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SEQUENCES OF MEROMORPHIC FUNCTIONS CORRESPONDING TO A
FORMAL LAURENT SERIES*

WILLIAM B. JONESt AND W. J. THRONY

Abstract. A general theory is developed for sequences of functions {R, (z)} meromorphic at the origin
which correspond to a formal Laurent series (fLs) L in the sense that the Laurent expansion of R, (z) agrees
with L up to the v, power of z, where v, tends to infinity with n. Included are necessary and sufficient
conditions for the existence of an fLs to which a given sequence corresponds. Also methods are described
for obtaining sequences of meromorphic functions which correspond to a given fLs. As consequences of the
property of correspondence it is shown that (under suitable restrictions) uniform convergence of a sequence
is equivalent to uniform boundedness and that, when a sequence converges uniformly, its limit is a function
whose Laurent expansion is L. Applications are considered for Padé approximants, continued fractions of
various types and certain special functions.

1. Introduction. Following Henrici [5] we call
(1.1) L=cmz™ +Cms1z™  +Cmeaz™?+- - -, cm 720

where the ci, k = m, are complex numbers, a formal Laurent series (fLs). L =0 is also
considered an fLs. The set £ of all fLs forms a field with respect to addition and
multiplication defined in the manner suggested by (1.1) (see, for example, [5, § 1.8]).
If f(z) is a function meromorphic at the origin (i.e., in an open disk containing the
origin), then its Laurent expansion (convergent in a deleted neighborhood of the
origin) will be denoted by L(f). A sequence {R,(z)} of functions meromorphic at the
origin will be said to correspond to an fLs L (at z =0) if

(1.2) lim A(L = L(Ra))= o,

where A is the function defined as follows: A : £ >R U [o0]; if L =0 then A(L)=0; if
L #0 then A(L)= m where m is defined by (1.1).

Correspondence of sequences of meromorphic functions plays a key role in the
theory of Padé approximants as well as in the problem of expanding functions, or fLs,
in various types of continued fractions. In the past, various consequences of cor-
respondence, as well as sufficient conditions for a sequence to correspond to an fLs,
have been obtained case by case. We present here a general theory which, not only
contains many known results as special cases, but from which new applications are
derived. The formulation presented here clarifies the relationships involved in the
method as well as the techniques for its application. In Theorem 1 (§ 2) we prove that
a necessary and sufficient condition for a sequence {R, (z)} to correspond to some fLs
is that

lim A(L(Ryer) = L(R,)) = o.

In Theorems 2 and 3 (§ 2) it is shown that the approximants of a continued fraction
formed from a system of three term recursion relations will correspond to a formal
solution of the system under suitable restrictions. Moreover, these restrictions are
shown to be invariant under equivalence transformations of the continued fraction.
For sequences of functions {R,,(z)} meromorphic at the origin and holomorphic in a
deleted neighborhood of the origin, it is established in Theorem 4 that if {R,(z)}
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corresponds to an fLs L, then: 1) uniform convergence of {R,(z)} is equivalent to
uniform boundedness, and 2) if {R,(z)} converges uniformly to a function f(z) then
L = L(f). In many instances the second part of this result may be even more important
than the first, for frequently the convergence can be deduced from other known
criteria, while it may be otherwise difficult to determine what the limit is. Theorem 5
(§ 3) is an application of Theorem 4 explicitly for sequences of Padé approximants. It
is an improvement of a result [8] previously given by the present authors. Applications
of each result are discussed following the proofs of the theorems. Before proceeding
to § 2, we summarize briefly a few facts and definitions that are used.

Every function f(z) meromorphic at the origin has a unique fLs expansion L(f).
The one-to-one mapping L thus provides an embedding of the field # of all functions
meromorphic at the origin in the field £. If {R,(z)} corresponds to an fLs L, then the
order of correspondence of R, (z) is defined to be

Ve =A(L—L(R,)).

It can be seen that if {R,(z)} corresponds to L, then L and L(R,) agree term-by-term
up to and including the term involving z*~".

We further extend the definition of correspondence as follows: A sequence of
functions {R,(z)} meromorphic at z = o (i.e., in an open neighborhood of z = c0) will
be said to correspond to an fLs

2

1.3) L=coW™ +Cmsatw™  HCmiaw™ 24 o, cm#0, w=1/z,

lim A(L —-L(R,.(%» = o,

Similarly correspondence at z = a (a € C) can be defined by considering z = w +a.
The following properties are easily deduced: For L; and L, in %,

at z =0, if

(1.4) A(L1L2)=A(L1)+A (L),

(1.5) A(L1/L2)=A(L1)—A(Ly) ifL,#0,

(1.6) A(Li£Ly)=min [A(L,), A(L2)],

(1.7) A(Ly£L)=min [A(Ly), A(L2)] if A(L1)#A(Ly).

We note two observations due to Baker [1] in the case of Padé approximants: If
{R,.(z)} corresponds to L and if A, B, C, D are functions meromorphic at the origin
such that L(C)+L(D)L#0, AD—-BC #0 and A(L(C)+L(D)L(R,))<k for all n
and some fixed k, then

A+BR, L(A)+L(B)L
1.8 e — to ——————.
(1.8) C+DR. corresponds to LO)+LD)L
Similarly
z az

o Rl (g22) wadeo
1.9) R o correspondsto L 21 d ifad #0

By an (infinite) continued fraction is meant an ordered pair (({a,}, {b.}), {fu}),
where aq, az, - - and by, by, by, - - - are complex numbers (a, # 0) and where {f,} is

defined as follows:

(1.10a) fa=8.00, n=0,1,2,--",
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where

(1.10b) So(w)=so(w)=bo+w,

(1.10¢) S.(w)=S,_1(sn(w)), n=1,2,3,---,
and

(1.10d) Sn(w)= n=1,2,3---.

b, +w’

For convenience we use the equivalent symbols

(111) b0+ K (an/Bn)’ b0+K(an/bn)
n=1
and
a, a; as
1.12 +— = —= ...
(1.12) ba bi+bo+bs+

to denote the continued fraction (({a,}, {b.}), {f.}). The numbers a, and b, are called
the elements of the continued fraction and f, is called the nth approximant. A
continued fraction bo+ K (a./b,) is said to converge if its sequence of approximants
{f.} converges (to a finite limit). When convergent, the value of the continued fraction is
defined to be lim f,, and is sometimes denoted by (1.11) or (1.12). The nth numerator A,,
and denominator B, are defined by the second order linear difference equations

(1133) A_1=1, Aozbo, B_1=0, Bo=1,
(1.13b) A,=bA,_1+a,A,—2, n=172,3,---,
(113C) Bn=b,,B,._1+a,,B,,_2, n=1,2, 3,' tt .
The following are well known [12], [18]:
An+An—1w ai An—-1 an
1.1 . =r nm oS , =0,1,2, -,
(1.14) Sa(w) B,+B,_iw " bi+  Aby_it+b.+w "
A,
(1.15) f,,=S,,(O)=§—, n=0,1,2,---,
(1.16) AB, 1—B A, 1=(1)""T] ax#0, n=1,23,---.
k=1

Equation (1.16) is sometimes called the determinant formula.

A continued fraction is said to correspond to an fLs L if its sequence of approxi-
mants corresponds to L.

An fLs (1.1) is called a formal power series (fps) if m=0. An open connected
subset of the complex plane C is called a domain. We denote the closure of a bounded
subset K of C by K.

2. Correspondence. To motivate further the definition of correspondence we

observe that, for L € &, the function 8 defined by
0, L=0
@.1) BO={ 0 [ 2o

is a valuation on £ (for definition and properties of valuations on fields see, for
example, [19]). We summarize a few properties of the valuation B8 that are employed
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in the proof of Theorem 1. Valuations are not used in the remainder of this paper. In
terms of the valuation 8 one can define a metric p on £ by

(22) p(Ll,L2)=B(L1—L2), for L., L,e%.

In terms of the metric p (which has been used previously in a similar context by
Franzen [3]), the statement that a sequence {R,(z)} corresponds to L is equivalent to
saying that {L(R,)} converges to L (with respect to the metric p). It is also the case that
£ is the completion of L(#) with respect to p and hence £ is p-complete. For
R,(z)e M, {L(R,)} is a Cauchy sequence (with respect to p) if for a given € >0 there
exists an n. such that

2.3) p(L(R.+1), L(R,))<e, forn=n.and k =0.

Certain sequences {L(R,)} are Cauchy sequences (with respect to p) and, since £ is
p-complete, every Cauchy sequence converges (with respect to p) to some element
LeX.

THEOREM 1. (A) Given a sequence {R,(z)} of functions meromorphic at the
origin, there exists an fLs L such that {R,(z)} corresponds to L if and only if

2.4) lim A(L(Ry1)= L(R,) = 0.

(B) If (2.4) holds, then the L to which {R,,(z)} corresponds is determined uniquely. (C) If
the sequence {A(L(R,+1)—L(R,))} tends monotonically to o, then the order of cor-
respondence of R, (z) is given by

vn = A(L(R,+1)—L(R,)).

Proof. In view of the preceding discussion, to prove (A) it suffices to show that
{L(R,)} is a Cauchy sequence (with respect to the metric p) if and only if (2.4) holds.
Further we note that condition (2.3) is equivalent to

1
2.5) A (L(Rn+k)—L(Rn))>Log2(;), for n = n, and k 0.

By (1.6) we see that

2.6) A(_f Lf) = min A(L).
Thus
@7) LR~ LRD)=A( § L(Rue)~L(Rss-1)

= 112,-i9k AL(Rn+))— L(Ry+j-1)).
It follows from (2.5) and (2.7) that {L(R, )} is a Cauchy sequence (with respect to p) if
and only if given N >0, there exists an nx such that
ALR,+1)—L(R,))>N, forn=nn.

Hence (2.4) holds if and only if {L(R,)} is a Cauchy sequence with respect to p. This
proves (A). Part (B) follows immediately from properties of a complete metric space
and (C) is a direct consequence of the definitions. This completes the proof.
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Example 1 (T-fractions [15]). If A,(z) and B,(z) denote the nth numerator and
denominator of a T-fraction

2.8) 1+doz+ K (

n=1

1 +d,,z)’ d,eC,

then if follows from the difference equations (1.13) that B,(0)=1, and from the
determinant formula (1.16), that

An1(z) An(z)_ (=D"z""
Bn+1(z) Bn(z) Bn(z)Bn+1(Z),

3
v
=

2.9)

Therefore

An+1 An
el s nen nm
Bn+1 L Bn " " O

and hence by Theorem 1 there exists an fLs L to which (2.8) corresponds. Since the
order of correspondence of A,/B, is v, =n +1, it follows that L(A,/B,) agrees with L
through the term involving z". Thus L is an fps of the form

(2.10) L=14ciz+coz>+c3z++--.
If it is further assumed that
(2.11) d,#0, fornz=l,

then it follows from the difference equations (1.13) that B,(z) is a polynomial of
exactly degree n with leading coefficient did- - - - d,,. Letting z=1/w and R} (w)=
A,(1/w)/B,(1/w), we obtain from (2.9) that

ALR¥E1)-L(R¥))=n, n=z=0.

Thus by Theorem 1 there exists another fLs L* (in w) to which {R} (w)} corresponds,
the order to correspondence of R (w) being n [7],[12], [17]. Since L(R}) agrees with
L* up to and including the term involving w" ™! it follows that L* has the form

d
L¥=—rc¥+ciw+ciw’+ -
w

2.12)

c¥ X
=doz +c§ +—+—=+--.
z z

It can be seen that the degrees of A,(z) and B,(z) do not exceed n+1 and n,
respectively. Thus it follows from the results shown above that, when (2.11) holds, the
nth approximant A, (z)/B,(z)is the (n + 1, n) entry in the two-point Padé table of the
L and L* (see, for example, [14] for a brief discussion of two-point Padé tables). The
relation between these tables and T-fractions is discussed more fully in [9].

