer

(14) lim
x

-, (n)-a p(x) d(x)=O.

If ] 1 then by (5) this is clearly true. Now let ] 2. Then by the recurrence formula

(n)-a p(x)= p.(x)+ -a p(x)+ p_(x).

Hence we get

(n)-a p,(x) da(x)= + -a +

which implies (14) for ] 2. If ] > 2 by the Gauss-Jacobi quadrature formula

X 2 Xk,n+] 2

Then

(n)-a p(x) d(x) N max -a

max a

Now applying (11) we obtain (14) for every ]. If b > 0, define the numbers (d) by

_(d)/(d) for k n

(d) (d) for k n

(d)/+(d) for k n + 1.

(11) [xn] max fail+2 max ]-1 (k=l, 2,...,n).
O<----i<----n-1 l<=i<=n-1



ZEROS OF ORTHOGONAL POLYNOMIALS 1189

Apply the recurrence formula repeatedly to get

Mx p(x)= a...+,ce+k,,,,+k,+a""" a,+k,+...+kM_,,,+k,+...+kMP,+k,+...+kM(X)
1,2,...,M

for n > M. Thus

x p.(x) da(x)=
-l<=ki<-I

1,2,.--,M
,ki =0

Ogn,n+klOg n+kl,n+k+k2 Ol n+kl+’"+kM-l,n"

Divide both sides by q(n)t and let n +oo. We see-that

X 2(15) lim
(n)

p(x) d(x)

exists and it depends on a and b but not on {a}, {y} and q. Therefore if we put c * a
and y,*/y/x* b/2 for n 0, 1, 2,. and 0" 1 then (15) must equal

lim xlp2(d*, x) da*(x)

where a* denotes the corresponding weight function. It is easy to show that

where

p,(d* x)= U,(x-a)b

sin (n + 1)0
U(x)= x=cos0

sin 0

is the Chebyshev polynomial of second kind and

2 x/b 2 (I- a)2 dr,*(x)=gG _
with supp (da*) [a b, a + b ]. Since

1- Tz,,+2(x)U(x)=
2(1 -x2)

where T,(x)= cos nO (x =cos 0), we obtain

xp= (da,, x) da,(x)
x

r .,,,_b 41:z (X a )2

Hence

a-b<x<a+b,=

I f_x (bx + a)MTzn+2(X)
"17"

I 1 f
a+b M

M 2 X
x p.(da*, x) da*(x)=--

)2"l"i" b x/b 2 x a

x/1 --X
’2"

whenever 2n + 2 > M. Consequently, the lemma is also true for b > 0.
Proof of Theorem 1. By Lemma 3

x (x) da(x)= Y’. o(/’)[K(a, b)+ e,]
i=o j=O
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where ei -> 0 when --> oo. Simple estimation yields
.-M

/=o etPtl)
lim .,,_ ,., =0
n-,oo 2.,i=0 q tl)

and

Hence

L...1 xMp (X) da(x) (KM(a, b)+ 6.) [o (t)]M dt
i=O

with lim. 6. 0. By the assumptions in Theorem 1

limsup
1 [ max lail + 2 max <

(n) Ojn+M-1 ljn+M-1

and

Hence by Lemma 2

q(n)M
lim
n- o [O(t)]M dt

M (KM(a, b)+p.) [o(t)]mdt
j=l

(limn_ Pn 0) what was to be proved.

3. Systems of orthogonal polynomials. In the following we are going to apply
Theorem 1 to six systems of orthogonal polynomials for which the coefficients in the
recurrence relation (1) are known. Let us note that the recently published book [7] of T.
S. Chihara contains many other interesting examples of orthogonal polynomials given
by a recurrence relation.

3A. The modified Lommel polynomials [4] R< (x) (v > 0) satisfy (1) with

an=-n and yn-l=v
o

y, 2

Hence by putting o(t)--t we obtain

1 M (--1)M
lim M+ X kn .
n--o n k=l M+I

3B. The Carlitz polynomials [6] F(f (x) (k >0) satisfy (1) with

an (kZ+ 1)(2n + 1)2 and 7n-2 k(2n 2)x/(2n 1)(2n 3).

Let q(t)= 2. We get

lim n 1/(2M+1)
Xkn

k

1 f
4(k+1)2 tM

(2M+ 1)r 34(k-1) x/64k2-(4k2+4-tiTdt"
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3C. The Charlier polynomials 1] C. (x, fl) (/3 > 0) are defined by (1) with

a,=n+ and I/n-1 4’-.

If we put q(t) we see that

1 M 1
lim M+ /-- X kn .
n-’n k=l M+I

3D. The Meixner polynomials [5] M, (x, 6, e)(6 R, e > 0) satisfy (1) with

a,=6(2n+e) and Y"-2=/(l+62)(n-1)(n+e-2).

Letting q(t) we get

1 1 f2+2ci+n M

lira +1 dr.Xkn. n k= (M + 1) 2a-2 4+4t8 2

3E. The Hermite polynomials [1] h(x) satisfy (1) with

a, 0 and
y,-1 /_

Let p(t) -= x/. We obtain

21+(/Z) I1 tlim X+(M/2) X kn dt.
,-.oo n k=l 7r(M+ 2) /i- z

3F. The Laguerre polynomials [1] l) (x)(fl >-1) may be defined by (1) with

a.=2n+l+/3 and Y"-l=/n(n+fl).

Thus by putting p(t)--2t we get

Since our result is new only if the function is different from a constant, we did not
include examples when the coefficients in the recurrence relation (1) converge to finite
limits.

4. Other lorms. The function K(a, b) defined by (6) can be given in other forms
which are easy to compute.

Kt(a, b)= Y b2iaM-2i2 -2i =atFl(-M/2, (l-M)/2; 1" b2/a2).
j=o 2]
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COUNTABLY INFINITE TIME-VARYING ELECTRICAL NETWORKS*

A. H. ZEMANIAN"

Abstract. An existence and uniqueness theorem is established for the currents and voltages in a
nonlinear time-varying countably infinite electrical network whose parameters are restricted to inductors and
capacitors except possibly in certain branches, called joints, which are allowed to have any kind of electrical
parameters. The LC form of the network allows the basic determining equation of the network to be obtained
in normal form, and this in turn leads to substantially stronger results than those obtained in prior works.
Similar results are obtained for linear time-varying RLC networks as well.

1. Introduction. This work is a sequel to a prior paper [5] in which a number of
existence and uniqueness theorems were established for the dynamic responses of
countably infinite nonlinear time-varying electrical networks. That paper followed in
turn some papers on countably infinite linear time-invariant networks [2], [3], [4]. The
scope of the present work lies between I-5] on the one hand and [2], [3], and I-4] on the
other. It discusses nonlinear time-varying LC networks and also linear time-varying
RLC networks.

The determining differential equations for the dynamic responses are obtained
herein in normal form; this could not be done under the generality assumed in [5]. As a
result, the conclusions of the present work are substantially stronger than those of [5].
In particular, existence and uniqueness theorems could be stated in 1-5] only for
networks whose chords are sufficiently close to open circuits and whose limb branches
are sufficiently close to short circuits. (See either [4] or [5] for the meanings of "chords",
"limb branches", "joints", etc.) These conditions are imposed by the requirement that
the network’s elements satisfy Lipschitz conditions whose Lipschitz coefficients are
sufficiently small. Moreover, for very complicated networks, these restrictions can be
quite severe. To state this another way, consider the class of all electrical networks with
a given infinite graph. 15] presents a local analysis around those degenerate networks
whose branches---other than the joints--are either short circuits or open circuits. In
contrast to this, the present work is global in scope in that no restrictions on the
Lipschitz coefficients are imposed; that is, our networks can now be far different from
the aforementioned degenerate case.

We use the notations and terminology of [5] without repeating their definitions.

2. Networks with nonlinear inductors and capacitors. LetN be a countably infinite
electrical network that satisfies

Conditions 1. A full set of limbs and a full set of joints can be so chosen that
every limb branch is a series connection of a capacitor and a voltage source, either but
not both of which may be zero, and every chord is a parallel connection of an inductor
and a current source, either but not both of which may be zero. (The joints may be
combinations of any network parameters including resistors and conductors.) There is
no mutual coupling. Furthermore, each capacitor is in general nonlinear, time-varying,
and defined by an equation of the form

v(t) 3"(q(t), t)

where v and q are respectively the voltage drop and the charge on the capacitor, 3’(’,

* Received by the editors July 6, 1978, and in final revised form November 20, 1978.

" Department of Electrical Engineering, State University of New York at Stony Brook, Stony Brook,
New York 11794. This research was supported by the National Science Foundation under Grant MCS
75-05268-A03.
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maps Rl [0, oo) into R 1, and 3/(q(. ),.) is an integrable function on [0, T) for T > 0
whenever q is a continuous function on [0, T]. Also, 3/satisfies a Lipschitz condition
with respect to its first argument uniformly with respect to its second argument; that is,
for every so, r/ R 1,
(2.1) 13/(:, t)- 3/(r/,

where the constant Po does not depend upon t. Similarly, each inductor is in general
nonlinear, time-varying, and defined by an equation of the form

i(t) h (qb(t), t)
where and b are respectively the current and flux linkages in the inductor, h (., maps
R [0, oo) into R 1,
is a continuous function on [0, T], and, for every :, r/e R 1,
(2.2)

where the constant P0 does not depend upon t. Finally, every voltage source v and
current source is a continuous mapping of [0, oo) into R 1. This ends Conditions 1.

Now, in accordance with [5; 2], let N U o-- No be a partition ofN into the finite
subnetworks No corresponding to a choice of and J; for which Conditions 1 are
satisfied. Fix upon a particular No and index its limb branches by v 1,. ., n and its
chords by/x n + 1, , n + m. Let

x(t) [ql(t),""", qn(t), qn+l(t),""", b,+,(/)]r

be the vector of charges qv(t) on its limb capacitors and flux linkages b, (t) in its chord
inductors. Since qv(t)= o iv(o)) do) + qv(O) and b,(t)= I0 v, (o)) do) + b,(0), where iv(t)
and v, (t) are respectively the current in the gth limb branch and the voltage on the/xth
chord, it follows that in the present case equations (5.1) and (5.2) of [5] take on the
forms

x,v J,v Lv
(2.3) 4v(t)- Y. (+),,(4,(t), t)= hv(t)+ Y (+)](t)+ Y. (+)i(t)

and

(2.4) 6,(t)- Y’. (+)3/v(qv(t), t)= e,(t)+ Y (+)wk(t)+ Y (+)v(t)

where the dot denotes the derivatives with respect to time. All the symbols herein are
defined in [5]. These two equations taken together can be written in matrix form as
follows.

(2.5) 2(t) w(x(t), t)+ u(t)

u(t) is the (n + m) 1 vector corresponding to the right-hand sides of (2.3) and (2.4) and
is a known quantity whenever the currents and voltages in Uf2l Ns are known and all
the initial conditions at 0 and all the joint currents and voltages are given, w(., t) is
the matrix defined by equation (5.3) of [5] but having in the present case only capacitor
and inductor terms. Thus, we now have a normal form for the determining differential
equations. One integration yields

Io’ I0(2.6) x(t) x(O)+ w(x(o)), o)) do) + u(o)) do)

where x(O) is the vector of initial conditions on the limb-capacitor charges and
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p-1 Ns a dynamicchord-inductor flux linkages in No. So, given a dynamic response in L.J
response for No can be determined if a vector x(t) can be found that satisfies (2.6).

To this end, define the operator A by the equation

(2.7) (Ax)(t) x(O) + w(x(to), to) dto + u(to) dto.

In view of (2.6), we seek a fixed point for A, given x(0) and u(t).
For any T>0, let C[0, T] denote the space of continuous functions f on the

compact interval [0, T] supplied with the topology induced by the norm

max If(t)[.
O<=t<_T

Furthermore, let V[0, T] be the Banach space of (n + m) 1 vectors x whose elements
Xk are members of C[0, T] and whose norm is

By our assumption in Conditions 1 concerning the integrability of y(q(.),.) and
h (b(.), ), it follows that A is a mapping of V[0, T] into V[0, T] for every T. We shall
show that, for any arbitrarily chosen but fixed T, some power of A is a contraction on
V[O, T].

For the sake of a more concise notation we set 3,(x,(t), t)= y,(q,(t), t) for
1,. , n and/3. (x, (t), t) h, (b, (t), t) for/z n + 1,. ., n + m. In the following

the indices k and j are restricted to the integers from 1 to n + m. The kth component of
w(x(t), t) can be written as

k

E (+/-)3j(xi(t), t)

where the summation is over those columns in w(., t) that contain nonzero terms in the
kth row. It will also be helpful to us to denote the kth component Xk Of any vector x by
either (X)k or [X]k.

Assume that the vectors x, y V[0, T] satisfy x (0) y (0). In view of (2.7), we may
then write for any positive integer s

[as+lx(t)-a+ly(t)]k

(2.a)
[w(Ax(o), o)- w(ASy(o), o)] &o

(+/-)[3i((A’x)i(to), to)-3i((ASy)i(to), to)] dto.

According to (2.1) and (2.2), there is a constant P. for every ] such that for all :, r/ R
(2.9) 13(:, t)-3;(,, t)l_-< e;l- wl.
We let P=max{Pi: ]= 1,..., n +rn}.

LEMMA 1. Forx, y V[0, T], 0 <- <-_ T, and s 1, 2,. , the magnitude ofthe k-th
component of (Ax)(t)-(Ay)(t) is bounded by

(2.10) (et)---s(n / rn)S-lllx- yll .
s!
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Proof. We use an inductive argument. The magnitude of (2.8) is bounded by

-o

which by (2.9) is dominated by

So, if Lemma 1 is true for some s, the last expression is bounded by

fo* p (P) )s-
st

(n+m llx yllvd(s+l)t(n+m)llx-Yllv.
Hence, Lemma 1 is true for s + 1 if it is true for s.

It is also true for s 1. Indeed, in this case we have

I#(x(), ) #(y(, )1 elx() y(1
Pllx-yll

so that we can write

d
30

Ptllx yllv.

This completes the proof.
LMMa 2. IfA maps a complete metric space into itselfand ifA is a contraction for

some positive integer s, then A has a unique fixed point in that space.
Proof. If A is a contraction, then there is a unique x in the metric space for which

x =Ax. Thus, Ax =A(A)x =A(Ax). By the uniqueness of the fixed point of As,
Ax x. Therefore, x is a fixed point of A.

To show the uniqueness of the fixed point of A, let y Ay. Then, y Ay A2y
Ay. Therefore, a fixed point of A is also a fixed point of A. But, A has only one

fixed point x. Therefore, y x. Q.E.D.
In view of Lemma 1, we may write

IIASx ASy v E II(ASx) (ASy)k Ilc
k

Y om<=a<__xrl(AX)k(t)--(ASy)k(t)l
k

(Pt)-<
0__<t=<7---.max (n + m)S-llx yll

<= (eT)S(n + m )Sllx yll.
s!

We continue to assume that T is any arbitrary but fixed positive number. Since the
factorial function tends to infinity faster than the powers of any constant, A is a
contraction on V[0, T] for some sufficiently large s. So, by Lemma 2, A has a unique
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fixed point in V[0, T]. Since T can be chosen arbitrarily, it follows that (2.6) has a
unique continuous solution x(t) on [0, oo) satisfying the given initial condition x(0).

This argument can be applied recursively to N1, Nz, N3, to obtain the following
existence and uniqueness theorem.

THEOREM 1. LetN be a countably infinite electrical network satisfying Conditions
1. Then, any assignment of the voltages and currents in all the joints as continuous

functions ]’or 0 <- < oo (in conformity with the joints’ parameters), any assignment of the
initial charges at 0 on all the limb capacitors, and any assignment of the initial flux
linkages at 0 in all the chord inductors uniquely determines under Ohm’s law and
Kirchhoff’s node and loop laws the voltages and currents in all the branches of N as
continuous functions ]:or 0 <-- <

This result is stronger than Theorems 1 and 2 of [5] in that no restrictions on the
constants P0 in the Lipschitz conditions (2.1) and (2.2) need now be imposed. The
meaning of this is discussed in the Introduction. However, our present theorem does not
allow resistors or conductors in the limb branches and chords in contrast to our prior
theorems.

3. Linear networks. We now round out all our prior results with an existence and
uniqueness theorem for linear time-varying infinite networks. When N consists only of
linear parameters (actually, this assumption can be relaxed for the joints), the deter-
mining equations can be written in normal form even when N contains resistors and
conductors so long as certain matrices related to those resistors and conductors are
invertible. We now assume that N is a countably infinite electrical network that satisfies

Conditions 2. A full set of limbs and a full set of joints can be so chosen that
every limb branch is either a voltage source, a linear resistor, a linear capacitor, or a
series connection of any two or all three of these elements and that every chord is either
a current source, a linear conductor, a linear inductor, or a parallel connection of any
two or all three of these elements. (As before, the joints may be any combination of
linear or nonlinear parameters.) There is no mutual coupling. The voltages and currents
in the resistors, conductors, capacitors, and inductors are related by the following four
equations respectively.

v(t) r(t)i(t),

i(t)=g(t)v(t),

v(tl ,(tl i(ool do + q(Ol

i(t) A (t) v(oo) d + (0)

Here, r, g, % and I are continuous mappings of [0, oo) into R 1. Once again, every
voltage source v’ and current source i’ is a continuous mapping of [0, oo) into R 1. This
ends Conditions 2.

As in the preceding section, we let x(t) be the vector of limb-capacitor charges q(t)
and chord-inductor ttux linkages b,(t) in some fixed subnetwork N. Then, the
determining equations for N are

g,t A,v J,v I,v

(3.1) 4.(t)- Y. (+/-)g.(t)b,(t)- Y. (+/-),,(t)b.(t)= h,(t)+ X ()&(t)+ X ()i(t),

r, v, J, V,

(3.2) (t)- ()r(t)(t)- E ()w(t)q(t)=e(t) + E ()Wk(t)+ ()v(t).
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In matrix form this becomes

(3.3) Yc(t)-R(t)Yc(t)-K(t)x(t) u(t).

More specifically, R(t) is the matrix obtained by setting to zero the capacitor and
inductor terms in the matrix corresponding to equation (5.3) of [5]. Also, K(t) is the
matrix obtained by setting to zero the resistor and capacitor terms in the same matrix.
u(t) is the vector representing the right-hand sides of (3.1) and (3.2). By Conditions 2,
R(t) and K(t) are continuous for 0 -< t < o. If I-R(t) is invertible for each t ->0, then
[I-R (t)]-1 is also continuous for 0 <= < and we may write

(3.4) (t)=[I-R(t)]-lg(t)x(t)+[I-R(t)]-lu(t).
(Now, I is the identity matrix.) If u(t) is also continuous on [0, c), this differential
equation has, as is well known [1; p. 20 and p. 74], a unique continuous solution on
[0, c) for any given vector x(0). This result applied in turn to NI, N2, yields our last
theorem.

THEOREM 2. Let N be a countably infinite electrical network satisfying Conditions
2. For each Np assume that for every >-0 the determinant of I-R (t) does not vanish.
Then, the conclusion of Theorem 1 holds once again.

4. A final remark. Mutual coupling can be incorporated into the analysis of 2
and 3 in much the same way as that indicated in 7 of [5].
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SOME SINGULAR NONOSCILLATORY BOUNDARY VALUE PROBLEMS*

PHILIP HARTMAN"

Abstract. This paper concerns singular boundary value problems involving a nonlinear second order
equation, say, y" F(t, y, y’, A) for -c =< a < < o <= , in which it is specified that a desired solution does not
vanish or has exactly N zeros. Existence is proved by considering a family of solutions y y(t, A) having N(A)
zeros, 0 <= N(A) <, and examining the discontinuities of N(A). The novelty of the paper lies in the simplicity
of the method and proofs, and the fact that singularities occur at both a and o (even if one or both are
finite). The method is applied to problems arising in the theory of (1) the interreaction of elementary particles
and (2) superconductivity.

1. Introduction. This note concerns a singular boundary value problem associated
with a nonlinear scalar differential equation

(1.1) (p(t, A)y’)’ q(t, A)y +f(t, y, y’, A)

(which may or may not depend on A) on a t-interval (-0o)<= a < < to(_<c), and with
prescribed boundary behavior at a, e.g.,

(1.2) y(a+)=O,

with prescribed boundary behavior at to, e.g.,

(1.3) lim y(t) exists (finite)

or y(t) is bounded or y(t) is exponentially small at to o, and with a prescribed side
condition of the type

(1.4) y(t) has exactly k zeros on a < < to.

This is the type of problem treated in [4] and our principal arguments below will be
similar to those of [4]. They do not however involve the introduction of any auxiliary
differential equation x’ r(t, x, A) as in [4, 7] so that the resulting theorems are more
general and are easier to apply.

My return to this type of problem was prompted by a question raised by my
colleague Professor G. Domokos of the Physics Department concerning the boundary
value problem (see [9])

(1.5) x

_
d[ dy]x (1-X)x-x =2y(1-y2)’

(1.6) y(+O)=O and limy(x) exists(finite),
xl

and y(x)# 0 on 0<x < 1. This problem arose in considerations of interactions of
elementary particles. A similar type of problem

(1.7) y"+y’/t-v2y/t2=y(y2-1) for0<t<, v>0,

(1.8) y(+0)=0, y(c)=l, and 0<y(t)<l fort>0,

arose in Abrikosov’s [1] discussion of superconductivity. (For other occurrences of
(1.7)-(1.8) in physics literature, see 17, pp. 151-152], for references to E. Abrahams
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and T. Tsuneto, to L. P. Pitaevski, to V. L. Ginzburg and L. D. Landau, and to E.
Gross.) Actually, the problems involving (1.5) and (1.7) are of a different nature (and
the latter is simpler) because the factors +/-(1 yZ) of y on the right are of different signs.
Kametka [7] proved existence and uniqueness for a problem more general than
(1.7)-(1.8) (cf. 4 below), and Iwano [6] gave another existence proof for (1.7)-(1.8).

Section 2 deals with general existence theorems for problems of the type (1.1)-
(1.4). The procedure of 2 is applied in 3 and 3.1 to problems more general than
(1.4)-(1.6) and in 4 to a problem more general than (1.7)-(1.8) (and the problem
treated by Kametka). Kametka’s uniqueness theorem is also generalized in Theorem
4.2.

2. A general existence theorem. We state a very general existence theorem
(Theorem 2.1) with a simple proof. But, in any particular case, there remains the
problem of verifying the applicability of the theorem. Following the statement of the
theorem, we consider the latter problem, i.e., we discuss various conditions sufficient for
the hypotheses of the theorem. In 3 and 4, we illustrate the use of the theorem by
applying it to the problem (1.4)-(1.6) and (1.7)-(1.8) and generalizations. We begin by
enumerating some hypotheses which may occur in some of the results below.

(HI) p(t, A) > O, q(t, A) are continuous on (a, w) x [Ao, AN] and f(t, y, y’, A) is
continuous on (a, w) x R z x [A0, Au], where - _-< a < w _-< and -< A0 < Au <.
Solutions of (1.1) are uniquely determined by initial conditions.

(Hz) For fixed A, the linear differential equation

(2.1) (p(t, h )u’)’ q(t, h )u

is nonoscillatory at t=to and, in fact, there exists a continuous b(h) such that
a < b(h) < to and (2.1) is disconjugate on [b(h), to). Let u Uo(t, h) and ua(t, h) be
principal and nonprincipal solutions of (2.1) at to, positive on [b(h), to); cf., e.g., [3, pp.
350-361]. We also make the trivial assumption that Ul(t, h) is continuous in (t, h), but
we do not make the more severe requirement of [4] that the principal solution Uo(t, h) is
continuous in (t, h); cf. [4, 4].

(H3) y(t)=y(t,h)isasolutionof(1.1),forfixedh, ona<t<tosuchthaty(t,h),
y’(t, h are continuous in (t, h ),

(2.2) ly(t, A)I + ly’(t, A)I 0,

(2.3) lim y(t, A)./Ul(t, A)=cI(A) exists (finite).

The following assumption which is rather natural will not be needed below.
(H4) If CI(A)-" 0 in (2.3), then

(2.4) lim y(t, h)/Uo(t, h) Co(h) 0 exists (finite).

When ca(h) 0 in (2.3), then y(t)= y(t, h) 0 for near to. If, in (HI), (H3) and
(H4), a >-c and (a, to) can be replaced by [a, to), then y(t, h) has a finite number of
zeros. We shall need the following assumption below.

(Hs) y(t) y(t, h) has a finite number N(A) of zeros on a < < to and there exists
a positive integer N such that

(2.5) N(Ao) +N -_< N(AN).

DEFINITION. When CI(A)’-0 in (2.3), we call h a principal value and y(t, h) a
principal solution of (1.1). Otherwise we apply the adjective "nonprincipal" to h and
y(t, ,).
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(H6) If h- h0 is a nonprincipal solution of (1.1), then N(A) is continuous at
h =ho.

(H7) If h ho is a principal value, then

(2.6) N(ho) -<_ N(A) _-< N(ho) + 1 for small ]h ho[.

Of course, the first inequality is trivially implied by (2.2).
THEOREM 2.1. (i) Assume (H1)-(H) and (H)-(H6). Then there exists at least one

principal value ho, Ao _-< ho < Ar, with N(ho) -< N(Ao). (ii) If, in addition (H7) holds, then
for k O, 1, , N 1, there exists a principal value h h on the interval Ao <_- h <A
with N(A)= N(Ao)+ k.

Proofof (i). The existence of a principal value o is clear, since every discontinuity
point of the interger-valued function N(h) is a principal value by (n6). It remains to
show that o can be chosen so that N(ho)-<N(Ao). This is obvious if Ao is a
discontinuity point of N(h). If not, let

;to =sup {h: N(r) <= N(Ao) for Ao<_- r_-< h < AN}.

Clearly N(A) is not continuous at h =ho and N(Ao)<=N(cr)<=N(Ao) for o-(<ho)
arbitrarily near ho; cf. the sentence following (2.6).

Proof of (ii). We shall show that N(ho) N(Ao). In fact, N(ho) -< N(Ao) < N(AN)
implies that ho<A, so that there exist h(>ho) arbitrarily near to ho such that
N(A)->N(Ao)+I. By (2.6), N(Ao)+I>-N(A)>-N(Ao)+I. Consequently N(ho)
N(Ao). This gives the existence of ho with the desired properties. The proofs for the
existence h 1, , AN_ are similar.

We now give sufficient conditions for some of the hypotheses above. In general, we
shall assume that a is "harmless", say, in the sense that a >-c and (a, w) can be
replaced by [a, o) or more generally that

(Hs) There exists a continuous a(h) such that a <a(h)<o and y(t) y(t, A) # 0
on (a, a(h)).

PROPOSITION 2.1 ON (n6). Assume (H1)-(H3), (Hs) and that (2.3) holds uniformly
on Ao <_- h <_- Au. Then (H6) holds.

For the assumption of uniformity in (2.3) implies that c(h) is continuous. Also, if
Cl(hO) 0, then there exists a t-value T(ho) such that y(t, A) 0 for _-> T(ho) and small
[h -hol. Hence (H6) follows from (Hs).

(H9). For small e > 0, there exists a continuous function b(h) such that a <
b (h) < w and that any solution y y (t) of (1.1) satisfying

(2.7) ]y(t)[<-_eul(t,h) for t_-> be(A)

has at most one zero on be (h) -_< < w.
For example, if there exists a continuous qxe (t, A) such that

(2.8) If(t, y, y’,h)l<-qxe(t,h)ly[ forlyl<=eUx(t,h),t>=be(h),

and that

(2.9) (p(t, h)y’)’ [q(t, A)-qle(t, A)]y

is disconjugate on be (h) =< < w, then (n9) holds. This is the case if, for example,

I (Ib(2.10) [q(t,h)-qle(t,h)[ ds/p(s,h) dt<l,
(x) (x)

cf., e.g., [3, Thm. 5.1, p. 345], with re(t)= t-a.
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PROPOSITION 2.2 ON (HT). Assume the conditions of Proposition 2.1 and
hypothesis (Hg). Then (H7) holds.

For if A A0 is a principal value and (2.3) holds uniformly on [Ao, AN], then one can
suppose that (2.7) holds for y(t)= y(t, A) and small

The condition (2.7) and/or (2.8) plays down the dependence of f on y’. We can
modify this in the following way.

(H) For small e >0, there exists a continuous function b(A) such that c <
b(A)<w and that any solution y(t) of (1.1) satisfying

(2.11) ]y(t)l<-_eul(t,A), ]y’(t)l<-eu’x(t,A) for t_-> b(A)

has at most one zero on b (A)_-< < o.
For example, if there exist continuous p(t, A), q(t, A) such that (2.11) implies

(2.12)

and that

]f(t, y, y’,a)]<-_pl(t,a)ly’]+q(t,a)lyl

(p(t, a )P(t, a )y’)’= [q(t, A)--qle(t, A )]y/Pe(t, a),

(2.13) where P(t, =exp p(s, A ds
(x)

is disconjugate on b (A) < < w, then (H;) holds.
PROPOSITION 2.2’ ON (H). Assume the conditions of Proposition 2.1, hypothesis

(H;), that u’ (t,A)>O on b(A)-<_ t<w, and that

(2.14) lim yl (t, a)/U’l (t, A) Cl(/

uni[ormly on [Ao, Au]. Then (H7) holds.
It is often of interest to have Theorem 2.1 (ii) applicable with N arbitrary. It is easy

to give sufficient conditions for (2.5) with large N.
PROPOSITION 2.3 ON (2.5) IN (Hs). Assume (H1), (H2) and that ]’(t, y, y’, A)=

f(t, y, A) is independent ofy’, with Ao -< A =< Avreplaced by A -> Ao. Suppose that there is a
closed t-interval [a, b c (a, w) such that

(2.15) f(t, y, h)/y + oo as lyl-" oo

uniformly for a <-t <= b and large h > O. Suppose also that there exists a sequence
Ao, A1," ofpositive a-values such that

(2.16) sup (ly(t, A.)l+ly’(t, A.)l)->oo as n-->oo.
a<_t<_b

Then

(2.17) N(A,)-->oo as n -+oo.

This is a consequence of [5, Cor. 2.1]. For simplicity, we have stated proposition
2.3 under the assumption that f is independent of y’. Corresponding results follow
without this assumption from [5, Cor. 6.1].

We turn to sufficient conditions for hypothesis (n3).
Remark. Condition (2.2) holds if y(t, A)0 for fixed A, and the initial value

problem (1.1) and

(2.18) y(t0) 0, y’(to) 0,
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has the unique solution y 0 for all to, h. For example, suppose that f(t, 0, 0, h) 0 and
that

(2.19) f(t, y, y’, A) o(lyl / ly’l) as lyl / 0

uniformly on t-compacts of (a, w) for every fixed h.
Sufficient conditions for the validity of (2.3) [or (2.3) uniformly with respect to hi

can be obtained in some cases from the theory of asymptotic integration. We illustrate
this under the condition that

(2.20) y(t, A) O(Ul(t, A)) as w

holds for every h [or holds uniformly with respect to h ]. We might remark that estimates
such as (2.20) can sometimes be obtained from simple theorems on asymptotic
integration or by the use of Lyapounov functions (as in 3 below).

PROPOSITION 2.4 or (2.3) IN (H3). Let Ux(t, A be as in (Hz) but let u Uo(t, h) be
the unique principal solution o[ (2.1) defined by

(2.21) uo(t, h u(t, , ds/p(s, , )u(s, h or b(, <-_ < .
Assume (2.20) [uni[ormly with respect to h ]. For every constant K >0, assume the
existence o[ a /(t, h) continuous on [b(, ), w) x [Ao, A] such that

If(t, y, y’,X)l--<3,(t,h)lyl ifly[<-gul(t,h), b(h)_-<t<w,(2.22)

and that

(2.23) Uo(t, I )Ul(S, h )K (S, h )dt < c

converges [uniformly with respect to h ]. Then (2.3) and

(2.24) y’(t, h)/y(t, h)= u’ (t, h)/ua(t, h)+o(1/p(t, h)Uo(t, h)Ul(/, h)),

as w, hold [uniformly with respect to h ]. Also, if ca(A)= 0 in (2.3), then (2.4) and

(2.25) y’(t, h)/y(/, h)= U’o(t, h)/Uo(t, h)+o(1/p(t, h)u0(t, h)Ul(t, h)),

as w, hold [uniformly on h-compacts where Cl(h)= 0].
This can be deduced by the methods of Hartman and Wintner applied to the

asymptotic integration of linear second order equations (see [3, pp. 375-380]) after the
change of dependent variables y zu l(t, h in (1.1) to obtain the second order equation
in z,

(puIZ’) Ulf(t, UlZ, (UlZ)’, h)

or, equivalently, the first order system for (z, v)

Z ’= v/puI, V ’= Uxf(t, UlZ, (UlZ)’, h),
where

[/(/, uaz, (UlZ)’,A)l<-_ yz(t,A)Ul(t,A)lzl iflzl=<g, b(h)<-t<w.

3. On the problem (1.5)-(1.6). We shall prove the following theorem.
THEOrEM 3.1. For k 0, 1, , (1.5) has a solution y yk (x) satisfying

(3.1) hk lim y(x)/xZ>O exists (finite),
+O

(3.2) (-1) lim y,(x)>0 exists (finite),
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(3.3) Yk(X) has exactly k zeros on 0<x < 1.

Note that y =-yk(x) is also a solution of (1.5).
Make the change of independent variables

(3.4) x=l-e-t, so that dt=dx/(1-x),

and (1.5), where 0 < x < 1, goes over into

(3.5) y" r(t)y g(y), where 0< <,
(3.6) r(t) 2e’/(e’- 1) and g(y)= 1-y.
It is easily seen that Theorem 3.1 is a particular case of the following (with +y+/- 1,
tr=l, C=2, a=2, K=2, y=)"

THEOREM 3.2. Let y >0> y_, tr_->0, and C > 1, a, K, 3’ be positive constants
satisfying

(3.7) 4Ka > 1

and either
11 1/271(3.8) 0< a <2, or a 2 and r>-, or 2 /2/y1 > 1.

Let r(t) C(O, o) and g(y) C(R ). Assume that r(t) satisfies
(3.9) r’(t) <- O fort>O,

(3.10) r’/r----2/t and ra/t, ast+O,

(3.11) f t-l[t2r(t)-al dt < o,
0

(3.12) r(t)t{max Ig(Y)l} dt< forallC>O.
lYl_--<Ct

Assume that g(y) satisfies
(3.13) g(0)=l and 0<g(y)=<l on(y_,y),

(3.14) ]g(Y)-g(z)[ <- Clly -z[ for 0<= y, z <-- 1/C1,

(3.15) g(y)_->o’r/ forO<y<-(1-q)y andsmallq >0,

(3.16) [g(y)[--< ally Y+/-I[ for [y y+/-x[ -< 1/C1,

IoyI Iy0(3.17) sg(s) ds sg(s) ds y/2 > O,

(3.18) -lylg(y)>=Kly-yator-l fory > y [ory < Y-x].

Finally, assume that solutions of (3.5) are uniquely determined by initial conditions.
Then, ]:or k 0, 1,. , (3.5) has a solution yk(t) satisfying

(3.19) hk lim yk(t)/t" > 0
t0

where 2 1 +(1 +4a)/> 2,

(3.20) dk (-1)k lim yk(t) > 0

and yk(t) has exactly k zeros on > O.

exists (finlte),

exists (finite),
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For generalizations, see 3.1 below.
Remarks. If the proviso in (3.14) is replaced by 0->y, z >--1/CI and (3.15) is

replaced by "g(y)->o’r/]:or 0>y=>(1-r/)y_l and small ’1 >0," then the assertion
remains valid with Ak <0 and dk <0 in (3.19), (3.20). Condition (3.17) holds, for
example, if y-1 -yl and g(y) is even on (-yl, y). Condition (3.8) is used below only to
assure that (3.47) below holds for small r/> 0. The conditions (3.11)and (3.14)are only
used in the asymptotic integration of (3.5) at +0 (i.e., of (3.22) below at s oo) in
parts (a) and (i) and can be replaced by other sets of conditions on t2r(t)-a and g(y).
The following corollary follows by extending the definition of g for y-<0 by
g(y)=g(-y).

COROLLAI 3.1. The assertion of Theorem 3.2 remains valid ]:or k 0 if g(y)
C{y ->0} satisfies (3.7)-(3.8) and (3.12)-(3.18) only for y >-0.

Proof of Theorem 3.2. (a) For every A, (3.5) has a unique solution y y(t, A) for
small > 0; y(t, A) and y’(t, 3‘) are continuous in (t, 3‘) and satisfy

(3.21) y 3‘t’ + o(t"), y’= 3‘/xt"-I + o(t"-), as +0.

In order to see this, make the change of independent variables

e -s, so that ds -dt/t,

while (3.5) and 0 < < oo go over into

(3.22) d2y/ds2 + dy/ds ay H(t, y) and oo > s > 0,

where

H(t, y)=(t2r(t)-a)yg(y)+ay(g(y) 1).

The condition (3.11) is equivalent to

(3.23) Itr(t)- al Idsl < oe, where e -, Idsl dt/t.

Since the characteristic numbers of the linear differential operator on the left of (3.22)
are - <0 and -1/2+(1/4+a)/>O, it follows from results of Perron and Hartman-
Wintner that (3.23) and the hypothesis (3.14) imply the existence, for every 3‘, of a
unique solution y Y(s;3‘) of (3.22) for large s satisfying

(3.24) e"SY- 3‘ and e "s dY/ds - -3‘/x as s c,

uniformly on A-compacts and, furthermore, Y(s;3‘) and dY(s;3‘)/ds are locally
uniformly Lipschitz continuous in (s, 3‘); cf. [3, Chap. X, 8 and 13, and p. 321] for
earlier references. Part (i) below can also be modified to give another proof.

In what follows, we let y(t, 3‘) Y(s; 3‘) and consider only 3‘ =>0. Thus (3.21) holds
uniformly on 3‘-compacts and y(t, 3‘), y’(t, 3,) are continuous in (t, 3‘) for small > 0 and
3‘_->0.