Example 2 (P-fractions [11]). A continued fraction of the form

(2.13a) bo(z)+n;_—21 (bntz >,

where each b,(z) is a polynomial in 1/z,

0
(2.13b) ba(z)= ¥ a™z*  No=0; N,=1 and a"R #0, n=z=l,
k=—N,
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is called a P-fraction. As in Example 1 it can be shown that, if R, (z) denotes the nth
approximant of (2.13) then

(2.14) ALRpe1)-L(R)=2 ¥ Ne+Nnyr, n=0.
k=1

Hence by Theorem 1 there exists an fLs L to which (2.13) corresponds and L has the
form
(2.15) L= Y a9z~
k=—Np
We shall return to T-fractions and P-fractions in later applications. Before pro-

ceeding, however, we mention that similar statements can be made for continued
fractions of the form

(2.16) 1+ K (“f ) 4, %0, aeC, anc[l,2,3, -],
n=1
called C-fractions [10].

THEOREM 2. Let {a,(z)} and {b,(z)} be sequences of functions meromorphic at the
origin, with

2.17) a,(z2)#0, nzl,
and let Lo be an fLs. Let {L,} be a sequence of fLs defined recursively as follows:
L(an+1)
'1 n+1 =37 17 1 v g i)
(2.182) L7 1oy "0
provided
(2.18b) L, #L(b,), n=0,

(otherwise see (B)). Then:
(A) If R, (2) denotes the n-th approximant of the continued fraction

(2.19) bo(z)+n§(z:g;>,

then {R,(z)} corresponds to L, provided that

(2.20a) ALG)+A(L(Ba-1)<A(L(a,)), nz=l,
and

(2.20b) AL)+AL(Bo1)<A(L(an)), n=z=l.
If (2.20) holds, then the order of corresondence of R, (z) is
(2.21a) vo=A(L(a1))—A(L1),

(2.21b)

= § AL@)-2 L ALBI-AL).  n=lL

(B) If in defining {L,} by (2.18a) we obtain

(2.22) Le#L(b) for 0=sk=m-—1, and L, =L(bn),
then

_ ai(z) | am(2)
(2.33) LO—L(bO(z)+b1(z)+ +b,,,(z)>'



SEQUENCES OF MEROMORPHIC FUNCTIONS 7

Remark. Before proving Theorem 2, we point out that conditions (2.20) are
invariant under equivalence transformations of the continued fraction (2.19) in the
following sense: Let {r,(z)} be an arbitrary sequence of nonvanishing functions
meromorphic at the origin and define

(2.24a)  ar@2)=r.(2)rm-1(2)a.(z), nzl (ro(z)=1)
(2.24b) bE(2)=r.(2)b.(2), nz0
(2.24c) L¥=L(r,)L,, n=0.

Then in view of (2.17) we have a¥ (z)#0. Moreover,

(2.25) L¥#L(¥), n=0,

if and only if (2.18b) holds;

(2.26) L} —%, n=0,
provided (2.25) holds; and

(2.27a) ALGIN+FALGE-))<AL(al), n=zl,
and

(2.27b) ALD+ALGBE-))<A(L(ak), n=z1,

hold if and only if (2.20a) and (2.20b) hold, respectively. In consequence, the
continued fraction

(2.28) b (2)+ ;2 (b*zz;)

is equivalent to (2.19), and hence (2.28) corresponds to L§ provided the conditions
(2.27) and (2.25) hold. Thus it is unnecessary to search for an equivalence trans-
formation of a continued fraction for the purpose of making Theorem 2 applicable.

Proof of Theorem 2. (A) Suppose that (2.18) holds and let A,(z) and B,(z)
denote the nth numerator and denominator of (2.19). From (2.18a) we have

L(an+1)

n+1

Here division by L, is possible since L, .+, # 0 follows from (2.17) and (2.18a). Thus

(2.29) L, =L(b,)+—2n+

v

1.

L(a:))  L(an-1) L(an)
L)+ +L(b,-)+ L, ~

Lo= L(b0)+

=1

=1,

and hence by (1.14)

_ L(a)L(An—2)+L.L(Au1)
(230 b L@l B LB "

v
[}

Then applying (2.30), the determinant formula (1.16) and L(R,-1)=
L(A,.-1)/L(B.-1), we obtain

(—1)"" ey L(ax)

Lo""L(Rn—-l) = L(Bn-—l)(L(an)L(B”—z)+L"L(Bn—1))’

n=2
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and hence from (1.4) and (1.5)

ALo=LRy-)= 3 AL(@)~AL(Br1)

(2.31)
_A(L(an)L(Bn—2)+LnL(Bn—l))’ nz2.

A simple induction argument based on (1.7), (1.13), and (2.20) can be used to
establish the following formulas:

(2.32a) A(L(Bo)=0,

(2.32b) MLB)= ¥ ALGY,  n=l,

Then by use of (1.7), (2.20), and (2.32) we can prove that

(233)  A(L(@)L(Bu_z)+ LaL(Bu_1))=A(L.)+ kg ALGB)), n=z2.
Now substituting (2.32) and (2.33) into (2.31) gives

(2.34)  A(Lo—L(Ry_1))= k‘; AL(ax)~2 kg ALGB))-AL,), nz=2.

Rearranging the terms in (2.34), one obtains

A(Lo—L(Rn-1))= (A(L(a1)=A(L(b1)))
2.35) 7T ML@) AL B A Lbe-)

+AL@) = ALGu-1)—A (L), nz2.

It follows from (2.20) that each term in the sum in (2.35) and the last term are positive
integers and hence

lirg A(Lo—L(R,))=0,

so that {R,(z)} corresponds to Lo. Equation (2.21b) follows from (2.34); (2.21a) is an
immediate consequence of the definitions. This proves (A).
(B) It follows from (2.18a) and (22) that

L(al) L L(am_l) L(am)

L(b)+ +L(bn-1)+ L.,

from which (2.23) follows since, by (2.22), L,, = L(b,,). This completes the proof.
The following examples illustrate a method by which Theorem 2 can be applied

to show that, for a given fLs L, there exists a continued fraction which corresponds to
L.

Lo = L(bo) +

Example 3 (T-fractions, continued). Let
Lo=14ciz+cz%+c3z°+ -
be a given fps and let
a,(z)=z, fornz=1,

b.(z)=1+d,z, forn=0.
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We now show (by means of Theorem 2) that the d,, can be chosen so that the resulting
T-fraction (2.8) corresponds to L. In accordance with (2.18) we set
z 1

L= = .
! —(1+doz) (c1—do)+caz+csz’+- -+

By choosing do=c¢; —1, we obtain L, in the form
L;=1 +c(11)z +c§1)22+

The remaining d,, can be defined successively in a similar manner, and the resulting L,
are defined by (2.18a). Therefore, since

A(z)=1, A(1+d,z)=0, A(L,)=0, fornz=1,

it follows from Theorem 2 that (2.8) corresponds to L.
Example 4. In a manner completely analogous to that used in Example 3, it can
be shown that, for a given fLs

*
L* ——z+co+ + 2+

there exists a continued fraction of the form

z
eoptz+ K( ), e,,EC,
e, t+z

corresponding to L* at z = 0.
Example 5 (P-fractions, continued). Let

Lo= z a%z*, Noz0
k=—Npo
be a given fLs. We define bo(z) by
bo(z) = Z a®lz",
k=—Ng
and, assuming that Lo # by(z), we define

I S
Lo—bo(z)
©)

Let a(_o,)\,lzN 1 denote the first nonzero term in Lo— bo(z), so that Ny =1 and a=x, #0.
Thus L, can be expressed in the form

L1=

e o]
Li= T a%%  a%, =1/a%, #0,
k=—N,

Next we define

bi(z)= Z allz*,

k=—N,

Continuing in this manner, we obtain (via (2.18a)) a sequence of fLs {L,}, provided
L, #b,(z) for all n =0. In that case, since

AD)=0, A(bn(z))=—Nn, A(L,)=-N, nzl



10 WILLIAM B. JONES AND W. J. THRON

where N, =1 for n = 1, it follows from Theorem 2 that the resulting P-fraction (2.13)
corresponds to Lo. In the case that there exists an m satisfying (2.22), then (2.23)
holds. Similar statements can be made for C-fractions (2.16).

The following result (a simple consequence of Theorem 2) is particularly useful
for sequences of nonzero fLs satisfying certain systems of three-term recurrence
relations.

THEOREM 3. Let {a,(z)} and {b.(z)} be sequences of functions meromorphic at the
origin with

(2.36) a,(z)#0, forn=1.

Let {P,} be a sequence of nonzero fLs satisfying the three-term recurrence relations
(2.37) P, =L(bn)Pps1+L(an+1)Pns2,  nZ0.

Then the continued fraction

(2.38) bo(z)+n;§1 (-Z—%)

corresponds to the fLs L = P,/ Py provided the following conditions are satisfied:
(2.392)  A(La)+AL(bBr-1))<A(L(an)), nzl,

(2.39b)  A(Pn/Pns1)+A(L(bn-1))<A(L(an)), n=z=l.
Proof. Letting L,, = P,/ P,.1, for n =0, we obtain from (2.37) that

L(an+1)
Ln+1 ’

But (2.36) implies that L(a,+1)# 0 for n =0 and hence (from (2.40)) L, # L(b,), n = 0.
Thus {L,} satisfies all of the conditions of Theorem 2(A) and our assertion follows.
Example 6. (Hypergeometric functions and the continued fraction of Gauss). The
hypergeometric function F(a, b, c; z) is defined by the power series
ab z a(a+1)b(b+1) z_2

2. Jboeyz)=1+— = —— 2T L
241 Flab,c;2)=1 c 1! c(c+1) 2!

(2.40) L,—L(b)=

n=0.

where a, b, ¢ are complex constants, c#[0,—1,-2,-3,---]. If a or b is in the set
[0,-1,-2,-3,---], then F(a, b, c; z) is a polynomial. Otherwise the power series in
(2.41) has radius of convergence equal to one. We define

P, =F(a+n,b+n,c+2n;2z2), n=0,
Pys1 =F(a+nb+n+1,c+2n+1;2z2), nz0,

_(a+n)c—b+n)
T(c+2n—-1)(c+2n)”

(a+n)c—b+n)
(c+2n)c+2n+1)"

Then it can be shown [2] that

Qazp (Z)

a2n+1(z) =

P,=P,i1+an:1(2)Pnsa2, fornz=0.
If a, b, ¢ are chosen so that a,(z)#0 for n =1, then

Alan(z))=1, A(1)=0, A(Pn/Pns1)=0, nzl,



SEQUENCES OF MEROMORPHIC FUNCTIONS 11

and hence by Theorem 3, the continued fraction
1+ K (———a"(z))
n=1 1

corresponds to Po/Py=F(a,b,c;z)/F(a,b+1,c+1;z). By means of (1.8) (with
A =D =1, C=B=0)it follows that the continued fraction of Gauss

1
1+K,_; (an(z)/1)

corresponds to P/ P,.

Numerous continued fraction expansions of functions have been obtained from
Example 6. In a similar manner many more can be obtained for the confluent
hypergeometric functions [18]. It is not our purpose here to elaborate on the appli-
cations of Theorem 3 but merely to illustrate the method. However, we will treat one
further application, the Legendre functions of the second kind. Although Gautschi [4]
has proved convergence of the continued fraction by an application of Pincherle’s
theorem, the following proof of correspondence is new.

Example 7. Legendre functions of the second kind

(2.42a) Qrn(2)=K,z ™ * " 'Fln+ia+im+1,n+3a+im+3n+a+3; 272,
where
—a—1 1/2F(a +n+m+ 1)

I'a+n+3/2)

are used, for example, to solve Laplace’s equation by spherical harmonics [2]. Here m
and n are nonnegative integers and a an arbitrary complex number. F denotes the
hypergeometric function (2.41). We shall consider m and a as fixed, let z=1/w and
then define P, (w) by

(2.42b) K,=e™m27"

P.(w)=Qz4n(2).
Then the P,(w) satisfy the system of three-term recurrence relations [2]

n+a-m+2

2n+2a+3 1
W )=

2. " =
(2.43)  Pu(w) n+a+m+1 w

Pn+2(W), n ;O.
Letting b,(w) denote the coefficient of P,.; and a,+;(w) the coefficient of P,., in
(2.43), we obtain

’\(an)=0a /\(bn)= -1, /\(Pn/Pn+1)= -1, n=z0.

Therefore it follows from Theorem 3 that

© far(w)
bo(w)+ K ( )
o(w) k=1 \br(w)
corresponds to Py/P; at w =0; or, more generally,
(2.44) ba(w)+ K (“—"*—@)
k=1 bk+n(w)
corresponds (at w =0)to P,/P,+1, n=0,1,2, . Thus the continued fraction (2.52)

with w replaced by 1/z corresponds (at z =) to Qz4.(2)/Qz4n+1(z). The con-
vergence of (2.44) will be dealt with in the following section.
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3. Uniform convergence. A sequence {R,(z)} of functions meromorphic in a
domain D is said to converge uniformly on a compact subset K of D if and only if:

(i) there exists N (K) such that R, (z) is holomorphic in some domain containing
K for all n =N(K), and

(if) given € >0 there exists N, > N(K) such that

3.1) sup |[Rp+x(z2)—R,(z)|<e forn=N, k=0.
zeK

The sequence {R,(z) is said to be uniformly bounded on a compact subset K of D if
and only if there exist M (K') and B(K) such that

3.2) sup |R.(z)|=B(K) fornz=M(K)

In Theorem 4 we shall show that (subject to certain restrictions) a sequence
{R,(2)}, which corresponds to an fLs L, will be uniformly convergent if and only if it is
uniformly bounded. First, however, it should be pointed out that a sequence {R,(z)}
may converge uniformly to a holomorphic function f(z) in a neighborhood of the
origin without necessarily corresponding to L(f), the Taylor series expansion of f(z) at

z =0. For example, consider
2 3

7y Z Lz
L(eM)=1+z+2 50+
and
211y,
Ri)=1+ 3 (f+=a)eh  n=1,2,3,+,
k=1 \k! n

It is easily seen that {R,,(z)} converges uniformly to e” on |z| =p <1, but {R,,(z)} does
not correspond to L(e®).

THEOREM 4. Let {R,(2)} be a sequence of functions meromorphic at the origin and
corresponding to an fLs

(3.3) L=cnz™+cCmsrz™ "+, cm #0.

Further suppose that there exists a deleted neighborhood of the origin D*=
[z:0<|z| < 8] such that each R, (z) is holomorphic in D*. Let D be a domain contain-
ing D*; if m <0 we require that 0 D. Then:

(A) {R.(2)} converges uniformly on every compact subset of D if and only if
{R.(2)} is uniformly bounded on every compact subset of D.

(B) If {R.(2)} converges uniformly on every compact subset of D, then f(z)=
lim, o R,(2) is holomorphic in D and L = L(f).

Proof. (A) That uniform convergence implies uniform boundedness follows from
a standard argument which need not be repeated here. Now suppose that {R,(z)} is
uniformly bounded on all compact subsets of D. Let K be an arbitrary compact subset
of D. Let K, be an open, connected, bounded subset of D such that K < Ko< Ko,cD
and such that K, contains an annulus 1 <|z|<5n <8é. Since K, is assumed to be
bounded, K, is a compact subset of D. There then exists an no and an M, both
depending on K,, such that

(3.4) sup |R,(z)|[<M fornzn,.

zeKop

Since R,(z) is meromorphic at the origin and holomorphic in D*, it can be represen-
ted by its convergent Laurent series

(3.5) LR)= Y ¥z  n<lzl<Sn<s, y5)#0,

k=m,,
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where

(3.6) yi"’=—}—.jRZS{)d§, k=M, ma+1, -,
2mi ). ¢

and where c is the circle |{| =47 traversed once in the counterclockwise direction. It
follows from (3.4) and (3.6) that

3.7) Iy | = k=zm, n=n,.

M
(@n)*’
We note in passing that the assumption that each R,(z) is holomorphic in D* was

made to insure that L(R,) would be the Laurent expansion of R,(z) in the annulus
1 <|z|<5m. From (3.5) we see that

(3.8) ALR))=m,  n=z0.
Further,
(3.9) AL(Rm+n)—L(R:)=A(L(Rm+n)—L+L~L(R,))
Zmin[A (L(Rm+n)—L), A(L—L(R))], nz0, m=0.

Therefore, since A (L —L(R,))—> o as n -0, given any N, we can find an n; > ng such
that

(3.10) ALRu+n)—L(R,))=ZN, fornz=zn;,, m=0.
It follows from (3.5), (3.7), and (3.10) that, for n Zn, and m =0,

sup  |Rmsn(2)=Ra(2)= sup T |(ri™™ —vi)z"|
n<|z|<2n n<|z|<2m k=N
® 2M
= i
=2 any
Thus we see that {R,(z)} is a uniform Cauchy sequence on 7 <|z|<2n. An appli-
cation of the Stieltjes—Vitali theorem (see, for example, [6, p. 25 1] or [16, p. 142))
completes the proof that {R,(z)} converges uniformly on K, and hence on K.
(B) Suppose now that {R,(z)} is uniformly convergent on all compact subsets of
D. Define

(3.12) Lo=cmz™ +Cms1z™ "+t Cmanz™ ", n

Then

3.11)
Cnt =21,

(%
=

A(L,—L(R,)=A(Ln,—L)+(L—L(R,)))
Zmin[m+n+1,A(L—-L(R,))].
Hence

(3.13) lim A (L, —L(R,))=

and, for every k = m, there exists /, such that
(3.14) =y, forlzl.
Now let K* be an arbitrary compact subset of D*. Then there exist € and n such that

0<e<|z|<n<8, forzeK™
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The set K, =[z: € =|z|=7n] is a compact subset of D*. Let M, belong to K;; that is,
(3.15) sup |R.(2)|=M; fornz=M(K,).

zeK,

(We note that the existence of bound M; follows from part (A) already proved.) Now
the coefficients y{ in (3.5) can be written as

(3.16) vi"’=—1—.j Ri(ﬁ)d{, k=m,m,+1, -,
2ai Je, {

where c; is the circle |z|=p, e <p <n, traversed one time in the counterclockwise
direction, and such that

3.17) M = max

zeK*

It follows from (3.14), (3.15) and (3.16) that

5]<1.
)

) >
cl= , forl =1,
(3.18) l kI I':k | " k

Thus we have, for all z € K*,

La@I= T Jeez]

m+n
(3.19) =¥ 2", i1z,
k=m

m+n

=M, ¥

k=m

AL

p

If m <0, then by (3.17) and (3.19),

-1
(3.20a) IL,,(z)léMl[ Y p,"+1—1-], forze K*,
k=m M

and if m =0, then the
(3.20b) |L.(2)| glﬂ‘—, for z e K*.
—u

Thus we have shown that the sequence {L,(z)} is uniformly bounded on every
compact subset of D*. Since the L,(z) are rational functions, holomorphic in D*, and
since A(L—L,)=m+n+1->00 as n >0, by part (A) of the theorem, it follows that
{L,(z)} converges uniformly on all compact subsets of D* to a function f(z) which is
holomorphic in D*. Clearly L = L(f). Now

IL.,(z)—Rn(z)léﬁ =y . m=ALa—~L(R.)

=Ty

k
; by (3.18),

(3.21) =5 am |2
k=7, p
2Miu™
él—m, forze K*, by (3.17).
—u
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Since 0<u <1 and 7, >0 as n > (by (3.13)), it follows from (3.21) that {L.(z)—
R..(2)} converges uniformly to 0 on K*. But

|f(2)— Ra(2)|=|f(2)— La(2)|+|La(2) = Ru(2),

and hence we can conclude that {R,(z)} converges uniformly to f(z) on all compact
subsets of D*, The extension to D can be obtained by analytic continuation. This
completes the proof.

The following is an immediate corollary of Theorem 4.

COROLLARY 4.1. Let {R,(z)} and {Q.(z)} be two sequences of functions
meromorphic at the origin which correspond to the same fLs L. If both sequences
converge uniformly on every compact subset of a domain D containing a deleted
neighborhood of the origin, say D*, and if A(L)<O0 implies 0& D and if all R,(z) and
Q. (z) are holomorphic in D*, then both sequences converge to the same function f(z)
which is holomorphic in D and for which L(f)= L.

For A (L)=m =0, the statement of Theorem 4 becomes sufficiently simpler that it
is worth stating separately.

THEOREM 4'. Let {R,(z)} be a sequence of functions meromorphic at the origin
which corresponds to a formal power series

P=cotciz+cz’+- .

Let D be a domain containing a neighborhood of the origin. Then:

(A) {R,.(2)} converges uniformly on every compact subset of D if and only if
{R,(2)} is uniformly bounded on every compact subset of D.

(B) If {R.(z)} converges uniformly on every compact subset of D, then f(z)=
lim, . R, (2) is holomorphic in D and P is the Taylor series expansion of f(z) about
z=0.

Part (A) of Theorem 4’ was proved for regular and associated continued fractions
by Pringsheim [13]. For C-fractions (2.16), (A), (B) and Corollary 4.1 were
established by Leighton and Scott [10]; for T-fractions (2.8) the same three results can
be found in [15]. The corresponding results for P-fractions (2.13) have not been
previously known. As a further application of Theorem 4, we consider again the
Legendre functions of the second kind (2.42).

Example 8. In Example 7 it was shown that the continued fraction (2.44)
corresponds to P,/P,.; at w=0. If we set

* _
An = I'nfn-10n, n—z—lv

b¥=rb,=1, n=0

where the a, and b, are defined as in Example 7, and where

r,,=nz-;—i;%w, n=l (ro=1)
then the continued fraction
(3.22) bE(w)+ K (M)
k=1 1
is equivalent to (2.44). But
w2

lim a (w)= "
nl—flo]oa (W) 4
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and hence it follows from Worpitzky’s theorem [18, p. 42] that for sufficiently large
n, (3.22) converges uniformly on compact subsets of |w|<1. Thus it follows from
Theorem 4’ that (3.22) converges to P,/P,.1, at least for |w|<1 and sufficiently large
n. By replacing w by 1/z, we see that (3.22) converges to QU (z)/Qmns1(2) in
|z|>1, n sufficiently large.

For Padé approximants the present authors [8] gave a result which, using
Theorem 4' and a tighter estimate of A (P—L(R,)), we can now improve somewhat.
Let P be a formal power series and let R,,, ,(z) denote the (m, n) Padé approximant to
P, so that R,,, . (z2)= Apmn(2)/Bmn(z), where A, . and B,,, are polynomials of degrees
at most m and n, respectively, and

APBpn—Anp)Z=Zm+n+1.
It then follows that
AP—L(Apmn/Bmn))=m+n+1—min[m,n]=1+max[m,n].

In the transition from PB,,, — A, t0 P—L(A»/Bmn) the value of A may decrease
by a value r which is such that z” is the highest power of z contained as a factor in
B,... Hence r=n. If z is a factor of B,,, then it must also be a factor of A,,,, so that
r=m.