(b) On (H), (H2), (Hs). In order to apply the results of 2, we identify (3.5) with
(1.1), so that (a, to)=(0,), f=r(t)yg(y) is independent of (y’,3‘), p(t, 3‘)=l and
q(t, 3‘)=0. Hence (HI) and (H2) hold with Uo(t, 3‘)=l, u(t, 3‘)=t, and arbitrary
continuous (say, constant) b(A)>0 for A =>0. Also, (Hs) holds for suitable (small)
a(3‘) > 0, by virtue of the uniformity of (3.21) on A-compacts.

(C) On (H3), (H6). Introduce the Lyapunov function

(3.25) E(t, 3‘)=r(t)G(y)+y ’2 with y=y(t, 3‘),
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and, by (3.13), (3.17), (3.18),

(3.26)

In fact,

(3.27)

By (3.9) and (3.17),

(3.28)

G(y) =-2 sg(s) ds >-_ 0

G(y) 0 if and only if

for all y.

E’(t,A)=r’(t)G(y)<-O.

Thus, E(t, h yr(t) as - +0 and E(t, h _-> 0 is nonincreasing in t. Hence y(t, h), y’(t, A)
exist (and are continuous) for > 0, h _-> 0. Also (2.2) holds for h > 0 by virtue of the
remark concerning (2.19).

It also follows that E(t,h) is uniformly bounded as t-o on A-compacts.
Consequently,

(3.29) y’(t, h), y(t, h)/t O(1) as t--> o

uniformly on h-compacts. Thus y y(t, h) satisfies a linear equation

y"= rl(t, h)y, where rx(t, h)= r(t)g(y(t, h )),(3.30)

and the integral

(3.31) tlrl(t, h)] dt < oo

converges uniformly on A-compacts, by (3.12) and (3.29). It follows from standard
theorems on asymptotic integration (due to B6cher [2]) that

(3.32) Cx(h) lim y’(t, h)= lim y(t, h)/t exists (finite)

uniformly on it-compacts, and that

(3.33) Cl(h) 0, h > 0 ::)> lim y(t, h) c0(h) 0 exists (finite);

cf., e.g., I-3, Chap. XI, 9]. Consequently (n3) holds for it > 0. Also, by Proposition 2.1,
(H6) holds for it > 0.

(d) On (H9), (HT). The linear second order equation (3.30) is nonoscillatory at
c. In fact, the uniformity of (3.31) shows that there exists a continuous bx(it)>0

such that

I? tlrx(t, it)[ dt < 1.

Hence (3.30) is disconjugate on [bx(it), o); cf. the remark concerning (2.10). Thus (H9)
and, by Proposition 2.2, (nT) hold on it > 0.

Thus Theorem 3.2 follows from Theorem 2.1 if we verify that

(3.34) N(it) 0 for small it > O,

(3.35) N(it) oo ash

that is, (Hs) holds with N(Ao) 0 for small Ao > 0 and arbitrary N for large Ar. In order
to verify (3.34)-(3.35), we need some information about y’(t, it).
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(e) On y’(t, h). A solution y(t) of (3.5) is convex (y"->0) on the intervals where
0 -< y =< yl or y -< y-1 and concave (y" =< 0) where y-1 -<- y =< 0 or y -> yl. Also y’ has its
local extrema where y"= 0 (i.e., where y 0, y+/-l). For > 0, the convexity of y(t, )
when 0 < y < y implies that there exists a least positive t-value tl tl(h) such that

(3.36) 0<y(t,A)<yl for0<t<handy(h,A)=yl.

There exists a finite sequence 0 < tl < t2 <" ", t. t.(A), such that

(3.37) y(t4i+l, A y(t4j+2, A yl, y(t4i+3, A y:(t4i+4, A y-1

for j 0, 1,. . By (3.25), (3.27), and (3.28),

(3.38) [y’(t., A )l -> [Y’(ti+l, A )l.

It is easy to see that the positive maxima and negative minima of y’(t, ) occur at the
points h, tz," . Hence

(3.39) ly’(t, A)I =< ly’(t, A)[ for => ti.

Also, by the convexity of y(t, A) on (0,

(3.40) ly’(t, )1 <= y’(h, ,) for 0 < <

(f) On (3.34). By (3.40), lya- y(t, A)I-<- y’(h, A)(t- h) for _-> h. An integration of
(3.30) over It1, t] shows that

(3.41) [y’(t,A)-y’(tl, A)l<--_ y’(tl, A) h(s, A) ds,

where

h(t, A r(t)tly(t, )g(y (t, ))l/[y (t, A )- yll.

The ratio lY]/[Y-Yll is bounded when lyl=ly(t, )1 is large, while Ig(Y)I/lY-Y] is
bounded when ly-yl is small, by (3.16). Hence there is a constant C>0 such that

h(t, A) <- Cr(t)t max Ig(Y)l for t_-> 1 and small A > 0.
lyl=<ft

Since y(t, A) --> y(t, 0) 0 as A --> 0 uniformly on t-compacts, it follows that t h(A) --> oe
as A->+0. Also, by the uniformity in (3.32) and c1(0)=0, (3.41) implies that 0<
Y’(/1, A)---> 0 as A --->-t-0; cf. (3.52) below. Hence the factor of y’(tl, A) on the right of
(3.41) is small for small A > 0, by (3.12). Thus y’(t, A) _-> y’(h, A)/2 > 0 for t--> t and
small A > 0. Consequently, y(t, A) -> Yl for -> t and small A > 0. This gives (3.34).

(g) "Strategy" for the proof of (3.35). In part (i) below, we verify that

(3.42) tl-- tl(A)’-’>0 as A -->oo.

We fix an r/>0 so small that 0< r/<a, 0< r/< 1, (3.15) holds, and

(3.43) Cl =K(a- r/)>1/4;
cf. (3.7). For r/> 0, there exists a T T(rt)> 0 such that

(3.44) (a-q)/t2<-r(t)<=(a+,l)/t2 for 0< t=< T,

(3.45) -r’/r2>=(2-q)t/a for0<t -< T.

Define r r(r/) by

)(3.46) r(n)=1/2+(+r(a-))a/2=l+tra,l+O(r as r/--> 0.



1208 PHILIP HARTMAN

Condition (3.8) assures that if r/> 0 is fixed sufficiently small, then

(3.47) c2=1/2+(a-rl)l/2max{/1/2/yl, (1-rt)’(r/)/(a +r/)a/2}-(1/4+a +r/)/2>0.
Let N > 1 be a fixed positive integer. It will be shown that if , is sufficiently large,

then t2(h),..., tu(,) exist, so that N(1)>=N/4 for large , hence (3.35) holds. In the
course of this proof, we shall show that there are constants ,1, )’2, (independent ofN
and ) such that

(3.48) tj < tj+ jtj for j 1, , N- 1 and large ,,
so that, by (3.42),

t./ =< 3’’2 yjt -< T if , is large.

(h) Majorantfor y’(t, ,). For 0 =< y(t, ,) -< Yl, the function ra(t, A in (3.30) satisfies
0 <= r(t,/) <= bit for some b < 0 and, say, 0 < =< 1; cf. (3.10) and (3.13). The solutions
of u"= bu/t are linear combinations of , -= 1/2+/- (1/4+ b) /’, so that a principal solution
at =0 is u v, , 1/2+(1/4+ b)/2. It follows from a comparison theorem of Hartman-
Wintner that the principal solution y y(t, ,) of (3.30) satisfies

O<y’/y<-u’/u=u/t on0<t=<t(A), =1/2+(1/4+b) 1/2,
where t (A)= rain (1, tl(A)); cf. [3, pp. 358-359]. In particular,

(3.49) 0<ty’(t,,)=<uyl for,>0, O<t<=t(X)=min(1, tx(,)).

Note also that if t,. ., t. and 3’a," ", 3’i-1 exist and tl(,)=< 1, then (3.39) implies that

(3.50) tily’(ti,

(i) On (3.42). By convexity, (3.40) and (3.49), y’(t, ,)=< vyl/t for 0< =< t. Thus

0< y(t, A)=< 1/(16Cxv(a + 1))< 1/C1 forO<t<=t/(16Clvyx(a + 1)).

Let t*> 0 be a small number, independent of h, to be. fixed below and let to to(,)=
rain (t*, t(h)/(16Cavy(a + 1))), 1/(16Cvyl(a + 1)).

The proof of (3.42) will depend on a re-examination of the asymptotic integration
of (3.22) in part (a) above. It will be shown that y(t,
This implies (3.42), for otherwise we are led to the contradiction that to => const. > 0 and
1 /C > y (t0,

Let 2tz =1+(4a+1)1/2>1 and 2m=l-(4a+l)/2<O, so that /z+m=l and
tz-m=(l+4a)/2>l. Rewrite the left side of (3.22) as (d/ds+m)(d/ds+lx), and
(3.22) as

e(m
ds

(e"Sy) e"SH(t’ y) e

Two quadratures give

e"Sy(e -s, h) h + e ("-’’)v e ("-’)u e’"H(t, y) du dr,

=A +(/z-m)-1 Is eUH(t’ Y)[1-e("-’)(s-U)]du’

Equivalently, we have

t-"y(t, h) I +Ox-m)- w-"-H(w,
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For 0< y =< Yl, the last term ay(g(y)- 1) of H(t, y) is nonpositive by (3.13), so that
H(t, y)=<lt2r(t)-aly if y y(t,,) and 0< t=< tl(h). Hence

t-"y(t, )-<, + (/x- m)-1 w-"y(w,)t)w-lw2r(w)-al dw.

Thus, by Gronwall’s inequality, 0< t-"y(t, ,) -< 2, for 0< -< to=< t* if t* satisfies
t*

exp [(/x m)-X I0 t-alt2r(t)-a, dt]=<2.
On the other hand, if y y(t, , and 0 < -< to, then IH(t, Y)I <= It2r(t) aly + Cly2a.

Since/z m > 1,

IO I0--11 2r y w,l)dw.t-"y(t,,)=>,-2, w w (w) al dw Cxa w-,-i 2(

By (3.11), it can be supposed that t* satisfies
t*

-11 2r2 w w (w)-a[dw<A/4.

An integration by parts gives

Cla w-"-ly 2 dw =<2Cla y’yw-" dw/tx =<4Ca,y(t,,),

since 0 < yw-" =< 2A, y’ => 0, and/x > 1. For 0 < =< to, we have 4CaAy =< A/4 and so, by
the last three displays, t-"y(t, A)> A/2. This completes the proof of (3.42).

(j) Minorants for tily’(ti, A)]. Introduce the Lyapunov function

(3.51) F(t, A) G(y) + y’2/r(t) with y y(t, A)

and G(y) given by (3.26), so that

(3.52) F’(t, A) -r’(t)y’2/r2(t) >= O.

It follows from G(y+/-)= 0 that

(3.53) [y’(ti, A)/r/2(ti)[ =< [y’(ti+a, ,)/ra/2(ti+l)[,
y’Z(ti, A)/r(ti)>=G(y(t,&))+y’Z(t,&)/r(t) for 0< =< ti.

Since y’2(t,A)/r(t)---Aztxztz’/a 0 as t0 by (3.10) and (3.21), the last inequality
gives

y’2(t., A )/r(ti) >= G(O) y,(3.54)

so that

tily’(ti, A)l>=3,/2(a-rl)/ if 0< t. =< T.

If r>0, we can obtain another minorant. For 0<y=<(1-rt)y and O<t=<T,
(3.15) and (3.44) give r(t)g(y)>=r(a-q)q/t2. A principal solution at t=0 of u"=
r(a -rl)O/t2 is u , where - r(r/) is defined in (3.46). The comparison theorem of
Hartman-Wintner on principal solutions shows .that the principal solution y(t, A) of
(3.30) satisfies y’/y >=r/t if 0< t=<(1-rt)ya and 0<t=< T. If t*= t*(A) is the t-value,
0<t* <t, where y(t, A) (1- r/)yl and if t =< T, then

y’(q, A)>= y’(t*, , )=> (1 r/)ryl/t* => (1 -n)ry/t.
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Hence, by (3.44),

y’a(tl,,)/r(tl)>=(1-rl)aray/(a +r) forlarge .
In view of (3.53), this inequality holds if tl is replaced by any t. which exists. Hence, by
(3.44), 0 < t. -< T implies that

tly’(t,A)l>=c3y if c3=(1-q)r[(a-r)/(a +r/)]l/a,

so that c3 1 +rl(ra-l-1/a)+O(rl a) as r/0.
Combining this with our first minorant (following (3.54)), we have, if 0 < t. =< T,

(3.56) c2=c4+1/2--(1/4+a +’0)1/2>0.
Note that the inequality ca > 0 in (3.47) is equivalent to

(3.56) ca c4 +- (1/4 + a + r)1/2 > 0.

(k) On ta. We now show that if , is large, then ta ta(,) exists. Introduce the
dependent variable z y-yl, so that (3.5) becomes

z’-[r(t)yg(y)/(y yl)]z 0, z y yl.

If y => yl, then, by (3.18) and (3.44), the coefficient of z satisfies -r(t)yg(y)/(y yl) =>
K(a-rl)/ta for 0<t_< T. By (3.43), a solution of the equation

u"+clu/t2=O, Cl=K(a-Tq)>1/4,

vanishing at t= tl is u 1/a sin[(cl-1/4) 1/2 log(t/t1)], which also has a zero at t=
tl exp [(cl By the Sturm comparison theorem z y yl has a zero at some
t., tl < ta =< ),1tl, where 3’1 exp [(c- 1/4)-l/art], provided that /ltl =< T, which is the case
for large .

This argument also shows that if > 0 is large and (tl, , t2k/l) and (,1, ,
exist, then tak+a exists and t2k+l </2k+2 < ’a+lta+l with 3’a+1 3’1 for k 0, 1, .

(1) On t3/2. Let t3/2 E (tl, /2) be the unique t-value where z =y- yl has its maxi-
mum. We wish to find a minorant for z(t3/2). If

(3.57) Z(13/2) >= 1/C1
does not hold, where C1 is the constant in (3.16), then

(1/4ta < )- r(t)yg(y)/(y yl) <=cal/t2, wherecal=Cl(yx+ 1/C1)(a + q)

on [h, ta] if y =y(t,,). Thus the differential equation u"+calu/ta=O is a Sturm
majorant for the differential equation for z. If u is the solution such that u(tl) z(tl) 0
and u’(tl) z’(tl) y’(tl, ,), then

u=At/sin[(c2l-1/4)/alog(t/tl)], A=t/2y’(tl, A)(cx-1/4)-/2.

Since u At1/2 at t exp [7r/2(cal-1/4)l/a], the Sturm comparison theorem implies
that

z (t3/2) => tl y’(t, , )(ca1 1/4)1/9. exp [rr/4(cal 1/4)1/2].
In view of hy’(tl, ,) _-> y by convexity,

(3.58) Z(13/2) => ca2 > 0 for large ,,
where caa is the constant (independent of N and Z) given by

(3.59) caa min (1/Cx, yl(cal-1/4) 1/a exp
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The same argument shows that if A > 0 is large, tl, t2k +2 exist, and t2k+3/2 is
the point where z y- );1 has a maximum or minimum on (t2k+l, t2k+2), then

(3.60) IZ(t2k+3/2)] >= C22 > 0 for large

(m) On t5/2. We now show that, for sufficiently large ,, y(t, , has a first zero, say at

ts/2 ts/2(h) (>t2). To this end, we use (3.13) and (3.42) to compare (3.30) with its
Sturm minorant u"=(a+q)u/t2 for 0<t=<T. If u =tl/2(alt+a2t-), O=
(1/4 + a + rt) 1/2, is the solution satisfying the same initial conditions as y (t, , at t2, then
the Sturm comparison theorem implies that y(t, ,) vanishes (for > t2) before u does. It
is readily verified that

_20t+1/2a l=-y’(t2)t2 (O-)yl, 20t-+l/2a2 -y’(t2)t2 + (0 + )Ya,

where y’(t2) y’(t2, ), and that u 0 at (--a2/al) 1/(2. Thus t5/2 exists and

t5/2 <= (-a2/aa)a/(2)= t2[(-y’(tz)t2 + (0 + 1/2)ya)/(-y’(t2)t2-(O- 1/2)Ya]

or, by (3.50), (3.55) and (3.56),

(3.61) t2 < t5/2 <= T3/2t2 for large

1\ 1/(20)where ]/3/2 [(3’1 u + 0 + 5)/c2j

The same argument shows that if , is large and tl,’’’, t2k+2 and ]/1,’", ]/2k+a

exist, then y has a first zero t2+s/2 > t2+2 and

(3.62) t2k+2 < t2k+5/2 ]/2k+3/2t2k+2,

where ]/2g+3/2 [(]/1]/2 ]/2k+l P -- 0 q- 1/2)/C2] 1/(20).
(n) On t3. It is clear from a convexity argument that t3 exists when ts/2 exists and

that

(3.63) t3- t5/2 <= y-1/y’(ts/2, h ).

In order to find a minorant of [y’(ts/z,A)[, note that (3.51)-(3.52) give
y’2(t5/2, h )/r(ts/2) >= y’2t2, A)/r(t2). Thus, by (3.54),

y’2(ts/2, h )/r(ts/2) >--_ y’2(t2, h )/r(t2)- y’2(tl, h )/r(tl).

The right side is

t2
F(t2, h)-F(tl, A) r’(t)y’2(t, A) dt/r2(t).

By (3.45) and (3.48),

F(t2, A)-F(tl, h)>-[(2-rl)t2/(a]/1)] y’2(t, h) dt

for large I. By Schwarz’s inequality,

ft t2
t2( )/y t, ,) dt ly’(t, A)l d (t2- tl) [2z(t3/2)]2/(t2 tl).

By (3.58), for large ,
y’2(t,/2, A)/r(t,/2) >- 4(2- rt)z2(t3/2)/(a]/1) >-_ 4(2- rt)c22/(a]/a),
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which implies that
I/2ts/zly’(ts/z,A)[>--2[(2-rt)(a-rt)/ayl] czz=- 1/c23.

Hence, by (3.63), t3- t5/2 <= ly-llt5/2c23, so that t3 <_- "y2/2 with "Y2 "Y3/2(1 + ly-lIC23).
The same argument shows that if A is large, h, , t2k+2 and y, , TZk+ exist,

as do tzk+5/2 and ")/2k+3/2 (cf. (3.62)), then tZk+5/2]y’(tZk+5/Z,A)l>--1/C2,zk+3, where
c2,2k+3=2[(2--rl)(a--n)/(aTzk+a)]1/2Cz2, and that /2k+3 exists and tzk+2<t2k+3
YEk+ZtEk+ with yZk+2 y.k+3/Z(1 + lY+x[CE,Ek+3) and + 1 (-1)k+a.

(o) Completion of the proof. The ends of paragraphs (k) and (n) show that the
"strategy" in (g) has been carried out. Hence (3.35) holds and Theorem 3.1 follows.

3.1. Generalization of Theorem 3.2 (added September 6, 1978). After this paper
was accepted for publication, the manuscript [9] became available to me. It suggests the
consideration of the more general equation

(3.64) y"= r(t)yg(t, y).

THEOREM 3.3. Let Yl >0> y_, o"-->0 and C > 1, a, K, 3’ be positive constants
satisfying (3.7)-(3.8). Let r(t)6 CX(O, az) satisfy (3.9)-(3.11). Let g(t, y), Og(t, y)/Ot
C([0, c)R 1) and g(y)= g(0, y) satisfy (3.13), (3.15), (3.17),

(3.65) r(t)t{max [g(t, y)[} dt < oe for all C > O,
lyl---_ct

(3.66) G(t, y)-=y-2 sg(t,s) ds>-_O fort>O,-oo<y<oo,

(3.67) Og(t, y)/Ot <- 0 ]:or > O, -oo < y <

(3.68) yr’(t)- 2 s(O[r(t)g(t, s)]/Ot) ds <- 0 for > O,

(3.69) ]g(t, y)-g(t,z)[<-C[y-z[ forO<t, y,z<-_l/C1.

Let y U+l(t) C[O, oo) satisfy y-1 <-U-l(t)<O<u(t)<-yl, U+I(O) Y+I, +U+/-l(t) are
nonincreasing;

(3.70) g(t, y) _--> 0 for >-- 0 and U-l(t) _-< y _-< Ul(t),

(3.71) g(t, y)-O fort>-Oandy>-ul(t) ory<-u_l(t);

+U+l(t) 6 C2(0, 1/C] and, for 0<t_-< 1/C, +/-u’,’l(t)_-> 0 and

(3.72) Ig(t, Y)I =< Cly U+l(t)l for lyl--< 1 + max ly+al,

(3.73) -ly[g(t, y)>-g[y-Uxto-l(r)l fory>=u(t)[ory<=u-a(t)].

Assume also that solutions of (3.64) are uniquely determined by initial conditions. Then
the conclusions of Theorem 3.2 hold if (3.5) is replaced by (3.64).

Actually, the differential equations in [9] are of the form (3.64), where

(3.74) g(t, y)= g(y)-v(t).

For this case, we have
COROLLARY 3.2. Let v(t) C1[0,

(3.75) v(0)=0 and O<-v<-l,v’>-O,(rv)’<-_O fort>O.
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Then, in the case (3.74) of (3.64) in Theorem 3.3, (3.65) and (3.69) can be replaced by
(3.12) and (3.14), while (3.66)-(3.68)become redundant.

Proof of Theorem 3.3. This proof is similar to that of Theorem 3.2. We only
indicate the perhaps-not-so-obvious modifications, referring to steps (a), (b), of the
proof of Theorem 3.2 (and not mentioning steps requiring inessential changes).

(a) This goes as above, except that H(t, y) is replaced by

H(t, y)=(t2r(t)-a)yg(t, y)+ay(g(t, y)-l)
(3.76)

=(t2r(t)-a)yg(t, y) + ay(g(y)- 1)+ay(g(t, y)- g(0, y)).

We also use (3.69) in place of (3.14) and the fact that g(t, y)-g(0, y)= O(t) as 0
uniformly for small [yl.

(c) Similar to above, except that (3.25), (3.26) and (3.28) are replaced by (3.66),

(3,77) E(t, )= r(t)G(t, y)+ y,2 with y y(t, ,);

so that, by (3.64) and (3.68),

(3.78) E’(t,)<=O.

Also, (3.30) is replaced by

(3.79) y"= rl(t, ,)y, where r(t, A)= r(t)g(t, y(t, A)).

(e) should be replaced by: a solution y(t) of (3.64) is convex (y"=>0) on the
t-intervals where 0 < y(t) < ul(t) or y(t) < u_(t) and concave (y"-< 0) where u_(t) <
y(t)< 0 or y(t)> u(t). Also y’ has local extrema where y 0 or y(t)= u+(t). There
exists a tl tl(A)> 0 for , > 0 such that

(3.80) O<y(t,,)<u(t) for0<t<tl and y(t,)=u(t).

Hence, there exists a finite sequence 0 < tl < t2 <" ", ti tj(A) and , 0, such that

(3.81)
y(tk, A)=ua(tk) fork=4]+l,4f+2 and

y(tk, A)= u_a(tk) for k=4f+3, 4f+4.
Omit the inequalities (3.38)-(3.40).

(f) It will be shown that, for small > 0, y’(t, ,) > 0 for > 0. Suppose, if possible,
that y’(t*, , 0 for some small A > 0, t < t*, and y’(t, ,) > 0 on (0, t*). Note that y is
increasing for 0<t <t*, convex for O<t<=tx and concave for t <=t<=t*. Also ua(t*)<=
u(tx) since ux is nonincreasing. Determine t. by the equation y’(tl, ,)(t. t) + u(tl)
u(t*). Then 0<t.=<t, and so

(3.82) y(t, ,)- Ul(t*) -< y’(t, A)(t- t,) =< y’(t, A)t for tx -< =< t*.

Quadratures of (3.64) give
t*

(3.83) y(t, A) y(t*, + Jt (s t)r(s)y(s, , )g(s, y(s, , )) ds,

(3.84) y’(t, I y’(t, , + r(s)y(s, , )g(s, y(s, , )) ds.

Since y(t, I) y(t, 0)= 0 and y’(t, ,) 0 as I - 0 uniformly on t-compacts, it follows
that t(,)- oo as , 0. From (3.66) and (3.77)-(3.78), there exists a constant C >0
such that ly(t, ,)1--< Ct / 1 for >_- t(,) and small I > 0. Thus, if 0 < e < 1/2, then (3.65),
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(3.82) and (3.83) imply that, for sufficiently small h > 0,

U(tl) y(tl, A y(t*, A )- ey (t*, h ).

Hence, y(t*, h) _-< Ul(t)/(1 e) <= 2ua(tx). Thus t* in (3.84) gives, for some constant
c,

0 >- y’(tl, h 1- C sr(s) ds

This inequality is impossible for small h > 0, by (3.65). This proves (3.34).
(h) As above through (3.49); omit (3.50).
(i) As above, with H(t, y) defined by (3.76). Note that g(y)= g(0, y) satisfies

(3.13), so that (3.67) implies that

(3.85) g(t, y) g(0, y) 1 for y-1

(j) Replace the four relations (3.51)-(3.54) by the following three"

(3.86) F(t, A) G(t, y) + y’2/r(t) with y y(t, A),

(3.87) F’(t, A) -2 s[Og(t, s)/Ot] ds r’y’/r >= -r’y’/r >- O,

(3.88) F(t,,)_->F(+O,A)= y for t>0.

If t=t.(,)>0 exists and is small for large ,, then y(t,,) is nearly u. Hence
G(t,y(t,A))>-O is small, by (3.17) and g(s)=g(O,s), so that F(t,I); hence
y’(t, h)/r(t), is nearly y. Hence the unnumbered inequality following (3.54) is valid
(even though (3.54) need not be). This is the first minorant obtained in (i).

An analogue of the second minorant is obtained as in (j) above. For, if o- > 0, (3.15)
gives g(t, y)= g(y)+O(t)>-cr,1 +O(t)>-r*rl for any o-*, 0<o’* <o-, and 0<t_-< Tl(r/).
Thus we obtain analogues of the second and third inequalities following (3.54).

Using (3.77) and (3.78) (instead of (3.86) and (3.88)), the arguments in the last
paragraph show that

2)(3.89) [y (ti+l, A)I <= (1 + n [Y’(ti, h)[
for small ti+x. Thus we obtain an analogue of (3.55) with r replaced by or* in c3.

(k) Instead of the first differential equation and y _-> yl, use

z"-[r(t)yg(t, y)- u’(t)]z/(y ul(t)) 0, z y ul(t),

and y => Ux(t). Note that u _-> 0.
(1) Let t3/z (tl, t2) be the unique t-value where y(t, h) has a maximum. We seek a

minorant for z(t3/2), where z(t)= y(t, h)-ul(t2). Thus z satisfies

z"-[r(t)yg(t, y)/(y ul(tz)]z O.

If (3.57) does not hold, we obtain an analogue of the display following (3.57) in which
Y Yl is replaced by y(t, h)- Ux(t2) -> y(t, A)- Ul(t). The arguments proceed as in (1)
above in which we use the solution u(t) of the Sturm majorant U"+C21U/t2=O
determined by the initial conditions u z 0, u’ z’ y’(t2, h) at t2 (rather than

(n) Here, (3.63) holds since y-1 --< Ul(t)< 0. By (3.86) and (3.87),

F(t5/2, h 3’ + Y’Z(ts/2, h )/r(ts/2) >- F(t2, h
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and so, by (3.88),

y’2(ts/2, A )/r(ts/2) >-F(t2, A )-F(tl, , ).

The argument can now be completed as above by virtue of (3.87).

4. On Abrikosov’s problem. Below we state and prove Theorem 4.1 which
implies existence for a solution of the boundary value problem

(4.1) y"+y’/t+(1-v2/t2)y=f(t, y)y, v>0,

(4.2) A0 lim y(t)/t > 0 exists (finite),
t0

(4.3) 0 < y(t) < 1 for > 0,

under the hypotheses that f(t, y) C((0, co)[0, 1]) satisfies" solutions of (4.1) are
uniquely determined by initial conditions,

(4.4) f(t, 0)<-const. < 1, f(t, 1)= 1,

(4.5) f(t, y) => 0 for 0 <- y =< 1 and small > 0,

(4.6) f(t, y) <- $(t) + 49(s) for small > 0, 0 -< y =< s,

(4.7) ]]:(t,y)-f(t,z)l<=((t)+d(s))]y-zl forsmallt>O,O>=y,z<-_s,

where b(s) is a nondecreasing function,

(4.8) I+ O(t) dt < co and I+ 4)(s)s-l ds < co"
o o

In addition, (4.3) implies that

(4.9) y(t) 1 as co

if, for every 0 (0, 1), there exists an r/= r/(0) such that

(4.10) f(t, y) -< r/(0) < 1 when 0 -< y -< 0 < 1.

Note that if f=0, (4.1) reduces to Bessel’s equation with a principal solution
y J(t) t/(2F(1 + ,)) as 0. In Kametka’s theorem [7], it is assumed that f(t, y) is
independent of and that F(y)=(1-f(t,y))yC[O, 1], F(0)=F(1)=0 and
d2F/dya< 0 on (0, 1). The assertion above can be generalized as follows"

THEOREM 4.1. (Existence). In the differential equation

(4.11) (p(t)y’)’ + r(t)y’ + q(/)y yf(t, y),

let p >0, q, r C(O, eo) and f(t, y) C((0, co)x[0, 1]) and let solutions be uniquely
determined by initial conditions. Assume that

(4.12) (p(t)u’)’ + r(t)u’ + q(t)u 0

is nonoscillatory at 0 and

(4.13) (p(t)u’)’+ r(t)u’ +[q(t)-f(t, 0)]u 0

is not disconjugate on (0, co); (ii) tf u Uo(t) is a principal solution of (4.12) at O,
positive for small > O, then

(4.14) Uo(t) 0 as co
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and, for every , >= 0, (4.11) has a solution y (t, h for small > 0 satisfying

(4.15) y(t,,)=(A +o(1))Uo(t) astO,

y(t, A and y’(t, A are continuous in (t, a ), and y(t, 0) --0; (iii) on compactsubintervals of
0<t<o,

(4.16) f(t, y)_->q(t) forsmall l-y_->0;

(iv) f(t, y) satisfies

(4.17) f(t, y)_>-0 forO<=y<-I andsmallt>O.

Then there exists a Ao> 0 such that y(t)= y(t, Ao) satisfies (4.3).
Remark 1. Concerning the assumption (ii), it is of interest to make the following

remark: Suppose that (4.11) is of the form

(4.18) y"+(g(t)+a/t)y’+(h(t)-b/t2)y =f(t, y)y,

where g(t), h(t) C(O, o) and a, b are constants such that the indicial equation

(4.19) p2 + (a 1)p b 0

has real roots and that the larger, say p v, is positive. If the roots of (4.19) are simple
and

(4.20) ]g(s)[ds-O as t-0 for 0< 0 < 1, [h(t)ltdt<o,
0

then the linear equation (4.18) with f--0 has a principal solution y Uo(t) at t=0
satisfying Uo(t)--- and U’o(t)--. vt-1 as ---) +0. Also if f(t, y) satisfies (4.6)-(4.8), then
hypothesis (ii) holds. In fact, y(t, h) is uniquely determined by (4.15) and, in addition,

(4.21) y’(t,h)=[h +o(1)]U’o(t) ast0.

If p u is a double root of (4.19), then the same holds if (4.20) and (4.8) are replaced by

I+ Ig(t)[ dt<c and
0

I+ O(t)llog tit dt < o
o

I+ [h(t) log tit dt < o
0

and I+ b(s)llog SIS -1 ds < o.
o

See Prevatt [8] or, under the condition +o [g[ dt < c in (4.20), [3, pp. 304-314].
Remark 2. The condition (iii) can be replaced by f(t, 1)= q(t) for > 0, in which

case y(t)-- 1 is a solution of (4.11).
In many cases, y(t) y(t, ho) satisfies (4.9) as well as (4.3). Sufficient conditions for

this are given by
PROPOSITION 4.1. Letp >0, q, re C(O, o) andf6 C((0, c) x [0, 1]) and y(t) a

solution of (4.11) satisfying 0<y(t)<l for large t. Then (4.9) holds provided that
F(t, 0) max {/(t, y): 0 _-< y _-< 0 < 1} is such that

(4.22) F(t, O) <= q(t) for large

and the linear differential equation
(4.23) (p(t)y’)’ + r(t)y’ +[q(t)-F(t, 0)]y 0

is oscillatory at for every 0 (0, 1).
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Kametka’s [7] uniqueness Theorem 7 is contained in part (/3) of the following
theorem (and Remark 1 and Proposition 4.1 above).

THEOREM 4.2 (Uniqueness). Letp > O, q, r C(O, oo) and]’ C((0, oo) {y > 0}).
Let y(t), z(t) be solutions of (4.11) for t>0.

(a Ifyf(t, y)- q(t)y is strictly increasing in y (forfixed t) and y(t) z(t) 0 as 0
and - oe, then y(t) -= z(t).

() Ill(t, y) is strictly increasing in y (for fixed t), y(t)> z(t) ]:or small > O, and

(4.24) limsupp(t)E(t)[y’(t)z(t)-y(t)z’(t)]>=O, tO,

where

E(t) exp [r(s)/p(s)] ds,

then y(t)/z(t) is an increasing [unction of > 0 (so that y/z - 1 as oo cannot hold).
Proof of Theorem 4.1, We use the arguments in the proof of Theorem 2.1, but we

modify the concept of "principal and nonprincipal" to fit the present situation.
(a) Extension of]’. We extend the definition of f(t, y), or rather yf(t, y), as follows:

(4.25) y[f(t, y)-q(t)]=0 and y[f(t, y)-q(t)]=f(t, 1)-q(t)

for y < 0 and y > 1, so that yf(t, y) is continuous for > 0 and all y. Also y(t, A exists for
all > 0 as a solution of (4.11).

(b) Principal values. A A-value ,o>0 is called principal if 0< y(t, ,o)< 1 for all
t>0 and, correspondingly, y(t,,o) is called a principal solution. If Ao>0 is non-
principal, then either y(to, ,o)= 0 or y(to, ,o) 1 for some to>0.

(c) On y(to, Ao) 0. If y(to, ,o) 0 for some positive to and ,o, then y’(to, ,o) < 0,
by the uniqueness of the solution y =0 of (4.11). Thus y y(t, ,o) satisfies

(p(t)y’)’+r(t)y’=O

for >_- to, by (4.25), and has no zeros for > to. Thus, if N()t) is the number of zeros of
y(t, A) on > 0, then 0 _<- N(A) <- 1 and N(A) is continuous at A ,o if N(,o) 1.

(d) On y(to, Ao) 1. If, for some Ao> 0, there is at least to> 0 such that y(to, ,o)
1, then for small to- > 0,

(p(t)y’)’ + r(t)y’ y[f(t, y)-q(/)]>_-0

by condition (iii). A convexity argument implies therefore that y’(to, ,) > 0o Hence, for
-> to, y y(t, , satisfies

(p(t)y’)’+r(t)y’=f(t, 1)-q(t)_->0 for t>-to,

by (4.25), and hence y’(t,,)>0 for t>to. Consequently N(ao)=0 and N(,) is
continuous at , ,o.

Thus N(,) is continuous at A Ao if Ao is a nonprincipal solution. By the proof of
Theorem 2.1, it is clear that Theorem 4.1 follows if we verify that

(4.26) N(A) 1 for small > 0,

(4.27) N(,) 0 for large A > 0.

(e) On (4.26). By assumption (i), (4.13) has a solution ( 0) with a pair of zeros, say
tl, t2 with 0 < tl < t2 < oo. It follows that if 0 > 0 is sufficiently small, then

(p(t)u’)’+ r(t)u’ +[q(t)-](t, 0)- 0]u 0
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has a solution ( 0) with a pair of zeros on (tl/2, 2t2). By continuity, y(t, A) 0 as h 0
uniformly on t-compacts of 0<t<. In particular, f(t,y(t,h))<-f(t,O)+O on
[tl/2, 2t2] for small h. If we write (4.11) as

(4.28) (p(t)y’)’ + r(t)y’ +[q(t)-f(t, y)]y 0,
it follows from Sturm’s comparison theorem, that y(t, h) has a zero on (ta/2, 2t2) for
small h > 0.

(f) On (4.27). Let ta > 0 be so small that Uo(t) > 0 on (0, tl] and, by (iv), f(t, y) -> 0
for 0 -< y -< 1, 0 < =< tl. If 0 < y(t, ) =< 1 on 0 < -< tl, then (4.28) and the comparison
theorem of Hartman and Wintner (cf. [3, Cor. 6.5, pp. 358-359]) imply that
y’(t, )/y (t, _-> U’o(t)/Uo(t) for 0< _<- tl, and hence that y(t, , _-> Uo(t)y(s, )/Uo(S) for
0<s <t<=tl. Ifs 0, (4.15) gives y(t, ,)>-hUo(t) for 0< <-tl. But then y(to, ) 1 for
large and some 0 < to =< tl, so that (4.27) holds. This completes the proof of Theorem
4.1.

Proof of Proposition 4.1. Let 0< y(t)< 1 for large t. Since the equation (4.23) is
oscillatory at c and y(t) has no zeros for large t, it follows that lim sup y(t)= 1 as- c. If (4.9) fails to hold, then there is a 0 such that 0 =< lim inf y(t) < 0 < 1 as . It
follows that there exist arbitrarily large values of to such that y(t0) < 0 and y’(to) < 0.
Hence a convexity argument employing (4.22) and (4.23) shows that y(t) < y(to) < 0 for
> to. This is a contradiction, and so (4.9) holds.

Proof of Theorem 4.2. On (a). The proof follows usual maximum principal
arguments and will be omitted; cf. [3, Ex. 4.6, p. 427 and p. 574].