Our theorem now becomes

THEOREM 5. Let {m,} and {n,} be sequences of nonnegative integers such that

lim max [m,, n,] = co,

v—>00
Let R,(z) denote the (m,, n,) Padé approximant of the formal power series
P=co+ciz +czzz+~ ce

Let D be a domain containing a neighborhood of the origin. Then:

(A) {R.(z)} converges uniformly on every compact subset of D if and only if
{R.(2)} is uniformly bounded on every compact subset of D.

(B) If {R.(z)} converges uniformly on every compact subset of D then f(z)=
lim, o R,(2) is holomorphic in D and P is the Taylor series expansion of f(z) about
z=0.

The following example throws some light on what can happen if some of our
conditions (in Theorems 4, 4', and 5) are not met.

Example 9. Let

Rn(z)= n=1.

.
1—(nz)"’
Then

L(R)=1+nz) +(nz)"+- - -,

so that {R,(z)} corresponds to L = 1. Each R,(z) has n poles on the circle |z|=1/n,
but {R,(z)} is uniformly bounded on every compact subset of 0<|z|. Finally, R, (z)}
converges to 0 for 0<|z|.
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NECESSARY AND SUFFICIENT CONDITION FOR
MAINTAINING OSCILLATIONS AND NONOSCILLATIONS
IN GENERAL FUNCTIONAL EQUATIONS AND
THEIR ASYMPTOTIC PROPERTIES*

BHAGAT SINGHfT

Abstract. A necessary and sufficient condition is found for the nonoscillation of
@y’ )" P+F(h(y(g(t)), =0, n=z2.

Case study for the asymptotic oscillatory behavior of solutions of the equations

(r(@y' () +a(@h(y(g())=£(1)

and

(r(@y' (1)) +p)y () +a(h(y(g(1))=£(1)

is made for the two cases when |~ 1/r(t) dt = and

o

j r(tydt<co,  r(t)>0.

1. Introduction. In [12], this author found conditions on a(¢), r(¢t) and f(¢) to
ensure that all nonoscillatory solutions of the equation

) (r@y' () +a@)y ()= f()

approach finite limits asymptotically. A similar set of conditions was found in [13] by
this author to force all oscillatory solutions of a slightly more general equation

) (r@y'@)) +a@y” (¢ —7(0))=£@)

to approach zero.

So far, for the most part, the main thrust of re§oults in oscillation theory for
equations of type (1) and (2) is in the direction of | 1/r(¢) dt =0. Indeed many
interesting applications of these equations such as variable mass problems result when
§*°1/r(t) dt = 0. For this case the results are numerous and the interested reader is
referred to the works of T. Burton and R. Grimmer [1], Hammett [5], Kusano and
Onose [6], this author [12], [14]-[17], Staikos and Sficas [18] and Tuefel [20]. The list
is by no means complete. The literature is very scanty on results when [~ 1/r(t) dt <
00. In our works on [12] and [13] we obtained some asymptotic results for the latter
and observed that more need to be said about the case [~ 1/r(t) dt = 0. The latter half
of this paper is devoted to the study of the equation

3) (r@y' () +p()y" () +a(Dh(y(g(1))=f()

for which we obtain conditions so that all solutions of (3) are nonoscillatory; and
another set of conditions that allows all oscillatory solutions of (3) to approach zero as
t -0, one set requiring [* 1/r(t) dt =00,

With regard to the solutions of these equations we would like to study only those
solutions which can be continuously extended on some positive half real line, say for
t>to where t,>0. In § 2, our first theorem, therefore is to show that any nontrivial

* Received by the editors February 18, 1977.
t Department of Mathematics, University of Wisconsin Center, Manitowoc, Wisconsin 54220.
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solution of

“4) r@)y' @) P+Fh(y(g(), =0, n=z2

can be continued indefinitely to the right of #,. The generality of equation (4) and (in
it) of function F allows easy extensions to cover equations (1), (2) and (3). In the
process this theorem generalizes a similar theorem of Graef and Spikes [3], [4]. In § 3
we prove a necessary and sufficiency type theorem which essentially gives a strong
criterion for the nonoscillation of equation (4) subject to one of the conditions as
{*1/r(t) dt <oo. Throughout this whole work ample examples demonstrate the ap-
plicability of results. Incidently, we call any equation (under study here) oscillatory
when all of its infinitely continuable solutions are oscillatory. Otherwise it is called
nonoscillatory. Again a function 8(t)e C[to, o) is said to be oscillatory if 8(¢) has
arbitrarily large zeros; otherwise 8(¢) is called nonoscillatory.

As a result of our Theorem 1 in § 2, the term “‘solution”” will be used in this work
only to refer to continuously extendable solutions of equations under study.

In § 4, we find conditions, one being I°° 1/r(t) dt <o, that force all solutions of
equation

) (r(@)y'®)) +a@®h(y@©)) =11

to be nonoscillatory.

We would like to remark in passing that the methods discovered to deal with
ordinary differential equations usually do not carry over to similar equations contain-
ing a delay term. See Travis [19] this author [12].

For readers interested in practical applications of similar equations we suggest
Norkin [10] who gives specific equations that arise naturally in perturbed combustion
phenomena inside rocket engines.

The entire study in this work is subject to the following assumptions:

@) a(@), r(t), p(t), f(t), h(¢) and g(¢) are continuous on R, the real line;
@ii) r(6)>0, g(t)>0, g(t)=t,0<g'(t)= S for some S, g(t)—> 0 as t > ©0;

(iii) lim,,c sup (¢t — g(t))=co;

(iv) h is odd, sign h(t)=sign t, 0 < h(t)/t = mo for some moon R;

(v) F: RXR >R continuous, odd and increasing in the first argument;
sign F(z, t)=sign z for all t>0.

2. Continuability.
TueoreM 1. In addition to previous conditions suppose further that
6) 0<F(z,t)/z<my on R.

Let y(t) be a solution of equation (4) such that y(g(t))e C™(~, Ty), To>0. Then y(t)
can be continuously extended to all of R.
Proof. Suppose to the contrary that y(g(¢)) cannot be continued past Ty, i.e.,

™ Jim_sup |y (g(1)| = 0.

Now let Py < g(ao) where ao=g(To)—b, b>0. Integrating equation (4) over [ao, ],
t < Ty we have

1 N t (t__s)n—z
ST Y PSPPI )
R SR TR

where K;, i =1, -+, n—1 are appropriately chosen constants.

Flh(y@(s)), 5) s
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Integrating (8) between P, and g(t) we get

g(t) g(t) g(t) n—2
Y(g(t))=K0+KII —de j de+'~'+Kn—1J‘ ad dx

by 1(x) b, 1 (x) p,  r(x)

(9) g(t) 1 (s_x)n—2
- 5[ S r o e
where Ko = y(g(Po)).
(9) yields in view of (6)
10) ly(@) = Ko+crt+cat’++ - +eu gt
‘(=)' F(hx) h(y(g(s))
o e ey, e

where by continuity

g(t)xxl
K,-J ——dx=cit i=1,2,---,n—1 forte[Py, Tol

Py r(x)
Dividing (10) by "~ and using (6) and the condition on % we have
_ eyt1
Iy(g(t))|<M+j (t ns_)l R S 1|y(§(s1))|
P, ¢ (n-1)! s
(11)
SM+LJ & ly(g(S))l
Po

where L =momgy/(n—1)! and M > (Ko/(t"_1)+c1/(t"_2)+~ 4 c¢,-1) for t€ [Py, Tol.
It should be noted that y(g(po)) is defined. By Gronwall’s inequality, there exists
a positive Lo such that for ¢t € [Py, To]

ly(g(®)|=Lo

contradicting (7). The proof is now complete.
Remark. From here on we shall use the term ‘“‘solution” only for continuously
extendable solutions of equations on some positive half real line.

3. Necessary and sufficient condition.
THEOREM 2. Suppose [, 1/r(t)dt = 0. Let

t 1 S(s_x)n—3
(A) Q@ T)= Lr(s)J (n—3)!

Then a necessary and sufficient condition for equation (4) to have a nonoscillatory
solution asymptotic to dQ(t, T), d #0 is

dx ds.

(B) j F(cQ(g(t), T),t)dt <o forsome c>0.
T
Proof. (Necessity). Let y(¢) be a nonoscillatory solution of (4) with the property
that
(12) lim (y(1)/Q(1, T))=d #0.

Without any loss of generality we can assume that there exists # >0 such that y(g(¢)),
y(t) and d are positive for t=t,. Let T >g(t). From equation (4) on repeated
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integration we have

_ 1 5=T) ‘1t
y(t)—y(T)+K1Lr(s)ds+K2L ey ds+K3Lr(s)L(s x) dx ds
1

(13) o+ K,y Lt___ J’S(s—x)n—s

o) e oy ¥

1 [S(s—x)"?
_J‘TEL (n—=2)! F(h(y(g(x))), x)dxds,

where K; = (r(T)y'(T))* ™", i=1,2,--+,n—1.
Define

1 I b0 F(h(y(g(x))), x) dx ds,

uryieon=| - [ 00

Tr(s)

t S0 __ v \12
ur(CReo)=] = (s(n f)z),

Tr(s)

Dividing (13) by Q(¢, T) and taking limit we have

_ Y (y(g(@)
14) d=K,1 }Hg—O(t, T

F(CR(g(x)), x)dx ds.

Now let Q(g(¢), T)= Q(g(p)) then

. Yr(y(g() _ ..  ¢r(CQ(g(1))

lim =lim

t->00 Q(t, T) t—>00 Q(t’ T)
where C = dm, due to the condition on A and increasing (in first argument) nature of
F(z, t). Now by I'Hépital’s rule

. Yr(CQ(g(r)
s lim oL T)

LOOF(CQ(g(t)), 1) dt.

The conclusion about necessity now follows from (15).
(Sufficiency). Without any loss of generality let T above be large enough so that
for t>T'>T we have

[ee]

(16) 4r(COEWY/O< | F(COEO).Ndr<d/2
Since
GO _ [
tim V8= [ o).
and is finite, let T, > T be so large that for t= T,
GO _ [
an <] Faoeon. o
In fact, for T,>T
o) _ [ -
lim P2 E= [ Fooeen. di<| FhoGo).nd:

which justifies (17).



22 BHAGAT SINGH

Consider the class S of all continuous functions f(¢#) in [T, o) such that
|f())/Q(t, T) is bounded. We define the norm |- || as

£ = sup {(Q (e, T 'If(2)], t = T2} <co.

It is easily verified that § with the norm ||| is a Banach space. Let W < S with the
property that

(18) d/2=x/Qt)=d

for x € S. We observe that W is a closed, bounded and convex subset of S. Now we
define an operator ¢ on S as

19) @ (y(1)=dQ(t, T)— ¢r,(y(g(1)).

We shall then seek a fixed point of the operator ¢ via Schauder fixed point theorem.
We, first, notice that ¢(W)< W. In fact, if y(¢)e W then

(20) o (y(1)=4dQ(t, T)—dQ(t, T)Wr,(y(g(1)))/dQ(t, T)).
Now y(g(t))=dQ(g(t), T). Therefore from (20) we have

_ B ¥ (CQg(1))
(21) o(y()=dQ(, T)-dO(, T) d0G. T)

This gives ¢ (y(¢))/Q(t, T)=d/2 by (16). Also ¢(y)/Q(t, T)=d. Hence ¢(W)< W.
Next we shall show that ¢ is continuous. Let y,(¢#)- y(¢) in norm as n - %, i.e.,

(22) lim ly. ()= y(@®)ll=0.
Now

dGa(1) SO _[[" 1 [ —x)"
oG T) 0, T)‘ZUTZ r(s)Lz (n—2)! IF(h(yn (g (D), %)

~F(h(/(g()), x)| dx ds] /0. T)

[se]

= J |F (h(yn(g(x))), x)— F(h(y(g(x))), x)| dx

by (17). Thus

(23) 60 -s0I= | Gao)a

T

where

Ga(6)=|F(h(y.(g(1))), N—F(h(y(g(1)), NI =2F(CQ(g (1), 1))

By the Lebesgue dominated convergence theorem, the right hand side of (23)
approaches zero and the continuity of ¢ is established.