On (fl). Rewrite (4.11) in the form

(P(t)y’)’ + O(/)y G(t, y)y,

where P pE, (2 qE and G rE. Thus

[P(y’z-yz’)]’= yz[G(t, y)- G(t, z)]

so that, by (4.24) and G(t, y(t))- G(t, z(t)) > 0 for small > 0,

P(y’z-yz’)>-_ y(s)z(s)[G(s, y(s))-G(s,z(s))]ds

or equivalently

(y/z)’>=[P(t)z2(t)]-’ y(s)z(s)[G(s, y)-G(s, z)] ds.

Thus (y/z)’ > 0 for small > 0 and, in fact, for all > 0.
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ON THE PASSAGE THROUGH RESONANCE*

JAN SANDERSt

Abstract. The phenomenon of "passage through resonance" is studied from the asymptotic point of
view. Using averaging techniques we’ll describe this process and prove the validity of the approximations
obtained, on their natural time-scale. The theory is then applied to a model problem, proposed by Kevorkian
(1974).

1. Introduction. The aim of this paper is to study the phenomenon of "passage
through resonance" from the asymptotic point of view. Using averaging techniques
we’ll describe this process and prove the validity of the approximations obtained, on
their natural time-scale.

The organization of the paper is as follows:
Section 2" The differential equations under consideration here are introduced,

together with a formal theory of averaging.
Section 3: The proof of validity of this method (i.e. averaging) is given.
Section 4: The behavior of the solution near the so-called resonance manifold is

considered here.
Section 5: Since there remains a gap between the two regions for which estimates

have been obtained, a bridge between the results of the two preceding sections is
established.

Section 6: The inner-outer vector field is introduced.
Section 7: The final estimates for the composite expansion are given. This section

concludes the general theory.
Section 8: The theory can be immediately applied to a model problem, proposed by

Kevorkian (1974). This problem is stated and as much information as possible without
numerical analysis is given here.

The reader is warned that the terms inner and outer do not refer to the time-
variable, but to the space-variables. Kevorkian’s (1974) paper may provide the reader
with some of the intuition behind the theory developed here.

2. The differential equations and formal averaging. (If the reader does not have
a nontrivial example in mind of the problem posed in this section, he is advised to read
8 first, where he will find one.)

Consider the following local representation of a one-parameter family of C-vector fields, with "small" parameter e 6 (0, e0], on T M pr, where T is the
m-torus, M" and P are m- and r-dimensional manifolds respectively, pr is serving as a
kind of control space, in the sense that the vector field restricted to pr is a vector field on
pr (it forms an independent subsystem).

2RO"-X(’lTl, bl)"]"e 1(0, m, L/) O

(2.1) rh E 2 " io(Ob m, u)3r E
2 Yl(Oi,i m, u)+ e 3R2(0, m, u) trt G

=o i=o

., j=0, 1, is understood to be of the form Y Y](m, u), The dot means
differentiation with respect to a parameter, called time.

* Received by the editors September 26, 1977 and in revised form September 10, 1978.
? Mathematisch Institut, Rijksuniversiteit Utrecht, Netherlands.
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We refer to the Oi’s, 1,. , m, as the angular variables. The .{(., m, u)" S
Rn, 1,..., m, ] 0, 1, are restricted to be finite Fourier-series, with mean value
zero. This because of their nice product rules.

In the sequel we shall need to know how to handle the combination tones Oi + Oj,
i, j 1, , m, and therefore we add their differential equations to (2.1). We will refer
to this extended equation as (2.1)*. This may change m into some m*>m, but
otherwise doesn’t change the form of the equations. Take a compact domain D c [n/r
and let (00, too, u0) Tm* x D be the initial values for (2.1)* Next we assume a splitting
[kt[] of n, such that for m"-’(W,X)[]ko[l, one has X(m,u)=X(x,u), and,
furthermore, the second order averaged equation (to be defined in 3) restricted to
T’* l Rr is an independent subsystem.

We shall restrict ourselves to the case 1, since this keeps the discussion as simple
as possible. The assumption is satisfied in the model problem. This simplifies matters
because we don’t have to choose new coordinates when studying the flow in the
neighborhood of the resonance manifold (cf. 4). Writing

(Yi.(Oi, lTl, u)) i=1,’’"
(2.2) .2..(0i, m, bl)

\Z.(Oi, m, u) f O, 1
,m

one has the equations"
2R0 X(x, u) + 1(0, w, x, u)

e Yo (w, x, u) + e Y (Oi, w, x, u) + eaR2(O, w, x, u)
i=1

2 3R(2.3) .i=eZ(x,u)+e Zo(Oi, w,x,u)+e Z(Oi, w,x,u)+e 3(0, w,x,u)
i=1 i=0

i eW(u).

What one would like to do now, in order to simplify this system, is to average over
the angular variables and forget the remainder terms Ri, 1, 2, 3. This can be done as
follows: define a domain D)c ,+r (where 6 is some order function of e) and a map

" T’*D)T’*D, such that there is a vector field on T’*D) of the form
(2.1)*, but with Y j= 0 for =.1, , m;/" 0, 1, which is -related to (2.3).

(Two vector fields v and t are b-related iff v(c/)(x))= d4)(x)g)(x); if & is invertible, t
is merely the pull-back of v along b.)

Usually one finds by substituting some formal development in the definition of
-relatedness and equating terms with the same order of magnitude in e. In general

this procedure does not lead to a unique result (neither in the map, nor in the vector
field), which probably accounts for the vast number of different theories on this subject.

Having obtained this vector field, one forgets about the remainder terms. The
resulting vector field is usually called the averaged vector field.

Trying to define , everywhere on T’* + [,/r is likely to produce trouble, namely
the small-divisor problem, which is also called resonance. It follows frorh the formal
computations that resonance occurs iff one of the Xi becomes zero. Therefore we
introduce some concepts in order to define a nice domain D, before presenting the
formulae for and the averaged vector field. First we assume X to have the following
structure:

(2.4) X(x, u)=x
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Call

the "i-th resonance manifold" (a manifold only in the sense that it is the solution of some
equations; it may not be locally Euclidean everywhere). Condition (2.4) assures us that
the resonance manifolds are not slowly moving, which makes matters simpler.

Define e[/[i((e)) by

(2.6) /[i((8))- { (1TI, U) E Rn+r a(e) }[Xi(x, u)]
o(1) for e $ 0

where is some order function of s with 8(s) o(1) and E/(2(E) O(1) as s $ 0 (3 lies
somewhere between s 1/2 and 1).

Now let Da be the intersection of the local coordinate domain and fq/--1 tli(8(s)).
Da may be disconnected.
In the sequel it is assumed that only the zeros ofX are of importance and that the

zeros of the 12i, if they exist at all, cannot become important due to the initial conditions
and the time-scale of interest to us.

We introduce for (b, y, z, u) E T"* xD the map

(2.7) m*
2 2 W(1)()i, y, Z, U)
i=1

’SThe reason for the appearance of the w(x) is the following: In the (e)-
neighborhood of i the second variable y is slowly varying with respect to the natural
time-scale 1/x/, and therefore can be approximated by a constant.

The only remaining problem is to approximate the first and third component of the
solution in this neighborhood.

To do this we need sufficient accuracy of the approximate initial values provided by
the outer expansion. It follows from the estimates in the next section that one needs to
know the third variable very accurately in order to get a reasonable approximation to
the first (here one needs the splitting assumption). This cannot be done without the
W(1) S, as the reader may want to verify.

Then, differentiating the relations

(2.8)

0 "- e 2 U(o (,b, 3’, z, u)

w y + e Y’. V(o)(qSi, y, z, u) etc.
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we obtain the following equations:

(2.9)

2

--X(z, U)+x3(z u)R(, y, z, u; e) I

2

eYe’o)(y, z, U)+xZ(z u)Rz($, y, z, u; e) y R’
3

,;---eZ(?o)(Z,U)+e:Z)(z,U)+x(z,u)Rs(, y,z,u;e) ze

W(u) u

where the Ri, 1, , 3, are uniformly bounded in all variables on T’* D x (0, eo]
and

1 m* 1
(2.10)

X"(z, u)- ]X(z, u)l""
Here we have incorporated the assumptions on the averaged equations which charac-
terized the splitting of Rn. Introducing the following notation:

(2.11)

o (;)(, y, z, u)=
W (j) ()b y, Z,

Oy Oyl OZ (9 1’

Ou O-u1 O-u Om Oyl Oy Oz

we see that (2.9) holds when the following choices have been made"

O(0)(tl, y, Z, U)
Xi(z U)

o(Oi, Y, Z, U) di

U(o)(ti, y, z, u)--’

(2.12)

Xi(z, u)
W(o)(Oi, Y, Z, U) X(z, u) di

/
 Z?o ]

f,o,(y, z, u) Is V
D(0)(ti’ y’ Z, U)-’O--Z(o ((i, Y, Z, U) d&i

2’1) (z, u) z (y, z, u) + Y 9’’(y, z, u)
i=1

[. .., &,-.’,l+
j,k--- o(0)

Om .,oj
Oi + Ok t#

0
W

0 90,iW(o) dO.:-m w() ou
Here the integrals are taken in such a way that U(o) and have mean value zerotl(o)



1224 JAN SANDERS

We will now proceed to define approximations for a solution of the initial value
problem (2.3) starting in some domain D1 (that is, the distance to any resonance
manifold is Os(1)), going through a resonance manifold until it is again in (another
component) of D1. This is the so-called "passage through resonance". The neighbor-
hood of a resonance manifold is called the inner domain and its complement the outer

domain.
In the outer domain the natural time scales are 1 and 1/e. in the inner domain it is

1/x/, or, if there is a saddlepoint, 1/x/log 1/e depending on how close to this
saddlepoint one permits the solution to come. All estimates in the x/-neighborhood of
the resonance manifold will be on a time-scale V1/x/, but the Gronwall-type estimate
allows one to take the logarithmic factor into account.

3. Estimates for the outer expansion. Now consider the "outer equation""

(3.1)

, X(z, u)

e Yo)(Y, z, u)

eZ(o)(z, u)+ e2)(z, u)

=eW(u).

The solution of this equation is called the outer expansion. In this section we are going to
estimate the difference between the solutions of (2.3) and an outer expansion with

appropriate initial conditions, as long as they are in the outer domain. Therefore the
time-scale of validity has to be at least 1 !e. Suppose one knows the initial conditions for
(2.3) within some order of accuracy. Then the first problem is to show how one can use
these approximate values to solve (2.9) or (3.1) without losing too much accuracy.

Let (0o, Wo, Xo, Uo) be the exact initial conditions and (0o, o, o, Uo) some approx-
imation with:

(0o, rPo, o, Uo) Do()

(3.2) Ilwo- oll- o(=())
6o(e)=O(1)

li(E)"- 0(0), i= 1,..., 3

E
Ilxo-oll-- 0(’3()) 6g(e--o(1)

as e ,1, O.

(In the end we will consider the special case where all initial conditions are known
exactly; this case follows from the present discussion.) Since u0 is always known exactly,
we will restrict our attention to the other variables. This is easily done, since ,,
restricted to pr, is the identity.

Define to be

(3.3) (0o, 1o,.o)- 0o, Wo, Xo--E 2 W(o)(Oio, 1o,o, Uo)
i=1
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and let (bo,)70, ZTo) be the image of (0o, fro, o) under .
One has, by abuse of notation"

(I)e((e (0--0, 10, 30)) -,(I)e((I)l(0o, Wo, Xo))

(3.4)

O(1) + O(00)
O(6z)+O(-oo) as e 0onDo.

2

Thus (b approximates -1 in a certain sense. The mean-value theorem gives the
following estimate for the difference between (bo, ;o, $o) and (bo, yo, zo)
;1(00, WO, Xo)"

I](D0-- 011 O(1) -I- O(-02)

][Z0-- 0[[ O(3) "- O() -- O(EIIf we started with exact conditions, (3.5) would read"

0
E

(3.6) IlY-)7ll (oo)
Ilzo- oll- o

This completes the estimates for the initial conditions.
We now turn to the solutions.
Let (4, Y, z, u)(. be the solution of (2.9) with initial conditions (4o, yo, zo, uo) and

let (4, ;, ,f, u)(-) be the solution of (3.1) with initial conditions (4o, 17o, o, uo). Note that
(rb, y, z, u)(t)= (0, w, x, u)(t) since (2.9) and (2.3) are -related and have unique

solutions. (This is a general line of argument: Let v, and 4 be as in 2; suppose x is an
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orbit of tS, i.e. 2(t)= O(x(t)). Define 4(x)(" by (&(x))(t)= 4)(x(t)) and put y 4(x).
Then" )(t)= d4)(x(t))(x(t))= v(cb(x(t)))= v(4)(x)(t))= v(y(t)). Thus y is an orbit of v.
Let be another orbit of v with initial conditions (0) $(x(0)). Then, by uniqueness,
:=y.)

We now make the following
ASSUMPTION. Lef m , m 2. The

Iot e dz C( 1 1 )(3.7)
X"(e(r), u(r))- Xn-(e0, u0) +x"-l(e(t), u(t))

This assumption has to be made to insure that the solution enters (leaves) the resonance
fast enough. For suppose Zo) is zero or very small; then (3.7) is not likely to hold,
because the natural time-scale for will be much longer than 1/e in that case.

Of course one can develop a theory for such cases by changing the assumption and
putting the appropriate time-scale in formula (3.7).

Note that the problem with Z0 0 and 2) # 0 is not only of theoretical interest,
but it has an application in the spin-orbit resonances in 2-body problems with low
eccentricity (for the equations, see Kyner (1969)).

In 8 we show that it is not always impossible to verify (3.7) in concrete situations;
this is because and u are known explicitly, at least formally.

LEMMA. With the notations as above and with assumption (3.7) satisfied, the
following estimaw holds"

IlO (t) (t)ll o()+o()+ o()+ o(@)+ o()
N(t)ll

(3.8) Ilx(t)- e(t)l[ o +o] + o(&)

x(t)-e(t)-e Z w(m((t), ;(t),e(t), u(t))
i=1

/e62

as long as ONetNL and (, ,i, u)(t)D.
Pro@ In this proof appear a number of G, 1, 2, , all e-independent. These

will be denoted by the universal constant C to simplify notation. Suppose is some
function from N [0, 1] and let

(3.9)

Then

(3.10)
a(O) g(O)z (0)+ (1 g(O))zT(O) .(0)+ g(O)(z (0)- .(0)) .(0)+ 0(a3),

=zT(0)+o(1) ase$0.

Thus there is a nonempty interval [0, r*), with 0 < er*<- L, such that

1 2(3.11)
X(a(t), u(t)) <X’e’t’,tt) u(t))

e [0, r*)
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because . (0) D and 1/X behaves more or less nicely there. Suppose there is some 0o
such that, if sCo Ooz + (1- 0o), then

(3.12)
1 2

X(o(*), u (*)) x(e(*), u (*))"

Combining (2.9), (3.1) and the mean-value theorem, one obtains the following esti-
mate"

z(t) z(O) + eZo (z(o.), u(o.)) + e22) (z(o.), u(o.))

3
E

-I" X4(Z (O’), U (0"))
g3(b(o’), y(o.), z(o.), u(o.); e)} do’,

.(t) (0)+ {eZo) ((o’), u (o.)) + e 22)((o’), u (o.))} do’,

which implies

]]z(t)-(t)l}<-llz(O)-e(o)ll/ ll/Po) (z(), u(,))-Zo ((), u())ll

+e 3 1 }X4(z(ff), u())llR3((), y(), z(), u(); e)l[ d

2(3 13)

3

+ X4(z(), u())

fot fot Ce3

In proving (3.13) we have used implicitly the following estimates"

=o(1) ase$0x2(&,(c), u(r))
0 X.((cr), u(c)) 0

e

(3.14) (tJ= O* in (3.11))

X4(z(o’), u(o’))= O X4(i(), u()) ((t) 1 in (3.11)).

The estimate for the derivative ofZ follows from the definition ofZ in (2.12).
Here we use the fact that Z0 and2 do not depend on y. The existence of 0*

follows from the mean-value theorem. We apply Gronwall’s lemma to (3.13) to get

Ce3

Using (3.7) gives

(3.16) [Iz(t)-(t)l[ c [[z(O)-(o)ll+X(z(t), +
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and thus

(3.17)

(3.18)

=o(1) ase$0.

Applying (3.17) to (3.12) we see that

2
x((*), u (z*))

1
x(0(r*), u (*))

-x(e(*l, u(*ll x(o(*l, u(r*l x(e(r*, u(*ll

1
-x(e(*), u(*)) x(e(*), u(*))

x(e(*), u (*))
1 +

x(e(*), u (r*))]

1
(1+o(1)) ase$0,

x(e(r*),

which contradicts the existence of o and -*. Thus (3.18) implies that (3.15) is valid on
O<_et<_L.

The only difficulty in this proof was that in order to estimate IIz(t)-2(t)ll one
needed an estimate for 1/(Xn(z(t), u(t)))in terms of 1/(Xn(2(t), u(t))), which was easy
enough, once one had an estimate for IIz(t)-2(t)ll, etc.

The remaining estimates follow easily:

(3.19)

Using (3.5) in (3.19) gives:-- o
,

lie(t) (t)]] O()+O(o)+O()+ (-o3)+

dT

In the same way one obtains

The derived estimate (3.8) now follows from (2.7) (using (3.11) and applying the
triangle inequality).
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Suppose the initial conditions are known exactly and 60 1; then (3.8) becomes

t )IlO(t)- (t)ll 0 -(3.22) [[w(t)- ;(t)l] 0()
[Ix(t)-e(t)ll o()

x(t) (t) e E W(o)(qb(t), ;(t), .(t), u(t))
i=1

This is the case of a solution starting in D1, coming to the region of resonance

4. Estimates for the inner expansion. The results in the preceding section hold in
Da. That leaves us with the question" what happens if the solution does not stay in Da,
but enters the inner domain?

To answer this question we introduce the inner vector field. To estimate the
difference between the exact solution and the inner expansion (i.e., the solution of the
inner vector field) is not easy. We do it in two steps" first in a x/-neighborhood of a
resonance manifold, then in the next section in 6-neighborhood minus the /-
neighborhood.

The first step is straightforward:
Suppose we have already constructed an approximation that is entering the

/-neighborhood of Vi. Then we can average over all angles except Oi. Since we know
that we are working in a /-neighborhood of Ni, we scale the coordinate transversal to
W and develop the vector field by Taylor-expansion. Throwing away the higher order
terms, we call the remaining equation the "inner vector field" and its solutions inner
expansions.

m*So let D denote the intersection of the local coordinate, domain and f3 ij o/[/[i(6)
and define

xt% T"* D Tm*D

(4.1)

where Uo), Vo) and Wo are defined as in (2.11) and (2.12).
This transformation is intermediate between first and second order averaging and

has to be used since first order averaging doesn’t give the desired results. It is not
obvious why first order averaging does not suffice. The technical reasons for its failure
will appear only in the next section.
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The -related vector field is"

2Rd)=X(z,u)+ (4), y,z,u" e)

:ZR=eY(y,z,u)+eYio(i, y,z,u)+e 2(qb, y,z,u" e)
(4.2)

:2 eZ(z, u)+ eZio (cbi, y, z, u)+ e2R3(b, y, z, u; e)

a=eW(u)

where the gi are, as usual, uniformly bounded and

(4.3) X.(z, u)lx 0.

Let z be a zero ofX and scale

(4.4) z z/ x/sr.
We have sr O(1), since we are in a x/-neighborhood of A;.. We assume that (OXi/Oz)
(z, u) : 0 (cf. (3.7)).

Following the outline in the Introduction we write down the inner equations"

X(zo, uo)+ 4-i(zo, uo)

p=O
(4.5) : 4-i2(, Yo, Zo, Uo)

a=sW(u)

where =Z +ZJo. The initial conditions Uo and yo used in (4.5) are initial with
respect to the moment of entering the x/-neighborhood. In the sequel both z and sr are
used, but one should keep in mind that (4.4) always holds, although not explicitly
written down on every occasion.

Let (b, y, z, u)(. be the solution of (4.2) with initial conditions (4o, yo, Zo, Uo)
and let (b, 17, st, u) be the solution of (4.5) with initial conditions (b, 37o, sro, Uo).

(Since the vector field is autonomous, one can always translate in time and call any
to zero; thus the zero-time in this section need not be the zero-time in another section.)

Using again Gronwall’s lemma, we see that the following estimate holds"

(11, (t) i(t)ll + Ily (t) 37(t)11 + IIz (t) 2 (t)ll)
(4.6)

--< 116;o- 4oll / Ily0- 37011 / llzo- coil / c e

Moreover

(4.7) [[y (t)- 37(011 -< C(llyo- Poll + et).

These estimates can be obtained by a slight modification of the method of analysis
given in Sanders (1978).

Let (0, w, x, u) be the solution of (2.3) with initial conditions (0o, Wo, Xo, u0) and let
(, y, z, u) be the solution of (4.2) with the same initial conditions; then it is not dicult
to see that the difference between these solutions is of O(s).

Together with (4.6) this gives us the desired estimate for the difference between
(0i, w, x, u) and (., p, 2, u), on a time scale 0 NtNL. It is not clear how to extend this
time-scale using Gronwall-type estimates, other than with logarithmic factors in e.
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5. Extension of the time-scale for the inner expansion. Were it not for the fact that
e/62= o(1) as e $ 0, the preceding analysis would have given the complete picture of
what is happening. The problem remains to extend the validity of the inner (or the
outer, or some other) expansion to a 6 (e )- neighborhood of the resonance manifold.
The difficulty of extending the validity of the inner expansion is in the fact that its
natural time-scale is of O(1/,,/-e) which is not enough to go through the larger
6- neighborhood.

Following an idea due to Eckhaus (1976), we prove in this section the validity of the
inner expansion on the larger time scale 6/e.

It follows from (4.2) by a straightforward argument that one has the following
estimates on its solutions:

’(t) O()
(5.1) u(t)=uo+O(6) on [0, L]

y(t) y0+ O(6).

Using (5.1) we expand (4.2) to get"

(5.2)

Differentiating 4 gives

(5.3)

,; 4x"(z), Uo) +(4-6 + e)R,(cb, y, , u; e)
Oz

e(z}, Uo)2(4, yo, z, uo)+ eR,(6, y, , u;
Oz

(Here we have used the "one-and-a-half-order averaging").
Integrating yields

bil"2 1L-- f/’ OXi fot-z.(0)2= e (Ji) dJi + e8 Rai(r) dr
(o) OZ

(5.4) eH(j, i(0), yo, z, Uo)

+e d(l,((l, y(l, ((, u(l; el .
Note: H is not a function on the circle but on its covering space, since Z need not

be zero.
Consider the equation"

(5.5) 1/24; 1/2(0)2= eH(,bi, 4).(0), yo, z{, Uo).
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Let 4* be the solution of (5.5) with 4*(0)= 4.(0) and let t* be the solution of

e3 b*(t*(z))Rl,i(qb*(t*(z)), y(z), r(z), u(r); e) dr
(5.6) .2= 1 + 1/24i(0)2 + en(qb*(t*), b.(0), yo, Z/o, Uo)

with initial condition such that 4*(t*(0))= bj(0).
Define

(5.7) .(t) qS*(t*(t));

then

z db*(5.8) cbi i*
dt*

and

(5.9)

(5.10)

1
*(t*b(0)2 + eH(b (t)), qSi(0), Yo, z, Uo)

+et qb*(t*(z))Rl,i(cb*(t*(z)), ,) dr

=2 ’(O)2+eH((t)’cb(O)’Y’Z’u)+e q(’)R13(t(z)’ Y (z)’ "’) dz"

4 therefore obeys (5.4) and has as initial condition 4(0)= b*(t*(0))- b(0).
Furthermore

IqS* (t* (t))- cb*(t)l <- ft
t*(t)

Assume

I,*(z)l dr Ca(e)lt*(t)- tl.

s
=o()(5.11)

*(t*cbi(O) + eH(4 ), bi(0), yo, z, Uo)
2which is more or less equivalent to e/l. O(1). Thus 1/r2= O(1), implying that one

has to stay outside the /-neighborhood of the resonance manifold.
From (5.6), using (5.11), we obtain the following estimate:

(,4 [ ,](5.12) It*(t)- t] <- C -+ bio with 6 0,-Le
which implies"

8 )(5.13) [i(t)-*(t)l<-C -+ 1/o[[bo- qo[

It is easy to see that on the one hand if we have a solution of (4.5) with initial
conditions (4o, 7o, r-o, Uo), then its bi?component can b.e identified with b*; while on the
other hand b’ has initial conditions bi(O) bi(O) and ’/(0) (0), which implies that
is equal to the b.-component of the solution of (4.2) with initial conditions
(bo, yo, Zo, Uo) by uniqueness of the solutions of this equation.
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We now have two estimates ((5.14) and (5.15)) for the difference between b. and
b., one for the ingoing and one for the outgoing solution. (We call a solution ingoing if it
enters the resonance region from outside, i.e. from D.) The first estimate, assuming
14; ol is

(5.14) Ib;(t)- b-,(t)l C(/ 14’;o-ol)
while the second, assuming Iiol x/, is"

(5.15)

Using (4.5) and (5.2) we obtain

(5.16)

Here {1, 8/x/} means 1 for the ingoing and 8/x/ for the outgoing estimate.
Note that 8a/x/ is small compared with 86/(eax/), since e/8a= o(1). Our final

estimate is the easiest:

(5.17) [[y(t)- 37(t)ll C(, + Ilyo-  o11).

The connection of the approximations found here with the original equation has
been discussed at the end of the preceding section.

6. The inner-outer vector field. The inner-outer vector field may have Iittle to do
with the original equations, since it is the inner expansion of the outer vector field and
the outer expansion of the inner vector field.

This means that one is "assuming" two contradictory facts at once" that one is near
a resonance manifold and far away from all of them.

But the flow of the inner-outer vector field (the inner-outer expansion) does
approximate the inner expansion in the outer region and the outer expansion near the
resonance manifold. Thus it is possible to make composite expansions like"

(6.1) Xc xz + Xo Xzo

where xz, Xo and Xzo are the inner, outer and inner-outer expansion. In the outer
domain the estimates run as follows:

(6.2) IIx-xcllllx-xoll+llxi-x,oll--o(1) as e $ 0

and in the inner domain"

(6.3) IIx-xcllllx-x,ll+llxo-xioll o(1) as e $ 0

where x is the exact solution and all approximations have the right initial conditions (or
asymptotic behavior).
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The inner-outer equation is"

X(z o, uo)+ uo)
OZ

(6.4) ) =0

uo)

=eW(u).

Integrating (6.4) one shows that ,o(t) is a parabola which takes an extremal value
at the resonance manifold under consideration. (All the inner-outer talk is about one
passage through one resonance; this is not a global inner-outer field, as is indicated by
the presence of z/0 in (6.4).)

To get the right inner-outer expansions we proceed as follows" (X in
o denotes the

ingoing outer solution, etc.).
Let x(0) x(0) (x(0) is the given initial condition of the exact solution). Suppose

in(T)" this determines Xoat some r, xo(r)ec Let xino(r) X o (0). Then let x,(0)
inX,o(0). All estimates are given in the next section, proving that this is a possible way to

proceed. On [0, r) the composite expansion is defined by
inin (t)+x(t) Xto(t).(6.5) Xc(t)=x,

On the next interval It, -?), where ? is to be defined below, let

(6.6) xtc(t)= xz(t).

Suppose at some time " the inner solution has a distance of Os(1) to the resonance
manifold.

Let out out () .. Let Xo() Xzo() Then theXzo (’)= xz(?). Now ? is defined by Xzo
outgoing composite expansion is, on [?, T), given by

out out(t(6.7) x cUt (t) xz(t) + x o (t) xo

Collecting all our results we can prove that the composite expansion obtained by

Xc(t) O<-_t<r

(6.8) Xc(t) {xc(t) r <= < "/
out

Xc (t) <=t<T

is in fact an approximation of the exact solution.

7. Estimates for the composite expansion. We will now give the estimates for (6.4).
inUsing the notation adopted there, the solution (,)7, 5) in 3 will read (0ion, Wo, xn)

here.
First using (3.22) we obtain

IIo(t) O (t)[I in

(7.1) IIw(t)- wo(t)ll 0 0 <= <= . < r

Ix(t)-Xo(t)l=O

where 6i, is an order function as defined in (2.6). Using (3.22) again, estimates the
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difference between the inner and the ingoing inner-outer solution:

in (t)ll O()
(7.2) [[w, (t)- W,o (t)[I- O 0 _-< , < z.

Ix/(/) Xzoin (/)l O(_.n)
The estimate for the composite expansion now follows from (6.2).
We know that the outer and the ingoing inner-outer solution are equal at z.

Using (4.6) and (4.7) we get the following backward estimates:

(7.3) ( Ozo(t)l/llwo(t)- wzoIozo(t)- in in (t)[[
1 in+ --e lXo(t) x zo t) for 4lt- 1--< L.

Using (5.15), (5.16) and (5.17) we have

-Oj.,o(t)[=O

E
(7.4) Ilwo(t)- W inlo (t)ll-- O(ain) [t- z[ < L.

6
in (_i/[xo(t) xzo (/)l- O

\E /

Combining (7.1), (7.2) and (7.4), we have, at the moment - of entering the
gin-neighborhood of W., the following estimate

5

(7.5) IIw() w,()ll -[" O(in)

+0
E /

Using (5.14), (5.16) and (5.17) gives

10(t)- 0;,,(t)l- O +

(7.6) IIw(t)- wI(t)[[-- O(in) -[" O--.n)
[x(t)-x,(t)]=O +
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until the solution reaches the /-neighborhood of Y.; here the estimates become, using
(4.6) and (4.7):

(47)in -[\8i6n8/lO(t)- o,z(t)l O +O2-/

(7.7) IIw(,)- wz(t)ll O(ain) -I- O(L)
6

+0
\E /

We can do the same thing for the difference between the outer solution and the
inner-outer solution, but that has already been estimated in (7.4).

At this point we choose 8in; in fact we can take different 6in’S for each of the
components, since we work with a composite expansion.

Thus we get

IO,(t)-O,.c(t)l O(e 1/14)

(7.8) IIw(t)- wc(t)ll o
()

with (e)= o(1) as e 0,

Ix(t)- Xc(t)l O(417).
Again using (5.15), (5.16) and (5.17) yields:

o(,:ut ,,14)IOi(t) Oi ,(t) x/ + 0(8

(7.9) IIw(t)- Wz(t)ll=O(out)+O (
6 2

-Xl(t,, + o ’out
The difference between the inner solution and the outgoing inner-outer solution is

in the outer domain estimated by using (3.18)

,o,,(t,  out,,Io(t)l O aout
(7.10) lWl(t) outwo (t)ll O

outIXl(t)- xo (t)] O

In the inner domain the difference between the outgoing outer solution and the
outgoing inner-outer solution is given by (4.6) and (5.15), (5.16) and (5.17):

, out o,,o(t)l 0,.o(t) ou,

(7.11> iiwUt(t outw io (t)ll o(aout)

out out (t)l O(utxo (t}-x,o ,]"
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Therefore if the solution leaves the out-neighborhood of Yj, one has at this
moment ? (combining (7.9), (7.10) and (7.11)):

(7.12)

5

[0j(’) I],,O
zOut (’)[ O(E) -[- O() -["O(E 1/14)

out o(E) (4)IIw()-wo ()ll=O(ou,)+ +o
()

6
out ()l O() +O() 4/7) (:ut 1/14)Ix(t-xo +O(e +0 e

(7.13)

Using (3.16), (3.17) and (3.13), we have:

() (E1/14)]Oi(t)_out(t) (4out .+. 0
E

t,,O 0\--, +O ’ut +"

[[w(t) wOoUt(t)l} O(out)+ O(out) + 0 (e)

O(6ut-’[- \U]
-[-" O(E 4/7) -[- O E

1/14

out ( E ) (to6ut 4/7) (o2ut 1/14)Ix(t)-xo (t)l=O +O,--,+O(e +O\-e
Combining (7.10) and (7.13) and choosing tout optimally:

(7.14)

IIw(t)- wc(t)ll o (, for any s.t. /(e)= a(1) as e ,[, 0

Ix(t)-xc(t)l- 0(Ell/21).
This procedure does not give a nice estimate for the angular variable(s), although

there seems to be no fundamental reason against this.
Here we conclude the more theoretical part of this paper and turn to the

application promised in the Introduction.
Remark. More experienced readers may wonder what happened to the more

classical methods like matched asymptotic expansions; those readers are strongly
encouraged to provide (as an "exercise") approximations and estimates of validity
along those classical lines.

The reason for the approach given here is that it does not depend upon explicit
realizations of solutions (to be expanded in the matching process). Furthermore, the
estimates for the difference between the inner, respectively outer, solution and the
inner-outer solutions were already obtained in earlier sections. One of the difficulties in
the matched asymptotic expansion approach is that one needs an expansion of the
inner solution, which is not explicitly known. A glance at Kevorkian’s 1974 paper may
convince the reader that it is indeed possible to overcome this difficulty, if only he is
willing to pay a price in mathematical elegance.

8. The model problem. In order to illustrate the theory developed in the preced-
ing sections, we look at a problem of reentry roll resonance, studied by Kevorkian
(1974). In this paper, Kevorkian gives a formal treatment of the resonance problem
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with multiple-time-scale expansions. Lacking proof techniques, this was a most difficult
thing to do, since he had to match terms with small divisors.

The reader is advised to study this paper for two reasons:
1. It gives a lot of background information and references on the problem of

reentry roll resonance.
2. It is a nice example of a complete treatment of a problem based on good

intuition.
The only thing Kevorkian doesn’t show is that the phenomenon of sustained

resonance (on a time-scale l!e) is exhibited by the model problem.
Having introduced the basic equations, Kevorkian restricts his attention to the

following model problem"

" + (p + o2)y 0 y(0) 0

Y(0) =xo

/0 eto2y sin p(0) P0

=1/2eo o(0) oo

4p (0) 0

o
=<1.

Po

We extend this system with

(8.2) (p2 + w2),/2 (0) O.

These equations are not in the standard form (2.1); therefore we make the
following transformation"

(8.3)
sin (: +)

2)1/2(p2 + to cos ( +)

(o)=o

a(O) goPo(1 + 02)1/2

(The (y, 3))-notation is a bit sloppy, but one gets tired introducing new symbols all
the time.)

The induced equations are"

(8.4)

(p + o)/

2)-1 2d -ea (p2 + to to cos2 (: + ){1/2 + ap sin ( +) sin 4’}

2)-1c]=etoZ(pZ+to sin (so +) cos (: + ){1/2+ ap sin ( +) sin O}

p etoZa sin ( +) sin p

There are two fast variables ff and : and four slow ones" a, , p and to, where to is
the only one that doesn’t depend on the others.
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(8.5)

Equation (8.4) is still not in standard form; to put (8.4) in standard form we write
the right hand side in the form of finite Fourier-series and then introduce the
combination angles:- (p + w)

d -eaoo2(p2 + wz)-a{J(1 + 2 cos 2( + 4)) +-aP[cos ((3- 4)+ 3b)

-cos ((3 + ,)+,/,)+ cos ((’-)+,/,)-cos ((’ + )+ ,/,)]}

c ewZ(pZ+wZ)-l{1/4sin 2( + 4) +1/2ap[sin ((+) + b)

-sin ((-4,)+ 4)-sin ((3+ O)+ 34)+sin ((3- 0) + 3b)]}

O 1/2ewZa(cos ((- O) + b)-cos ((" + p) + 4))

eo.

(8.6)

Now define

O1 W1 a

02=3-- W2=
-103 3+0 x =pw

04 --0 b/ ---0)

05=’+0.
From (8.5) it follows that

O=u(l+x)/

0= u(3( + x)/-q-x)

63 u(3(1 + xZ) a/z +

O,= u((1 +xZ)/z-4-x)
05 u((l + x2) a/2 +

(8.7) -ewe(1 + x)-{J(1 +cos (20 + 2w)) + kuwx[cos (0 + 3w)
-cos (03 + 3w) + cos (04 + w2)- cos (0s+ w)]}

if2 e(1 + x2)-a{J sin (201 + 2w2)+ uwx[sin (0 + 3w2)

-sin (03 + 3w2)-sin (04 + w2) + sin (05+ w2)]}

i e{UWl[COS (04 + w)-cos (05+ w)]-x}

=e.
Equation (8.7) is in standard form. The initial conditions for (8.7) are"

0(0) 0

w(o) xopo(1 + )1/
(8.8) w(0) 0

x(0)= 1/

u(0) wo.
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(8.9)

Using the notation of 2, one has
ai(U)--U i=1,...,5,

/( +x/
3(1 + x 2) a/2 /x

X#(x) 3(1 + xe) 1/2 + 4-x
( + x)/-4-Sx
(1 + x)1/ + 45x

yo(W, X) (-1/4wa(l + x2)-a)o Z(x) -zx,
1 2).(-wa cos (201 +2w2)’Y(01, w,x)=4(l+--- sin(2Ol+2We) 1’

uwx(-w cos (o + 3w)Y (02, W, X, U
8(1 + x sin (0. + 3 W2) ]’

UWlX(WI\ COS (03 q- 3W2)y30 (03, w, x, u)
8(1 + x -sin (03 + 3w2) 1’

Y (04, W, X, U) UWlX2)(--W1\ COS (04-- W2)
8(1 + x -sin (04- we) 1’

Y (05, w, x, u) uwx)(+w\ cos (0+ w))
8(1+x sin (05- w2) 1’

z =0,

z =o,

Zo =o,

1Z( uw cos (04 -1- w2),

1Z50 -uw1 cos (05+ w2).

It is clear that on the time-scale of interest, namelyl/e, "i(u)---Os(1); the only
X#-component which can become zero is X4, where one has z 1. That this is the
only resonance is a special feature of the model problem.

The extended system has five more angular variables

06 5 --///

(8.10)

09 2sc +

and does not have any new resonances.
We will now construct the outer expansion"
The only thing one has to compute to get the outer expansion is 1). This turns out

to be zero, thus satisfying all assumptions on its structure.
The outer equations for the model problem are"

(8.11)

in4 (1 + z2)l/2-4-z (4 (0)--" 0

J) 2)--1 in 02)1/2ey (1 + z y (0) ,oPo(1 +
in))2-- 0 Y 2 (0) 0

Z"----eZ zin(0) 1/a

ll "--1/2EU uin(o) 0)0

We do not write down the equations for all the other angular variables.
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(8.12)

We compute the ingoing outer solution explicitly:

2et ( l+x/l+a2et }in
----Po 1+0 _-;-’ ]

04o(t)=(1-x/-)pot 2 2 x/l+a e +log
E

(t) Xopo(l+)/ 1+
Wlo 1 + 2eet
wo(t) =0

in (t)
1 -(1/2)etxo --e u(t) oe(1/t

where 7. is given by the equation

(8.13)

and thus

in (7.) 0XO

1
(8.14) er log---5.

One has to check assumption (3.7). It suffices to show that:

e 1 1
(8.15)

x4n (xi3(7.), u(7.))
d7. C

X_ (x)(t), u(t))
+ X4n-1 (xino(O), U0)

The following estimate holds on [1, oo):

1(1 + x)-> 4x -(1 + x2) 1/2 e (4- 1)(x 1).(s.16)

Using (8.12) and (8.15), it is not difficult to show that (8.15) holds.
For the outgoing solution one can use the estimate:

1
(8.17) 1 +x _->(1 +x2)1/2-’,/-x _->-(1-x) x el0, 1].

In the original coordinates for the model problem one has
2

)1/4yoin(t) XoPo(1 +c 2) 1/2 l+al+ a2et.
(8.18)

sinpo t-- x/l+a

2 et
1+/1 +a-x/l+a e +log
l+x/l+a

We will now turn our attention to the inner expansion.
The inner equations are"

(4 ---U(T)

(8.19)

where

(8.20)

1/2/(- 1 + u(r)wno(r)cos (4)

fl 1/2eU,

u(r)=po

in 2)1/2( 1 d" O2 1/4

Wlo(7") XoPo(1 + a
1 + a !
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Thus one has

(8.21)
e in (r) cos 4 1) 0.4 -t-’U(T)(U(T)W 10

inThere are critical orbits (in the original coordinates) iff u(7-)w lO(7-) > 1. In that case
one is elliptic, one hyperbolic. Since the solution of (8.19) is not an elementary function
of time, one has to be content with numerical results.

Having done the numerical work, one may proceed with constructing the outgoing
solution, as described in 6.

The difficulty here is that one has to know the asymptotic behavior of the inner
solution and thus the numerical integration has to be done on a time scale that is 1//
times the natural time-scale of the inner equation. The same difficulty occurs when one
starts integrating since the initial conditions are given for outside the resonance
manifold. We are now going to compute these initial conditions"

The inner-outer equations are given by

(8.22)

fi =1/2eu.

The initial conditions have to be determined from the value of the outer expansion at 7-.

Thus:

in 2p0 1 2p0 2 /+log ( 1+/ )}04IO(7") (1 /)log /1 + a 2e a e 1 +/1 +a

(8.23) 2) 1/4
in 2) l+a,w 1,o (r) XoPo(1 + a

2
in (7") 0W210

(ino( ) 0

u(r)=po.

Integrating backwards, we get

(8.24)

in,o(t) gxe(t r)

w xto(t) XoPo(1 + a
2

in (t)= 0W210

=> sty(O) er

in0410(t) (1 /)por

1:: xI(O) 1 + log

2) 1/4

=):’ wit(O) XoPo(1 + a2) .! +
2

= W2I(O) 0

2po{/l+a2_x/+log ( l+x/ )} Po
2’e l+x/l+a 2-e
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which implies

(8.25) 04,(0)=(1-/)p07 2p0e 41+ce
l+x/l+a2 -2--z

This is as far as one can carry through the analytic treatment if one is interested in
the time-behavior of the solution. If one is interested in the orbits one may go further,
using the fact that the inner vector field has an integral with a rather easy asymptotic
behavior. But this analysis should not be trusted too much, since the validity of the
approximation is only proven on the natural time-scale of the inner expansion. Then it
may happen that the "approximating" orbit goes out of resonance, while the exact
solution stays in resonance.

Comparing our results with the numerical work as represented in Figs. 1, 2 and 3 in
Kevorkian (1974) we can make the following remarks.

The theory applies to the phenomena in Fig. 1 and Fig. 3, but not to Fig. 2.
In Fig. 2 we see that p on a time-scale l/e, with oscillations of period 1/.
Since our estimates are valid on 1/, the theory does not apply to this picture.
The period of the oscillations of p around suggests that the solution is oscillating

around the elliptic orbit (which may be slowly moving on 1/e) and does not stay near the
hyperbolic one, as Kevorkian claims (cf. however Lewin and Kevorkian (1978)).

Anyway, it is not dicult to see that the solution cannot stay near the hyperbolic on
1/e in the model problem, using the equations for the slow variables in the inner
expansion.

In conclusion we state that the problem of finding approximations valid on a
time-scale 1/e and describing Fig. 2 in Kevorkian (1974) is still open.
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A REMARK ON A PAPER BY PAYNE AND PHILLIPPIN*

CATHERINE BANDLEt

Abstract. Some isoperimetric inequalities for convex domains are derived and then used to compare
different bounds for the electrostatic capacity.

1. Introduction. In [2] Payne and Phillippin established a maximum principle
for certain combinations of harmonic functions and their derivatives. As an applica-
tion they derived among others, isoperimetric bounds for the electrostatic capacity. The
aim of this note is to show that in some special cases those bounds follow directly
from isoperimetric inequalities by P61ya and Szeg6 [3]. Our arguments are based on
simple geometrical inequalities which are contained in the next section.

2. Geometrical inequalities. Let D 3 be a bounded convex domain and denote
by RI(P) and R2(P) the principal radii of curvature at the point POD. We set
K (R 1R2)- for the Gaussian andH (R -1 + R for the mean curvature. ByMwe
denote the mean curvature integral oHds, ds being the area element of 0D. If h
stands for the support function of 8D and r, 0 [-7r/2, 7r/2], [0, 2rr) are the polar
coordinates, then the volume V of D can be expressed as [1]

(1) V
,-/2

sin 0 dO de.

In addition we have

(2) M h sin 0 dO dq9

and for the surface area A of D

h(R -- R2) sin 0 dO de.(3) A
-=/2

From (1) and (2) it follows that

M
(4) V=>.

3Kmax

By applying Minkowski’s inequality [1], M2=> 47rA, we get

/47rA
(5) Kmax_->.

3V

Let R be the radius of the sphere with the same volume as D, that is (47r/3)R3= V.
From (5) and the isoperimetric inequality A => 4err e, we conclude that

(6) Kmax_-> /R

Another consequence of (2) and (3) is

(7) M <- 4KmaxA.
In all inequalities (4)-(7) the equality sign holds if and only ifD is a sphere.

* Received by the editors November 13, 1978.
? Mathematisches Institut des Universitiit Basel, CH-4051 Basel, Switzerland.
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3. Bounds for the electrostatic capacity. Let D c3 be a convex bounded domain
and n be its inner normal. The exterior capacity of the conductor D is

1o Oh
C ---where h is the solution of the boundary value problem

Ah=O in-D, h=l onOD and h=O([xJ-) as[xl.

In [3] it is shown that the following pair of inequalities holds for C"

(8) R C M/4.

On both sides the equality sign is attained if and only if D is a sphere.
In view of (6) we have

C>K-/

and by the inequality between the geometric and the arithmetic mean, max1/2 =< Hmax, we
find Payne and Phillippin’s estimate [2]

-1C Hm,x.

From (4) and (8) we conclude that

4rC N 3 VKmax N 3 VHmax
and from (7) and (8) it follows that

4C <a <AHmax.
These two results have also been derived by Payne and Phillippin [2], but they

didn’t have to make the assumption that D is convex.
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CONFORMAL MAPPING OF THE DOMAIN EXTERIOR TO A THIN
REGION*

DOREL HOMENTCOVSCHD

Abstract. This paper gives the asymptotic expansion of the function Z F(z, e) which maps conformally
the domain exterior to a thin region into the plane Z with a cut on the real axis. The function F(z, e) is
represented as a superposition of singularities on the segment [a(e),/3(e)] inside the thin region.

The singularity intensities f(x, e) and g(x, e) satisfy a system of linear integral equations. This system is
asymptotically integrated by using the method of Handelsman and Keller (Axially symmetric potential flow
around a slender body, J. Fluid Mech., 28, (1967) pp. 131-142). The explicit solution is constructed for some
classes of domains.

1. Introduction. This paper derives the asymptotic development of the conformal
mapping function Z F(z, e) of the domain D, exterior to a thin region in the plane z,
into the plane Z which has the cut [X1, X2] on the real axis.

Once the function F(z, e) is determined, a series of boundary-value problems can
be resolved for the domain D. Thus, the motion of an inviscid incompressible fluid
(having the complex velocity V. e-i at infinity) around a thin profile is characterized
by the complex potential [1],

FI(Z)-- V cos0 Z-iV sin0 {(Z-X1)(Z-X2)}1/2

+/r [logZ ------Xl-}-X2.-[-{(Z-Xl)(Z-X2)}l/21
where Z F(z, e) and F is the circulation about the profile. If the domain D consists in
a homogeneous and isotropic dielectric, the thin body is a conducting one and the
electrostatic field at infinity is homogeneous, then the corresponding electrostatic
complex potential is F2(x) -iFa(z). The function F is also useful in elasticity (e.g. for
the study of crack problems), in the examination of ground water flow problems, etc.

The solutions of the hydrodynamic and electrostatic problems mentioned above by
methods which use asymptotic expansions similar to those used in this paper were given
by Geer and Keller [2] and Geer [3].

The advantage of our way of approach is that given by the knowledge of the
conformal mapping function; by means of this function one can solve a series of
boundary-value problems for harmonic functions in the domain D, the separate
treatment of each problem being no longer necessary.

Here, we shall try to represent the function F(z, e) as a superposition of singulari-
ties distributed along the segment Joe(e),/3 (e)] of the profile chord. The determination
of the intensities f(x, e) and g(x, e), which characterize the singularities, reduces to the
solving of a system of integral equations of Fredholm type and first kind. In order to
solve this system we use the method of Handelsman and Keller [4]. As a result we obtain
both the asymptotic expansions of the functions f and g and the limits a (e) and/3 (e) of
the segment containing the singularities.

In the case of any thin region the method presented permits one to obtain the first
three approximations of the function F(z, e). For symmetric regions, the complete
asymptotic expansion is given in 3. When the curve C has equations of the form

Y+(x)+ Y_(x)=P(x); Y+(x)- Y-(x)=x/1-x2" O(x)

* Received by the editors January 27, 1978, and in revised form September 27, 1978.

" Institute of Mathematics, Bucharest, Romania.
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where P and Q are polynomials, this paper yields the explicit solution of the system of
integral equations. Formulae which permit the explicit calculation of the function
F(z, e) are also derived.

2. The case of an arbitrary thin region. We consider a thin region whose contour C
is described by the equations

(2.1) y=eY+_(x), -1-<x-<l,

where e is a small parameter. We assume that Y+(x) >- 0 and Y_(x) <- O. The equations
of the two arcs of the curve C are assumed to be of the form

(2.2)
Y+(x)+ Y_(x)= 2(1-x2) Sa(x),

Y/(x)- Y_(x)= 241-x" Dl(X), -l__<x<__l,

where Sa(x) and Dl(X) are twice differentiable functions on the interval [-1, 1]. We
shall attempt to find the asymptotic expansion, for small values of e, of the function
Z F(z, e), which represents conformally the domain D, external to the curve C, into
the plane Z which has a cut IX1, X2] on the real axis. We shall norm the function F(z, e)
by the conditions

F(c, s) ; =1.

We represent the function F(z, e) as a superposition of singularities placed on the
segment (a (e ), fl (e )) of the Ox axis contained inside the curve C. The functions
a (e),/3 (e) assumed of the form

a(e)--1

fl(e) 1 -12e2 -[- O(e 3)
will be determined at the same time with resolving of the problem.

We set

lIf(2.3) F(z,e)=z+-- x/(-t)(t-a) f(t’s)
dt

r z

+/(z-a)(z-fl) ml If g(t, e) dt
tTr 4( t)(t o<) z’

f(t, e) and g(t, e) being twice differentiable functions on the segment [a,/3].
On the curve C, the conditions

(2.4) Im {F(x + is Y+/-(x), e)}= 0

must be fulfilled. These relations lead to the following system of integral equations for
determining the functions f(t, e) and g(t, e)

eY+(x)+Im
1 @-t)(t-a)

x icY+/-

(2.5) + Im x/(x + ie Y+ a )(x + ie Y+ 3

tTr 4( t)(t a) x is Y+/-
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We consider the asymptotic expansions of the integral equations (2.5) for small
values of the parameter e, in which the ca-order terms are neglected. To obtain these
asymptotic expansions we use relations (A.5) and (A.7) where we set k 3. Thus, we
get

eY+(x)+f(x, e) Re {+H+(x, e)-eY+(x)}+f’(x, e) Re {+ieH+(x, e)Y+}

2 2+f"(x, e)
Re {q:H+(x, e)e Y (x)}

2

1 f f(t, e)-f(x, e)
(2.6) + e Y+(x --zr J x/(-t)(t-a) (t-x)2 dt

+g(x)
g"(x) 2 2 { --I g
2

e Y+(x)+Re q:iH:(x,e)
1 (t) dt
zr 4(-t)(t-a) t-x

+Re {+eY+(x)H+/-(x, e).1 I)g(t, e)-g(x, e) dt }- x/(-t)(t-a) (t-x)
+O(e3)=0’

the integrals which occur in these equations being considered as principal values in the
Cauchy sense.

Here, we have denoted

H+(x, e x/(fl x ie Y+)(x + ie Y+ ),

the determination of this function being the positive one for a < x </3 and e 0.
We shall develop the functions H+(x, e) and all the expressions in which a(e) and

/3(e) appear into Taylor series. From the sum and difference of the relations thus
obtained we find finally the following asymptotic forms of the integral equations (2.5)"

{-2e (1 x2)Sl(X) q- 2e2Sl(X) Ol(X)} f(x, e)

+4eEx(1-x2)Sl(X)Dl(x)f’(x, e)

-2e2(1-x2)2Sl(x)DI(X) f"(x, e)+ 2e(1-x2)Sl(X)

/1-tf(t’e)-flx2’e) dt+2g(x,e)
7T (t-x

(2.7)
e2{(1 -x2)2SZl(X)+(1 -x2)D(x)}g"(x, e)-2eXDl(X)

1 + g(t, e) dt
J_zr x/1-t t-x

+2e(1-x2)D(x) 1
/ g(t, e) g(x,)2 dt

7r x/I-t(t-x
+ O(e 3) -2e(1 -x2)S(x);

(2.8)

2x/1---x 2ex/l x2Dl(X)

+e 2 (1-x2)S(x)+D(x)+(xx/l_x2 1)a2- (x + 1)/32} f(x e)

+ 2e2xx/1-x2{(1-x2)S21(x)+D(x)}f’(x, e)

-e241-x2{(1-x2)2S(x)+(1-x)D(x)}f"(x, e)
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+2ex/1 x2DI(X 1 f-I--Tr J_ x/(1 ) f(t, e)-flx2 e
dt

-2e(1-xE)x/1-x2Sx(x)Dx(x)g"(x, e)

1 f+x g(t,e) dt
J_71" x/1-t t-x

+2e(1--x2)/1--x2Sx(x) 1--I+_ xg(t’e)-g(x’e) dt)2+O(e37/" x/1-t2 (t-x

-2ex1 x2D (X

f’(x, e), if(x, e), etc. stand for the derivatives with respect to x.
In order to solve equations (2.7) and (2.8) we shall look for the functions f(x, e) and

g(x, e) in the form

3

f(x, e) E f,(x)e + O(e),
(2.9)

i=1

3

g(x, E)-- E gl(X)Ej -[-O(E4),
/=1

where the functions f.(x) and gj(x) have to be determined. Inserting (2.9) into (2.7) and
(2.8) and equating coefficients of e on the two sides of these equations we obtain

(2.10) f(x) -Dl(X),

(2.11) gl(X) --(1 x2)Sl(X),

[2(X) Vl(X)[l(X) Vl(X)
I
71" x/X-t2fx(t)-fix)(t-x dt

(2.12) + xSx(x) --1 I gx(t) dt
7/" 41-t2 t-x

--(1--x2)Sx(X) 2 f gx(t)--gX(X) dt
zr x/1-t2 (t-x)2’

g2(x) (1 x2)Sx(X)fl(X) (1 x2)Sx(X) 1 f+_____X 41-t2fx(t)-fl(x) dt
r (t--x)2

(2.13) + XDl(X) --1 I gx(t) dt
77. x/1- 2 t-x

-(1-x2)Vl(X) L I gx(t)-gx(x) dt
7/" x/1-t2 (t-x)2’

/3(x)
32(x + 1)-a2(x- 1)-(1-x2)S21(x)-D(x)

2(1 --X 2) fl(X)

-x{(1-x2)$(x)+D(x)}fl (x)

+ {(1 xZ)2S(x) + (1 x2)D(x)}f (x)
2

(2.14) + (1 x2)Sa(X)Dl(X)g (x) + Dl(x)f2(x)
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(2.15)

D(x)
1 I+_ /1 [(t)-/2(x)

dt
7/" (t--x)2

-[- xSI(X)--I I_+1 g2(t) _dt (1 --x2)Sl(X)
q’l" /1- 2 x

1 f/X 1 g2(t)-- g2(X)
J_ dt"

"/T x/1-t2 (t-x)2

g3(x)-- -Sx(x)Vx(x)fx(x)-2x(1-x2)Sx(x)Vl(X)fl (x)

+(1-x2)2S(x)Vx(x)f (x)

+{(1-x2)2S1(x)+(1 -x2)Vl(X)} gi’ (x) +(l_x2)Sx(x)f2(x
2

(1 x2)Sl(X) 1 /l_t2f2(t)-f2(x)
"tr 3_1 (t_x)2 dt

1 f+l g2(t) dt
+ xDl(x)

zr x/1-t2 t-x

1 [,+1
l x 2)V (X

7/" x/1-t2

ge(t)-gE(x)
(t-x)2 dt.

The functions fl, f2, gl, g2, g3 are bounded for x a [- 1, + 1 ]. We shall determine the
constants a2 and fiE such that the function f3(x) is integrable on the interval [-1, 1].
From (2.14) we have

D1(1),
(2.16)

2 2

2a2=D(-1).
Let F(z, ) be the conformal mapping function obtained by using the functions

f(t, ) and g(t, ) determined above. From relation (2.3) we have

F(z, e)-F3(z, e)= O(e 4)
such that the function F3(z, e) represents an uniform approximation of the function
F(z, e) in the domain exterior to the curve C.

Further on, we shall calculate the explicit solution of the problem in the case of
equations of the curve C expressed by polynomial functions.

Let
N

Dx(x)= dkx k,
k=O

(2.17)
M

&(x)= E sx.
k=O

From relations (2.10) and (2.11) we have

(2.18)

N

fl(X) E dkx k--- E fl,kxk (NI=N),
k =o k =o

M+2 M1
g(x)=- Z (&--Sk-2)Xk E gl,kX

k =o k --o
(M1 =M+2)

where Sk 0 for k < 0 and k > M.
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Similarly, we set dk 0 for k < 0 and k > M, fl,k 0 if k < 0 and k > N1, gl,k 0 for
k < 0 and k > M1, etc.

For the functions f2 and g2, after some calculation from (2.12) and (2.13), we obtain

(2.19)

(2.20)

N+N1 P N1E! (k -]- 3)!!
fz(x)=- 2 x v 2 (i+l)dv-i fl,k

v=o /.=o k=/. (k-j)!!

MIM+M, v

2’
(k-i- 1)!!

+ 2 x" 2 s._
=o /.=1 k=/. (k-j)!!

gl,k

P M1
-Y. (s-/.-s_/._2).(/’+l) Y’ (k-i-3)!!

/.=o k=/.+z (k --j- 2)!!

g2(x)
M+N+2

p=0

N1
x v (]+ 1)(sv-/.-sv-/.-2) E’ (k-i-3)!!

/.=o k=/. (k-j)!!
fl,k

N+M

p=l
dr- E’

(k-j-1)!!

/’=1 k=/. (k-j)!!
gl,k

P

E
/=0

m
E’

(k-j-3)!!

)-’. =/. ak stands for the sum a/. + ai+2 + ai+4 +.

Thus, we can write

N

(2.19’) f2(x)= E f2,kX k,
k=0

m

(2.20)’ gz(x) Y’. gz,kX
k=0

where Nz max {N + N1;M +M1}, M2 max{M + N1 + 2; N +M1} and the coefficients
]’z,k and gz,k are obtained by matching (2.19)’, (2.20)’ with expressions (2.19) and (2.20),
respectively. Further on the functions f3(x) and g3(x) result from relations (2.14) and
(2.15) in the form:

1 2N+Nt-2 1 2M+Nx

" E X v E blfld-- E xV EE S/.Slfl,kf(x),. =o +/= =o +l+=

2M+Nx+2 2N+N

E x" EE k(si--S/.-2)Slfl,k-- E XV EE kd/.dlfl,k
p=0 ]+l+k=p p=0 /.+l+k=p

(2.21)
1 2M+N+2+ I; x EE

p =0 j+l+k =p
(S/.--S/.--2)(Sl- s-z)(k + 2)(k + 1).fl,k+2

1 2N+Nx
+- E xEE2 v=o /.+t+k=v

(d/.-d/.-z)dt(k + 2)(k + 1)f1,k+2

M+MI+N
+ E x ZE

p =0 j+l+k =p
(s/.-s/._.)d(k +2)(k + 1)gl,k+Z+ f3(X);
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(2.22)

where

g3(x)
M+N+N M+N+NI+2-, XP 2’. Sidlfl,k 2 2

p=o i+l+k=p p=o

M+N+Nx+2
(Sj--Si-2)dlfl,k + E XP EZ

p =0 j+l+k =p
(si-sj-2)(dl-dl-2)

1 2M+Ma+2
(k + 2)(k + 1)f1,k+2+ p=o

x" EE (si- Sj-2)(Sl SI-2)
j+l+k =p

(k + 2)(k + 1)gl,k+2

1 2N+M1
+- E x"EE2 0=o ]+l+k =p

(d di_z)dt(k + 2)(k + 1)gl,k+2 + 3(x);

N 2k

bo Z E did2k-i,
k=l i=0

N-1 2k+l

b= Y dd.+_,
k=l 1=0

bi bi-2- ’. dkdi-k, (j 2, 3,’’ ").
k=0

The functions 3(x) and 3(x) can be obtained from relations (2.19) and (2.20),
respectively, by replacing M1 and N1 by Mz and Nz and fl.k and ga.k by f2,k and g2.k,

respectively.
Now, let

P

hx)= 2 x,
k=O

Q

(x)= Y &x.
k=O

From (2.3) we have

e 1 I: tk
k,o dtff’(z)= z + fk-- 4(-t)(t-a)t z

o 1 I) tk dt
+ 4(z )(z t3) E tTr x/(-t)(t-a) t-z

The integrals in the above relation can be analytically estimated, leading finally to
the following expression for the function F(z):

O P P+l P

ff’(z)=z +i Y kZk- Z kVk+l-- E Zl 2 ?kYk+l-I
k=0 k=0 /=1 k=l-1

(2.23)
O-1 0

+ 4(z a)(z ) kz k Y’. Z E k" k-l-1
/=0 k =/+1

where 8i Ai(0) and /i Fi(0).
Thus, if Sl(X) and DI(X) are polynomial functions the asymptotic expansion of the

solution F(z) is obtained in the explicit form as a sum of the polynomial in z and the
polynomial multiplied by {(z a)(z -/3)}1/2.
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As an application we consider the case of the ellipse

y +ex/1--X 2 -1 < x < 1

The function conformally mapping (exactly) the domain exterior to this ellipse
onto the Z plane with a cut on the OX axes is

F(z,e)=
1 (z-ex/z2-1+ez).

1-e

In this case (2.17)-(2.22) give

f(X, E --(E "}- E
2 q- E 3) "1" O(E 4),

and from equation (2.23) we have

2 3) 2 3)/2F3(z,e)=(l+e+e +e z-(e+e +e -l+e
4

2 F

4

We can write
4

e (z-4z 2 l+eF(z, e) F3(z, e) 1 e
2)

6 7
e +e +e =O(e),
2 / 2, t’,/ z 1 q- E t- X/ Z

2 1 + e 0.25-e 4

hence the function F3(z, e) is an uniformly approximation of the conformal mapping of
the domain exterior to the considered ellipse.

3. The case of the symmetrical domain. If the curve C is symmetrical with respect
to the Ox axis, the theory given in the preceding section can be applied, by setting
$1 (x) -= 0. However the results obtained of Geer and Keller [2] and Geer [3 permit us to
get in this case the completely asymptotic expansion of the function F(z, e).

In order to be able to use the asymptotic expansions given by the above-mentioned
authors, we shall denote by

(3.1) y +ex/S(x), O<=x <- 1,

the equation of the (symmetric) curve (C). The function S(x) is analytical on the range
[0, 1] and in the neighborhood of the bound 0 and 1 admits the expansion

(3.2) S(x)= d,,x"; S(x)= dr,, (1- x )".
n=l n=l

The function which performs the conformal mapping shall be represented in the
form

1 f(t,e) dt
(3.3) F(z,e)=z+--

r J 4( t)(t ) z’
where ]’(t, e) is a function analytical on [a,/3] and which remains to be deduced, a and/3
are real parameters of the form

(3.4) a(e)= E a2,,e 2’’ /3(e)=l-Y’. /32,,e 2"
n=l n=l
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They also must be determined. The integral equation satisfied by the function f(t, e) is

(3.5) e/S(x)+im l f(t, e) dt }=0.zr x/(fl-t)(t-a) t-x-ie/S(x)
We shall write the relation (3.5) in the form

edS(x)
(3.6) er/S(x) +4e$(x) + e3($’(x))z (e$’(x)I + 211) 0,

pointing out the integral operators Ip (x, e)
o() 2(x ) + e (x) F() dI(x, el=( (x_l+eS(xl ’/(t-l(’-)’

(3.7)
t3() 2S(x)- S’(x)(x ) F() dII(x’e)=J( (x-()2+eaS(x) 4(3-)(-a)

defined in [3].
The asymptotic expansions of these operators have the form

(3.8) IP(x, e)= E eqL(F(x)),
q=O

where Lq, q 0, 1, are linear operators. Their expressions are obtained from (4.4)-
(4.7) from [3] setting C(x)=-O.

The use of the asymptotic expansions (3.8) into (3.6) leads to the following form of
the integral equation

(3.9) zre(4S(x)+e (S’(x))2-ESt(X) E F-,iLO’-ezjtltx,e))+2 2 eiL(f(x,e)) O.
i=0 i=o

This relation suggests the search for the solution as the following asymptotic
expansion

(3.10) f(x, e)=
n=l

Introducing (3.10) into (3.9) we get

2(S,4rS(x)+ zre (x))2 -1- S’(x) E e E t)fn-j(x)
n=l j=O

(3.1)
+2 2 "2 ]._+(x)=0;

=0 /=0

and therefore

(3.12)
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Similarly with the reasonings from [3], in order that the functions f, (x) be analytic
on the range [- 1, 1] it is necessary that "Lqf, are analytic functions, whence it follows the
following asymptotic expansions for a and ft.

2 -t--44d1(dld3 + 2d)e +...,a(e) =1/4dae -i6dld2e 4 6

2 E4 ~2 6fl(e)= 1-1/4,e +z -(+2d)e
We remark that the leading terms from the relations (3.12) coincide with the

corresponding terms deduced in the previous section.

Appendix. The asymptotic expansion of a Cauchy-type integral. We give here the
asymptotic expansion of the integral

(A.1) G(x + ieY(x))=--1 I" I(t)h(t)
dt

r 3s t-x-ieY(x)

for small values of the parameter e. a and fl are two real numbers and/(t) is an
integrable weight function. We assume that the function Y(x) keeps a constant sign
over the interval [- 1, 1].

We start with the identity

l I k-l

(D(x (t--x)i
Ix(t) h(t)- Y’, h

r i=o j!

1 (ie Y)
t-x-ieY =o (t-x)TM

(A.2)

valid for any integer k. From this we have

d --Trl I lz h

(ie Y)k

dti 0(t--x)k(t--x -ieY)

1 I ix(t)h(t)
7r t-x -ieY

dt

+ Ix(t)(t-x dt

(A.3)
i=o j! r x ie Y x

1 (ie Y)i If (t)hk(t, x)+ tx
)i+a dt

= 7r (t-x

+(ieY)k 1 If tz(t)hk(t, x) dt- ii-t -"x- ie Y)

In relation (A.3) we have denoted

1 h(i)(x) )J.h(t, x)= h(t)- (t-x
i=o

As the last integral on the right-hand side of the relation (A.3) is a bounded
quantity, we have

Is Is kl h(i>(x>1 Ix(t)h(t)
dt

1 olx(t)h(t)dt+
r x ie Y r x i=o

ix(t+x)t dt
7r t- ie Y

1 I: (t)hk(t, x)
+ (ieY)i I

i=1 7r (t-x)i+a
dt+o(ek).
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Further on, we consider two particular cases:
(a) If ix(t)={(-t)(t-a)}x/2 then from (A.4) we have

(A.5)

1 Ix/(fl t)(t a)
h(t) dt

t-x-ieY

h(t) dt

k-X h+4(x +ieY-a) 4(x +ieY-) E (ieY)
=o

k-1 k-1 h(’)(x)
Z (ieY) Z I’r-i+l
1=1 r=i-1 r!

k-X 1 I+ (ie Y)-- x/( t)(t a)
/=1 77"

hk(t,x) k).
(t_x)i+a dt+ O(e

The determination of the square root is the positive one for Y 0 and x >/3.
In relation (A.5) we have also denoted

(A.6)

1 (2p-3)!! [2(r-p)-3]!!
F,= F,(x) 2-7 p= p! (r-p)!

( x)" (t -x)-,
r=O, 1,....

(In this formula we set (-1)!! 1 and (-3)!! =-1.)
(b) When/x(t) {(/3 t)(t-a)}-/2, the relation (A.4) yields

(A.7)

1 h(t) dt
rr /( t)(t a) x ie Y

1 h(t) dt
7r 4(-t)(t-a) t-x

1

/(x + ieY-a)(x + ieY-) i=o

k-a h(i)(x)
Y (ieY)

k-2 k-1 h(r)(x)
+ (ie Y)i Ar-i-1

1=1 r=/’+l S!

1 I hk(t, X) dt
+ (ie y)i

/=1 x/(fl-t)(t-a) (t--x)k+l
-[-O(Ek)"

where we have denoted

(A.8)
Ar--- Ar(X

1 ,L (2p- 1)!! [2(r-p)-- Z.,
(r-p)lp=O po

( x)O (t -x)-.
using the same conventions as in (A.5) and (A.6).

Acknowledgment. I would like to thank Professors J. B. Keller and J. F. Geer for
their useful comments on an earlier version of this paper.
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SOME WIRTINGER-LIKE INEQUALITIES*

JERRY M. FEINBERGf

Abstract. This paper extends a variational inequality [G. Hardy, J. Littlewood and G. Polya, Inequali-
ties, Cambridge University Press, Cambridge, 1967; p. 182] for real valued functions and their derivatives to
those functions on an interval with zero boundary conditions or with zero integral. Theorem 4.2, the main

inequality, has an important application to differential geometry [J. M. Feinberg, The isoperimetric inequality
]:or doubly-connected minimal surfaces in R ", J. Analyse Math., 32 (1977), pp. 249-278]. A discrete version of
the inequality is also derived and some applications are provided.

Introduction. Let a real valued piecewise C function f be defined on a finite closed
interval [a, b] with f(a)= f(b). We are interested in inequalities between a ]df/dtl dt
and alfl dt subject to various restrictions on A and f. Our main result (Theorem 3.3) is,
if Ix => 1 is the quotient of two odd integers, and a f" dt O,f 0, then

where - dt>-K(ix)" b a

K(/x)=
(/x 1)

zr zr "csc /x > 1.

Equality can occur only if tx > 1 and f is a given function depending on Ix; for Ix 1,
equality never occurs.

The case tx 1 may be extended to vector valued functions f, and it is shown that
the inequality still holds with the same constant. We will also derive a discrete analogue
of this main result, proving (Theorem 4.4):

( i)" ( ]]Vi+l--Vil[) >-4"
i= i=’1 i=

for B/R+I,.J{0}, vi@RN with vn+l vl, and i--1 iVi "-’0" The final section of this
paper will be devoted to the proof of this discrete analogue and some of its
consequences.

The inequality (df/dt)2 dt>=[27r/(b-a)] af dt if f(a)=f(b) and fdt=O is
known as the Wirtinger inequality [6, p. 185]. Related results have been proved by
Bellman [3, p. 140] for the 2k powers of f and dffdt, k an integer, with f subject to

fdt 0, and by Beesack [2, p. 21] for the 2k powers with f subject to af- dt O.
Discrete analogues have also been proved by Fan, Taussky, and Todd [4, p. 73].

1. Notation and basic results. We will use the following notation"
A; any real number ->1;
/x, u; real numbers -1 which are the quotients of two odd integers;
[a, b]; a bounded closed interval R;
f; a real valued function on [a, b l;
fig; nonnegative real numbers, 1, 2,. ., n and/3 i--1/3i;

N
V =(Vl, V2,’’’, VN)Rn and Ilvll-- (Y/=a v/ /.

* Received by the editors July 6, 1977 and in revised form October 13, 1978.

" Department of Mathematics, Brandeis University, Waltham, Massachusetts 02154. This research was
supported by the Fannie and John Hertz Foundation and Stanford University. This work was completed while
the author was a visiting member at the Courant Institute of Mathematical Sciences, New York University.
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We define a class A(A) of admissable real valued functions as follows: j" A(A) if
f(t) is continuous on [a, b], df(t)/dt is defined and continuous except at finitely many
points in [a, b], df/dt is absolutely integrable with f(t)=f(a)+ df(s)/ds, and dffdt
LX[a,b].

The number/x, being the quotient of two odd integers, is of the most general form
which permits

(1.1) (-a)" -(a ") Va R.

LEMMA 1.1. Iff A(Ix) and IJ: dt=O, then =Ire[a, b] such that f(r)=O.
Proof. By the definition of/x, [" has the same sign as [. Since [ is continuous, no zero

on the interval [a, b] would imply [ is entirely of one sign, and hence the same for
This is in violation of the condition %f dt= 0. Q.E.D.

If [ e A() with [(a) f(b) and [" dt= 0, we may extendf periodically beyond
[a, b]. Byfefining -(t) fir + t- a) where [(r) 0, we find that f A()(a) [(b)
0, and I"dt=I[gdt=0. b , b

Furthermore, I [[[ dt= I I1" dt and Id/dtl dt

I ]dfft[" dr. Hence any inequality relating the, powers of [f[ and [dffdt[ for
with I" dt= 0 and [(a)=(b), need be proven only for such functions with (a)=
f(b) =0.

2. Lower bounds. The existence of lower bounds for the ratio

bldf/dtt" dt/blfl" dt for fA(Ix) subject to the restriction bf. dt=O may be
established in the following manner.

LEMMA 2.1. Let g and h be real valued L1 functions and assume that g is periodic
with period b- a. If

then

b

k(t) Ia g(t + x)h(x) dx,

b b b

Proof. By a standard inequality, we have
b

l/(t)l <-- Ia [g(t + X)I" [h(x)[ dx

and hence
b b bIa Ik(t)’dtN Ia Ia .g(t+x),’lh(x)’ dxdt

b b

b b=I {I ]g(t)[dt}]h(x)ldx sincegisperiodic

b bI [g(t)[ dt" I [h(x)[ dx. Q.E.D.

If fA(1) with f(a)=f(b) and ISfdt=O, apply Lemma 2.1 with g=dffdt and
h(t) t-(b + a)/2. (Note that [ can be extended periodically and that dffdt is defined
and can be extended periodically except for at most a finite number of points which
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make no difference in Lemma 2.1.) Then

bd(t (k(t) [ja + x) x

df(t+x) dx-x
b b

=(b-a)(t+a)-O+O

=(b-a)f(t+a)

b + a) dx
2

b+aI-2
(t + x) dx

b+a
f(t +x) ]b

since f is periodic and jf(t)dt=O. Then, again by the periodicity of f, j Ik(t)l dt
(b -a) ]f(t + a)[ dt-(b-a) Ja If(t)] dt. An easy calculation shows that j [h’(t)[ dt=
(b a)2/4. Lemma 2.1 yields (b a). j If(t)[ dt <- Idf/dt] dt. (b a)2/4 and we
conclude

THEOREM 2.1. Iff eA(1) with f(a)-f(b), then

(2.1) - dt >= Ill dt if f dt O.
b-a

LEMMA 2.2. Let tx, u >-- 1 be quotients ofodd integers. If I Idf/dtl dt >-_ K I If[dt
b t* b

for/ all [eA(tz) with f(a)=f(b) and Lf dt=O, then L[dg/dt["dt >-
K .j[g["dtforallgeA(txv) with g(a)=g(b)and JSgdt=O.

Proof. First note that tz v _-> 1 is also the quotient of odd integers and that [g(t)] is
well defined. Now assume g eA(/xv), g(a)=g(b), and g"dt=O. Define f(t)=
[g(t)]. Clearly f(a)=f(b) and f" dt=O. Since df/dt=v, g-. dg/dt, we have
Idf/dt["=v"[g["(-l)ldg/dt]C Using the H61der inequality [1, p. 21] with p=
v/(v 1) > 1 and q v, we have

ig[.(,_l) dg
at <- ([gl"(->) /(-1> dt

b dg ")
Then

(2.2)

hence df/dt is L" and fA(l,).
By assumption, now, - dt>-K

or

dt>=K Igl""dt.
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Combining this with (2.2) gives

[gl"dt dt
b

u" _-> KIa [g[" dt

or

(2.3) dt >-. [gl""dt.