Next we shall show that ¢ (W) is compact. To this end it suffices to show that the
family D = {¢(y)/Q(t, T): y € W} is uniformly bounded and equicontinuous. Uniform
boundedness is obvious. To show equicontinuity we follow Levitan [8] according to
whom it will be achieved if we could subdivide [T, ) into finite number of subin-
tervals on each of which all functions of family D have oscillations approaching zero.
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Let then t,>t,> T,. Now

Yr(y(8(12) ¥r(y(g(1))
Q(tz, T) O(tl, T)

-0 as ¢ (and hence t;)—> 00 uniformly.

'[¢(Y(f2)) N ¢(y(t1))]‘
Q(2, T) Q(1,T)

Hence for a given ¢ >0, there exists a number T3> T, such that for all pairs > t, >
T

o(y(2) &(y())
Qt, Ty Q(t,T)

=

Now consider the closed interval [T,, Ts]. It is easy to see that the family D has
uniformly bounded derivative and hence is equicontinuous in [T, T5]. Thus we have
succeeded in subdividing [T», ©) into finitely many subintervals on each of which
oscillations of members of D die out. Hence ¢ (W) is compact.

Applying Schauder’s fixed point theorem, ¢ has a fixed point in W. Suppose
& (yo(t))= yo(t), then it follows from (19) that

(24) yo(t)=dQ(t, T)—¢r,(y (g(1)));
ie.,
3 t-l_ s (S _x)n—3
y)= d(Lr(s) L 3y & ds)

(25)

B t L s (s__x)n—Z
L2 e Lz s P (s, ) d ds.

Simple differentiation shows that yo(¢) is a solution of equation (4) which is nonos-
cillatory and asymptotic to Q(¢, T'). In fact, since yo(t)> 0, it follows from equation (4)
that yo(?) is monotonic.

The proof of Theorem 2 is now complete.

THEOREM 3. A necessary condition for equation (4) to be oscillatory is

(26) J F(CQo(g(t), t))dt =0 for some C >0,
where we define
t 1 Js (S _x)n—3
t)=| — | ———=——dxds.
Qo) J ro)) -3y B
Proof. This follows from Theorem 2.

4. Further remarks on nonoscillation. In this section we take up equation (5),
namely

®) (r@y'®)) +a(®h(y(@())=f{).

Theorem 2, in the case of equation (4), guarantees the existence of a nonoscillatory
solution. Here we shall prove a theorem by which all solutions of equation (5) become
nonoscillatory. We shall need the following lemma which is Theorem 2 of this author
[13, p. 40].
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LEMMA 1. Suppose

(27) J |f(0)| dt <o,
(28) J—°° la(t)| dt <o,
and

(29) J’ % dt <00,

Then all oscillatory solutions of equation (5) approach zero asymptotically.

Proof. The presence of h and g in equation (5) here requires trivial modifications in
the proof in [13].

THEOREM 4. In addition to conditions of Lemma 1 suppose

(30) lilgjo“f J‘ [f(®)—|a(®)]] dt>0;

then all solutions of equation (5) are nonoscillatory.

Proof. Suppose to the contrary that y(¢) is an oscillatory solution of equation (5).
By Lemma 1, y(¢)—> 0 as t > 0. Let P be large enough so that for t = P, |h(y (g(¢)))| < 1.
Since y(¢) is oscillatory (ry') is also oscillatory. Let Po> P be a zero of (r(t)y'(t)). From
equation (5), on integration, we have

t

(oY O+ | ahG@ENdr=] fw)d,
Po Po
or
61 Oy O+ [ la@lhoEem dr= [ fe)dx
Py Py
Since |h(y(g(1)))| <1, (31) yields
(2) (Y= | (0-laG)dr>0

But (32) implies that y(¢) is nonoscillatory. The proof is now complete by contradiction.
Example 1. Consider the equation

(33) (e'y'(1)) +e Xy(t)=2e "+e .

It is easily verified that all conditions of Theorem 4 are satisfied. Hence all solutions of
(33) are nonoscillatory. y(r)=e ' is one nonoscillatory solution of (33).
Example 2. Consider the equation

(34) (e'y'(t)) +e ‘sinty(WH=2¢"",  >0.

Since here again the coefficients meet the conditions of Theorem 4, all solutions of
(34) are nonoscillatory.

Our next theorem gives sufficient conditions for all solutions of equation (5) to
approach nonzero limits on the extended real line.

THEOREM S. Suppose for a(t)>0, all conditions of Theorem 4 hold. Further
suppose that there exists a continuously differentiable function A (t) such that

(35) A(t)»0 ast—>o0,
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(36) (r(OA' (@) = £(2).

Let y(¢) be a solution of (5). Then lim |y (¢)| =B = 0.

Proof. By Theorem 4 y(t) is nonoscillatory. All that we need to show is that
lim, |y (¢)| exists on the extended real line.

From equation (5)

@37 (r@O@@O=A @)Y +a()h(y(g))=0.

Without any loss of generality suppose Ps is large enough so that for t = P; both y (¢)
and y(g(?)) are positive and condition (36) holds. From (37), (r(t)(y(#)—A(2))) <0
and hence (y(t)—A(¢)) is monotonic. Thus

}ing (y(t)—A(t)) exists on extended R.

Now
lil;floionf y(t)= lir'rljonf [@®=A@)+A@)]
=lim (y()—A ().
Similarly

lim sup y (1) = lim (y (r)— A (1)),

and the proof is complete.

Example 3. Consider the equation
(38) (e'y'(t)y +e 'y(t)=2¢ " +e "
It has y(r)=e > as a solution. For function A (r) we take

A()=e > +5e

Thus all conditions of Theorem 5 are satisfied. All solutions of (38) approach limits on
extended real line.

5. Asymptotic nonoscillation.
LEMMA 2. Suppose r(t)>0, f(¢)>0, a(¢)>0;

(39) J ]% dt <o,
(40) [ wi‘%m@o;
a (L0 FOROY

for t= A, for some A>1t,>0. Let y(t) be an oscillatory solution of equation (3); then
y(t) is bounded above on R™.
Proof. Let y™(t)=max (y(t), 0). Let T > A > ¢, to be large enough so that
“a®f ()

(42) mL —Wdt<1
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and

*®1
43) I —dr<1.
T f(¥)
Let t,>¢,>T be two consecutive zeros of y(¢) such that y(¢)>0 in (¢, #2). Let
My=max y(t), toc[t;,t] be such that My=y(t). Now My=[y'(t)dt also
My=—[2y'(t) at.
Together these give

)

(44) 2Mo= J ly'(2)| dt.
31

Now equation (3) can be written as

fr

P pf)y LAROEO) 1
r r

r r

45) (F@y @) +(

we shall now closely follow the proof of Theorem 1 of this author [13, p. 38-40]. The
proof requires some changes due to the presence of the term H,y' where

(46) Hy=(fr'/r—f'+fp/r).
From (44) we obtain

(47) 2Mo§£ ’ LFOI L@l o2y ()] ar
which yields as in [13, p. 39, conclusion 15]

2 — > L — § ()Y
@9) ays[ [ s -| ooy oy al

From (45) and (48) we get

(%1 11 (" , Za(f )y (Oh(y((1))
4M0[4[1 %dt] =J:1 y () H(t)y (t)alt+J:1 0 dt

2y (OF (1)
_J:, ——r O dt.

The rightmost term in (49) is nonnegative; further integration of the first term on
the right of (49) yields

M 3[ J . d’]—l “ o J © H )y 0 di+ j " aOfOYORGEOD

(49)

1 f(t) 2 [} 1 r(t)
Hence
o[ (21 T 2 a(Of )y (Oh(y (1))
(50) 4M0“:. f(—t)dt] = J:l "0 dt,
Since H5 =0 by condition (41). Setting
(51) Hj(t)= (a(@)f(£))/r(1),

we obtain from (50)

(52) an] j a] s Hy(0Oh(y )y (1) d.
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Let g>p be large enough consecutive zeros of y(¢) such that p—g(q)>T. Let
te(p, q). Suppose M, =max |y(¢t)| for te(p, q). If y(¢) is not bounded above then
lim sup;. y(t) = 00. Let ro>q be the smallest number such that

(53) ly(ro)l = M, +1.

Let T, be the greatest zero of y(¢) less than ro and T, be the smallest zero of y(¢)
greater than ro. Then

(54) Q§T1<ro<T2

and T, T, are consecutive zeros of y(t). Let M, =max |y(¢)|, te[T, T»] and M, =
y(ta,)s tar, €[ T, T2]. In a manner of this author [13, p. 40] it now follows that

(55) M, =max |y(t)], te[Th, T3]

In inequality (52) we replace ¢, and f; by T; and T, respectively. It is clear that for
te[Ty, Ty, g(1)e[T, q]. Hence

(56) ly@)=M,, te[Ty, Ta].
Let now y(¢)>0 in (T, T>). From (52) and (56) and the fact that 0 <h(x)/x =m, we

have
(™ 177 (P yOly@E)Hs(0)R(y (8 (1)
4M2“n ot =L, Y &)

dt,

which gives

57) 4= UTT ]%) dt] [m LT Hy(r) dt].

Now (57) gives a contradiction in view of (42) and (43). This shows that y(¢)<0 in
(T3, T,). Thus y*(¢) doesn’t exceed a finite bound. The proof is now complete.
THEOREM 6. Suppose conditions of Lemma 2 hold. Further suppose that p(t)>0,
p'()=0, [ a(r)dt <o, and [~ f(t) dt = 0. Then all solutions of (3) are nonoscillatory.
Proof. Suppose to the contrary that y(¢) is an oscillatory solution of equation (3).
By Lemma 2, y*(¢) is bounded. Now y’(¢) must be oscillatory. Let T > A > t, be large
enough as before. Let yo> T be a zero of y'(t). From equation (3)

Oy O+ [ pwywars | aw TED e de=] fwydx
This gives
HOY O+pEY =Py - | py(x)dx
(58) Yo
EN167€{62)) _[
+] awtXEy @) dr= | fwydr
From (58)

t

(59) r(t)y'(t)+p(t)y+(t)—p(yO)y(yO)—I p'(x)y(x)dX+mJ a(x)y (g(x)) dx

Yo Yo

= J;tof(x) dx

since p'(t)=0. Now lim,.« J,_ f(x) dx = 0. Due to the bounded nature of y“(¢) and
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other conditions of this theorem we get from (59)
(60) r(t)y'(t)> ast->o

since r(t)>0, y'(t)>0 eventually, a contradiction. The proof of Theorem 6 is now
complete.
Example 4. Consider the equation

(61) YO+ Q2+e W () +e Py () =e™.

All conditions of Theorem 6 are satisfied. Hence all solutions of (61) are nonos-
cillatory.
Example 5. Consider the retarded equation

(62) Y'(O)+@2+e ) (O)+e Ty —m)=3e" +e F+1.

Here r(t)=1, f(t)=e > +3e'+1, p(t)=2+e ', a(t)=e """ It is easily verified that
conditions of Theorem 6 are satisfied. This equation has all solutions nonoscillatory.
In fact y(t)=e' is one such solution.

Remark 1. The boundedness or unboundedness of r(¢) has not played any role in
this theorem. We take up this matter in the next section.

THEOREM 7. Suppose conditions of Theorem 6 hold. Further suppose that r(t) is
bounded. Then all solutions of (3) are unbounded and nonoscillatory (positive).