THEOREM 2.2. Iff A(tx) with f(a)=f(b), then

Q.E.D.

(2.4) I,, IdOl" [ 4 ]" Ia f"dt >- If1" dt if dt O.
ix(b-a)

Proof. In Lemma 2.2, let tx 1 and u ix. Theorem 2.1 allows us to use K
4/(b-a). Q.E.D.

Unfortunately, this method gives no indication of when equality may occur or the
form of the extremal functions should equality occur. In the next section, we will show,
in fact, that these lower bounds are never attained.

3. Precise lower bounds. In this section, we will derive the best possible lower
bounds for the ratio baldf/dtl" dr alfl" dt for f A(lz) with f(a)=f(b) and baf" dt= O.
We begin with some results for less restricted functions and for arbitrary A => 1.

LEMMA 3.1. If fA(1) with f>=O, fO, and f(a)=0, then bldf/dtldt>
1/(b- a) bfdt. Equality never occurs, but the constant 1/(b- a) is the best possible.

Proof. Let M=maxtta,bjf(t)=f() for some : [a, b]. Then bfdt <M. (b-a),
and this inequality is strict since f(a)= 0. We have

Hence - d fdt>M(b_a)=b_a
Equality never occurs, but the sequence of functions

1
n(t-a), ifa<-t<-a+ -,

n
f(t)

1
1, ira +-<-_t<-b

for n >1shows that the constant1is the best possible. Q.E.D.
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LEMMA 3.2. lff 6A(A),h > 1, with f>=O,fO, and f(a)=O, then

> (A-l)" -csc- dt.- dt=
b_ a

Equality occurs only for multiples of a certain hyper-elliptic curve y(t) whose inverse is
given by

(3.1) t=a+(b-a). (-sin ;). Io d(1-w)l/A, 0=<Y =<1.

Proof. The proof given in [6, p. 182] for A 2k, an even integer, is valid for any real
number A > 1. Q.E.D.

For simplicity, we define K() as follows:

(3.2) K(I)
(A 1) - csc

if 1,

LEMMA 3.3.

lim K(h)= 1=K(1).
A.-,1

The proof is an elementary exercise in calculus. We may summarize Lemmas 3.1 and
3.2 as follows:

THEOREM 3.1.1fleA(A), A >= 1, with f>=O, frO, and f(a)=O, then

b

lab df] a

=(b a) Ia(3.3) - dt > _1 K(A). f dt.

For A > 1, equality occurs only for multiples of a curve given by (3.1). For A 1, equality
never occurs, but the inequality is the best possible.

LEMMA 3.4. If A >=- 1 and x, y > O, then

1 1 2+1

)A"x y (x+y

Equality holds if and only if x y.
Proof. This is the inequality between the means. See [1, p. 16] with a (, ) and

t=-A andt=l. Q.E.D.
THEOREM 3.2. lff 6A(A),A 1, with fO,fO, and f(a)=f(b)=O, then

K(A). fx dt.(3.4)
a

For > 1, equality can occur only for multiples of a function f(t) given by

a+b
y(-a + 2t), if a < <

f(t)=
2

y(a + 2b 2t), if
a + b< < b
2

where y(t) is given by (3.1). For A 1, equality never occurs, but the inequality is the best
possible.
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IS Idf/dtl dt

Proof. f>=O implies jfa dt is an increasing continuous function of x. By the
intermediate value theorem, we may choose (a,b)such that jfa dt=IfXdt

Then

I ]df/dtla dt +j [df/dtlx dt
bf dt +e f dt

1 Idffdtl dt [ dffdt]

1 }>1. (a). 1
)----x-+=2 (:-a (b so)

1 2x+l

=2" K(A). (b-a)a

(by Theorem 3.1 since f(a)= 0 =f(b))

(by Lemma 3.4)

=(b 2-a)a’K(a)"
For A > 1, equality occurs if and only if -a b-, i.e. c (a + b)/2, and f or its
reflection is the hyper-elliptic curve given by (3.1) on each of the intervals [a, (a / b)/2]
and [(a / b)/2, hi. For A 1, equality never occurs, but the sequence of functions

a),

f"(t) l_1’n(t-b),
1

if a <=t<=a +-,
n

1 1
if a +-<-t<-b

1
if b--<__t<__b

n

for n >-2 shows that the constant2is the best possible.
LEMMA 3.5. If Xl, Yl > 0, A -> 1, the sums exist, and l yl # 0, then

Q.E.D.

(3.5) E Xl E (Xl Yl)/E Yl

(3.6) Xl E X

Proof. The inequality (3.5) is trivial. Equality can hold only if X Yl 0 for all but
one l. Inequality (3.6) is Jensen’s inequality 1, p. 18]. Equality holds in (3.6) if A 1; if
A > 1, equality holds only if Xl 0 for all but one l. Q.E.D.

THEOREM 3.3. lff A (tx where Iz >- 1 is the quotient oftwo odd integers, iff 0 and

b

(3.7) f(a f b and | f" dt O,

then

(3.8) IaIa ldf] dt>= b(4)"’K(tz)’a
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For/x > 1, equality can occur only for multiples and translates of a function f(t) given by

(3.9) f(t)

3a+b
y(-3a +4t), if a <= <=

4
3a+b

y(3a+2b-4t), if<=t<=4

a+b<t<-y(-a-2b+4t), if 2

a+b

a+3b

a+3b
-y(a+4b-4t), if<=t<=b4

where y(t) is given by (3.1). For/x 1, equality never occurs, but the inequality is the best
possible.

Proof. By Lemma 1.1, we may assume that f(a)=f(b)=O. Let S+=
{t s (a, b)If(t)> 0} and $-= {t s (a, b)If(t)< 0}. Since [ is continuous, S/ and S- are
open sets, each the union of a countable number of open intervals, S/ LJ i--1 Pi, S-
U=1 Qj. We define

Ai= Ie ]f[" dt= I,f" dt

and

Bj Io ]f]" dt Io (-f)" dt Io f" dt

where the last equality follows from (1.1).
Equation (3.7) requires that

(3.10) YAi =Bi

and Theorem 3.2 for f on Ai and -f on Bj implies

(3.11) - dt>=(l(Pii) g(tx). Ai,

(3.12) ,- dt>= K(.I. B

where l(Pi) length of the interval Pi, and similarly for l(Qi).
Hence

Ib Idffdtl" dt_ i IPi Idffdtl" dt + Ei Io, Idf/dtl" dt

(3.13) _->2 K(/x)

->2’. K().

Ei Ai/[l(Pi)]v + Ei BJ[l(Oi)]’* (from (3.11) and (3.12))

EiAi 1/Ei[l(Pi)]t" +EiBi. 1/E.[l(O/)]
iAiq-’,iB
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(from (3.5) with xy Ai/[ l(Pi)], yi [ l(Pi)]) and then

B1
xi [l(Oi)]"’

y [/(0)]")

1(1>-2". K(p,) - _,i[l(Pi)]
1

Y1[/(01)]) (from (3.10))

( 1 1 )(3.14)

(3.15) _-> 2-1 K(/x)

(from (3.6))

2.+1
[Ei l(Pi) + Ei l((i)]

(from Lemma 3.4)

K(tz).(3.16) _->4" K(/x)
(b-a)" -a

For equality to occur in (3.14), we must have only one Pi and one (2i. For equality in
(3.15) and (3.16), we must have /(P1) l(Q)=1/2(b-a). For equality in (3.13), f
must have the form of (3.1). Finally, Sf" dt= 0 forces maxp f=-minq f. If f(a) O,
then define ](t)=f(r + t-a) where r is defined in Lemma 1.1. Then f has the form
(3.9), and f is a translate of the periodic extension of f. For/z 1, equality never occurs,
but the sequence of functions

f(t)

n(t-a),

1,

-n t-
2

n(t-b),

1
if a <-t<-a +-,

n

1 a+b 1
if a +-_-<t_-<--

n 2 n

a+b 1 a+b
if-- =<t=<

2 n 2
1

a+b 1 1
if+-__< t__<b--,

2 n n

1
if b--<__t<_b

n

for n > 4/(b- a) shows that the constant 4/(b- a) is the best possible. Q.E.D.

4. Vector valued functions and discrete analogues for/z 1. In this section, we
first establish an extension of Theorem 3.3 to vector valued functions for the case tz 1.
We then use this extended theorem to prove some discrete analogues of the Wirtinger
inequality for vectors.

DEFINITION. f e A’ if f e A (1), f(a) f(b), and fdt O.
It is clear that A’ is a vector space of functions. Furthermore, from Theorem 3.3, if

f e A’ andf 0, then - dt >

_
a

f[ dt.

We now use, and for completeness provide a direct proof of the following theorem
originally due to A. Zygmund [7, p. 117].
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THEOREM 4.1. Let V and W be vector spaces ofL functions and let T be a linear
transformation of V into W. Iffor all f V with f O,

b d

(4.1) I [(Tf)(’)[ de>MIc [f(x)[ dx

where M is independent off; then for any fx, , fN V, at least one of which 0,

la’ I 11/2 IcdI__ ]1/2(4.2) (T.)2() d>M f (x) dx.

Proof. Let f=(/1,’"" ,fN) and let S =sN-I(1) be the unit N-1 dimensional
sphere in R N. Let e (el,..., eN) S and consider

N

F(x) 2 eif/.(x) e f(x).
/’=1

Then F V and since T is linear,

N

TF Y. eiT(f.) e. (Tf).
/’=1

From (4.1), if e. [ 0, we have
b d

We consider e to be a variable point of the sphere, integrate both sides of the above
inequality over S, and then reverse the orders of integration to produce

fi fs’e (Tf)(s)’ dS} ds>M fcd {Is’e f(x)’ dS} dx

The strict inequality prevails provided e [ 0 for all e 6 S. This is clearly equivalent to
our hypothesis f 0.

We may simplify the inner integrals on both sides above by observing that if a 6 RN

is a constant vector and e S varies, then by symmetry

Isle" al dS Ilall" K,

where Ilall- EY._- a]1/2 is the Euclidean norm of a and

s

4 7r
(N-1)/2

Thus
b dIa Kll(T f)(:)]l d: >MIc K[[f(x )]] dx

which becomes (4.2) after the cancellation of K > 0. Q.E.D.
Using Theorem 4.1 with V A’, Tf f’, c a, d b, and M 4/(b a), we have
THEOREM 4.2. If fi A’, 1, 2," , N, and at least one fi O, then

fab[= (ttf) 2] 1/2 4 Iab[__ ]1/2(4.3) dt > f dt.
/’1 b-a ]1
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Equality never occurs.
The vector form of Theorem 4.2 is
THEOREM 4.3. Let f= (/1,""", fN) define a map of[a, b] into R u. If]6A(1), ]

1, 2,. , N, f(a) f(b), and f O, then

(4.4) f(t) dt 0 implies - dt >
b a

Ilfl[ dt.

Equality never occurs.
Application. We provide a geometrical interpretation of Theorem 4.3. Let a

0, b 2rr and consider f to be a map of the unit circle parameterized by 0. This map is
well defined and the image C is a closed curve in Ru since f(0) f(2rr). The term

0 f(0) dO is 2rr times the "average" position of the curve C. The term

4 I0 1102rr
Ill(0 )ll dO 4. I1(0) 01[ dO

is just 4 times the "average" distance from the "average" position (0 in this case) for the
curve. It is important to note that in both cases "average" means the average with
respect to the parameter 0 of the domain circle.

The term 0= Ildi/dOII dO is precisely the arc length of the closed curve. Since by
translating Ru we can always assume that the "average" position of a closed curve is at
the origin, we interpret (4.4) as follows:

The arc length of a closed curve in Rs is always greater than four times the
"average" distance of the curve from its "average" position.
For the special case of a plane closed curve (N 2), we expect that the "average"

distance from the "average" position is /A/Tr where A is the area enclosed by the
curve. (For/c(0) (r cos 0, r sin 0) mapping the circle into a circle, this is exact.) Then
(4.4) implies

16A,4.x/A/Tr<L or LZ>

an isoperimetric-type inequality.
In fact, Theorem 4.2 is used to prove an isoperimetric inequality for minimal

surfaces. A minimal surface may be thought of as the shape assumed by the surface of a
soap film spanning a wire loop. More precisely, a minimal surface is a surface with
vanishing mean curvature (in the sense of differential geometry). Such surfaces in R
are determined by n holomorphic functions bl,..., b, satisfying certain conditions.

Theorem 4.2 enters the proof of the isoperimetric inequality as follows: If
bj(r, O) dO 0 for some fixed r, we split 4 into its real and imaginary parts U. + iV

and conclude
2"rr 2rr

If we do this for bl, , b, we have produced 2n functions U., V. 6 A’ and can apply
Theorem 4.2 with N 2n. For each holomorphic function qSi,

and

where only the last equality requires &i holomorphic.
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We have proved
COROLLARY 4.1. Let cbj, 1,..., n be n holomorphic functions on a domain

containing the circle Izl r. If at least one cbj 0 and if

4)(r e dO O

or each ], then

2[=ldci(r iO 12] 1/2 2 =[ iO 211/2r e dO >- I(r e )l dO.
jl jl

This corollary is used to provide a lower bound for the arc lengths of certain closed
curves on minimal surfaces. This lower bound leads to the desired isoperimetric
inequality. For details, see [5].

To derive a discrete analogue of Theorem 3.3, we let v x, vz,..., v,s
R B, z,""", B, s R +, and assume

(4.5) iVi O.
i=1

Let fl =i= i, and for e < min/i define ..(t), j 1, 2,... ,N, as follows:

vx.i, ifet-e,

v2a, ifBa+etBa+-e,
L,(t)

v,,i, ifB+’"+B,_+etBa+’"+B_a+B,-e,
,linear in between

where v,i is theh component of the vector vi. "Linear in between" includes between
v,,i and V,+l,iv,i, i.e. -et and Ote so that .,(0) =,(). Then

,dt= va(- 2e) + " (2e)"
i=1 i=1

i=1 i=1 i=1 i=1

=0.

Hence f.,, A’ for j 1, 2,. , N.

dt (/3i- 2e)llvill + O(e 2
i=l i=1

as e -+ 0 and

IoO [ (@):1/:dr= [ (vi+"-vi’)]
]=1

/=1
IIv,+l Dill dt
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which is independent of 8i and e, and where Vn-t-1 /.)1. Applying Theorem 4.2 to {f..,}
and letting e --> 0, we obtain

(4.6) " Y Ilv+x-vll--->4 /,llvl[ if . /3ivi =0.
i=1 i=1 i=1 i=1

If we adjoin an additional vector va to the v’s, along with/34 0, only the second sum on
the left-hand side of (4.6) is altered. By the triangle inequality, IIv + - Vail / IIv v;ll-->
IIv;/x- ;11 and hence the left-hand side is increased. Consequently, the i need be only
nonnegative, not just positive. We conclude

THEOREM 4.4. If Vi E RN i R+ IO {0} for 1, 2,. ., N, then

(4.7)
i=1 i=1 i=1

if Y.i= ivi 0 and Vn+l Vl. Equality occurs in (4.7) only if
v, ii=l,’",],

-v, ii=]+l,...,n

and i-= i Y’.i=+ i, or a cyclic permutation o.f these values.
CO:OLLAI 4.2. For v R we have

(4.8) Ilv+- viii >=
4 y. Ilvill if Vi--- O.

i=1 F/ i=1 i=1

Equality holdsonly ifniseven, vi vfori 1,. ., n/2, vi -Vlfori n/2 + 1,. ., n,
or a cyclic permutation of these values.

Proof. (4.8) follows directly from (4.7) with/i 1, 1, 2,. , n. Q.E.D.
The article of Fan, Taussky, and Todd [4, p. 84] includes the following" If zi e C and

Y.i"= zi 0, then

IZi+l-Zil>= Izi[.
i=1 n 1 i=1

This is a weaker result than Corollary 4.2 for all values of n (n => 1/2).
We briefly consider a closed curve in Rv with parameter (representing time)

chosen so that
(1) The curve spends an equal nonzero time at each of the n points Vl," ",

Rv and
(2) The curve spends virtually no time at all travelling a straight line path from vi to

/3i+1.

The left-hand side of (4.8) is the arc length of the curve and the right-hand side is
four times the time-average distance of the curve from the time-average position, the
origin. We have thus recovered a special case of the application presented after
Theorem 4.3.

COROLLAr 4.3. If Vi RN [Ivill >- e for 1, 2,..., n, and if the zero vector is
contained in the closed convex hull of the vi, then

(4.9) Y 1[/2i+1- viii => 4R.
i=1

Proof. The zero vector in the closed convex hull implies the existence of {/3i}, 0
/3i <= 1, Yi=/i 1, such that 0 Y’.i= Bivi. Using Ilv/ll--> R in the right-hand side of (4.7),
(4.9) follows immediately. Q.E.D.
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Application 1. It is desired to devise a "global communications network" for a
group of planets in space. The network must be able to handle all of the possible calls at
any time.

Suppose the planets have coordinates Vl, v2,’", vn RN and the ith planet has
population fli 0. By a translation of the coordinate system, we can assume that the
"center of population" is at the origin, or that i--1 flil’)i --O. TWO possible methods for
constructing the communications network, neither of which is generally optimal, are:

Method 1. Use a single cable of 1/2 i=1 i wires to connect all the planets together.
We may connect the planets to each other in any order. Choose the order which
minimizes the total distance, and by re-labeling if necessary, assume that this order is
planet 1, planet 2, , planet n. Since the total population of the planets is i= fli, and
since it takes two people for each conversation, i= fli wires in the cable will handle
all possible conversations. The total wire length required for this method is at least

(4.10) tl
or

Method 2. Use a single cable of fli wires to connect the ith planet with the
population center, the origin, in a straight line. Since the population of the ith planet is
fli, all possible conversations are allowed, but a horrendous switching problem (which
we ignore) may occur at the population center. The total wire length required for this
method is

(4.11) L illvill.
i=1

To compare the two methods, we will use Theorem 4.4 and the following Lemma.
LEMMA 4.1. If Wi R and i= wi O, then

i=1 i=1
n-1

Proof. w Ei= wi implies

i=1

Adding 2= IIw ll to each side and dividing by 2 gives the required result. Q.E.D.
Since 2= (v+- v) (where v+ v), we apply Lemma 4.1 to produce

n-1 1

i=1 i=1
Hence

=Z2.
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Hence L1 -> L2 with equality only for two equally populated planets, in which case the
two methods coincide.

Application 2. A similar application can be made to the travelling salesman
problem. Let each person in the universe desire one unit of a commodity which comes in
a container. Assume that the universe has adopted strict "throw-away" container laws
and hence all "empties" must be carried away by the salesman. Further assume that the
"empties" are as costly to transport as the "fulls" (consider liquid oxygen in heavy metal
pressure cylinders as an example).

Method 1 requires the salesman to carry Ei=I 3i units for his grand tour (loop) of
the universe, switching 3i "fulls" for 3i "empties" at the ith planet. Method 2 requires
stockpiling all the units at a central warehouse at the population center of the universe,
the origin. The salesman then makes short shuttle trips back and forth to each planet
carrying the "fulls" one way and the "empties" the other. (We proceed by ignoring the
potential construction cost of a warehouse in the middle of nowhere.)

If the transportation cost per container is proportional to the distance travelled,
then Method 1 costs

C1 /i E IlVi+l vi 2L1
i=l i=l

and Method 2 costs

C2--
,

3i" 2. Ilvill 2L2.
i=1

L1 and L2 are defined in Application 1, and it is demonstrated there that L1 > L2. We
conclude Ca _-> C2 with equality only for a universe composed of two equally populated
planets, in which case the two methods coincide.

Application 3. Suppose a body at rest is acted upon by a set of forces v 1, v2, , vn.
The total magnitude of these forces is Ei=I IIUiI[ M1. Since the body is at rest, we
have " vi=O Consider the system of "differences forces" Wi"-l)i+l--l.) wherei=1

V,+l v. The total magnitude of these forces is Y’.i= Ilvi+a- viii- M2. Since Y.i=I (vi+a
vi) 0 always, the body acted upon by the difference forces also remains at rest. Then
(4.8) expresses an inequality between M and M2, or M2-> (4In)M1.
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GROWTH, OSCILLATION AND COMPARISON THEOREMS
FOR SECOND ORDER LINEAR DIFFERENCE EQUATIONS*

WILLIAM T. PATULA"

Abstract. This paper studies homogeneous and nonhomogeneous second order linear difference
equations. Comparison theorems based on the coefficients are proven for the homogeneous equation.
Existence of so called r-type solutions for the forced equation is established. Oscillation and nonoscillation
properties of the forced equation based on the forcing term and the associated homogeneous equation are
discussed.

1. Introduction. In this paper, we continue the investigation begun in [8] of second
order linear difference equations, where now we include both the homogeneous and
nonhomogeneous cases, equations (1) and (2) respectively.

(1) CnXn+l + Cn-lXn-1 b,,x,,, cn > O, n _-> O.

(2) CnZn+l "b’Cn-lZn-1 b,z, +f,, c >0, n ->0.

In [6] and [7], numerical techniques were developed to approximate solutions of
(1) and (2), assuming the existence of an r-type solution (see 3) of (2) and recessive and
dominant solutions of (1). In this paper and in [8], we establish the existence of these
solutions, under certain hypotheses, and prove other related results also. We feel that
some of this theory might be useful in developing new or improved convergence
schemes along the lines of those presented in [6] and [7].

A brief sketch of the contents of the paper is as follows. In 2, we study growth and
comparison properties of solutions of (1) and (2). In 3, we establish some general
existence theorems for r-type" solutions and, applying the results of 2, state specific
criteria guaranteeing the existence of such solutions. In 4, we investigate the oscil-
lation and nonoscillation of solutions of (2).

We first make some preliminary remarks. Equation (1) has two linearly indepen-
dent solutions, u and v say, which satisfy Abel’s formula; namely, cn (Un+l l.)n Unl)n+l)
1, for all n. If is a particular solution of (2), then any solution z of (2) has the form
z + au + By, for some constants a and/3. A nontrivial solution x of (1) or (2) will be
called oscillatory if for any n, there exists a k => n such that XkXk/ 0. If one solution of
(1) oscillates, all solutions of (1) oscillate. See !2, p. 221 ]. Thus for (1), a solution being
oscillatory (nonoscillatory) is equivalent to the equation being oscillatory (nonos-
cillatory). This is not the case for (2), however. The second paragraph following
Corollary 7 contains an example of a nonhomogeneous equation (2) which has both an
oscillatory solution and a nonoscillatory solution. For our purposes, (2) being totally
oscillatory means that all solutions oscillate. If we say that (2) is totally nonoscillatory,
we mean that no solution oscillates. As mentioned, these two possibilities are not
exhaustive when discussing (2). In an attempt to avoid ambiguity, we will usually
assume the oscillation or nonoscillation of (1) is known and then state whether all, none
or some of the solutions of (2) oscillate. For other properties and definitions concerning
(1) and (2), we refer to the remarks in 1 of [8] and to the books [1] and [2] in general.

2. Uniqueness and comparison theorems. In [3], it was shown that if any nontrivial
solution x of the homogeneous equation (1) can have at most one value xk 0, then any
two values x, x,, n m, uniquely determine a solution of (1). See also [8, Lemma 1].
For the forced equation (2), we make the following observation.

* Received by the editors February 13, 1978, and in final revised form December 18, 1978.
t Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901.
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LEMMA 1. Any nontrivial solution x of (1) can have at most one value Xk 0 if and
only if any two values zn, z,,, m n, uniquely determine a solution z of (2).

Proof. (Only if). Suppose there are two solutions, z and z 2 of (2) such that z z 2

and z l=n z 2.. Then the quantity (zl-z 2) is a solution of (1) such that (zl-zZ)n-
(z 1- z2),, 0. This means (z 1- z2), 0, for all n, or that z 1= z 2.

(If). Suppose x is a solution of (1) such that x,, x, 0, m n. Define a solution z
of (2) by setting z,, 0 and zn 0. This is well defined, by hypothesis. Let z z + x.
Then z z,, and z 1 z,. However, this means z 1, zn, for all n, or that x 0, for all
n. That is, x is the trivial solution.

In [7], the following lemma was proven.
LEMMA 2 ([7, Lemma 1]). Suppose Ib,[>-_c, +c,-1. Ira nontrivial solution x of (1)

satisfies [XN+I[ -> [XN[, forsome N, then Ix,+1[ -> Ix, l, forall n >- N. In particular, x can have
at most one value Xk O.

We remark that if XN+ >- XN >- 0 and if bn -> cn + cn_ 1, then x,+ --> x,, for all n N;
i.e., the absolute value signs in the preceding lemma can all be omitted. One of the
important aspects of Lemma 2 is that it provides a class of equations to which Lemma 1
can be applied.

As an analog of Lemma 2 for the forced equation (2), we have the following result.
THEOREM 1. Suppose there is an integer k >- 0 such that]or n k, , L we have (a),

Zk 0 and Zk >= Zk-1, and (b), b, >-_ c, + c,-1 and f, -> O. Then (i) Zn+l -> Zn -> O, for
n =k,... ,/’.

Suppose in addition to (a) and (b) at least one of the following conditions holds;
namely (c), fk > 0, (d) bk > Ck + Ck-X and Zk > O, or (e) Zk > Zk-x. Then (ii) Zn+l > z,, for
n =k,... ,j.

Finally, suppose that (a) and (b) are true for all n >-k and we have either (f)
oo fn/c, co, or (g) the existence of a sequence {e,}, e, _-> 0, such that

(3)
b,->(l+e,)c,+c,_l and

Then (iii) zn

(4)

or

Proof. From (2), for n k we have

Z,.+I (bnZn)/Cn --(Cn-lZn-1)/Cn +f/cn
>- (bn/cn Cn-1/Cn)Zn +fn/Cn,

(5) Zn+lZn.

Since (5) is true for n k, by induction we can conclude (5) holds for n k, , j. This
proves (i), and (ii) follows in a similar fashion.

For (iii), since Zn+l-z,>f,/cn,= for n > k, then Z,+k--Zk =>"-1.=0 fi+k/Ci+k. Thus, if
yo f,/c oo, z, oo as n oo. Finally, if condition (3) is satisfied, by (4) and (5) we
have Z,+l => (1 + e,)z,, which again implies zn - oo as n - oo. This completes the proof.

COROLLARY 1. Suppose b, -> cn + G-l, for k <-n <-j. Consider the solution z of (2)
defined by Zk Zi=0, j> k + 1. Iff >-0 (<-_0), then z, <-_0 (>-0), k <-_n <-j. lf fk+l >0
(<0), then z, <0(> 0), k <n <j.

Proof. First, assume f, _-> 0, k _-< n _-< j. By Lemmas 1 and 2, z is well defined. If
Zk+l>0, Theorem 1 implies z.#0, a contradiction. Thus Zk+l<=O. If Zk+2>0, the
arguments ot Theorem 1 again imply z. # 0, a contradiction. Continuing in this fashion,
we conclude that z, <= 0, k <_- n _-< ].
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Suppose fk+l > O. If Zk+l O, after replacing n by (k + 1) in (4), we see that Zk+2 > O,
a contradiction. Thus Zk + < 0. Continuing in this fashion, we conclude zn < 0, k < n < j.

If fn <- O, multiply (2) by -1 and reapply the preceding argument.
COROLLARY 2. For all n sufficiently large, if b, >-c, +c,-1, fn_->0(<_-0) and
f/c, c(-o), then there exists a solution z of (2) such thatz c (-c), as n .
Proof. The nonnegative case follows directly from Theorem 1 by a proper choice of

initial conditions. For the nonpositive case, multiply (2) by -1 and reapply Theorem 1.
Corollary 2 proves the existence of at least one solution which diverges. It can

happen that all solutions of (2) diverge. Consider the example

(6) Zn+l -" Zn-1 2zn + 1.

Linearly independent solutions of the associated homogeneous equation are un 1
and v, n. A particular solution of (6) is n(n + 1)/2. Since any solution z of (6) has
the form z 2 + au + fly, it is clear that no choice of a or/3 will yield a solution z of (6)
which is bounded. In this particular case, for every solution z, z,- as n- c. We
remark that under the hypothesis b, _-> c, + C,-x, this type of behavior cannot occur for
the homogeneous equation (1). That is, if b, => c, + c,-1 for all n, then (1) has a bounded
solution. See I-8, Thm. 2].

We would next like to prove two comparison results for homogeneous equations.
The first theorem is similar to Theorem 1 in [5]. See also [8, Thm. 4]. In addition to (1),
we consider the equation

(7) l’nWn+l+l’n-lWn-1--dnwn, l’n>O.
THEOREM 2. Suppose b >-_ c, + Cn-1, d, >- r, + rn-1, Cn r, and bn <- d, for all n. If

(WI--XI)(Wo--Xo)O and Xx _->Xo_->0, then (Wn--Xn)(Wn-l--Xn-X)O, for all n. In
particular, w, >= x,, ]:or all n.

Proof. By hypothesis, W _-> Wo _-> 0, and so the remark following Lemma 2 implies
that w, _->.0, for all n. Consider (7) with several quantities added and subtracted.

CnWn+X -[- (r Cn)Wn+l -[- Cn-i Wn-i "[- (rn-1 Cn-l)Wn-1
(8)

=bnw,+(d,-bn)w,.

Since (r c,) _-< 0 and (d bn) _-> 0, for all n, we may write

Hence
CnWn+ + Cn-l Wn-1 bnwn.

Cn(Wn+l Xn+l) -[- Cn-l(Wn-l Xn-1) - bn(Wn Xn)

or

(9)

Define z, (w,-x,). Since (9) is of the form (2) with Zl ->z0_->0, Theorem 1 implies
Z,+l _->z, =>0, or that W,+l-X,+x _-> w,-x, >-0. This proves the theorem.

Following the definition given in [7], nontrivial solutions u and v of (1) are said to
be recessive and dominant, respectively, if u/v,-O, as n-. For existence and
growth properties of recessive and dominant solutions of (1), see [8, Thms. 1 and 2].

Under the hypothesis of Theorem 2, dominant and recessive solutions exist for (1)
and (7). Theorem 2 compares dominant solutions of (1) and (7). It is also possible to
compare recessive solutions.

THEOREM 3. Suppose b, >-_c + Cn-1, dn >= r, + rn-1, Cn r, and b, <-dn, for all n.
Suppose Xo >_- Wo > 0, where x and w are the recessive solutions o[ (1) and (7), respectively.
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Then x, >= w, [or all n.

Proof. Since the equations are linear and since recessive solutions are unique except
for a constant factor, we may assume x0 w0 1. Let x be a sequence of solutions of (1)
defined by

i__0o(10) x =1 and x.
These are well-defined by the introductory remarks of 2 and by Lemma 2. In [3], it is
shown that 1 >- x -> x{,+l > 0, for k --I- 1 < j, X+1 X for k -< j, and the solution x,
defined by Xk lim._.oo x, is the recessive solution. Similarly, for (7) we define a
sequence of solutions w by

(11) w=l and

J=0 ByUsing x and w’, form (9) again and define z}, w,-x,. Then Z/o z
Corollary 1, z -<_ 0 or x, ->_ w, -> 0, 0 -< k -</’. This means lim_.oo x, -> lim._.oo w, or that

Xk >= Wk, for any k. This proves the theorem.
Notice that in comparing solutions of (1) and (7), a dominant solution of (7) is

greater than or equal to a corresponding dominant solution of (1) while a recessive
solution of (7) is less than or equal to a corresponding recessive solution of (1).

1. r-Type solutions. We define a particular solution z of (2) to be an r-type
solution if zn/vn O, as n oo, where v is a dominant solution of (1). The definition, but
not the name, was originally presented in [6]. In [6], numerical techniques were
developed to approximate solutions of (2) based on the existence of an r-type solution
of (2) and recessive and dominant solutions of (1). We will prove an existence theorem
for r-type solutions and then use Theorems 2 and 3 to obtain specific criteria.

We will assume the existence of recessive and dominant solutions of (1). Note that
two sufficient conditions implying the existence of such solutions are (i), (1) is non-
oscillatory, which includes the case b, -> c, + c,-1, or (ii), bn -cn- c,-1. See [8].

THEOREM 4. If (1) has a recessive solution u and a dominant solution v such that

fiui exists and (un/v,) -"=1 fivi --0 as n-o, then (2) has an r-type solution.

Proof. We may assume u and v are linearly independent solutions of (1) such that
cn(u,v,/l-V,U,/l) 1, for all n. By the variation of constants formula, the general
solution z of (2) has the form

z. au. + by. l(u.v-
i=1

(2)

--u(a- fiui)-+-l.)n(bnt- fiui).
i=1 i=1

If we let b -Y] filgb then

(13)

i)zn/vn (u,/vla -(u,/v,) five + fiui-- fiu
i=1 i=1

From (13) and the hypotheses, we see that z,/v, -. O, as n - ee.
COROLLARY 3. If Ei= fiXi exists for every solution x of (1) and if (1) has recessive

and dominant solutions, then (2) has an r-type solution.
An example of when the conclusion of Theorem 4 does not hold is as follows. Let

bn 2 and cn 1, so that u, 1 and v, n. Let f, 1/n. Then un Y. 1/n does
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not exist. In addition, (u,,/v,,)"fivi=(1/n)Y" (1/i) i= 1, for all n. Equation (12)
becomes

z,, =(a-n)+n(b+ 1/i),
or

z,/n =(a-n)/n +b+ 1/i.

It follows that for any solution z of (2) and for any dominant solution v of (1), we have
that zn/vn oe, as n - oo. Therefore (2) does not have an r-type solution. The example
following Corollary 2 also does not have any r-type solutions.
Although Corollary 3 covers several cases, it has at least one deficiency in that one is

required to know something about the behavior of solutions of the homogeneous
equation (1). It would be better to have sufficient conditions which guarantee the
existence of an r-type solution based only on the coefficients cn, bn and f. Using
Theorems 2 and 3, we can state the following.

THEOREM 5. For all n if b, >- c,, + Cn-1, Cn a > O, b <- d, d >- 2a and ifoo [f(s)n[ < oo, where

[d +(d2-4a2)X/2]/2a, ifd> 2a,
s (n)l/ ifd 2a,

then (2) has an r-type solution.
Proof. Since b, >-c + Cn--1, (1) is nonoscillatory and has a nonincreasing recessive

solution u and a nondecreasing dominant solution v, both of which are positive. See [8,
Thm. 2]. Consider the equation

(14) aXn+l + ax,_ dx,.

If d>2a, then (14) has a dominant solution vln =([d+(d2-4a2)1/2]/2a) and a
recessive solution u ([d-(d2-4a)a/a]/2a). By Theorems 2 and 3 and by a proper
choice of initial conditions, we can assume v ln_-> v, >-u, >_-u an >0. By hypothesis

If,v Xl, < oo, which means the hypotheses of Corollary 3 are satisfied, and the result
follows. The argument is trivial if d 2a.

The hypotheses of Corollary 3 in general assume the existence of the sum 2 x,f,.
For some remarks concerning the existence of this sum, we refer to the discussion
following Theorem 8.

4. Nonoseillation and oscillation. In this section we present some theorems dealing
with oscillation and nonoscillation of solutions of (2). Usually we will assume the
oscillation or nonoscillation of (1) is known and, based on fn, will attempt to determine

the behavior of solutions of (2). We refer to 1 for our general definitions and
comments concerning oscillation and nonoscillation of solutions of (1) and (2). We will

also assume that for any n, there exists a k >- n such that fk 0. That is, we are excluding
the case where f, could eventually become identically equal to zero.

If x and z are solutions of either (1) or (2), we define W(x, z)(n)= c(xn/lz-
Z,/lX,). We first make the following observation, which is basically an extension of

Abel’s formula of 1 to the nonhomogeneous equation (2).
LEMMA 3. Ifx is a nontrivial solution of (1) and z a solution of (2), then ]or any n > k,

(15) W(x, z)(n)= -( xj]’j) + W(x, z)(k).
/’=k+l
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Proof. W(x, z)(n)- W(x, z)(n- 1)=Cn(Xn+lZn--Zn+lXn)--Cn-l(XnZn-l--ZnXn-1)
zn(bnxn -Cn-lXn-x)-xn(bnzn +fn --Cn-lZn-1)--Cn-lXnZn-1 + Cn-lZnXn-1 --Xnfn. The
result follows.

THEOREM 6. Forsome nontrivial solution x of (1) and some solution z of (2), suppose
the quantity W(x, z)(n) is eventually ofone sign (>-0 or <-0). Then (1) nonoscillatory if
and only if z is a nonoscillatory solution of (2), which is equivalent to stating that (1) is

oscillatory if and only if z is an oscillatory solution of (2).
Proof. (Only if). Suppose (1) is nonoscillatory and Cn(Xn/lZn--Zn+lXn)>--O, for

n _--> k. We may assume k is large enough so that xn is of one sign, say positive, for n _-> k.
Then CnXn+xZn >--CnZn+lXn or Xn+lZn/Xn ----> Zn+l, for n _->k. Let nl be the first integer _->k

such that znl -< 0, if such an integer exists. Then zn --< 0, for n _-> n 1. If zn 0, for n _-> n 1,

there exists an integer na ---- nl such that zn2 < 0, which means z, < 0, n _-> na. If z, 0 for
all n _-> n then fn 0 for n _-> n 1, which possibility we are excluding. If n does not exist,
then zn > 0, for n _-> k. In either case, z is nonoscillatory. The arguments are similar if we
had assumed Cn(Xn+XZn--Zn+lXn)O or Xn <0.

(If). Next, assume z is nonoscillatory, say positive, for n _->k, and assume
Cn(X,+lZn--Zn+lXn) is of one sign, say _-->0, for n>-_k. However, suppose x is an
oscillatory solution of (1). Since cn is positive, xn+l >--XnZn+I/Z,. Choose a value nl -->_ k
such that x,1 is positive. One such value must exist, since (1) cannot have a nontrivial
oscillatory solution which is _-<0. (However, (2) can.) Then the previous inequality
implies that xn > 0, for n _-> nl, a contradiction. A similar argument holds if Cn(Xn+xZn-
Zn+lXn)----< 0 or if Zn is eventually negative. This proves the theorem.