Proof. We follow the proof of Theorem 6 to prove the nonoscillatory nature of
solutions. Integrating equation 3 for t = T where T is large we have

r@y'()—r(T)y'(T)+p()y(t)—p(T)y(T)

‘- C Ry
—Lp(x)y(x)dx+j ar)" TED

Suppose now y(t) is bounded; then (63) yields

©2 vy dr = [ fx)dx
T

(64) r(t)y'(t)> ast->c0.

This in view of boundedness of r(z) gives the desired contradiction. The proof of
Theorem 7 is now complete.

Remark 2. Coming back to Examples 4 and 5 we see that all solutions of
equations (61) and (62) are nonoscillatory and unbounded.

Remark 3. It also follows from (63) that the specific nonoscillatory nature of
these solutions is positive.

Remark 4. Boundedness of r(t) in Theorem 7 cannot be weakened as indicated
by our next example.

Example 6. Consider the equation

(65) @y Q) +Q+e )y () +e TTy(t—m)=2e> +e "

This equation has y(¢t)=—e ™" as a negative nonoscillatory solution. For condition (41)
of Lemma 2 we have

(fr f+fp> =(6e* +3e " —de* +e " +(2e* +2e' +e +e ) e
=Qe*+6e " +2e +e M+
>0 eventually.

All other conditions of Theorem 7 can be easily verified. Here unbounded r(¢) is
causing the problem.
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THEOREM 8. Suppose conditions of Theorem 6 hold. Further suppose that r(t)
satisfies

t
(66) lim infl—ﬂi)ig>0.
t—>00 r([)
Then all solutions of equation (3) are unbounded and positive.
Proof. Let y(t) be a solution of equation (3). By Theorem 6 y(¢) is nonoscillatory.
Suppose y(t) is bounded. Let T be large enough so that |y (¢)| = N for ¢t = T. Integrating
equation (3) for t = T we get equation (63). Dividing (63) by r(¢) we have

_r(My'(M) pON+p(TN_N frp'(x) dx  mN frfx) dx
r(t) r(t) r(1) r(t) r(t)
and a contradiction easily follows from (67) in view of condition (66). Hence y(t) is

unbounded. Suppose now that y(t)<O0 for t = T. (63) reveals in view of p(¢#)>0 and
p'(¢)<0 that

67) ') La(x)dx =

(68) r@)y' ()= r(T)y(T)~p(T)y(T)= JTf(x) dx.

Dividing (68) by r(t) and taking the limit as > 00 we find that lim inf,.. y'(#)>0, a
contradiction to negative y(¢). The proof of Theorem 8 is now complete.

Remark 5. Condition (66) cannot be weakened if all other conditions of
Theorem 8 are satisfied. Example 6 testifies to this. In fact in Example 6

lim inf L4 _

0,
t—>00 r(t)

violating (66).

6. Asymptotic oscillation. In this section we prove a theorem that gives condi-
tions so that all oscillatory solutions of equation (3) approach zero. In fact Theorem 2
of this author [13, p. 40] states that all oscillatory solutions of equation (1) eventually
vanish if [*1/r(t) dt <oo, [?|a(t)| dt <oo and [~ |f(¢)| dt <oo. However consider the
following example.

Example 7. The equation

(exp (20)y' (1)) +exp((¢/2) = 3m))y(t —m)
=2exp(—t)sint—4 exp (—t)cos t —exp ((—5/2)¢t) sin ¢

(69)

has y = e ' sin t as an oscillatory solution approaching zero. In fact it will be shown
via Theorem 9 that all oscillatory solutions of (69) approach zero as ¢ - 0. But this
equation is not covered by our Theorem 2 in [13]. This motivation leads us to the
following theorem:.

THEOREM 9. Suppose a(t)>0, r(t)>0 and

® 1

(70) J mdt<oo,

(71) H5>0 where H,=(ar'/r—a'+ap/r),
oan(t)

(72) j 0 dt <o,
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a(t)lf(t)l &t
r(t)

Then all oscillatory solutions of equation (3) approach zero asymptotically.
Proof. Let T =t be sufficiently large so that for t= T, H> >0 and we can write

(73) j

<0,

(74) L %m 1
(75) J:o % dt<1,
(76) L el (ﬁ? dr<l1.

Let t,>1t;>T be two consecutive zeros of y(¢) and without any loss of generality,
suppose y(¢)>0 in (¢, t,); we rewrite equation (3) as

a’(t)
r(t)

Let Ko=max y(t), t€[t1, t2]. Following proof of Theorem 1 in [13, p. 39] from
conclusions (9) through (14) we arrive at

an (a(@)y' () + Ha0)y () + =L h(y (1) = (@()f (D).

4K3§Ht2-—dt][ j (a(t)y’(t))’y(t)dt].

)
Using (77) we get
6 t t, 2
4K3 = “ a_it'i dt]u Ha 0y (©)y'() dt+£ g (())h(y(g(t)))y(t) dt
2 (a()f )y (1))
_L B o dt].

Since H5(t)>0 and y(t;))=y(2)=0, I H,yy' dt= —j" Hby? dt; adding this to the
right hand side and dividing by K, we get

o0 e[ e = Dhueman WO,

From here on the proof of Theorem 2 (and Theorem 1) of [13, p. 39-41] i.e. from
conclusion (16) through conclusion (29) and down on pages 39-41 applies verbatim.
The proof is now complete.

Remark 6. Coming back to Example 7 we notice

r)=e* a()=e’*", f(t)=2¢ 'sint—4e ' cost—e > sint,
p=0, Hy=(ar'/r—a'+ap/r)=2e">>"—%">>" =3 exp (/2 3m).
1 J'oo a’(1) alf|

H'2>0, j —(—'Sd 0, r(t) ()

Thus all conditions of Theorem 9 are satisfied. Hence all oscillatory solutions of
equation (69) vanish asymptotically.

dt<oo and I dt <o,
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A NONLINEAR SINGULAR PERTURBATION PROBLEM
FOR SECOND ORDER SYSTEMS*

WALTER G. KELLEYY

Abstract. The existence and asymptotic behavior as & - 0" of solutions of nonlinear boundary value
problems for second order systems are studied using differential inequality techniques. Conditions are given
under which two point problems for ex"= f(¢, x, x', €) have unique solutions which converge uniformly as
£ ->0" outside boundary layers at each endpoint of width V& to a solution of the reduced equation
0=f(t x,x', 0).

1. Introduction. Recently, Chang [2] has studied the quasilinear boundary value
problem

(1) ex"+C(t x,e)x'=h(t x, €),
) x(0,e)=A(e),  x(1,e)=B(e),

where x, h, A and B are vector-valued and C is a matrix function. Under the
assumptions that the reduced problem

C(t, x,0x'=h(t, x,0),
x(1)=B(0)

has a C? solution u(r) and every eigenvalue of C(r, u(t), 0) has real part greater than
or equal to 84 >0 for 0=¢t=1, plus additional assumptions, he proves that for &
sufficiently small, the problem (1), (2) has a solution x (¢, ) on [0, 1] such that

x(t, e)=u(t)+0()+0(e "),
xX'(t,e)=u'(t)+O(c)+ O(e*),
where the Landau order symbol holds uniformly in ¢ as € > 0.
A natural question is: What can be concluded if C =0 or if C is “small” in a

neighborhood of u(¢)? In the case of a scalar equation, Howes [4] has shown that if
C =0, if the reduced equation

3 0=nh(t x,0)

has a C? solution u on [0, 1], if 8h/6x =m >0 in a neighborhood of u and if certain
other conditions are satisfied, then (1), (2) has a unique solution x(z, ¢) for ¢
sufficiently small, and

lx(t, €)— u()| =|A(e)—u(0) e ™= +|B(e)—u(1)| e=Vm/Ea=0 |

for 0=t=1, where c is a positive constant independent of .

In this note we show that Howes’ result can be extended to vector equations
under suitable hypotheses. More generally, we also demonstrate that similar
conclusions can be reached for the vector boundary value problem consisting of (2)
and

@ ex"=f(t, x, x', €),

provided that 3f/dx’ is ““small” in a sense to be made precise below.

* Received by the editors November 24, 1976, and in final revised form May 5, 1977.
+ Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019.
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2. Some preliminary results. In this section we collect for the convenience of the
reader the result to be used in the proofs of our main theorems. Let us consider the
two point boundary value problem

%) x"=g(t x,x"),
(6) x(0)=a, x(1)=8,

where g: [0, 1]x R x R% » R is continuous and a, B € R“.

For i=1, -+, N, let r;i(t, x) be of class C* on [0, 1]><Rd, w;(t, x) the gradient
vector of r;, v;(t, x) the gradient vector of dr;/dt, where these gradients are taken with
respect to x, and P;(¢, x) the Hessian of »; with respect to x. Let the first and second
derivatives of r; with respect to (5) be denoted by

or;
7 ri=—+w - x,
™ ew
o%r;
(®) r?’=5—t-2-'+20,~-x’+x’P,~-x’+w,'-g,
for i=1,---,N, where the dot indicates the usual scalar product in R% Define

D={(tx,y):0=t=1,r(x)<O0fori=1,---,N,ye R
We give two types of Nagumo conditions for g.
N;: There exists a sequence {¢i}§i=1 of positive, nondecreasing continuous
functions on (0, c©) such that

ro (,ff(iif”

and
lg'(t, x, Y= i(ly’)) for(t,x,y)eD, i=1,---,d.

N,: There is a positive, nondecreasing, continuous function ¢ on (0, %) such that
2
s

b(s)

>00 ass—>0

and

£t x, yI=a(lyl) for (s x,y)eD.

The following theorem is a special case of Theorem 4 in [5].
THEOREM 1. Assume {(t,x):0=t=1, r(t, x) =0} is a bounded set and
() the functions r; described above satisfy fori=1,---,d

9) r! >0 whenr,=0andr;=0;

(b) there is a function of class C* on [0, 1] which satisfies (6) and whose trajectory
is contained in D ;

(c) initial value problems for (5) have unique solutions

(d) g satisfies either Ny or N, on D.
Then the boundary value problem (5), (6) has a solution x(t) with r(t, x(¢t))<O0 for
O=t=landi=1,---,N.

We note that the proof of this theorem requires only that each 7; be of class C” in
a neighborhood of the set {(, x):0=t=1, r(t, x)=0}. Also, assumption (a) can be
relaxed and assumption (c) can be omitted if additional conditions are placed on the
functions r;. See Theorem 5 of [5].
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If £:R%-> R is a linear operator, then its adjoint will be denoted ¢*, and €=0
means that x - £(x)=0 for all x € R®. The next theorem is proved in [3].

THEOREM 2. Suppose that g has continuous partial derivatives with respect to x and
x', and

og og ag>*
1 %8 _98(%8) =y,
(10) 43x ax’(ax’ 0

where the partials are computed at an arbitrary point (t, x, x') in [0, 11X R* X R®. Then
(5), (6) has at most one solution.

The proof of this theorem shows that if a priori bounds, say [|x|= R, |x| = u, are
known for solutions of (5), (6), then the hypotheses of the theorem need hold only for
these restricted values of x and x'.

3. Singular perturbation problems. We begin by considering the system (1) with
C =0, namely,

(11) ex"=h(t, x, &),

on the interval [0, 1] with boundary conditions (2) and the reduced equation (3). The
following theorem is a generalization of Theorem 3.1 in [4].

THEOREM 3. Assume:

(a) equation (3) has a C®[0, 1] solution u;

(b) h is continuous in (t, x, € ) and is of class C™ with respect to x in

E={(txe):0=t=1,|x—u)=|A(e)-u©) e ™
+IB(e)—u() e ™ 0 4 ce, 0< e £},

for some positive constants m, ¢ and €,;
(c) forall (t,x,e)eE, (dh/dx)(t, x, e)—mlI =0, where I is the identity;
(d) thereisa y>0 so that |h(t, u(t), e)|<ve for 0=t=1,0<e =¢,.
Then for each €, 0 < e =g, there is a unique solution x(t, €) of (11), (2) which satisfies

(e, )= u(l<lAe)=u (@)l e ™" +|B(e) - u(D)l e ™44,

for0=t=1.
Proof. For the first part of the proof, we assume u(t)=0 for 0=¢=1. Fix ¢ so
that 0 <e = ¢;. Define

~Vm/e ~Vmje(-1)_E
rt, x)= Il A(e)] ™ = |B(e)] e~

for 0=¢=1 and x € R*. Note that r is of class C? except when x = 0 (see the remark
following Theorem 1).

We will apply Theorem 1. All the hypotheses are easily seen to be satisfied,
except (a). In formula (8), we have w(x)=x/|x|| (x #0) and v(¢, x)=0 for all ¢ and all
x. Furthermore, P(x)= 0 for all x # 0 since the function |x|| is convex. Thus (9) will be
satisfied if we show

2
g;;+—x— lh(t, x,e)>0

el

whenever r =0.
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Assume r(t, x) =0 and compute

arx

m  _Jmje m _mie—
T e x ) =A@ T - |B(e)| 2 T

(t 0, e)+ [h(t x,e)—h(t,0,¢)].

|| I'e Il

By applying a version of the mean value theorem to the last expression (see [1]), we
have

s Lkt x, )= h (s, 0, s)l—ﬂ~1a”<t 2 )0z 2,

by hypothesis (c), where z is on the line segment from 0 to x. Thus

arx

m _ Et —Vvm/e t
s Lher )z - lA@IZ e B e+ 2 0,e)

m Ve mTe(—t) . €
+;[{|A(e>ne B e '>+;n‘f]

(tO e)+vy>0

by hypothesis (d). From Theorem 1, we conclude that the boundary value problem
(11), (2) has a solution x(t, € ) with

le(t, e <A e +IBe) €0+

for0=¢=1.

If the reduced solution u(¢) is not zero, then we can make the change of variable
y =x —u(t), and the transformed boundary value problem satisfies the hypotheses of
the theorem with reduced solution zero, so that the first part of the proof is applicable.
The uniqueness follows immediately from Theorem 2. Q.E.D.

In [4], Howes also considers the fourth order problem

(4)=F(t, X, X", 8),
x(0, e)=Aq(e), x(1, e)=B(e),
x"(0, £)=As(e), x"(1, )= Bj(e).

His results for this scalar problem can be extended to systems by following the basic
outline of his argument but applying Theorem 1 instead of the corresponding theorem
for scalar equations. Since our proof of Theorem 3 illustrates the type of modifications
which must be made in analyzing the vector problem, we omit the details.

We now consider equation (4), where

£:[0,1]x R4 x R4 %[0, ©)> R“.

THEOREM 4. Assume:
(a) the reduced problem, 0= f(t, x, x', 0), has a C®[0, 1] solution u;
(b) fis continuous in (t, x, x', €) and is of class C" with respect to x and x' in

F={(tx,x,e):0=t=1, |l —u@)P=|A)-uO)f e >/
+HIB(e)—u(M)P e~ 2004 ce? 0<e ey},
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for some positive constants m, ¢ and €1,
(c) thereis a 5 >0 so that

(I o rmea

forall (t,x,x',e)eF,
(d) Fsatisfies Ny or N, in F
(e) thereisay>0sothat |f(t, u(t), u'(t), €)|<ve for 0=t=1,0=¢ Ze¢;.
Then for each e, 0<e =g, there exists a unique solution x(t,e) of (4), (2) which
satisfies

—V2m/et —2m/e(1~
lx(t, &)= u@IF <|A(e)—uO)|F e ™™ +||B(e)— u(1)|? e 2™*0 4 ce?

for0=t=1.
Proof. As in the proof of Theorem 3, we assume that u(¢)=0 for 0=¢t=1, and
this assumption gives no loss of generality. Fix £ so that 0 <e =g, and define

—Vam/et ~amrea-n_ (Y \?
1,0 =l =A@ e = [B(e)f e~ 070~ (Le)

for 0=¢t=1 and x€R® Among the hypotheses of Theorem 1, only (a) is not
immediate.
For this choice of 7, we have w(x)=2x, v(x)= 0 and P(x)= 21 for all x € R*. Thus
in F we obtain
2
r'= a—;+ 2x" - x'"+2x - i(t, x,x',€).
ot €

Let f' denote the differential of f with respect to (x, x') for fixed values of (¢, ). By
applying the mean value theorem used in the proof of Theorem 3, we have

x-ft,x,x',e)=x-f(t0,0,e)+x - [f(t, x,x",e)—f(£,0,0, ¢)]
=x-f(t0,0,e)+x - f'(t, 2 2, e)x, x")

=x-f(0,0,e)+x -a—f(t, z,z',e)(x)
ax

i)
rx- L 22 o),
0x

for some point (z, z') on the line segment between (0, 0) and (x, x'). Thus the expres-
sion

x' - x'+x -1(t, x,x',€)
€

can be written in the form

Lol ) ] o2 (L)) o

2e \ax’




A NONLINEAR SINGULAR PERTURBATION PROBLEM 37

where all partials are evaluated at (¢, z, z’, €). From hypotheses (c) and (e), it follows
that whenever r(¢, x) =0, we have

) aZr 2 m+3
Pz = Ixll1£, 0,0, )+ 27—’
€ £

I

2m VImjer  2m e 2
~AE)P e =R OS] £, 0,0, &)

26 2 Ny amTed— 2
P+ AR e 4B e T4 T ]
€ € o

2
=2 beliexll =117 0,0, e)ly+

€

my?
82
since 8|x||>8(ve/8)=ve Z||f(¢, 0,0, &)| if r(t, x)=0.

Theorem 1 applies, and the problem (4), (2) has a solution x (¢, ) which satisfies
r(t, x(t, £))<0 for 0=t =1. Since (8f/3x")(8f/9x')* =0, hypothesis (c) implies that (10)
is satisfied for g = f, and the solution x (¢, €) is unique. Q.E.D.

In the case of the quasilinear equation (1), where f(4, x,x',¢e)=
—C(t, x,e)x"+h(t x, €), hypothesis (c) of Theorem 4 essentially requires 9f/9x to be
positive definite and C(t, x, )= 0(V¢) for x in a neighborhood of u. However, this
condition may hold even if (4) is not quasilinear. For example, in the scalar problem

82]>0,

ey"'=y+ey(y'),
y(0)=3 y(1)=3,

we have

af 1 ( of )2 2
———|—=) =1+e(y'Y(1-y)>1
3y de\ay e(y)y(1-y)
for y sufficiently close to the reduced solution u(¢)=0,0=t=1.

Finally, we should add that differential inequality methods of the type used above
do not appear to be effective for singularly perturbed systems in which the derivative
x' plays a substantial role in the differential equation.
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EXTENSIONS OF SHEFFER POLYNOMIAL SETS*

WM. R. ALLAWAYY

Abstract. A Sheffer A type zero polynomial set {P, (x)}— is one in which its generating function is of
the form A(t) e =Y o P,(x)t"/n!. For any Sheffer A type zero polynomial set {P,,(x )} =0, a method is
given for constructing a formal Newton series expansion ¢(z,s) such that a “Y(x+a,s)=
Z:;o P(x)[s%/(a*k)), where sV =s(s—1)- - - (s— k +1) and @(z, s) is an extension of P,(x) in the sense
that ¢(x, n)= P,(x)forn=0, 1,2, - - - . The extensions of the Bernoulli and Euler polynomial sets are given
in terms of the Hurwitz zeta functions. These extensions are shown to be formal solutions of some finite
difference equations with nonconstant coefficients. These finite difference equations are then used to
linearize the product P,(x)P,(x + a) for the Hermite and Euler polynomial set. For the Hermite case the
inverse formulas of these linearizations are obtained.

1. Introduction. L. Poli [13] in 1954 showed that for the Hermite polynomial set
{H,(x)}n=0

(1.1) VH, ()= ¥, (”);”"‘D:‘y,
k=0 k
where y is the generating function of the Hermite polynomial set defined by
k

yi=exp (xt—*/2)= ¥ He(x).
k=0 k!

Haradze [7], 1964, obtained a similar result for the ultraspherical polynomial set. For
this case the differential operator is not linear. Allaway [1] has done the Laguerre,
Meixner, and Poisson—Charlier polynomial case. Ismail [8] has generalized Poli’s
result to the class of Appell polynomial sets. These types of results are interesting
because they are useful in finding the solutions in close form of some differential
equations with nonconstant coefficients. (See Allaway [1].)

In this paper, we are interested in finding the finite difference analogue of Poli’s
formula for some well-known polynomial sets.

It is obvious that Poli’s formula for {x"}5-o is

(1.2) eXx" =D:next,
where the generating function of {x"};, -, is
o kK
si_ oy X
K=o k!~
The finite difference analogue for the polynomial set {x"};-¢ is
(1.3) (1+x)’x"=A5;(1+x)’,
where the Newton series generating function of {x"};_o is
© 4N (n)
x"s
1+x)° =
( x) ng() n'
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Throughout this paper, we will always use the notation
sM=s(s—1)(s—2) - (s—n+1).

In order to generalize what is done in going from (1.2) to (1.3), that is to find finite
difference analogues to (1.1), we study
1) polynomial sets {P,(x)}n~o such that

s(k)

Ue+19)= T PO
k=0 .

where ¢(x, n)=P,(x)n=0,1,2,- - - and
2) a transformation T such that T(e®)=(1+x)’.

2. Extensions and Appell polynomial sets. Let {P,(x)},-o be a polynomial set.
That is, P,(x) is a real polynomial of degree exactly equal to n. An extension of
{P,(x)}n=0 is a function ¢(z,s) of the two complex variables z and s such that
Y(z,n)=p,(z) for n=0,1,2,---, and z belonging to the complex numbers.
Mathematical physics abounds with examples of polynomial sets and their extensions.
For example, z° is an extension of {x"},-o, the Hermite functions are an extension of
the Hermite polynomial set (see [10, p. 285]), and s¢(1—s, z) is an extension of the
Bernoulli polynomial set {B,(x)}n=0, (see [6, vol. 1, p. 27]), where {(s, z) is the
Hurwitz zeta function defined for Re (s)>1, by

2.1) (s, z)= ozo: (z+n)™", z#0,-1,-2,---
n=0

Let ®(z, s, v) be defined by
d(z,s,0)= Y (v+n)’z"
n=0

See [6, vol. 1, p. 27] for some of its properties. It is easy to show that 2d(—1, —s, z) is
an extension of the Euler polynomial set. Indeed, by using the complex contour
integral representation of {(s, z) and ®(—1, s, z) (see [6, vol. 1, pp. 25, 28]) it follows
thatfors#1,2,3,---and Re (z)>0

D(—1,s,2)=27"[L(s, 2/2)—L(s, (z+1)/2)].

By using this fact and the fact that s{(1—s, z) is an extension of the Bernoulli
polynomial set, we obtain
2(1)(_1’ —m, Z)= 2m+1[{(-m9 2/2)_{(_’", (Z + 1)/2)]

_ yme1[Bm+1(2/2) = Bpar((z + 1)/2)]
—(m+1)

=E,.(2).

From our definition of extension it is obvious that a given polynomial set has an
infinite number of extensions.