COROLLARY 4. If (1) is nonoscillatory andf is eventually ofone sign >- 0 or <_- 0),
then every solution of (2) is nonoscillatory.

Proof. Let x be any solution of (1) and z be any solution of (2). We may choose k
large enough so that x,fn is of one sign for all n -> k. Thus all the terms of the sum in (15)
will be of one sign and the term W(x, z)(k) is merely a constant. This means that
eventually W(x, z)(n) will be of one sign, and the result follows from Theorem 6.

COROLLARY 5. If (1) is oscillatory (nonoscillatory) and if there exists a solution x of
(1) such that 5". xfn +c or -oo, then every solution of (2) is oscillatory (nonoscil-
lawry).

Proof. The hypothesis implies that for any solution z of (2), the quantity W(x, z)(n)
in (15) must eventually be of one sign.

COROLLARY 6. Suppose fn has theform anxn, where a is ofone sign >- 0 or <- O) and
xn is a solution of (1). If (1) is oscillatory (nonoscillatory), then every solution of (2) is
oscillatory (nonoscillatory ).

Proof. The argument is the same as the one for Corollary 5.
COROLLARY 7. For all n sufficiently large, ifbn <- -cn cn-1 andf, (-1)"an, where

an is of one sign, then every solution of (2) oscillates.
Proof. The hypothesis b <=--Cn--Cn-1 implies that every solution of (1) oscillates

and eventually alternates in sign. See [8, 4]. Thus xn x(-1)nan will eventually be
of one sign. The proof of Corollary 5 now applies.

We next consider several examples. The conclusion of Corollary 4 may no longer
be true if fn is allowed to change sign. Let bn 1, c =1/2, and f =4(-1)n+l. Linearly
independent solutions of (1) are un 1 and vn n. A solution of the forced equation is
zn 1 + 2(-1), which clearly oscillates.

Parts of Corollaries 5, 6 and 7 assume (1) is oscillatory and state sufficient
conditions for every solution of (2) to oscillate. However, (1) being oscillatory does
not always imply that every solution of (2) must oscillate. For example, let cn 1,
b=-2 and fn =(4na-2)/(n3-n). Then (1) has the oscillatory solutions (-1) and
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n(-1)" while z 1/n is a nonoscillatory solution of (2). In this example, z 1/n is
clearly a unique nonoscillatory solution of (2). The example actually illustrates a general
result.

THEOREM 7. If (1) is oscillatory and iff is eventually ofone sign >- 0 or <= 0), then
any nonoscillatory solution of (2) must eventually be of the same sign as fn.

Proof. Suppose f is eventually of one sign, say >-0. Suppose also that (1) is
oscillatory and z is a nonoscillatory solution of (2) such that z < 0, for n -> k, for some k.
Rewriting (2) we have

CnZn+l -1- Cn-lZn-1 (bn +fn/Zn)Zn.

This is now a homogeneous equation of the form (1) with a nonoscillatory solution z and
with (b +f/z)<-b. Therefore, by a comparison theorem of Fort [2, p. 222], we
conclude that cnx/l + Cn-lX-i bxn is nonoscillatory, a contradiction. Note the term
G2(n) in [2, p. 222] has the form Ga(n- 1)= b-c- c-1 and the term K2(n)= c.

As previously mentioned, the example preceding Theorem 7 shows that if (1) is
oscillatory, it does not have to be the case that all solutions of (2) oscillate. In a similar
fashion, the example following Corollary 7 indicates that if (1) is nonoscillatory, all
solutions of (2) need not be nonoscillatory. We next investigate the number of possible
nonoscillatory (oscillatory) solutions of (2) under the assumption that (1) is oscillatory
(nonoscillatory).

THEOREM 8. Suppose xn exists, for every solution x of (1). If (1) is oscillatory,
then (2) has at most one nonoscillatory solution. If (1) is nonoscillatory, then (2) has at
most one oscillatory solution.

Pro@ Suppose (1) is oscillatory, and suppose is a nonoscillatory solution of (2).
Consider any other solution z of (2) of the form

(16) z= f +cu, c0,

where u is a solution of (1). We must show z oscillates.
Let v be a solution of (1) which is linearly independent of u such that W(u, v)(n)

1. Then

(17) W(z,v)= W($+cu, v)= W($,v)+cW(u,v).

From (15) and the hypothesis, limn_. W(, v)(n) exists. If the limit is nonzero, since v
oscillates, Theorem 6 would imply oscillates, a contradiction. Thus W(, v)(n) --> 0, as
n oa. But this means that in (17) W(z, v)(n)-c 0, as n oo. Since v oscillates,
Theorem 6 implies z oscillates.

Next, assume (1) is nonoscillatory and suppose is an oscillatory solution of (2).
Choose z, c, u and v as above. Based on the preceding argument, we must have
lim,_.o W(2, v)= 0. Again, this implies that in (17) limn-. W(z, v)(n)= c O, which
by Theorem 6 means that z is nonoscillatory. This proves the theorem.

In view of Theorem 8 (and Corollary 3), it would be interesting to know when the
hypothesis concerning the convergence of yoo x, is satisfied for any solution x of (1). If
f 12 and all solutions of (1) are square summable, in which case we say (1) is limit circle,
then obviously yo x, exists for any solution x of (1). Sufficient conditions which
guarantee that (1) is limit circle can be found in [4, Thm. 12]. Note that f p, for any
p > 0, ff Y. Ill < oo.

Another situation insuring the existence of Y. xdn would be when f and all
solutions of (1) are bounded. (By (12), this would also imply that all solutions of (2) are
bounded). We conclude by making several observations concerning the boundedness of
all solutions of (1).
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THEOREM 9. If bn- cn- c-1 <- 0, (1) is nonoscillatory and 1/cn < oe, then all
solutions of (1) are bounded.

Proof. For the proof see [8, Theorem 3].
Consider the equation

(18) CnXn+l -- Cn-lXn-1 (bn + gn)x.

THEOREM 10. If [g, I< and all solutions of (1) are bounded, then all solutions
of (18) are bounded.

Proof. For the proof see [4, Lemma 2].
THEOREM 11. Suppose ,oo Iblc. If the sequence {c,} is eventually either

nondecreasing or nonincreasing and bounded below by a positive constant, then all
solutions of (1) are bounded.

Proof. Consider the equation

(19)

We may write

CnUn+l nt- Cn-lUn-1 O.

Un+l --(Cn-1/n)Un-1 (-- 1)2(n-1/n)(Cn--3/Cn-2)Un-3,
or

(20) lu+xl--(Cn--a/Cn)(Cn--3/Cn-2) (Ck/Ck+x)lblkl,
where k=N or N+ 1. If c is nondecreasing for n ->N, we have for any
n > N, which means the solution u is bounded.

Next, suppose c is nonincreasing and bounded below by a positive constant, say e,
for n >-N. From (20), we have

which again implies that u is bounded. Since all solutions of (19) are bounded and since

2 Ibnl < oo, Theorem 10 implies that all solutions of c,x+l + C-lX-i (0+ b)x are
also bounded. This proves the theorem.
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J. LADEVIZEt AND P. LADEVIZE"

Abstract. New lower bounds for the fundamental eigenvalue in the free membrane problem are derived

in terms of elementary characteristics of the domain. In the first part, the case of strongly starshaped domains
will be dealt with. The second part will introduce a method of estimate for domains which are unions of
strongly sharshaped domains.

1. Introduction. The lower bounds for the fundamental eigenvalue in the free
membrane problem established in this paper are explicitly defined as functions of
elementary characteristics of the domain (area, diameter,...), For a large class of
domains, they improve the bounds obtained in [1], [3], [4] and [6].

To construct a priori estimates, one generally uses the inverse of the fundamental
frequency, called the Poincar6 constant. Thus in the following, the results will refer to
the Poincar6 constant.

First of all, the case of strongly starshaped domains is investigated. A domain f is
said to be strongly starshaped if the interior of the set of points of fl for which f
is sharshaped is not empty. The interior of this set, the so-called starshaping domain of
f, is obviously a convex domain. In particular, the starshaping domain of a convex
domain is the domain itself. Two bounds, (P,1) and (P,2), of the Poincar6 constant are
obtained; it can be noticed that (P,2) is optimal, i.e., it is the exact value for convex
domains.

Furthermore, we establish the inequalities (), (B’) and (B") in connection with the
Poincar6 inequality; beyond their own interest, they will prove useful to obtain upper
bounds of the Steklov constant in [5].

Finally, we give a method leading to bounds of the Poincar6 constant for domains
which are the union of strongly starshaped domains.

The proofs and the results are given in the two-dimensional case; they can easily be
extended to the three-dimensional one.

2. Definitions and notations. 2 denotes the usual two-dimensional oriented
Euclidean point space while E2 denotes its associated vector space, i2 is to represent the
/2-rotation operator on E2.

is assumed to be a bounded domain of with C boundary;M is the current
point of . Moreover, satisfies the segment property; therefore the function set
C, () is dense in H(O). ’, with boundary ’, denotes a subdomain of .

a is a nonzero real function defined on which belongs to H(O). a is said to
satisfy the condition (’) provided its mean value over ’ is zero.

The first nonzero eigenvalue of the Neumann problem relative to the Laplacian
operator for functions of n1() with zero mean value over ’ is defined by:

[[grada ]l
e[(’)] inf

Therefore, the Foincar constant corresponding to the condition (’) is:

* Received by the editors May 26, 1978, and in revised form November 20, 1978.

" Institut de M6canique Th6orique et Appliqu6e, Universit6 Pierre et Marie Curie, 4, place Jussieu,
Paris, France.
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Notations and geometric characteristics.
I1" I1, represents the L2(K)-norm.
For a strongly starshaped domain f, f* denotes its so-called starshaping domain.

We note:
A (resp. A*, A’) measure (12) (resp. 12", f’);
L (resp. L*, L’) measure (012) (resp. 012", 0f’);
cI) (resp. *, ’)= diameter () (resp. *, ’).
Remark. In the proofs, the function is assumed to belong to C. (); the final

results are obtained by density.

3. Upper bound (P.0. We begin with the identity

(1)
a*

[(M)-(M*)] dMdM*=A* a(M) dM+A (M*) dM*

which holds for functions which satisfy the condition () or (*).
(*) denotes the mean value of and * and we introduce the following

function"

’ being the interior of -*, we get from (1)

’n*
[a(M’)-a(M*)] dM’ dM*+ 2- *)_

and therefore the bound

1 fa [a(M’)-a(M*)]dM’dM*+max{O, 2-}lld(*)[[(2)

3.1. Estimate of the first contribution in (2). In a first stage, we introduce on
x* a system of coordinates which plays an essential part in this work.
M’ (resp. M*) is the current point of ’ (resp. *). O is a point of $2 taken as the

origin while H is its orthogonal projection on the line (M’, M*) (see Fig. 1).
Let us denote WH as follows:

WH {HIH
and the interior domain of WH by H.

0

FIG.

H is now to be the current point of fn and we set: u(H)= OH/IOH].
(resp. M*) and M2 (resp. M2*) are the intersection points of the boundary
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(resp. 0D,*) with the line (H, izu(H)). We note:

x(H) HM i2u(H),

x:z(H) HM2 i2u(H) (xI(H) <_- x2(H)),

-(H): ]x(g), x(H)[,

x* (H) HM* iu (H),

x*2 (H) HM iu(H) (x* (H) <= x (H)),

-*(U) ]x * (H), x z* (U)[ c -(U).

With these notations, we can define the following coordinate system:

F: (H, x, x*)->(M, M*) (OH + xi2u(H), OH + x*izu(H)),

where X is the manifold: X; {(H, x, x*)IH H, x 3-(H), x* 6 -*(H)}.
Furthermore F(Z) is equal to fZ x f* modulo a set of zero measure. Setting X’ as the

manifold {(H, x’, x*) ]H fH, x’ -(H)- -*(H), x* -*(H)} we also get that F(E’),
up to a set of zero measure, is equal to f’ *.

Consequently, we get:

(3)

[a(M’)- a(M*)]2 dM’ dM*
I,*

I

We set:

x*[ (U, x’)- 6 (/-/, x*)]lx’-x*l.

a(H) x2(H)-xl(H),

e(H) x’ (H)-x’ (H)
x2(H) xi--) <-1,

2
X --’k. ..2 Ix -1/2(x1 (H)+ x(H))],

1
a(H)

6(H)
{[x(H)+x*2 (H)]-[Xl(H) + xz(H)]},

if*(H) ]a (H) e (H), a (H) + e (H)[ c ]- 1, + 1 [.

Using these notations, we obtain

where

1 3(8/4)[a(M’)-a(M*)]2 dM’ dM*=
,lOHI

dH6

M= I_ [1-g(X’)]dX’ I_ g(x*) dX*lX’-X*l[(H,X’)-(H,X*)32

and g is the characteristic function of the interval ff*(H) defined on ]-1, +1[. M can be
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written as follows:

I_ I_ Ix-x’l[(, x- (, x, g(x,[1

+ g(X)[ 1 g(X’)]} dXdX’
X X X

3X’

in which f(r/) 0c/0r/(H, r/).
Permuting the integration order and using the Cauchy-Schwarz inequality, we find

the estimate:

xg f(r/)f(T)g(r/, r)dr dr <-_ f2(r/)G(r/) dr/
-1 G(r/)G(r)

dr/d

where

and

min{rt,r}

K(r/, r)= fm dX[ dX’ X-X’]{g(X’)[1-g(X)]+ g(X)[1-g(X’)]}
ax{r,r}

G(X) I_ [X-X’[g(X’) dX’.
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in which q is a function given in the Appendix.
However, the upper bound of the function q on ]0, 1[:

q(v)_-< 2 Log (l/v) +2

has been computed.
We therefore deduce the following bound for the first contribution in (2):

1 fa [a(M’)-a(M*)]2 dM’ dM*
A*

l fa 62(H) fs 2 X* *Na* 4]OHI
dH gradMa (e(H))lx- dxdx

(H)x*(H)
(4)

1 fa ]gradMa 12 82=A* ... T(H)(e(H)) dMdM*

2{ 1 + sup Log (1/e(H)) dM* Ilgrad
2 Ma

In the Appendix, explicit bounds of SUpMa [(l/A*) a* Log (1/e(H)) dM*] are
given.

[II K2(r/’ r) T]
1/2

a(r/)a(z) dn
d <- (#(e(H))

The quantity -1 ll K2(r/, T)/(G(r/)G(r)) dr/dr, considered as a function of e(H)
and a (H), can be uniformly bounded with respect to a (H). We have established that its
maximum is obtained for [a(H)[ 1-e(H); we get:
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3.2. Estimate ot the norm I]& (ll*)lla.. As D,* is a convex domain and the function
d(f*) has a zero mean value over f*, we can use the result obtained by Payne and
Weinberger [7]:

(5) 11 (*)11, <-- -’22 Ilgrad c I[,.

Remark. Noting that

2A*ll (n*)ll* f U(M) c (M’)]2 dMdM’,
*x*

we can apply the method already used and we obtain the following bound:

I1 (n*)llG* --<3,2llgrad c ii."

This result is close to that of Payne and Weinberger (the constant 1/Tr2 being
changed into 4/8).

3.3. Upper bound (P.1). From the previous estimates (2), (4), (5), we get for the
functions satisfying the condition (f) or c (fl.)

I1 II. <-- P, xllgrad a

[1/2 12 (__)2 { _,}]1/2(P,) with P,1 E+ max 0, 2-

L*]where E 1 +min {Log [(x/+ 1)**], Log [2-J}"
3.4. Comments. The use of the bound (P,1) for an L-shaped domain (see Fig. 2)

gives for l/e > :
)]

1/2

P,l=l[l+Log(23/2
This result is similar to the one obtained by using the upper bound [4; 3.3].

FIG. 2

It can also be compared with the one obtained in [1; 5.5]. This last estimate gives,
for lie 500, a bound of the Poincar6 constant greater than 103 l; with (P.1), we get
2.86 l.

Furthermore, the estimate P,1 weakly depends on the ratio lie for practical values
(in structural design) of this ratio. For lie =5, we get P.I= 1.91 l, whereas for

l!e 500, we have 2.86 which is of the same magnitude.
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4. Upper bounds 01I) and (P,2). Beyond its own interest, the bound (lII) plays a
major part in 5 and in the paper [5] dealing with upper bounds in the Steklov constant.
Furthermore, it leads to an upper bound (P,2) of the Poincar, constant.

Let ll’ and fl" be two bounded domains in which M’ and M" are respectively the
current points. We define the domain"

A(fl’, fI")={M[M=AM’+(1-A)M",A [0, 1],M’ fl’, M" fl"}.

4.1. Estimate. We have"

Ia [a (M’) a (M")]2 dM’ dM"

<= fo fo dh dz ffa,x,, ]M’M"12f(hM’ + I h )M")f(gM’ + I g)M") dM’ dM"

in which f(M) IgradM a I,
From the Cauchy-Schwarz inequality, we get:

n
[a(M’)-a(M")]2 dM’ dM"

2

A simple change of variable gives:

Yn IM’M"fa(M’ + (1 A )M") dM’ riM"
"

2(A(n’, n")) fa(M) dM. inf/’ (1-I)(a’,a")

where (A(fl’, fl")) is the diameter of A(fl’, fl"). We find:

inft ’I-A
Then we obtain:

[a (M’)- a (M")]2 dM’ dM’’<- II21lgrad

with 11I (A(fI’, D"))
A"/2" (1{A’I/2Log(I+A,1/E)+A"I/2Log + Al/2A,;f/] }"

4.2. Applications. 1. Let fl’ be an arbitrary subdomain of the starshaping domain
1* of fl. From the previous bound (If-I), we derive the following estimate:

[[Of[[II’ (i){ (_.)1/2 Log [1+ (AA,)1/2] + Log [1+ (-)1/2] }[[grad a[la

which holds for a function a which satisfies
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by:
It can be noticed that the constant involved in the last inequality can be bounded

(][I’) ][[, (i)(__)1/2{ 1 + Log [ 1 + ()/2]}.
2. Let (f’) (resp. (fl")) be the mean value of the function a over f’ (resp. f").

From the identity_
(n’)-

_
(n")

1 In [a (M’) a (M")] dM’ dM"
A’A" ’xa"

we get the estimate"

1_ (fl’)-
_
(f")[ <= II"llgrad

with n" (A(fl’, fl"))
1/2 A’ 1/2

{A"-1/2 Log [1 + (-,’) ]+A’-1/2 Log [1 + (--;;)
3. Let D, be a strongly starshaped domain. For a function a satisfying the condition

c() or c(fl,), we also deduce from the estimates (II) and (2), the following upper
bound"

Ila Ila -< P,21lgrad a [la

(P,2) withP, ={(I)2[(A-a*) _* (a-a*)2 A*

1’2

LOg {I+(AAAd)I’2} +LOg {1+ A* 1’2}] 2

1/2

+max 0, 2- z2,[(f*

Remarks 1. The constant P,2 is optimal in the sense that it is the exact value for
convex domains.

-1/22. The quantity/-*2, [(D.*)] can of course be bounded by */’.
3. For an L-shaped domain (see Fig. 2), we obtain (for I/e > )"

P,2 =/[1 + (e/l)2]1/ h Log 1 +- + Log (1 + h)

with [2(//e 1)]1/2.
P,. asymptotically behaves as -l Log (21/e) (I/e oe); this is not as good a result

as the asymptotic behavior of P,I" l(Log(23/21/e))1/2.
5. Extension to more general domains.
5.1. Generalization ot the upper bound (P,1). f is a strongly sharshaped domain;

_a (f*) denotes the mean value of a over f* and ’, the interior of f-D*.
From the inequality

In (A)2
[a(M’)-a(M*)] dM’ dM*+ 2-)-- IId(f*)ll*+2A_(*)

we derive

(6) Ilc II _-< 2P],11]grad all + 2A_a 2(f*).
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5.2. Upper bound of the Poincar constant for more general domains. is
assumed to be the union of n strongly starshaped domains f such that the set lqg f) f+l
is not empty for each belonging to {1, 2,. , n 1}. We denote:

’i,i+ ’i (’] ’i+
2*" starshaping domain of fi.
For the sake of simplicity, we shall develop the method only for n 2 (see Fig. 3).

From (6), we have"

FIG. 3

2 2

I1 11 2 2 Pl (i)l[grad 2 Aig2(i)
i=1 i=1

where P,I(i) is the constant P,1 for the domain tqi and _(i) is the mean value of a
over f.

To estimate the quantities g(i), we use the identities

1 In [a(M) a(M’)] dMdM’ (i 1, 2).(i)-- (1,2) A*iAI,2
Using the methods developed to get the bounds (P,1) or (11I), we obtain:

(7) I_ (i) (f1,2)12 _-< C/a ]]grad a ]l, (i= 1,2).

The quantity 22 2
i=1 Aig (i) can be written as follows"

2, {ai[_ (i)-_ (fl,2)]2 +ai_Z(Dl,2)-2ai[_ (i)-_ (lql,Z)]_ (l)l,;)}.
i=1

The value of (I)1,2) can be chosen; taking the value which minimizes the previous
quantity, we get

1 2

ai[_(i)-a("l,2)].a(fl.2)
A+A2i=

Consequently, we derive the estimate

2 AIA2[[a[l <= 2 2 PI (i)l[grad al[,+ 4 [Cl[Igrad c[[ + C2211grad c[[ 2a=].
i=1 AI+A2

Therefore, we have for a function a satisfying W(f):

[ 2AIA2 ](8) I1 11 < 4 max

Example. f is the union of two convex domains fa and f2. By using the estimate
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(H), we obtain

Ci--fi A1,2 Log 1 +A-1/2 Log 1 +(1,2
Thus, for a satisfying c (f), we get the result

=< PIIgrad c
with

p2 4 max cI),.2 + 2 C,.2

If we apply this bound in the case of an L-shaped domain, the union of two identical
rectangles with sides of lengths and e (see Fig. 2), we obtain:

[(P=21(l+e --+ 1+ Log (1 + e) +Log (l/e)

in which e =(ell) 1/2. Asymptotically (l/eoo), the previous bound P behaves as
Log (l/e); this result is similar to the asymptotic behavior of P,2.
We have summarized, in the next table, the numerical results on the estimates P,1,

P,2 and P for two values of the ratio l/e (l/e > ).

TABLE

lie P,1/I P,2/l P/l

5 1.91 2.24 8.37

500 2.86 4.47 34.3

For the special kind of domain considered here, we find that P,1 always gives the
lowest bound of the Poincar6 constant.

Appendix.
A.1. Function q. The function q is defined on ]0, 1[ by

(A.1) ((v) (F(v)) 1/2.
where

F(M) 41-(2 -/])4 (Log(m_/] ))2
__

[41_(2 -/2)2+ 2/i(7,/--2-)]1/2(2-/1)2 Log (m /2)
+ (1 v)[{3 v 5(2 u)2} + ((Tr 2)/6)u(-4u2 + 26u 28)] + 2(1 u)2[- (7r )(u2/2)

+ 2( -4A + rr Log 2) + u(Tr2- 4 8A + 27r Log 2) + vz(’rr/2)(Tr-38-)]

and h is the numerical constant defined by:

dy 1
h Arctan (y)--= (-1) =0.916.

y n=o (2n + 1)z
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A numerical computation shows that on ]0, 1[

p(u)- 2 Log (l/u)-< 1.995(1- u)<2.

A.2. Estimates of supMa [(l/A*) a* Log (1/e(tt)) dM*].
A.2.1. M belongs

02

p-

O

FIG. A.

C(M)=-g Log (lie(H)) dM*

1 Ia (’e(H))Log (1 / rt) +-g Log r/ dM*

in which rt is an arbitrary real positive constant to be determined later.
We have

where

lla (r))C(M) -< Log (1/rt +-g Log+ aM*

If(x) iff(x)>O,f+(x)
t0 if f(x)_-< 0.

We introduce the polar coordinates (r, 0) of centerM (see Fig. A.1). f* is included
in the sector: 01 _-< 0 <_- 02 and the boundary Ol)* is represented by the equations

{r=r+(O)),r=r_(O
0 E ]01, 02[.

r=o+(O) is the equation of the part of the boundary 01 inside the sector
01 _-< 0 -< 02; for the part of the boundary Ofl in the diametrally opposite sector of the first
one, the equation is: r p_(O). Furthermore, we have the relations

p++p_=6,

r+- r_ 6" e6.

With these notations, we get the following estimate"

C(M)<_Logl 1 Io Log+() ra+-
rt -g 2

2r_
dO

Log--+ e Log+ (r+ + r_) dO.
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Since for -< e:

we have the bound (for r/-< e)

C(M)=Logl r/ 1 rio
2

< --+ 6(r+ + r_) dO.

We then establish:

A.2.1.1. First estimate.

IO026(r+ + r_) dO <- cb (r+ + r_) dO <= L*.

We obtain for r/=< e:

1 1 L*
C(M)_-< Log--+ r/.

rt 2e A*

Minimization over r/gives rtl 2eA*/(L*).
From the isoperimetric inequality: A*<-L*2/4rr and from L*-<Tr* (f* is

convex), one verifies that 4A*/(L*)-<_ 1, so TI e/2.
We conclude:

(A.2) (L*’C(m) _-< Log
\2---]"

A.2.1.2. Second estimate. We have the estimate:

io io6(r+ + r_) dO <= 230+ dO.

From the inequality:

26o+_-< (,/+ 1)[p + (6-p+)2] (4+ 1)(pz+ +pz_)

we obtain:

i002 i002
2

(r++r_)dO<2(,+l) + +P-do<2(x/+l)a

Checking that 7"/2 < e, we conclude

[(A.3) C(M)-<_Log (/+ 1)-g

e A*
rt= ,,/+1 A

We get for _-< e:

1 /+1 A
C(M) <_- Log --+.

n e A*n"

The minimization of the above mentioned bound gives for r/the value
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A.2.2. M belongs to l’l*.

P+

FIG. A.2

In a similar way as the one used in A.2.1, we get

IoC(M) _-< Log
1 1 rt r+ +--+ Log+ dO.
rt -; 2

A.2.2.1. First estimate. From r2+ + r2 <= (r+ + r_)2 e6(r+ + r_), we obtain:

C(M)__< Log
1 Io--+ e Log+ (r+ + r_) dO.

Using the inequality (r+ + r_) dO <-_ L*, we obtain the same estimate as (A.2).

A.2.2.2. Second estimate. From
2 r2 262 (p + -[- O-r+ + < (r+ + r_)2 6 *2 e 82(p+ + p_)2 <_ 282 2 2

we get"

C(M) <__Log
1 1 Io 2 () 2 2+ e Log+ (p + + p_ d0.

For rt--< 4, we have"

Therefore,

sup e Log+
ee]0,1] ’’

1 1 2 f-tr 2 2C(M) Log --+ Jo (p+ +p_) dO
rt -- e

21 A n_-< Log --+
A* e

The minimum of the last quantity is obtained for rl3=[(e/2)(A*/A)]1/2, (with
rt3 < x/). We find:

(A.4) (2A)C(M) -< 1/2 Log -g
A.2.3. Conclusions. From results (A.2), (A.3), (A.4), we get for

E sup Log (1/e (H)) dM
M[’I
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the following bounds:

(A.5)

_<-Log
\2A*]’

E <_-Log [(1
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ON THE POINCARi CRITERION FOR ASYMPTOTIC STABILITY*

R. C. CHURCHILL? AND J. F. SELGRADE*

Abstract. This work discusses an n dimensional generalization of the Poincar6 criterion for asymptotic
stability of a periodic solution to an ordinary differential equation. We define a function along a trajectory
which measures the projection, normal to the flow, of a solution to the linearized equations. When this
function satisfies certain monotone conditions, we show that a compact invariant set with recurrence is an
orbitally asymptotically stable periodic solution. Our result is then used to analyze a 3-dimensional system of
equations proposed by J. S. Griffith to model a cellular process for control of gene expression by positive
feedback.

We discuss an n-dimensional generalization of the following well-known result.
POINCARt CRITERION. LetF: R2--> R be a cl-vectorfield, and let y: R -> R be a

periodic integral curve ofF. If div (F) < 0, then y is asymptotically orbitally stable, with
asymptotic phase [6].

The usual proof amounts to the observation that the integral in question has the
same sign as the nontrivial characteristic exponent of the associated linearized equa-
tions. However, we will see that by interpreting the integral in a slightly different way,
the result admits a useful generalization.

1. Statement of the theorem. Let F: R - R be a C 1_ vector field, let O t: R --> R
be the associated flow, let T(Rn)RxR be the tangent bundle of R n, and let

DOt: T(R)- T(R) be the tangent flow, i.e., the flow induced by the linearized
equations. For p R write St(p) as p t, and for (p, w) T(R n) write D&t(p)w as w: t.

Also, let (,) denote the usual inner product on R n, let TI(R ’) denote the unit sphere
bundle of R , and let E+/- denote the orthogonal complement of any subbundle
ET(Rn).

THEOREM 1. In the notation above, assumeX R is a compactconnected invariant
set, and thatFIXdoes not vanish. Next, letE Tx(R) be the line bundle generatedbF,
and for p X, (p, w) E- (3 Tip (R"), R define

V(t) V(p, w; t)=(F(p, t),F(p, t))(w:t, w:t)-(F(p, t), w:t).
Now assume:

(a) Each p X is negatively Poisson stable; and
(b) There is a real number s <0 and a continuous ]:unction (p, w)-> e(p, w)>0,

(p, w) TI(R)fE1, such that V(p, w; t)> V(p, w; O)+e(p, w) forall t<-s.
Then X is a periodic orbit, and the nontrivial characteristic exponents ofX have negative
real parts. In particular, X is asymptotically orbitally stable with asymptotic phase.

Remarks. (i) If X is already known to be a periodic orbit, then (a) obviously holds.
(ii) Modifications of (b) are available; one will be discussed in 3.
(iii) If I? < 0, then (b) obviously holds; this is the first thing to check in appli-

cations.
(iv) V(p, w; t) is simply

(1) ](w: t)+/-12]F(p t)l 2,

* Received by the editors October 17, 1978.
t Department of Mathematics, Hunter College, CUNY, New York, New York 10021.

* Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27650.
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(2)

(3)

(4)

()

where the ,,z,, denotes perpendicular projection onto E+/-. The theorem can
in fact be formulated on any Riemannian manifold. Notice from (1) that

V>0.

(v) For a (a,. a)7" write aii--(ai, ai) T, and set J ( 0 1) Then V(t)
-1 0"

may be written as

n--1

((w" t)ii,-J(F(p, t))ii)2.
i=1
i<j

(vi) For n 3, V(t) can also be expressed as

IF(p" t) x (w" t)l z,
where x denotes the usual cross product.

(vii) For n 2 one computes that I2 2 div (F) V; hence in this case

2 div (F)V(t) V(O) e

Suppose X is already known to be a periodic orbit, of primitive period
z>0, and that Sdiv (F)=p <0. Let M inf {e -2 div (v) 0<s<r}>0,= and
for < 0 let k k(t) be the greatest integer in -t/z. Then from (5) we have

V(t)= V(0) e

V(0) e -2 I;-" div (F)-2 ]-o_. div (F)

>= V(O)Me -2k’.

Since k m as -o0, we conclude that (b) must hold, while (a) follows from
(i). Theorenm 1 thus includes the Poincar6 criterion.

(viii) Considered as an existence theorem for periodic orbits, Theorem 1 is similar
in spirit to Theorem VII.4, p. 116, of [10], a result concerning continuous
flows on uniform spaces.

2. Proof of Theorem 1. The proof is based on the followin result found in [3]:
THEOREM 2. Let X be as in Theorem 1, and suppose for all p X, (p, w)

T(Rn)-E, the set {l(w: t)-I: t-<0} is unbounded. Then X is a periodic orbit with
nontrivial characteristic exponents having negative real parts.

Therefore we must show that hypotheses (a) and (b) of Theorem 1 imply the
unboundedness of {l(w: t)+/-l: =< 0} for any (p, w) Tx(Rn)-E. For this, suppose we set

(6) E- {(p, w) Tx(R")" Iwl 1, w 6 E-},

and we fix some (p, w) E-. It suffices to consider only such w because of the invariance
of E and linearity.

By (b) of Theorem 1 we can choose an open neighborhood N c E- of (p, w) and a
constant e > 0 such that

(7) V(q, y; t)> V(q, y; 0)+e, (q, y)N, t<=s.
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Moreover, by shrinking N if necessary we can also assume that

(8) IF(q)]2 > IF(r)12-(e/2), q, r zr(N),

where zr" T(R n) R is the usual projection.
If q zr(N) is arbitrary, and if there is a < s such that q zr(N), then (8) implies

(9) IF(q)12> IF(q" t)12-(e/2).
But then choose (q, y) E-, and from (1) and (7) we obtain

[(y" t)+/-12lF(q t)12> [y-12lF(q)l2 + e

since ]yl lyl a, (8 then gives

(10) [(y" t)+/-12lF(q t)12>]F(q t)12+(e/2).
Letting K sup { F(x)l" x (g)}, which we may assume is finite by further restricting
N if necessary, we can thus conclude

(11) ](y" t)x[z> 1 +(e/2K)=[3> 1,

where/3 is independent of (q, y) N.
Now use (a) of Theorem 1 to choose a sequence t. -c, with tx < S, ti+x < tj q- S,

/" _>- 1, such that p t. zr(N). Equation (11) then gives

[(W" ti+l)+/-[ 2 [((W" ti)" (ti+l- ti))+/-[ 2

I((w. t;. (t;+x- t;)l
I(((w. t/l(w tl (t+x- tll(w tl

>/31(w" t;)12 > > ;+lwl fij+l.

Since /3> 1, this gives the unboundedness of {[(w’t)-I’t<=O}, and completes the
proof. O.E.D.

Notice that the preceding proof made no use of the compactness of X; that
hypothesis was needed for Theorem 2.

3. Modifications. Hypothesis (b) of Theorem 1 requires a fairly detailed know-
ledge of V for all large negative t; too stringent a hypothesis in many applications. Here
we offer an alternate method for verifying the assumptions of Theorem 2, which we
state using the notation of the previous section.

THEOREM 3. For each (p, w) E-, assume there is a 6 > 0 and a sequence tj -such that:
(a) [F(p. t)]2>lF(p ti+1)12-(/2); and
(b) for any (p tj, y)E-,

V(p. i, y; ti+x-ti)> V(p. i, y; 0)+6.

Then {[(w: t)+/-]: t_<0} is unbounded.
Proof. For (p. tj, y) E-, (b) and (1) imply that

](y: (ti+l ti))+/-12]F(p ti+x)]2> ]V(p ti)12+ 5.

Hence from (a) we get

I(y" (t+l t))’lZlF(p ti+l)[> [F(p ti+1)[2+(6/2).
This is the analogue of (10) of the previous proof, and by choosing L=
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sup{[F(x)[:x 6X}, we can then get the analogue of (11), i.e.

(12) [(y:(ti+x--ti))+/-12> 1 +(6/2L)= 3,> 1.

Notice that linearity then implies

1( Y: (ti+l- t))" __> y]y[ __> yly[

for any (p, y) E+/-, and so

[(w: t+l)+/-l --I((w: t): (ti+l- t))l=
> l(w: t)l=> > +1,

from which the theorem follows. Q.E.D.
From the proof of Theorem 1 (but now using compactness) one can see that the

hypothesis of Theorem 3 will hold if p is negatively Poisson stable, and if V(q, y;t)
increases as - for each (q, y)E E, q in the negative half-orbit of p.

4. An application. Let F=(FI, F,F3) be a CX-vector field on R 3, and for
x (Xx, x, x3) E R 3 consider the system

(13) F(x).

Suppose p is a solution to (13) and F(p) O. Along the orbit of (p, w) E R 3 x R 3, (3)
implies that V(p, w; t)= Vz(p, w; t)+ V(p, w; t)+ V3(p, w; t), where

V ((w: t)z, -J(F(p. t))12)2

(14) V2 ((w: t)13,-J(F(p, t))13)2

v ((w: t), -J(F( t)h).
A straightforward computation gives the following time-dependent system for V, V,
V3:

v1(  1 + +
kOXx ] OX3 OX3

[ 0F 0F3 V/2 V/2 V/2 OF3(15) ,= 2Va+]+2 V]/" OFI + 2
Ox2 Ox2

/ OF, OF3] V/2 V/, OF, V/, OF3f3 2V3+/+2 -2VI‘2

OXl OXl

where O/Oxi is evaluated at p. and where V]/2 is the (possibly negative) inner
product in (14), i 1, 2, 3. Compare this system to the equation for n 2 discussed in
(vii)" 9 2 div (F) V.

Consider the system

X3
)1

l+x3

(16) )2 Xl--X2
-3 X2- 3,X3,

a > 0,/3 > 0, 3’ > 0, which was proposed by J. S. Griffith [5] to model a cellular process
for control of gene expression by positive feedback. In [5] it is shown that the first octant
={(Xl, x2, x3):xi->0, j 1, 2, 3} is invariant under the resulting positive-time flow,
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and that all positive half-orbits within this octant are bounded. Notice that the origin is a
critical point, which we denote by 0. If afly < 1, then it is easy to see that the equations
admit precisely one other critical point in , which we denote by P.

We use Theorem 1 to prove the following theorem. Similar results can be found in
[8], [9], and 11].

THEOREM 4. Suppose in (16) we require

Then, with the exception of O, every orbit within or entering must be positively asymptotic
toP.

Proof. Let X be a minimal set in Y which is not a critical point. If p X and
3)(p, w) E+/- C) Tp (R then (15) gives

91= -2(a +)V1-2V/2V/2 (1 +x3)-2

(18) "Q2 -2(a + ,) V2 + 2 V/2 V/2
I23 -2(/3 + y) V3 + 2 V/2 V/z.

Now write g=(1 +x3)-2, and note that 0<g_-<l in ; from (18) we then have

-2(a + fl) V- 2 VI/2 v/Zg 2(a + y) Vz + 2 V/2 V/2 2(fl + y) V3 + 2 V/2 V/2.
But (17) implies -2( + fl) Vx -3 V1, -2(a + y) Vz -2 V2, and -2(fl + y) V3
-3 V3; hence

-3 V- 2 V2- 3 V3 + 2 V/2V/ + 2 V/2 V/2 2gV/2 V/2
-2( V1 + V3 + gV/2 V/2 )- V1 + V2 2 V/2 V/2 -( V2 + V3 2 V/2 V/2

-2(Vx + V3+gV/2V/2 (V/2 2"a/z )2 _( V/a V/2)z.

Since 0 < g 1, it follows that V + V3 + gV/2V/2 > 0 if V/2 and V/2 are not both
zero. From (2) we see that V/2 /2 V/2v2 0 is impossible, hence < 0. By our
minimality assumption, (a) of Theorem 1 holds; and (b) holds by virtue of (iii). X is
therefore an asymptotically stable periodic orbit.

Since positive half-orbits of (16) in the first octant are bounded, the w-limit sets of
such orbits are nonempty and compact. By the preceding argument, the minimal subsets
of such an invariant set are either critical points or asymptotically stable periodic orbits.
However, in the second case it is a simple matter to see that the periodic orbit must
coincide with the original w-limit set. We thus conclude"
Every orbit intersecting the first octant is either

(a) positively asymptotic to an attracting periodic orbit, or
(b) contains a critical point in its w-limit set.

Linearizing (16) at a critical point gives the matrix

A(x) 1 -0 1

Using the Routh-Hurwitz criterion [2], it is then a simple matter to see that P is
asymptotically stable, and that 0 admits two eigenvalues with negative real parts, and
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one positive eigenvalue. Moreover, it is easy to see that the eigenspace corresponding to
this positive eigenvalue will pass through the interior of . In contrast, we will show that
the 2-dimensional local stable manifold of 0 meets only at 0.

If u (ul, u2, u3) and v (vl, v2, v3) R 3, write u -> v if u. -> v.,/" 1, 2, 3, and u > v
if u. > vi,/" 1, 2, 3. Because all off-diagonal entries of A(0) are nonnegative, and
because none of the coordinate planes or lines are invariant under this matrix, it follows
[7] that ea(O)tv > 0 for all v _>- 0, v 0, and > 0. The tangent flow at 0 thus carries into
int . Moreover, ea() cannot have two linearly independent positive eigenvectors [4, p.
63]. Using this fact and the invariance of Y, it is clear that the invariant plane of
linearized solutions asymptotic to the origin intersects only at 0. Since the stable
manifold of 0 is tangent to this plane at 0 and since Y( is positively invariant, we
conclude that there is no orbit in Y( having 0 in its o-limit set.

Let p , p 0, and note that the o-limit set w(p) of p is not empty. From (a) and
(b), together with the previous paragraph we thus conclude that w(p) P or w(p) is an
asymptotically stable periodic orbit. But in the second case P and o(p) can be
connected by an arc; and, since the basins of attraction for P and o(p) are open and
disjoint, there must be a point q on this arc which is not in either basin of attraction. In
fact, by choosing q on the boundary of one of these basins, it follows that w (q) is not an
attractor. But then o(q) contains 0, which is impossible. We conclude that w(p)= P,
and our argument is complete. Q.E.D.
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A STUDY OF PC1 HOMEOMORPHISMS ON SUBDIVIDED
POLYHEDRONS*

M. KOJIMA? AND R. SAIGAL"

Abstract. In this paper we consider the problem of establishing conditions when a given piecewise
continuously differentiable mapping is a homeomorphism of a closed convex polyhedral set. These conditions
are a generalization of the ones used by Gale-Nikaido and are similar in spirit to those of Mas-Colell. For the
special case when the mapping is piecewise linear, we give an apparently new sufficiency condition for the
mapping to be a homeomorphism of R". The results are further extended to include the case when the
Jacobians may be singular.

1. Introduction. Let S be a closed convex polyhedral subset of R n, the n-
dimensional Euclidean space, and let S: be a class of closed convex polyhedral subsets of
S which partition S. A function F from S into S is called piecewise continuously
differentiable (PC for short) on the subdivided polyhedron (S, E) if it is continuous, and
for each piece o- in E, F F]o- (the restriction of F to o-) is a continuously differentiable
mapping. The problem we consider in this paper is that of establishing conditions under
which F maps S homeomorphically onto F(S); i.e., F is one to one and onto.

One of the early works establishing such a result is that of Gale and Nikaido [5],
which is often used to establish the uniqueness of solutions. Their result states that if
S {x: ai <= xi <= hi} and F is a continuously differentiable mapping from S into R n, then
if, for all x, the Jacobian matrix DF(x) of F has all principal minors positive, F maps S
homeomorphically onto F(S). H. Scarf [21 has conjectured that since in the nonlinear
complementarity problem, such a strong requirement on the Jacobian can be consider-
ably weakened (see, for example, Corollary 2.6, Saigal and Simon [19]), such a
weakening should be possible for the hypothesis of the Gale-Nikaido theorem. This
was verified by Mas-Colell [12]. He further generalized the result to the case when S is a
compact convex polyhedron, and showed that such a result would be false for noncon-
vex objects. The proof of [12] involved the use of degree theoretic arguments (a
possibility of which had been foreseen by H. Scarf). Independently, Garcia and
Zangwill [6] again verified this conjecture, using the norm-coerciveness theorem [15,
5.3.8]. Their result is on a rectangle S, but a slight weakening of the requirement on the
derivatives was achieved. In this paper, we further generalize this result. In one
generalization, using degree theoretic arguments similar to those of [12], we establish
the result for PC mappings. In the other, we find conditions under which this result
holds, when the derivatives may be singular. Under a similar hypothesis involving
negative determinants, we show that our approach fails for PC cases.

In case the restriction to each piece in E of the mapping F is affine, we call it a
piecewise linear mapping and, for brevity, PL. Considerable attention has been paid to
the study of such mappings (see, for example, Eaves and Scarf [3], Fujisawa and Kuh
[4], and Ohtsuki, Fujisawa and Kumagai [14]), as well as to the problem of generating
PL approximations (see, for example, Kojima [8], [9], Saigal [18]). In addition, several
authors have contributed to the conditions under which such mappings are onto (see,
for example, Chien and Kuh [1], Rheinboldt and Vandergraft [15]). Also, a set of

* Received by the editors May 9, 1978, and in revised form December 12, 1978. This work was
supported in part by Grant MCS77-03472 from the National Science Foundation.

t Department of Information Sciences, Tokyo Institute of Technology, Tokyo, Japan. The work of this
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Northwestern University, Department of Industrial Engineering and Management Sciences, Evanston,
Illinois 60201.
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conditions under which the mapping is a homeomorphism are developed in [4] and 14].
In this paper, we present a sufficiency condition which is weaker than that of [4] (see
Kojima and Saigal [11]). By an example, we show that it is not necessary, and that any
condition put only on all subsets of the Jacobians of the pieces cannot be necessary and
sufficient.

After presenting the terminology and notation in 2, in 3 we calculate the local
degree of certain PC mappings. In 4 we prove the extension of the Gale-Nikaido
theorem for PC mappings, and show by a counter example that the appropriate
negative condition on certain minors of the Jacobian is not sufficient to guarantee a
homeomorphism. In 5 we prove a sufficiency condition under which a PL mapping is a
homeomorphism and in 6 we present two PL mappings which are homeomorphisms.
One of these mappings is generated by the Samelson-Thrall-Wesler [20] partition
theorem, and the other by the recent result of Kojima and Saigal [10] relating to the
linear complementarity problem with negative principal minors. The later example is
presented in the hope that it will help to generate conditions ensuring homeomorphisms
with the hypothesis that certain minors of the Jacobian are negative. Finally, in 7, we
show how our results can be extended to include the case when the appropriate minors
of the Jacobian may be zero.

2. Notation and definitions. In this section wepresent the notation and definitions
that will be needed in the subsequent sections. In particular, we establish some
properties of subdivided polyhedrons and functions on them.

By a bounded polyhedron, we represent the convex combination of a finite
collection of points. Also, given a set
i.e., H {y" y "i=1 hixi, -’i=1 hi 1, x "c}-’r, and thus the origin is contained in H.
A convex set of the form {x + hy: h -> 0} is called a half-line. We will call the convex hull
of a finite collection of points and half-lines in R a convex polyhedral set. The
dimension of a set is the dimension of he subspace spanned by the set.

The interior d’, and the boundary 0tr of a set tr, are the relative interior and
boundary of the set in the affine subspace H, + o-. Also, a subset r of tr is called a face of
o- if for every x and y in tr 0 < h < 1 and (1 h )x + hy in z imply x and y are in z. It can be
readily confirmed that the faces of convex polyhedral sets are also convex polyhedral
sets. For an n-dimensional set tr, a (n- 1)-dimensional face is called a facet.

Now, given a set S and a finite class E of nonempty subsets of S, we say (S, E) is a
subdivided polyhedron of dimension n if:

a) elements of Y_, are n-dimensional convex and polyhedral, and are called pieces;
b) any two members of E are either disjoint, or meet on a common face;
c) the union of the pieces in E is S.
We say that (S, E) is a subdivided compact polyhedron if S is compact, and a

subdivided convex polyhedron if S is convex. Also, the dimension of (S, E) is the
dimension of the set S.

Let (S, E) be a subdivided compact convex polyhedron of dimension n, with S in
R ". Then, there exists an extension E’ of E such that (R , Y_,’) is a subdivided
polyhedron. This can be observed by defining the projection mapping:

(2.1) ]Ix -P(x)[I min [Ix

and noting that E’ is generated by adding the closure of p-l(,) for z, a face of some r in
Y_, to those already in E (see Fig. 2.1).

Now, let F: $ R be a continuous function on a subdivided polyhedron (S, E).
We say F is PC, i.e., piecewise continuously ditterentiable, on (S, E), if for each piece r
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FIG. 2.1

in ,E there exists an open set B containing 0- such that F F[0- can be extended to B
continuously differentiably. In particular, it is called piecewise linear if F, is affine, i.e.,
F(x) Ax a for some n x n matrix A and n vector a.

Now, given a subdivided compact convex polyhedron (S, X) and a mapping
F: S--> R which is PC on (S, ,,), there exists a PC extension to (R n, X’) when the
subdivision Z is extended by the projection mapping (2.1). This mapping is F p. R" -->

R ", and as can be readily verified, it is PC on (S, X’).

3. Local degree of PC1 mappings. In this section we consider subdivided poly-
hedron (R ", X), and a PC mapping F: R" --> R n. Our aim is to get sufficient conditions
which establish the local degree of such a mapping. We now have a lemma, which will
then be used to prove the main result:

LEMMA 3.1. Let be such that DF() is nonsingular for all tr containing . Then,
there exist positive numbers a and e such that

(3.1) IIF(x)-F( )ll  llx- ll for all x eB(2)={x" IIx- ll  }.

Proof. Let O’1, 0"2," ", 0"k be all the pieces of E which contain . Then, there is a

0 such that

k

B(2) c U 0"i.
i=1
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Let r’ {ri: i= 1,..., k}. For each x B() r’, we have

liE(x)-F(2)II--> IDF,(2)(x )11- o (llx 11)
and since DF,,() is nonsingular, there is a’> 0 such that

liP(x)- F()ll--> 2’llx 11- o(llx 11),
Hence, there is a 6 > e’ > 0 and 0 < a" < a’ such that

[IF(x)-F(2)l[>-a"llx-[I for all x B,(2)f3o";

now letting a be the smallest a" and e be the smallest e’, we have our result.
LEMMA 3.2. Let F be continuously differentiable, and H a subspace of R" of

dimension <-n 1. Then F(H + v) contains no open set, ]:or all v R n.
Proof. Since F is Lipschitz continuous, the proof of the lemma follows trivially.
Given a continuous mapping F and an open bounded set C with y OC, following

Ortega and Rheinboldt [15], we define deg (F, C, y) to be the degree of F with respect
to C at y.

We now prove our main theorem"
THEOREM 3.3. Let 2 R , such that det (DF(2)) is positive (negative) ]:or every r

containing. Then, there exists e > 0 such that deg (F, B(2), F(2)) _-> + 1 _-< -1) ]:or each
6in (O,e).

Proof. By Lemma 3.1, we have e > 0, c > 0 satisfying the hypothesis of the lemma.
We shall now show the theorem for the case when det (DF()) > 0 for all r containing

Let 0 < 6 < e, B B(), y F() and OB the boundary of B. Then, from Lemma
3.1,

I[F(x)-F()II >- a6 for all x OB and some a > 0.

Since F is continuous, there exists a/3 > 0 such that

IIF(x)-qll>-_a6/2 for all x in OB and q in hull {F(B())}.

Let q F(Bo()). Now consider the mapping G(x)= F(x)+ y -q, and the homo-
topy H:B[O, 1]R" defined by H(x,t)=(1-t)G(x)+tF(x). Then, for (x,t) in
OB [0, 1 we have

IIH(x, t)- Yll- IlF(x)- (ty + (1 t)q)ll--> -.
Hence, by the homotopy invariance theorem [15, 6.2.2], deg(G,B, y)=

deg (F, B, y), or deg (F, B, q) (F, B, y).
Since DF(x) is nonsingular for all x in B (’1 cr and tr containing 2, using the inverse

function theorem, it can be established that F(B()) contains an open ball U. Also,
from Lemma 3.2, the image F(r) of a properface - of any piece o- contains no open ball.

Thus, we can choose q in U such that B ={x B: F(x)=q} does not intersect any
facet of a piece r. Hence, as the/ is a set of isolated points, and the local degree of each
x B is +1, we have, from the fact that the degree of a mapping is the sum of local
degrees (from the decomposition of domain [15, 6.2.7]), that

deg (G,B, y)>- 1

and we have our result.
For a continuously differentiable mapping F, if det DF(x) > 0 at some x, using the

inverse function theorem [15, 5.2.1] there is an open bounded set U such that
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deg (F, U, F(x)) + 1. We observe that this stronger conclusion for the above result is
not possible. For this, consider the piecewise linear function of Fig. 3.1. The degree of
this mapping at 0 is 2, and the determinant of Jacobian of the linear mapping on each
piece is positive.

FIG. 3.1

4x -x2

4. PC1 homeomorphisms of compact convex polyhedrons. Let (S, Z) be a sub-
divided compact convex polyhedron, and let F: S-> R" be a PC mapping. In this
section we consider the conditions on F and S under which F maps S homeomorphic-
ally onto F(S), i.e., F(x)=y has a unique solution for each y F(S). The results
presented in this section are in the spirit of the recent extension of the Gale-Nikaido
theorem [5] by Mas-Collel [12] (see also Garcia and Zangwill [6]).

Let P: Rn->S be the projection mapping (2.1), and let G" R->R be the
mapping

(4.1) G(x) F P(x) + x -P(x).

We observe that G is a PC mapping on the subdivided polyhedron (R", Y_,).
We now state our condition, which is the same as the one used by Mas-Collel [12]

(compare also with condition (ii), Corollary 2.6 of Saigal and Simon [19]).
Condition 4.1. Let x in S lie in a face T of S. Also, let x be an element of o- where o-

in Y_, is a piece such that dim o-(’1 T dim T, HT- be the subspace spanned by T and
the projection mapping of R" onto HT-. Then, the linear mapping PT- DF(x)" HTr
HT- has positive determinant.
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Under this condition, the following can be proved as is done for Lemma 1 in [12]
(see also [19, Lemma 3.4]).

LEMMA 4.2. Let x be arbitrary, and lie in the pieces tri, 1,..., k, in ,’. Then
det DG(x)> 0 ]’or each cr cri, i= 1,..., k.

We now prove our main theorem.
THEOREM 4.3. Let (S, E) be a subdivided compact convex polyhedron, and let

F: S--> R" be a PC mapping. Also, let F and S satisfy Condition 4.1. Then F maps S
homeomorphically onto F(S).

Proof. Extend E to a subdivision Y_,’ using the mapping (2.1), and let the mapping G
of (4.1) be the corresponding PC extension of F.

Now, from Theorem 2.3, since the Condition 4.1 implies that the determinant of G
is positive in each piece, for each x in R ", there exists an open ball B such that

(4.2) deg (G, B, F(x)) >- 1.

Let A be a n n positive definite matrix, and consider the homotopy

(4.3) H(x, t) (1 t)Ax + t(G(x)- y)

for any y F(S). We now show that H-l(0) is bounded, and thus the degree of G y is
+ 1 since it is homotopic to a map of degree + 1. But, this is true, since for sufficiently
large" x, x 7"Ax > 0 and

xT"G(x) xy xx x 7" (F P(x) P(x) y) > 0

since F P(x)-P(x)+ y is bounded.
Now, using the decomposition of domain [15, 6.2.7] and (4.2), we conclude that,

for each y in F(S), {x: F(x)= y} is a singleton, and we are done.
Note. This theorem is false if the property of positive determinants is replaced by

negative determinants. A counterexample for a PL mapping is given in Fig. 4.1. This
demonstrates that such an extension for C mappings involving E {S} may also be
hard, and conjecture that in this case, the result is true (see also [12]).

FIG. 4.1

$. On PL homeomorphisms of R". In this section we give a set of sufficient
conditions for a piecewise linear function in R" to be a homeomorphism. Let (R ", E) be
a subdivided polyhedron, and let

F: R" -, R
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be piecewise linear on this subdivision, i.e., PC with affine on each piece of Y_,. Since Y.
contains a finite number of pieces, outside some compact region, points of R lie in
some unbounded piece in Y_.. Let these unbounded pieces be numbered trl, tr2,. , trk
for some k, and let Flog(x) Agx ag for some n x n matrices Ai, and n-vectors ai. Then,
we can prove:

THZOREM 5.1. Assume that the Jacobian matrix ofeach piece of linearity offhas a
positive determinant. Also, let there exist a matrix B such that (1 t)B + tAg is nonsingular
for each [0, 1] and 1,. , k. Then, F is a homeomorphism.

Proof. Let y be arbitrary. Then, consider the homotopy

(5.1) H(x, t) (1 t)Bx + t(F(x)- y), [0, 1].

We claim that H-l(0) has no unbounded component. This is true, since the
contrary implies that for some ri, we can find a sequence (x, o) H-l(0), p 1, 2, ,
such that .x tri and Ilxll-. Also, on some subsequences x/llx[[ x*, to t*,
t* [0, 1] and x* # 0. Hence, from (5.1), (1 to)Bx + to(Aix ag) tpy 0. Dividing
by IlxOll and taking limits, we get

(1 t*)Bx* + t*Aix* 0

which is a contradiction. Now, to see that it is one to one and onto, we observe that since
H-l(0) is bounded for each y, and det (B) > 0, from the homotopy invariance theorem
[15, 6.2.2] the degree of F(x)- y is + 1 for all y. The result then follows from Theorem
3.3.

The onto part of the theorem also follows from the works of several authors,
including Chien and Kuh [1], Rheinboldt and Vandergraft [16]. The sufficiency
condition of Theorem 5.1 is weaker than that of Fujisawa and Kuh [4], see Saigal and
Kojima 11 ]. In Fig. 5.1 we present a homeomorphism satisfying the conditions of our

X =X

FIG. 5.1
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1 -1]theorem with B 1/2 1/2 Also, since I and -I appear as Jacobians of the pieces of

linearity, no linear transform of it will satisfy the condition of [4], though there is a linear
transform for which the homeomorphism of [4, Fig. 7] will satisfy the condition. Now
consider the example of Fig. 5.2. This is a homeomorphism which does not satisfy the

[10 --] 3x2 2x

2x x

5X X

FIG. 5.2

condition of Theorem 5.1, and is thus a counterexample to the necessity of our
condition. To see this, note that the matrices

1 1 0

are Jacobians of the pieces of linearity of the nonhomeomorphisms of Fig. 4.1, and, for
these, thus, there is no matrix B satisfying the conditions of Theorem 5.1. We also
observe that this example is also a counterexample to any set of necessary and sufficient
conditions put on all subsets of the Jacobians of the pieces of linearity.

Theorem 5.1 is true if the property of positive determinants is replaced by negative
determinants. Also, if the unbounded pieces satisfy the conditions of Theorem 5.1, it
can be readily shown that {x:f(x)= y} has an odd number of elements, if each of its
elements lies interior to some piece.

A corollary to Theorem 5.1 is the following result which can also be considered as
an explanation of the boundary condition 4.1. Let (S, ,E) be a subdivided compact
polyhedron, with F: S R a piecewise linear function. Then, we can prove

COROLLARY 5.3. Let (S, ,) admit an extension (R , E) such thatFcan be extended
to F’ on R with F’ltr’ affine, and F’ satisfying the conditions of Theorem 5.1. Then F
maps S homeomorphically onto F(S).

Two applications of this corollary are given in the next section.
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6. Two PL homeomorphisms. We now present two PL homeomorphisms; one
satisfies the sufficiency condition of Fujisawa and Kuh [4] while the other does not. The
first homeomorphism is constructed by the use of a matrix which has all principal minors
positive, and establishes the sufficiency part of the Samelson-Thrall-Wesler [20]
partition theorem. The other is constructed by using a matrix which has all principal
minors negative. In the process of the construction, we will prove the main theorem of
Kojima and Saigal 10], and this can be considered a degree theoretic proof of the same.
We now introduce the necessary notation.

Let I {1, , n} and U and V be n n nonsingular matrices. Now, for any or
___
I

let W (W,..., W) be the n xn matrix with

(6.1) W/=
Vi, J.

Also, let pos (A) { y: y Ax, x >-_ 0} represent the cone generated by a matrix A. For
J
_

I, let or(J) {x: xi ->- 0, or and x. _-< 0, or}, and by g {or(J): J
_

I}. In this case,
(R , Z) is a subdivided polyhedron. Now, define the PL mapping F: R" - R" by

(6.2) F(x)= Y’, Uxi+ E V.x.
jJ jJ

for x in o’(J).

6.1. The first homeomorphism. We now prove our first homeomorphism
theorem"

THEOREM 6.1. Let U, V, W, J
_
L be defined as above, and let det (W) > 0 for

each J. Then F is a PL homeomorphism of R onto R n, on the subdivided polyhedron
(nn, ,).

Proof. On each piece of Z, F(x)= Wax for xr(J). Also, det(U-1W)
det(U-1)det(Wa)>0 for all J. By choosing JJ, jI, we can show. that each
principal minor of U-a W is positive. Hence, for each J, we have det ((1 t) U + tWit)
det (U)(det ((1 t)I + tU W) >0 since U-’W has all principal minors positive (see
Lemma 3.1.1, Saigal [17]). Hence, the result follows from Theorem 5.1.

As a corollary of this theorem, we prove the sufficiency part of the Samelson-
Thrall-Wesler [20] partition theorem.

COROLLARY 6.2. Let U, V, W, J
_

I, be defined as above, and det (U) > 0, with
det (W:)= (-1)11 when ]J[ is the number of elements in J. Then, the collection of cones
A {pos Wr)" J

_
I} partitions R .

Proof. Define

{ W/, j6J,w=-w,., /J

and we note that the mapping F(x)= Wx, x (J) is a PL mapping. Also, since
det (W)> 0, F(x) is a PL homeomorphism from Theorem 6.1. This corollary follows
by observing that the cones of A are images of the cones of Z.

6.2. The second homeomorphism, In this section we consider U E (the identity
matrix) and V$ 0 a matrix having all principal minors negative. Then Kojima and
Saigal [10] have shown that F defined by (6.2) is not a homeomorphism of R" on the
subdivided polyhedron (R", Y_,). In this section, we will show that there exists a
PL-homeomorphism G of O R"\R_ onto O such that F G is the identity mapping
on Q (where R_ is the nonnegative orthant).
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Now, define Z’= X\o-(I). Then (Q, E’) is a subdivided polyhedron (which is not
convex). Define as the restriction of F(as defined by 6.2)) to Q. We now state some
preliminary results.

LEMMA 6.3. Let V. 0 and have all principal minors negative. Then, there is a d > 0
such that Vd > O.

Proof. For the proof see [10, Lemma 2.1 ].
LEMMA 6.4. Let V have all principal minors negative. Then all proper principal

minors of V-1 are positive.
Proof. For the proof see 10, Lemma 4.1 ].
Now, for d > 0 such that Vd > 0, consider the homotopy:

(6.3) H(x, t) (1 t) V(x + d) + t[(x) + Vd].

LEMMA 6.5. H-I(0)OOO [0, 1]= .
Proof. Assume the contrary, that there is a (x, t)80 x[0, 1] with (x, t) H-l(0).

Then, x->_0 with J={j:xj>O}, [J[<n. Thus, if J#, (1-t)Vx+tW1x=-Vd, or
multiplying by V-1, we get

(6.4) (1 t)x + tW-1 Wlx -d.

Now, let A be the principal minor of V-1 in V-1W. Then, from (6.4) we can conclude
that A < 0, > 0 has a solution. But, from Lemma 6.4, A has all positive principal
minors, which leads to a contradiction, [6]. Also, J , since the contrary implies that
X --do

We are now ready to prove our main result.
LEMMA 6.6. {X’/(X)-- Vd} is a singleton.
Proof. Assume the contrary. Then, since Lemma 6.5 implies that in H-I(0) no

solution inside O lies on a component intersecting 0(2, there must be an unbounded
component inside O.

But, since (x) Wjx for some J
_

I, and V-1W has all positive principal minors,
using arguments of Theorem 5.1, we get a contradiction. Thus, the result follows.

THEOREM 6.7. For any y Q, T ={x: F(x)= y} is a singleton. Also, T c O.
Proof. For any y Q, y0 and thus Tf3o’(I)= . Hence, for each x in T,

det DF(x) is the same as the determinant of some principal minor of V, and so
det DF(x) < 0. Hence, from Theorem 3.3, deg (F, B, y) -< -1 for some neighborhood B
of x.

Now consider the homotopy

H(x, t)=F(x)+(1-t)Vd-ty;

we note that H(x, 0)- 0 has a unique solution x =-d, from Lemma 6.6. Hence the
degree of H(x, 0) is -1. Also, H-a(0)c Q[O, 1] is bounded, and hence by the
homotopy invariance theorem, [15, 6.2.2], H(x, 1) has degree -1. Since deg (, B, y)
deg (F, B, y)_-<- 1, the result follows.

We now prove the main result of this section.
THEOREM 6.8. Let V. 0 and have all principal minors negative, U EandFbe as

defined by (6.2). Then there exists a PL homeomorphism G on a subdivision ofQsuch that
F G is the identity on Q.

Proof. Let A be as in Corollary 6.2 and let A’ be the collection of polyhedrons of the
type tri tr [3 {x: xi <-- 0}, 1, , n, and tr A. Then it is readily confirmed that (Q, A’)
is a subdivided polyhedron. Define G: Q Q by y -{x: F(x) y}. This is well defined
by Theorem 6.7. Also G is PL, and for y in pos (Wj), J I, G(y)= Wly, and that is a
homeomorphism of Q onto G(Q).
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1
We now give an example of such a mapping G. Let V |-

4

[1 2]We=V, WI= 0 -6
W{2}

4

W
4

The pieces of linearity of the mapping G are given in Fig. 6.1.

_26]. For this case

FIG. 6.1

Also, as can be readily confirmed, G, in R 2, has a PL extension onto R 2 which is
also a homeomorphism of R 2. For the above example, if one added R 2+ r(I) to the set
A’, and extended the mapping G to ( by

G(y), yQ,8(Y)= wy, y(),

where W
4

(the matrix consisting of the nontrivial columns of W{i}), ( maps

R 2 homeomorphically onto R 2.
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We conjecture that G has such an extention in n-dimensional Euclidean space as
well, but see no way to prove this.

7. Extensions when the Jacolians may be singular. Our aim in this section is to
extend the results of 3 and 4 to cases when the Jacobians of the mappings may be
singular. Our main assumption is that for any y in R n, the sets of the type {x: F(x)= y
and DF(x) is singular} are finite. We then show that the results of 3 can be extended,
and thus a further extension of the Gale-Nikaido theorem [5] is obtained.

We consider a subdivided polyhedron (R n, Y_,) and consider a PC mapping
F: R R" on it. Then, an extension of the Lemma 3.1 is the following.

LEMMA 7.1. Let be in R and cry, , tr be the pieces in which it lies. Suppose that
{x cri: F(x)=F() and DF,,(x) is singular} has at most a finite number of elements,
for each i. Then, for each eo > O, there is a 0 < e < eo such that

[[F(x)-F()[[>O if llx-ll-- .
Proof. Let e0>0, y =F() and X= Ui{x ei: F(x)= y and DF,(x) is singular}.

Since X is finite, there is a positive number 8 <e0 such that B--Ba()c Ugo- and
OBfqX= . Hence, for each x in OB, we have either F(x)#y or F(x)=y and
DF(x) nonsingular. In the former case, by the continuity of F, there exists y(x)>0
such that yC:F(Bv()(x)), and in the latter case, by Lemma 3.1, a y(x)>0 such that
yF[B()(x)\{x}]. Let V= U xo int (Bv()(x)), and V is an open set in R" with
OB = V and F(x) y for all x V\OB.

Hence we can choose 0 < e < 6 with the required property.
We now use Lemma 7.1 to compute the local degree of a mapping.
THEOREM 7.2. For every piece cr in Z and y in R , let

(7.1) det DF(x) >-O for all x 6 o’.

(7.2) {x 6 tr: DF(x) is singular} contains no open set.

(7.3) {x tr: F(x)= y andDF(x) is singular} has at most a finite number ofelements.
Then, for every x in R and eo > O, there is 0 < e < eo such that

deg (F, B(),F()) >- 1.

Proof. Let x in R" and eo > 0. By Lemma 7.1, there is a positive number e < eo such
that for B B (.), y F() we have

IlF(x)-y[[>0 for all x 6OB.

Using arguments identical to those of Theorem 3.2, we have our result.
We note that if, in (7.1), we assumed that the det (D[(x)) <= O, then, by an identical

argument, we could establish that deg (F, y, B) _-< -1.
We now weaken the hypothesis of Condition 4.1 so that we can obtain a further

generalization of the Mas-Colell 12] generalization of the Gale-Nikaido theorem [5].
Consider a PC mapping F: $ - R" on the subdivided compact convex polyhedron

(S, ). We now state our condition.
Condition 7.3. Let T be a face of S and o- a piece in Y_, such that the dimension of

z r fq T is the same as the dimension of T. Then

(7.4) PT- DF(x): HT- --> HT- has nonnegative determinant for each x in z.

(7.5) {x z" PT- DF(x) is singular} has at most a finite
number of elements.
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We now show that if Condition 7.3 is satisfied, then the conditions of Theorem 7.2
are satisfied.

LEMMA 7.4. If F satisfies Condition 7.3, then the mapping G defined by (4.1)
satisfies the conditions of Theorem 7.2.

Proof. Let (R n, .E’) be the subdivision on which G, defined by (4.1), is PC1, and let
tr E’ be an unbounded piece. Then there exists a face F of S and E such that if- t f3 T, dim - dim T, and PT(x) " for all x r; and

DG(x PTDF(P(x)) + I Pr
Now, by using the same argument as in the proof of Lemma 1 of [12], we have (7.1), and

(7.6) det DG(x) 0 iff PDF(Pr(x)) is singular.

If dim H, 0, then DG(x) I for all x o- and (7.2) holds. Now we take dim H, -> 1.
Now, assume the set {x tr: DG(x) is singular} contains and open set X. Then, the
projection P(X) of X into H, is open and PrDF(PT(x)) is singular on Pr(X). Since
dim H, -> 1, this contradicts (7.5). Thus we have shown (7.2). It follows from (7.5) that
there exists a finite number of points x 1, x 2, x in - such that PDF(x) has a
positive determinant if x- and x#x i, i=l,...,m. Let yR and Y=
{x tr" G(x) y and DG(x) is singular}. By (7.6) we obtain

Y U {x tr" Pr(x) X i, F(x i) + X i- X y}
i=1

c U {x R" F(x i) + X i- X y}
i=1

and we see that {x R " F(xi)+xi-x y} has at most one element, and thus (7.3)
follows.

Thus, we obtain the following theorem"
THEOREM 7.5. IfF satisfies Condition 7.3, then F maps S homeomorphically onto

F(S).
Proof. The theorem follows directly from Theorem 7.2, Lemma 7.4, and the

argument used in the proof of Theorem 4.3.

Postscript. Recently it was brought to our attention that G. Chichilinsky, M.
Hirsch and H. Scarf has also verified the extension of the Gale-Nikaido theorem as
considered in [12]. In addition, Y. Kawamura has extended the homeomorphism
theorem of Fujisawa and Kuh I-4] to the case where the functions are Lipschitz
continuous.
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WEAK SOLUTIONS OF (p(x)u’(x))’+g(x)u’(x)+qu(x)=[
WITH q,fH_l[a,b], O<p(x)_L[a,b], g(x)c.L[a,b] AND UHl[a,b]*

R. E. WHITE-

Abstract. In this paper we consider weak solutions u(x)Hl[a,b] of the differential equation
(p(x)u’(x))’+ g(x)u’(x)+ qu(x)=f where q and f may be distributional derivatives of elements in L2[a, b].
The linear initial value and linear boundary value Blu =Celu(a)+/31u’(a) =0, B2u ce2u(b)+ fl2u’(b)=
0, a 1, a2 > 0,/31 <= 0 =</32 problems are studied. Also the semilinear boundary value problem where f f(x, u)
and BlU b(u) and B2u b2(u) is studied.

1. Introduction. Consider the ordinary differential equation (p(x)u’(x))’+
g(x)u’(x)+qu(x)=f where O<p(x)L[a,b], g(x)L[a,b],q,fH_l[a,b] and
u Hl[a, hi. H_l[a, b] is the set of distributions (see L. Schwartz [8]) which are
distributional derivatives of functions in L2[a, b] and L:z[a, b] is the set L:z(a, b)
functions with distributional values at a and b. Consequently, q or )c may be a delta
"function" or a function of the form (x-a)-l- where c > 1/2. A particular example of
qu(x) is 6(X-Xo)U(X)=6(X-Xo)U(Xo) where U6Hl[a,b]. Hl[a,b] is the set of
functions in L:z[a, b] whose distributional derivatives are also in L2[a, b] and hence
Ha[a, b] is a subspace of the Sobolev space Ha(a, b) which is continuously embedded
into C[a, hi. The general definition of qu(x) will place qu(x)H_l[a, b]. Thus, by a
solution of the differential equation we shall mean a distributional solution.

The advantages of considering weak (distributional) solutions are three fold: First,
we may consider more general coefficients and inhomogeneous term. Second, the
conditions for existence are relaxed and hence easier to establish. Third, because of the
previous two, nonlinear problems are more readily dealt with.

Since our solutions are to be in H[a, b], they are also in C[a, b] and hence
physically meaningful. Physical situations in which ordinary differential equations are
of the above form occur in many problems. Perhaps the simplest example is the steady
state ideal string problem with a point force at x0. The differential equation is
-u" a6(x -Xo) where a is proportional to the magnitude of the force. The derivation
of this problem may be found in I. Stakgold [11]. This type of problem with inhomo-
geneous term 6(X-Xo) also occurs in the definition of the Green’s function for
Sturm-Louville problems. Another example comes from the steady state heat conduc-
tion problem between two plates with a heat source between them. The differential
equations is -(p(x)u’)’=a6(x-xo) where p(x)=cl(1-H(x-xo))+c2H(x-xo),
H(x) =-0 for x < 0 and ---1 for x _-> 0 and is called the Heavyside function, Cl is the
thermal conducting of the bottom plate and c2 is the thermal conductivity of the top
plate. This problem is discussed for c1=c2 in [8]. In general many problems of a
diffusion nature in steady state and in one dimension are described by such equations.
For example see D. D. Joseph and E. M. Sparrow [4] and the interesting references
pretaining to chemical reactions with diffusion, neutron diffusion and heat diffusion. In
our case we are interested in problems with composite or inhomogeneous media where
the physical properties have discontinuities or nonlinearities.

Examples of nonlinearities in heat conduction include (i) heat loss due to radiation
and which is proportional to u u0 and (for large u u0) to u4- u and (ii) heat loss due
to heat convection to the adjacent fluid and is proportional (in some cases) to (u u0)5/4.
Also these losses may occur at just the boundaries or at discrete points in the media. In

* Received by the editors August 3, 1976, and in final revised form November 8, 1978.
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the latter cases they are proportional to 6 (x Xo)(U (x Uo(X )), g (x Xo)(U (x )4 u(x))
and g(x-xo)(u(x)-uo(x))5/4, respectively. The equations with nonlinear boundary
conditions and inhomogeneous term with smooth (C2+) coefficients have been con-
sidered in H. B. Keller [5]. The solutions are constructed via a monotone sequence of
solutions of the linear problems. We shall also use monotone sequence to construct a
solution of these equations with "badly" behaved coefficients. Nonlinearities may also
occur in the conductivity term, p(x, u). If the conductivity is independent of x, then the
problem may be dealt with by a change of dependent variable given by KirchoIt’s
transform V =- o p(u’) du. If p depends on both x and u, then other methods must be
used such as described in R. E. White [15].

We shall consider the linear initial value, the linear boundary value and the
nonlinear inhomogeneous boundary value problems. Section two contains the preli-
minaries. This includes the notion of average value of a locally integrable function and
some spaces of functions or distributions associated with this notion of value. The
average value of the derivative at the boundary is needed since any solution that is in
Hi(a, b) may not have continuity at a or b of u’(x). Section three is a study of the initial
value problem via the Volterra integral equation. To a certain degree this follows the
classical arguments. In 4 we study uniqueness of the boundary value problem with
boundary conditions BlU=alu(a)+fllu’(a)=bl, B2u =a2u(b)+fllU’(b)
bE, al, a2>0 and i10i2. We do this by using the generalization given in R. E.
White 14] of the classical strong maximum principle. Because derivatives appear in the
boundary condition, it is necessary to use the strong as opposed to the weak maximum
principle. In 5 we establish existence to the differential equation with the above
boundary conditions. The classical variation of parameters formula still holds. Finally in
6 we establish the existence to the semilinear boundary value problem where

f=f(x, u), Bu--bl(U) and B2u =b2(u). We construct the solution by monotone
methods and use the generalized strong maximum principle to establish the mono-
tonicity of the corresponding integral operator.

These results generalize many of the classical theorems in ordinary differential
equations. In general see P. Hartman [3] and the references mentioned in the sections of
this paper. The proofs given in this paper essentially follow the classical proofs. The
differences arise when we must deal with average value of the derivative and when q and
/ are distributional derivatives of L2(a, b) functions. In our proofs we have tried to stress
these differences.

2. Preliminaries. In the initial conditions and in the boundary conditions we need
the value of an integrable function to exist in some sense. We define the average, right
average and left average values at a point for integrable functions. The average value of
integrable functions coincides with symmetric value of certain distributions as defined
in P. Antosik [1]. In order to give a characterization of symmetric value, we need to
define a g-sequence" 8n C (a, b) is a 8-sequence about x (a, b) if and only if (i)
support (x- 1/n, x / 1/n), (ii) t(x)_-> 0 and (iii) ib 8(y) dy 1. {} is even about
x if and only if each ; is even about x. The symmetric value at x of a distribution
u @’(a, b) may be defined to be the unique limit of u(Sn) for all even g-sequence {Sn}.
The right and left values of an integrable function coincides with the right and left value
of distribution as defined by S. Lojasiewicz [7]. The left value at x for example, may be
defined as the unique limit of u(g) for all t3-sequences about x with support
(x 1/n, x). Finally these values may be defined in terms of value sets for distributions
as defined in R. E. White [14]. Let u @’(a, b) and x (a, b). The value set of u at x is
defined by @(u,x)=- >0{u(b)lb C (a,b), support rbc(x-e,x +e),
bb(y) dy 1} where the closure is in the two point compactification
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of the real line, [-oe, oe]. A distribution is defined to have value at x if @(u, x) is a
singleton. Examples include @(H, 0)=[0, 1], @(8(X-Xo),Xo)=[O, oo] and
@(f(x), x) {f(x)} when f(x) is continuous at x. The notion of value set of elements in
H_l[a, b] will be used later in this paper.

By demanding that square integrable functions have right average value at x a
and left average value at x b and introducing an appropriate norm we obtain a
complete subspace, L2[a, b] L2(a, b), of the square integrable functions. Thus one
can use the Neumann series to obtain solution to a Volterra integral equation which
eventually yields a solution to the initial value problem. This solution and its derivative
will have right average value at x a and left average value at x b.

DEFINITIONS. Let u Ll(a, b). ($,u)(x) rx+l/,=-n/ZJx_l/,uty)dy, (Lu)(x)=-n
x+l/n(y) dy and (Ru)(x)=-n Ix u(y) dy. If the limits exists, then u has the following

values:
Average value of u at x u(x) lim_, Snu(X).
Left average value of u at x u (x-) limn_, Lu (x ).
Right average value of u at x u(x +) lim,_, Ru(x).
Examples. 1. Let u H(x)- the Heavyside function. Then clearly H(0)- 1/2.
2. Let u be given by the graph shown in Fig. 1. Then u(0+)--

lim_,n / u (y) dy lim_. n (21-) 1 /n 1/2.

lt(X)

i x

FIG.

3. If limy_,x u (y) exist, then the value of u exist at x and is this limit.
The first theorem states some of the routine properties of these values. The proofs

are nearly the same as those given in [1] and [2]. For the purpose of completeness, we
sketch the proofs. Recall that a distributional derivative of u Ll(a, b) or e’(a, b), u’,
is a map from C (a, b)R given by u’(b)-- u(-b’) =Ib u(x)(-c’(x)) dx where b
CT(a,b).

THEOREM 1. Let u, v Ll(a, b). Then we have the following:
1. The average value of u at x (a, b) is equivalent to the symmetric value (see [1 ])

of u at x.
2. The average left and right values at b and a are equivalent to the left and right

values (see [2]) at b and a.
3. If the value at x (a, b) exist ]:or u and v, then au + fly has value at x and

(au +flv)(x)= au(x)+v(x) for a, fl . Also this is valid for right and left
values.

4. If u is continuous at x (a, b) and the value of v exist at x, then uv has value at x
"and (uv)(x)= u(x) v(x). This also holds for right and left values.
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5. If u, u’, v, v’ Lz(a, b) and all have values at x, then (uv)’ has value at x and
(uv)’(x) u’(x)v(x)+ u(x)v’(x). This also holds ]:or right and left values.

6. If u’= O, i.e. u’(qb) 0 for all ck @(fI), and u has zero value (or right or left
values) at Xo6 (a, b), then u O.

Sketch ofproo]s. 1. One should use the characterization given in [1] of symmetric
value as the unique limit of b U(y)Sn(X- y) dy where {6n} is any even delta sequence.

2. In a similar manner, one should use the characterization given in [2].
3. This is proved by the direct application of the definitions.
4. If we write u(y)v(y) (u(y)- u(x))v(y) + u(x)v(y) and integrate according to

the definition, then the desired result follows from the continuity of u at x.
5. The derivatives are distributional derivatives and it is not difficult to show that

(uv)’= u’v+ uv’. By part 4, (u’v)(x)= u’(x)v(x) and (uv’)(x)= u(x)v’(x). By part 3,
(uv)’(x) exists and (uv)’(x)= u’(x)v(x) + u(x)v’(x).

6. Since u is a distribution and u’=0, u =constant, i.e. u(b)=b u(y)b(y) dy
constant. ab 4’(Y) dy for all b (fI). Thus u(x) constant for all x 6 [a, b] and so
constant u (x0) 0.

We shall use the following spaces. Note that the square brackets indicate that
certain distributions have average values at a and b.

DEFINITIONS.

L2[a, b]={u L2(a, b)lu(a+), u(b-) exist} with norm

u llUllL=Ca,b IlulI2<o,)+sup I(Lmu)(b)l +sup IR,.u(a)l,

Ha[a, b] {u e L2[a, b]l u’ e L2[a, b]} with norm

u llull,.=ta,/llu I1’ ta,,

H-a[a, b] {v @’(a, b)lv u’, u L2[a, b]} with norm

v ->llui[c2ta.a], u’= v, u(a+)= O.

THZOaEM 2. L2[a, b], Hl[a, b] and H_l[a, b] are complete.
Proof. Consider Uk L2[a, b and let uk be Cauchy in Lz[a, b ]. Then uk is Cauchy in

Lz(a, b) and so must converge to u L2(a, b). We must show that u has right and left
values at a and b. Consider the right value at a. Since sup,, [R,,uk(a)[ is Cauchy,
[R,uk(a)- RmUl(a)[ <- sup,, [R,,(uk Ul)(a) < e for k, >_- N. By taking limits as m oo,
we obtain luk(a+)-ut(a+)l<=e for k, l>=N. Thus Uk(a+) is Cauchy in R and so must
converge to a real number, d. Also if one takes the limit as loo, we obtain
[R,,uk (a) R,,u (a)l <= e for k => N and all m. Now we show that d lim,,_.oo R,,u (a)
u(a+).

Id emu(a)[ <= [d- u (a +)l + lug(a+)-R,u(a)l + [RmUk(a) R,u(a)l

<-e+lu(a+)-R,nu(a)l+e, k<-_Nandallm.

Fix k _->N and note that R,,Uk(a) Uk(a+) as m--> oo. Thus there is an M such that
]d-R,,u(a)l _-< 3e when m ->M. This shows that u(a+)exists and is the limit of u,(a+).
A similar argument yields that uk(b--)-> u(b-) as k-->oo. Consequently Lz[a,b] is
complete.

In order to show that Hi[a, b] is complete, we will use the fact that the Sobolev
space Hl(a,b) with norm u-llullza,)/llu’llza,)is complete. If Uk is Cauchy in
Ha[a, b], it is Cauchy in Ha(a, b) and hence must converge to u in Ha(a, b). Now
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applying the arguments given in the proof that L2[a,b] is complete yields that
u(a+), u’(a/), u(b-) and u’(b-) exist and are limits of uk(a+), U’k(a+), uk(b-) and
u ’(b-).

Finally consider H_l[a, b]and let v, be Cauchy in H_l[a, b]. Let un 6Lz[a, b] such
that u’ v, and u,(a+) 0. Then u, is Cauchy in Lz[a, b] and so u, u in Lz[a, b].
0 u,(a+)- u(a+) and thus u(a+) 0. Also since u, u in Lz(a, b)u’ u’ in @’(a, b).
Thus v, - v u’ in H-l[a, b] and consequently H_l[a, b] is complete.

Notation. If v H-x[a, b] and u Lz[a, b] such that u(a+) 0 and u’= v, then we
will denote u by either a V or V or Va. It is important to note that convergence in any of
these spaces implies convergence of the respective values.

We will need the following maps from these spaces into one another.
Definitions. Let Lo[a, b] {u Lo(a, b)l u is left continuous at b and u is right

continuous at a} with norm u --[[UIIL(,,b)+sup,, IRmu(a+)l+sup, ]Lmu(b-)l
1. L[a, b]x L2[a, b]- L2[a, b] by (f, u)--fu (pointwise multiplication).
2. H-x[a, b]XHx[a, b]-H_x[a, b] by (q, u)---qu =-(Ou- Ou’)’.
3. Let p, g L[a, b], q H-x[a, b], u Hi[a, b]

Hl[a, b - H_l[a, b by u Lu =- (pu’)’ + gu’ + qu.
THEOREM 3. The above maps are well defined and continuous.
Proofs. 1. Since [ 6 L(a, b) and u L2(a, b), fu L2(a, b). The values of fu exist

because of part 4 of Theorem 1. Since (f, u)-fu is continuous from L(a, b)x
L2(a, b)-L2(a, b), it suffices to consider whether or not the product of values is
continuous. Let f,(a+)-f(a+) and u(a+)-.u(a+). Clearly ([,un)(a+)=
[n(a+)u,(a+) and (fu)(a+) =[(a+)u(a+). Since the product of numbers is continuous,
the desired conclusion holds.

2. The definition of qu =(Qu- Qu’)’ is from the integration by parts formula.
Since u Hl[a, b], u is continuous on [a, b] and thus Qu has values at a and b. Also
Qu L2(a, b) and hence Qu L2[a, b]. Since Q L(a, b) and u’ L2(a, b), Qu’
Lz(a,b) and so Qu’ is continuous. Thus quH_l[a,b]. Note that (Qu)(a+)=
Q(a+)u(a+) 0 and , Qu’= 0 and so qu Qu- Qu’. Let q, q in H_l[a, b] and
u, u in Hl[a, b]. Thus u, - u in L[a, b] and Qnu, Qu in Lz[a, b and so, by part
one of this theorem, Q,u, - Qu in Lz[a, b]. Since Q Q in Lz(a, b) and u’n - u’ in
Lz(a, b), Q,u’ Qu’ in Ll(a, b) and so Q,u’, - Qu’ in C[a, b] and hence in
Lz[a, b]. Consequently Q,u, Q,u ’ Qu Qu’ in L2[a, b]. Thus q,u, qu in
H_[a,b].

3. Since pu’ Lz[a, b], (pu’)’ H_l[a, b]. Also gu’ Lz[a, b] which is a subset of
H_[a, b] and qu H-1. Thus qu 6H_l[a, b]. The continuity of L follows from the
previous parts of this theorem.

3. Initial value problem. In this section we shall consider the initial value problem.
In the classical case the initial value problem is solved via a Volterra integral equation in
u. The existence of values at a and b follows in the classical case from the smoothness of
the coefficients and inhomogeneous term. Both these steps fail in our case. We develop
a Volterra integral equation in u’ in place of u and the values are attached to the spaces
we work with. Throughout the remainder of the paper, we assume 0 < m-< p _-<M <
oo, p, g, O L[a, b], f, q H_l[a, b] and u Hl[a, b]. This is a further restriction on q.

(1)

Lu =- pu’)’ + gu’ + qu f,

u(a+) given real number,

u’(a +) given real number.
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DEFINITION. U E Hi[a, b] is a solution to (1) if and only if in addition to satisfying
the initial conditions, for all b E @(a, b) C (a, b)

((pu’)’ + gu’ + qu)(qb) f(qb).

Remark. We may write g(x)u’(x) ( g(y)u (y) dy +g(a)u’(a))’ and qu
(I2qu)’=(Q(x)u(x)-I2Q(y)u’(y)dy)’. Thus the differential equation becomes
(p(x)u’(x) + g(y)u’(y) dy + g(a)u’(a) + Q(x)u(x)- Q(y)u’(y) dy)’(&) =(F(x))’(4).
Since the difference of derivatives of two distributions being zero is characterized by the
distributions differing by a constant (see L. Schwartz [9]), u satisfying the differential
equation is characterized by the equality

p(x)u’(x)+ g(y)u’(y)dy+g(a+)u’(a+)+Q(x)u(x)- Q(y)u’(y)dy

F(x) + Constant.

The solution for (1) will be found by solving a Volterra integral equation for u’ and
then integrating u’ to solve for u. Note that we may write u(x) u’(y) dy + u(a +). It is
necessary to consider an integral equation for u’ in place of u because of the lack of
smoothness of q and f. By integrating (1) and solving for u’(x) we obtain the following
integral equation.

(2)

v- Tv h wherev-u’6L2[a,b],

Tv =_ ff -g(Y) + O(y)- O(x)
p(x)

v(y) dy,

p(a +)u’(a +) + F(x) + Q(x)u(a +)
h=

p(x)

Note that h Lz[a, b] since p- L[a, b] and F, Q Lz[a, b]. Also

K(x, y)=(-g(y)+Q(y)-Q(x))/p(x)EL2((a, b)(a, b)),

lim K(x, y)=K(a, a) and lim K(x, y)=K(b, b).
(x,y)(a,a) (x,y)-(b,b)
yZ’x>=a byx

We now state a general theorem which includes the integral equation (2). Since we
are working in L2[a, b] and not in L2(a, b), the proof of this theorem is a little more
complicated than the theorem in L2(a, b). See F. Smithies [10] for the proof in L2(a, b).

THEOREM 4. Let K(x, y)Lz((a, b)(a, b)), limx,y-a,a,,__>y__>a K(X, y)=K(a, a)
and limx,y-b,b,bx>_yK(x, y)=K(b, b). If T: L2[a, b]L2[a, b] is defined by Tv
K(x, y)v(y) dy, then the integral equation v Tv h Lz[a, b] has one and only one

soluaon v o T"h L2[a, b].
Proofi Since L2[a, b] is complete, it suffices to show that the series ,o T"h

converges absolutely in L2[a, b]. Note that Tv L2[a, b] when v L2[a, b]. Certainly
Tv Lz(a, b). The values of Tv exist because lim,y),,y K(x, y) K(a, a) and
lim,y)b,b),by K(x, y) K(b, b). In order to show absolute convergence in L2[a, b],
we will need the following inequality which was proved in Smithies [10]: for n
1, 2, 3,. K"((x, y)llKIla,,,,((l))-’/Zk(x) k2(y) where k(x)=

)2’dy)/, k2y)=(yK(x, y) dx) and K"+X(x, y)is the n+lth iteratedq Kx, y
T v K (x, y)v(y)dy. Clearly, k(x) has left and right values at bkernal, i.e. +x +
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and a. Thus

Tn+ahllL2[a,b]<[,Klln-1 ,)-1/2 { IoL2((a,b)x(a,b))((Ft- 1) kx(x) kz(y)h(y) dy
L2(a,b)

(+SUp Rm\kl(X) ka(y)h(y) dy (a+)

+sup ]L,,(kl(X) ya k2(y)h(y)dy)(b-)]}.
Since k.(y), h(y) L2(a, b), k2(y)h(y) Lx(a, b) and k2(y)h(y) dy is continuous.
Thus kl(x) kx(y)h(y)dy is in L2(a, b). Also since kx(x) have values at a and b,
kx(x) a k2(y)h(y)dy has values at a and b. Thus the {.}_-<M<o and consequently
Eo [[rhll=(., <= l[hllat., + llrhll=t, +E ((n 1) !)-x/2llKll((,x(,)g. Since
L2[a, b is complete, Y=0 T"h converges in L2[a, b to v. Since T" L2[a, b L2[a, b is
continuous, v- Tv h. Clearly v is unique.

THZORZM 5. Let v be the solution of (2). Then u(x)==- v(y) dy + u(a+) is the one
and only solution of (1).

Proof. Certainly u(x)is the one and only one solution of u(a+)= u(a+)and u’= v.
Thus if suffices to show v satisfies the equation

p(x)v(x)+ g(y)v(y)dy+g(a)u’(a)+O(x) v(y) dy+u(a+) O(y)v(y)dy

F(x) + constant

and the initial condition v(a +) u’(a +). The initial condition holds because v Tv + h
and by Theorem 1, v(a)=T(v)(a+)+h(a+)=O+(p(a+)u’(a+)+O)/(p(a+))=
u’(a+). Since v-Tv=h, we have p(x)v(x)-(-g(y)+O(y)-O(x))v(y)dy=
p(a+)u’(a+)+F(x)+O(x)u(a+). Thus p(x)v(x)+ g(y)v(y) dy +O(x) v(y) dy-

Q(y)v(y) dy F(x) +constant.
Remarks. 1. In our considerations of the initial value problem, it is not necessary

to demand that the solution or its derivative have value at b. We could replace HI[a, b
by Hi[a, b) with the obvious norm.

2. Also it is not necessary to have u H[a, b). We could have considered
loc [a, b) where u, u’ are square integrable on (a, b-(l/n)) for all n and have values atHI

a. With the proper choice of seminorms, this becomes a Fr6chet space and one can
proceed in the usual manner to solve the Volterra integral equation.

4. Uniqueness for the boundary value problem. This section contains a discussion
of maximum principles and the question of uniqueness for the boundary value problem

Lu =f
(3) Bxu=-axu(a+)+xu’(a+)=given, ax>0, /31_-<0

B2u=a2u(b-)+fl2u’(b-)=given, a2>0, 12 0.

There are two versions of the maximum principle, the strong and the weak. The
strong maximum principle states if u Hx(a, b) is a weak solution to Lu =f
H_x(a,b),u>-O,uconstant,@(q,x)c[-,O] and @(f,x)c[0, o] for all x
(a, b), then u(x) < supy(a,b) u(y) for all x (a, b). This is proved in R. E. White [14] for
the nonclassical case, i.e. 0 < m <-_ p <-_ M, p, g, Q L[a, b], and the proof for the
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classical case can be found in M. Protter and H. Weinberger 13]. The weak maximum
principle states if UHl(a,b) is a weak solution to Lu-fH_l(a,b),u>-O,u #

constant, @O(q,x)[_,0] and @o(f,x)[0, o] for all x(a,b), then
supye(a.b) u(y)= u(a) or u(b). The weak maximum principle was proved in G. Stam-
pacchia [12] for elliptic operator of more than one variable with badly behaved
coefficients or inhomogeneous term. It is shown in R. E. White [14] that these
conditions on the coefficients cannot be relaxed and still have either the strong or weak
maximum principles.

In G. Stampacchia [12] the weak maximum principle was used to establish
uniqueness for the Dirichlet problem and existence for semilinear problems. The weak
maximum principle can also be used to solve semilinear problems via monotone
sequences of iterates for solutions to linear problems. For example see Hendrik J.
Kuiper [6]. It is our intention to develop similar arguments for the Robin-type
boundary conditions as stated above for the one dimensional case. However, in this case
we need the strong maximum principle as well as the notion of average value for the
derivatives at the boundary. In order to do this we shall make use of Theorem 5 in [14]
which states if u Hi(a, b) is a weak solution to Lu =fH_(a, b), (q, x) f-co, 0]
and @(f, x)c[m(x), oo] when m(x)>Oforallx (a, b), then u # constant cannot have
a nonnegative maximum in the interior of [a, b].

For the remainder of the paper we shall assume jl(p,x)[-K, oo]/x
(a,b),K<oo.

THEOREM 6. Let u Hi[a, b], u is not constant and satisfies Lu ]: where @o(q, x)
[-oc, 0], @o([, x) [0, oo]]’orallx (a, b).IJ’uattains a nonnegative maximumata, then
u’(a+) < O. Also if u attains a nonnegative maximum at b, then u’(b-) > O.

Proof. Since @ O(q, x) c [-oo, 0] and u -> 0, it suffices to prove the theorem for q -= 0.
Let d (a, b) such that u(d) <M u(a). Because Q Loo[a, b]we may choose, as in the
proof of Theorem 6 in [14], a > 0 of z(x) e(-’)- 1 so that @(Lz, x) [m (x), oc] for
all x6(a,d) and re(x)>0. Let O<y<(M-u(d))/(z(d)). Now (L(u+yz),x)=
@(Lu+yLz, x)c@(Lu, x)+y(Lz, x)c[m(x),oo] for all x(a,d). Thus by
Theorem 5 in [14] the nonnegative maximum of u + yz is attained at either a or d. But
(u +yz)(d) u(d)+yz(d)<M= u(a). Thus u +yz must be nonincreasing on [a, d].
By Theorem 2 in [14] (u + yz, x)c [-oo, 0] for all x [a, d]. By part 6 of Theorem 1
in [14] and the fact that @l(yz, x) {yz’(x)}, we have @l(u + yz, x) @a(u, x) + yz(x).
At x a, u’(a +) exists and so u’(a +) + yz’(a) <- O. Since yz’(a) > O, u’(a +) < O.

A similar argument yields the desired conclusion of u’(b-)> O.
THEOREM 7. Let u Hl[a, b] be at solution of (3) and @(q,x)c[-o, 0]. If

@(/,x)[0,](c[-o,0]) for all x(a,b), BlU<_-0(->0) and BEU_-<0(_->0), then
u(x)-< 0(->0) for x (a, b).

Proof. Because BlU <_- 0 or Bzu <= O, U cannot be a positive constant. By Theorem 6
in [14], the strong maximum principle, u can only assume a nonnegative maximum at a
or b. If it is at a, B u _-< 0 implies a u (a +) _-< -/31 u’(a +) < 0 which implies that u (a +) <
0. A similar argument gives that u(b-) < 0 if the maximum is at b. Thus u(x) <= 0 for all
x(a,b).

COROLLARY 1. If @0(q, X) [--C, 0] and (3) has a solution in Hl[a, b], then it is
unique.

Proof. Let u, v be the two solutions. Then L(u-v)=O, Bl(U-v)=O, and Bz(U-
v) 0. Apply the theorem to conclude that 0 _-< u v _-< 0.

COROLLARY 2. Let u H[a, b] be a solution of (3) and @O(q, x)= [-oo, 0]. If
@(f-qM, x)c [-, 0], @(f-qN, x)c [0, c], aiM <-BlU <-_axN and a2M <-B2u
Ol2N then M <- u <-N.
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Proof. In order to show u _-<N consider L(u-N)=f-qN, BI(u-N)=BlU-alN
and B2(u-N)=B.u-a.N. Apply the theorem to conclude that u =<N. In order to
show M -< u consider the boundary value problem for -u +M.

5. Existence for the boundary value problem. In this section we show that the
classical variation of parameters formula extends to this more general problem.

First we shall consider (3) with homogeneous boundary conditions BI u 0 B2u.
By Theorem 5 we may choose u, v Hl[a, b] to be solutions of the initial value
problems Lu =0, u(a+)=fll, u’(a+) =-al and Lv =0,/)(b-) 2, v’(b-)=-ce2. In
these cases pu’ - gu’- Qu + Ou’ + constant and pv’ - gv’- Ov + Ia Qv’ +
constant. Thus by part 4 of Theorem" 1 pW=-p(uv’-vu’)=-u 2gv’+v I2gu’+
u Ov’-v Ou’ +constant is an element of HI[a, b]. Also the Lagrange identity
holds:

0= uLv-vLu (u(pv’)’ + guy’ +quv)-(v(pu’)’ + gu’v +quv)

upv’- pv’u’ vpu’- pu’v’ +g(uv’-u’v)

(p(uv’- u’v))’ +g p(uv’- u’v)
P

=(pW)’+g(pw).
P

Thus, pW C exp _x (g/p). If W 0, then Blv 0 B2v and BlU 0 B2u. By
Corollary 1 of Theorem 7, u v 0 which is a contradiction. Thus C 0 and so
pWO.

The classical variation of parameters or Green’s function may now be defined.
Note that the integrals below are defined because the integrands are a product of a
distribution in H_l[a, b] and a function in nl[a, b].

DEFINITION. Let fH_l[a, b] and define G: H_l[a, b]Hl[a, b] by

THEOREM 8. Gf is a solution to the boundary value problem Lu =f 6 H-l[a, b],
B u 0 B2u. Moreover G is a continuous linear operator.

Proof. Note u/pW= uC exp (g/p) and (u/pW)’= u’C exp (g/p)+
uC exp j’2 (g/p). g/p.

U I)

--V +U Fb,

Thus Gf6H+l[a, b] and G is continuous. It is easy to see that p(Gf)’+ g(Gf)’+
O(Gf)-I O(Gf)’=(- (u/pW)’Fa). Lv+(j (v/pW)’Fb). Lu +Fa. Since Lv =0=
Lu, the differential equation is satisfied. BiGf=al(Gf)(a+)+[31(Gf)’(a+)=
Cel(+u(a+) j’; (v/pW)’Fb)+.lu’(a+) ’ (v/pW)’Fb =0 BzGf=az(Of)(b-)+
fl2(Gf)’(b-) az(-v(b-) (u/pW)’F,,)+ /32(-v’(b --)’b (u/pW)’F,) O.

v’
u v F,(b)

F,+u’ F,+.
P
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COROLLARY. Equation (3) has a solution.
Proof. Let BlU bl, B2u b2. Clearly one can choose c, d such that u + cx + d w

satisfies BIw 0-- BzW. Then Lw Lu +gc + (cx +d)q /-/-l[a, b]. Thus u
w -(cx + d) G(f+ gc +(cx + d)q)-(cx + d) is the solution of BV.

6. A nonlinear boundary value problem. In this section we will examine the
following nonlinear boundary value problem

(4) Lu --f(x, U), BlU bl(U)G[, B2u b2(u)G and u 6Hl[a, b].

This is the one Variable version of the classical nonlinear problem discussed in H. B.
Keller [5] and of the weak nonlinear equation with Dirichlet boundary conditions. In
our case the Robin-type boundary conditions with "badly" behaved coefficients and
more general )(x, u) are consider. In particular, f(x, u) is an operator from a subset of
Hi[a, b] into H_l[a, b]. In some sense, in Theorem 9 ’(x, u) is nonincreasing in u. In
certain examples of [(x, u), the chord method may be used to relax this restriction.

DEFINITION. Let K =- {u Hx[a, b][M <= u <= N}. f: (a, b) x K H-l[a, b is of type
D if and only if the following hold:

(i) When u(x) <= v(x) for all x [a, b], then @(f(x, u)-f(x, v), x) c [0, ].
(ii) u, ’ u uniformly implies f(x, u,)f(x, u) in H-l[a, b].

(iii) There exists C>0 such that sup,: ][/(x, U)llH_la,b?--< C < c.
Examples. 1. Let f(x, u)=- u (y) dy. The three conditions are easy to verify.
2. Let [(x, u)= k(x, u(x)) where k Ll((a, b)x(M, N)), k is for almost all x

(a, b) continuous in u, k is for all u (M, N) measurable in x and k is for almost all
x (a, b)nonincreasing in u. Since k(x, u(x))= (I2 k(y, u(y)) dy)’ and 2 k(y, u(y)) dy is
continuous, f(x, u)H_l[a, b]. Condition (i) is easy to verify. Condition (ii) follows
from the monotone convergence theorem. The third condition is a consequence of

and

Ill(x, k(y, u(y))dy
L2[a,b]

_-<[( -a)+ c + c]llkll,,,N

where C1 and C2 are a result of sup IL.I, sup IR[ terms in the L2[a, b] norm.
3. Let f(x, u) rh(x, u) where r H_l[a, b],

R (x) r Z ARiH(x xi) + R (x)
i=1

with

{R(x),R(x)---
O,

X X points where R (x) is discontinuous,
X "-Xi,

ARi R (xi+) g (xi-)

R (x) is nondecreasing and bounded.
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O<-h(x, u) C([a, b] x [M, N]) and is nondecreasing in u. Thus

f(x, u)= rh(x, u(x)) dx 8(x-xi)h(x, u(x)) dx + R’()h(, u()) d
i=1

Iah(xi, l,l(Xi))q- R’(Y)h(Y, u()) dY,
i=1

(x) -= largest integer such that Xi Xo

Since R is nondecreasing, R’ exist and is integrable. The three conditions of the
above are easily verified.

Remark. Let/ ={u C([a, b])lun K, un u in L2[a, b]}. Then we may extend
f: (a, b) K - Hi[a, b] to : (a, b) I -, Hi[a, b so that the same conditions hold for
the extension f. Note that in our examples the extension is independent of the choice of
{un} = K. We shall make no notation to distinguish between f, K and 1/.

ASSUMPTIONS.
A1. Lelf: (a,b)xK-H_l[a,b] be of type D.
A2. For all u K suppose @(f(x, u)-qM, x)c[-oo, 0], (f(x, u)-qN,

[0, oo] and @O(q, x) c [-oo, 0] for all x (a, b).
A3. Let ha, ba C(M, N) be such that they are nondecreasing and cram

lNand o2M <=b2(u) <=o2N.
A4. There exists Uo K such that Tuo =- G(f(x, Uo) + gc + (cx + d)q) (cx + d) >- Uo

where c and d are as in the corollary to Theorem 8.
THEOREM 9. If assumptions A1-A4 hold, then the following hold"
1. unK,n=O, 1,2,’..andun+l=-Tun, n=0,1,2....
2. Un+ lgn.

3. un - u K in Hi[a, b].
4. u is a solution to (4).
Proofs. 1. By Corollary 2 of Theorem 7 any solution will satisfy M _-< un (x)_-< N.

The Corollary to Theorem 8 yields that Baun+l blun and Bzun+l bzun.
2. This proof is by mathematical induction. A4 states that U Tuo >= Uo. Assume

un _-> un-1. Then L(un+a- un)= Lun+a-Lun =f(x, un(x))-f(x, un-(x)). Since f(x, u)of
type D(i), Bl(un+1- un _-> 0 and Bz(un+1- Un >= O, we have by Corollary 2 of Theorem 7
that un+ un _-> 0.

3. In order to prove this, we need to make use of the fact that Ha(a, b) is
continuously imbedded into C+l/[a,b], the H61der continuous functions with
exponent 1/2. C+1/2[a, b] is compactly imbedded into the continuous functions with
sup norm. Since f(x,u) is of type D(iii)IIf(y,l,tn(y))llH_[a,b]<--C<o0. Since
G" H_l[a, b]- Hl[a, b] is continuous, {Tun-1 un} is a bounded sequence in Hi[a, hi.
Thus there is a subsequence un, that converges in C[a, b ]. Since Un+l --> un, un converges
to u C[a, b]. Since f(x, u) is of type D(ii), f(x, Un(X)) converges to f(x, u(x)) in
H-l[a, hi. Because G is continuous, Un+l- Tun converges to Tu in Ha[a, hi. Since
/’/n+l -’) /’/ in C a, b ], Tu u K.

4. We must show LTu =f(x, u(x)), since Tun Tu in Ha[a, b] andL is continuous,
LTun - LTu in H-a[a, b]. Now LTun f(x, un(x))- f(x, u(x)) in H-a[a, b]. Thus
LTu f(x, u(x)).

Suppose that f(x, u) is "increasing" in u, i.e. condition D(i) does not hold. If
(x, u) l(x, u(x)) of example 2 and/ has the property of @(/(x, u(x))- l(x, v(x))-
R(u(x)-v(x)),x)c[-oe, O] for all x(a,b),RR and u<-_v, then we may define
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f(x, u)=/r(x, u)-Ru. Thus if initially we were considering the differential equation
Lu=(pu’)’+gu’+u=f(x,u), we could consider the equation Lu=Lu-Ru=
f(x, u)- Ru f(x, u). Now provided f(x, u) satisfied the assumptions of Theorem 9, a
solution Lu f(x, u) would also be a solution of Lu f(x, u). A similar substitution may
be made if b(u)=>-R, 1, 2. This method is called the chord method and it may also
be applied if (x,u)=rft(x,u) and / also has the property of @(ft(x,u(x))-
ft(x,u(x))-R(u(x)-v(x)),x)c[-oo, O] for all x(a,b) and u<=v. In this case we
define f(x, u) f(x, u) rRu. An example of this variation of the chord method is given
at the end of this section.

One advantage of the monotone method is that it constructs the solution. Another
is that one can often also construct the solution by a decreasing sequence of iterates.
This results in bounding the solution between known iterates. In order to do this, we
need a Vo6 K such that/dl Tvo<= Vo. Then define/)n+l Tv,, n 0, 1, 2, . One can
show that v, v Hi[a, b and v is a solution to the semilinear problem. If Uo <- Vo, then
by using the maximum principle one can show u,-< v and n 0, 1, 2,... and hence
u =< v. These results are summarized in Theorem 10.

THEOREM 10. LetA1, A2, A3 andA4 hold. Ifthere exists Vo 6 Ksuch that Tvo <- Vo
and Uo <- Vo, then the following statements are true"

1. u, u K and v, $ v K in Ha[a, b ],
2. u, v are solutions to (4),
3. u,<-v,,n=O, 1,2,. andu<-v,
4. Suppose Uo, Wo g Un+ TWn, Wn+ TWn, Uo Uo Wo Do, TUo >- Uo

and TVo <- Vo, then U, U K, V, $ V K in Hl[a, b ], U, V are solutions to
(5) and u <- U <- V <- v.

Example. Consider U"(X)=t(X--1/2)(un(x)--I4) on [-1, 1] with boundary con-
ditions u (- 1) 0 and u (1) 0. If we are interested in values of u (x) between 0 and 1, we
note that u4- 14 is increasing and therefore 6(x -1/2)(u4- 14) is not of type D. Therefore
we consider using a variation of the chord method. Thus consider u"-46(x-1/2)u
6(x-)(ug-4u-1) with u(-1) 0 and u(1)= 0. In this case h(u)= u4-4u-1 and is
nonincreasing for 0 _-< u(x) _-< 1. Thus @(6(x -1/2)(h(u(x))- h(v(x)), x) {0} if x 1/2 and
=(h(u(1/2)-h(v()). @(6(x-1/2), 1/2)=[-oo, 0] when u _-<v.

In order to solve the nonlinear problem, we must first construct the
Green’s function for Lu =u"-46(x-1/2)u. It is easy to see that u
(l-H(x-1/2))(-x-1)+H(x-1/2)(-7x+2) is a solution of the initial value problem
Lu=O, u(-1)=0 and u’(-1)=-I and that v=-(1-H(x-1/2))(-3x+2)+
H(x 1/2)(1 x) is a solution of the initial value problem Lv 0, v (1) 0 and v’(1) 1.
From these u and v we may construct the Green’s operator Gf=-
v lf(U/pw) u Il(v/pW) where pW 5. Gf satisfies LGf f, (G/)(-1) 0 and
(G/)(1) 0.

Now we may consider Tu=-Gf(x,u)=G(6(x-1/2)h(u)) defined on K--
{u’6Hl[a; b]10-<u =<1}. It is not difficult to show that Uo=0 and Vo 1 will work in
Theorem 10. In fact, if w(x)=y, then Tw=(1-H(x-1/2))(h(y)/lO)(x+l)+
H(x-1/2)((h(y)(-3))/lO)(x-1). If y.4 and we ctloose Vo(x)=y, then Tvo<=Vo.
Thus any solution must be larger than u(x)=(TucO(x)=(To)(x)=(1-H(x-1/2))
1-t6(x + 1)+H(x-)((-3/10)(x- 1) and less than Vl(X)-- (Tvo)(X)= (T.4)(x)=
(1-H(x-1/2))2.5744/lO(x+l)+H(x-’1/2)2.5744/lO(-3)(x- 1). Additional accuracy
may be obtained by calculating u2 Tb/1 and v2 Tv. In this problem we are also able
to determine the Hi[a, b] solution for 0 <- u <- 1 by examining the equation to the left
and right of x =1/2. The solution is u(x)=(1-n(x-1/2))a(x + 1)+H(x-1/2)(-3a)(x-1)
where a is the positive root of a +4a- 1 0.
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CORRIGENDUM AND ADDENDUM: MAXIMUM PRINCIPLES AND
BOUNDS IN SOME INHOMOGENEOUS ELLIPTIC BOUNDARY

PROBLEM*
RENI P. SPERBt

THEOREM 2 must read: If u is a solution of (1.1), (1.2) where the geodesic curvature
kgofD is nonnegative, and g, h, p satisfy (2.7) then takes its maximum at a critical point
of u or at F1 (3

Here F1 71 F2 denotes a point on 0D separating pieces of 0D where u 0 and those
where Ou/On 0. The reason for including the possibility that takes its maximum at

F1 71 F2 is that ]Vu] is in general not continuous at F1 (3 F2. We can see this as follows.
Take 0 1 for simplicity, i.e. u is a solution now of

(1) Au+l=0 inD, u=0 on0D.

Assume that ]Vul is continuous at F1 f3 F2. Since on F1 we have Ou/Os 0 and on F2,
Ou/On 0 it follows that IVul 0 at F1 (3 F2. Hence must take its maximum at a critical
point of u (inside D). Then, proceeding analogously as in the calculations following
(3.16) (with P in the same sense as in the paper and Q a point of F) we find from
equation (3.5) e.g. that for " max0o ]Vul we have

(2) r
2

ID] =diameter olD.

Now on the other hand we have by Green’s identity

A -; o---u-u ds <-_(3) rLrl,
DOn

i,e.

A
(4) r_->

LFI’
where A area of D, Lrl length of F1. Clearly, (2) and (4) contradict each other if Lrl
is small enough. Therefore, IVul cannot be continuous at F1 71 F2 for any F2 .

In the applications on page 815 and later, F2 has to be assumed everywhere.
It seems in general a difficult task to describe the exact behavior of the solution in

the neighborhood of F1 71 F2 for an arbitrary domain D. Also bounds for IVul and Umax
seem to be rather hard to get if F2 .
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