Sheffer [16] in 1939 studied polynomial sets {P,(x)}.-o that have a generating
function of the form

n

@2) AWexp GHO)= T Pal)s,
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with

A=Y ant", H()= Y hut", aohi#0.
n=0 n=1

Such polynomial sets are now known as Sheffer A type zero polynomial sets. Many of
the classical polynomial sets are Sheffer A type zero polynomial sets. For example,
{x"}n=1, the Bernoulli polynomial set, the Euler polynomial set, the Hermite poly-
nomial set, the Laguerre Polynomial set, the Poisson—Charlier polynomial set and the
Meixner polynomial set are all Sheffer A type zero polynomial sets.

Let {Q,(x)}n-o have a generating function of the form

3 exp GH(O)= § Q)

where H(t)=Y _, hut", hy #0. Define

© (k)
2.4) (63 9)= ¥ P07
where Q,(x) is any extension of {Q, (x)}=o.

We first wish to show that {P,(x)},~o is a Sheffer A type zero polynomial set if
and only if there exists a polynomial set {Q, (x)}»~o having a generating function of the
form (2.3), such that for all complex numbers ¢, ¢(x —¢, ¢, s) as given by (2.4) is an
extension of {P,(x)}-o.

First, let us show that every Sheffer A type zero polynomial set {P, (x)},-o has an
extension of the form as given by (2.4). Indeed, if {P,(x)}»-o is a Sheffer A type zero
polynomial set, then it follows from the generating function (2.2) that for all complex
numbers ¢ and z,

n

P.(z)= ¥ (Z)Qn—k(C)Pk(Z“C)

k=0
=¢(z—c¢ ¢ n),
forn=0,1,2,---.Thus ¢(x —c,c, s)is an extension of {P,(x)};-o.

Conversely, let ¢(x —c, ¢, s) be an extension of {P,(x)}»-o. Thus

P,(x)=¢(x—c,c, n)

- éo (Z)Pk(x ~¢)Qu_i(c).

Therefore,
5 P@i= 3 % (M)pe-0oa0n
n=0 T n=0 k=0 \K W "
2.5) . . .
= ,.go P, (x— c)m kgo Qk(c)m.
By hypothesis,

k

exp (H(0)= ¥ Oule).
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Therefore, if we let F(x, t) be the generating function of {P,(x)},-o we obtain from
(2.5)

(2.6) F(x,t)=F(x—c, t)exp (cH(t)).
Let log, F(x, t)= u(x, t). Thus (2.6) becomes
u(x, )—u(x—c, t)=cH(t),
which has a solution
u(x, t)=xH(t)+g(x, t),
where g(x, t)= g(x — ¢, t) for all complex numbers c. Therefore,
2.7) F(x, t)= G(x, t)exp (xH(?)),

where G(x, t)= G(x —c¢, t) for all complex numbers c. From (2.7) and the fact that
F(x, t) is the generating function of {P, (x)},~o we have that

G(x, 1)= §0 éo (7 )Pes)Qu)

Thus, for all complex numbers c,

n

3 (1) Pes@)Qul-)

k=0

is periodic with period ¢ and therefore

£ (7)Pes)0u-0)= an

k=0

Thus,

n

® t
G = —
(x, 1) ngo a o

= A(?).

Therefore, {P,(x)}n-o is a Sheffer A type zero polynomial set.
In what follows we will restrict our attention to the special case

H()=t
Sheffer A type zero polynomial sets for which H(¢)=t¢ are known as Appell poly-
nomial sets (see [2]). From the above we know that an Appell polynomial set
{P,(x)}r=0 is characterized by the fact that it has an extension ¥(z, s) of the form

(k)

2.8) Wx+as)= 3 Pux)a

3. Some transformations. In the preceeding section, we have shown how to find
(see (2.8)) an extension of any Appell polynomial set. The other thing we need in
order to find finite difference analogues of Poli’s formula is to study the trans-
formation T such that

T(e™)=(1+x)"

By writing the power series expansion of ¢* in terms of " and the Newton series
y g p p
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expansion of (1+x)° in terms of s we see that
(3.1) T(t")=s".
Instead of using the transformation as defined by (3.1), we use a mild generaliza-
tion
)

ny_ S
(3.2) L(")="5,

where a is a complex number not equal to zero. It turns out, that when we use this
definition for our transform, we can generalize some previously known results. For
example, one of the finite difference analogues of Poli’s formulas contain as a special
case

HaH0)=" % k() () o202,

which was first proved in 1918 by Nielson [11].

We take the domain space of T, to be the set of all formal power series Y, axt",
where a,’s are complex numbers. We will denote this space by F;. The range space of
T, which we will denote by F,, is the set of all formal Newton series Y-, b5’ where
by is a complex number. Let addition and multiplication on F; be defined by

a+B = Z (ak+bk)tk,
k=0

af=Y Y a.ibit",
n=0 k=0
where a =Y,_, a;t* and B =Y, _, bit*. See Niven [12] for a discussion of the algebra
of this integral domain. As usual, we will define equality on F, by

Y as®@=Y bs® iff a,=b, for0,1,2,---.
k=0 k=0

It is easy to show that in F,

0

e o] o0 o0
Z aks(k) = Z ka(k) iff Z akn(k) = bkn(k)
k=0 k= k=0 k=0
forn=0,1,2,3,---.
From now on, we will denote equality in F, by <. Let us define addition in F, in a
manner similar to what we did in F;. That is,

0

[ee)

@
as®+ ¥ bis® = ¥ (an+bi)s®.
k=0

T8

0

When we try to define a multiplication on F,, such that T, as defined by (3.2) is an
isomorphism between F; and F,, we encounter the annoying fact that s®lg £ g0,
For this reason, we introduce a set of operators

0= { éo ak(

where E~ is the backward shift operator acting on s and defined on F,. We note that
(sE™'/a)=s"“E"/a* and O'is a set of operators that map F, into F, by means of

sE™!

k
2 ) |a and a, are complex numbers and a # 0},
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the following formula,

© E‘“1 n oo © © n (k)
£ a(E) 5 be=3 5 aplE )T
n=0 a a

n=0 k=0

= Z Z anbk

n=0 k=0 a"

SR

- Z z": a, kka
n=0k=0 a"
Again, by using Niven’s [12] approach, O can be made into an integral domain by
defining addition by
® sE™ > SE7'\k @ sE™
Z ak( ) IEO bk( p ) 2 (an+b, )( > .

n=0

and multiplication by composition, that is

£al5) S5 - £ e

a

It is easy to see that F; and O are isomorphic under the isomorphism J defined by
oo 00 E“1 k
ay aktk>= Y ak(s ) :
k=0 k=0 a

Of course, we are interested in the elements of F, for it is these elements that will
be used in finding finite difference analogues to Poli’s formula.
The natural mapping between O and F, denoted by J is defined by

) El5)

[s o)
~ sE
g X ak(
k=0

T, can be written as
(3.3) T,=909.

It is easy to show that T, as defined by (3.3) is an isomorphism between F; and F,.
The integral representation of T, is

e

where _ Dy is the Liouville fractional derivative at O (see [15]), Re (s)<0 and f(¢)is a
polynomial. Transformations related to the inverse of T, have been studied by many
authors (see [4], [5] and [9]).

4. Finite difference analogues to Poli’s formula. We have developed everything
that is required to find the finite difference analogue to Poli’s formula

(3.4)

(4.1) yHu(x)= 3 (,’j)t"-*—‘ffi

K=0 ar*’
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where {H, (x)}»=o is the Hermite polynomial set defined by

4.2) y=e"""?=Y H,(x)t"/n!.
n=0

Let T, be the transform as defined by (3.3) and y(¢)=Y.._, bat" belongs to F; (see
§ 3). If d“y/dt" is defined on F, by

d*y = b, (n+k) "

T —r
then
dk)’ k Ak
(4.3) T,,(W) < a*ART(y),

where A is the forward difference operator defined on F, by

A( bns(k)) %= Y bun(n+1)s™.
n=0 n=0

We also note that if f(x, t) is the generating function for an Appell polynomial set
{P.(x)}=0, then

.2 P(x)s®
T )= £ P00
2 P(x)a*s®
k=0 k!

If {P,(x)} is an Appell polynomial set then by (2.8) this becomes

4.4) T.(f(x, 1)) = a"*Y(a+x,s),

where (x, s) is any extension of {P, (x)}n-o-
By using (4.3) and (4.4), we take the T, transform of both sides of (4.1), and we
obtain

4.5) a*H(a+x,s)H,(x)= { i (Z)s(k)E;"a”_z"Af"‘}a_s%(a +x,s),

where (x, s) is any extension of the Hermite polynomial set. By using the well-
known fact that

b= ('l.‘)(—l)"Ei"",

i=0

it is easy to show that for any function f(s)
(4.6) Asa”f(s)=a"*""(E,~ a)*f(s).

By using (4.6) and the fact that E;' and A, commute we have, from (4.5), that

4.7) H(a+x, s)Hy(x)= Y. (:)s‘k)(E~a)"_"%(a+x,s—k).
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Ismail [8] generalized Poli’s results (equation (4.1)) to Appell polynomial sets. He
showed that if the Appell polynomial set {P,(x)},~o has the generating function

4.8) Y= A(t)e¥ = zp(x) o

where A(t) is analytic at the origin, A(0)# 0 and (4.8) is true for ¢ in a neighborhood
of the origin and for all x, then

n k(t)

4.9) YPu(x)=n! Z —==D1y,
where {b,(t)}~o is given by

Q n_AWMAW)
4.10) PRAOTES v

By taking the T, transform of (4.9) we obtain

n -1 -1
4.11) a”*y(a+x,s)P,(x)=n! ¥ %f—‘)amka‘wams)
k=0 .

where ¢(x, s) is any extension of {P,(x)}n=o.
In the case of the Euler polynomial set {E,, (x)}n=o, €quation (4.9) has the form

@) E@- 3 ()Ropy-2 $ (F)ERopy,

where

2e™ _ 2 E(x)t*
e'+1 k=0 k' )

y=

By taking the T, transform of both sides of (4.8) we obtain

n

a*€(x+a,s)E,(x) = Y (:)Ek(O)a"_kA"“ka“%(x+a, s)

4.13)
© EA(Ds®E* n P

_y Es E & (',‘)E,.(O)a" A" (x +a 5),

k=0 a k! i=1 \1

where & (x, s) is any extension of the Euler polynomial set, E~' is the unit backward

shift operator acting on s and A= E — 1. By using (4.6) this becomes

E(x+a, 5)En(x) = éo ( :)Ek(O)(E—a)"_"%’(x ta,s)

4.14) .
® Ek(l)s( ) nop i
-y =3 (D EOE-ay " E @ +a, 5 k).
k=0 k! i=1 \1
By using the same method a formula similar to (4.9) can be obtained for the
Bernoulli polynomial sets, but it is much more complicated and is thus omitted.

5. Analytic considerations. We recall from § 3 that the symbol “=” was used for
equality in F,. In this section, we wish to consider when ““==”” can be replaced by “
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From the definition of “=="’ we know that when s is restricted to a nonnegative
integer, then F(s) = G(s) if and only if F(s) = G(s). Equation (4.7) becomes

(5.1) H,(x+a)H,(x)=" 5 " (:)('I:‘)kz(ls- @y H,_(x+a),

k=0

where E is the forward unit shift operator acting on the m of H,,_,(x+a), and
{H,(x)}»=0 is the Hermite polynomial set as defined by (4.2). It is interesting to note
that by letting a = 0 we get the well-known result due to Nielson [11], namely

H ()H, 0= 5 ( Z)(’;:) KV i ().

In a similar manner (4.11) becomes

" -1 -1
(5.2) Po(a+x)Pu(x)=nta” 3 2K SEs) jkpk omp (44 x)
k=0 k!

and (4.14) becomes

E,(x +a)E,(x)= éo ( :)Ek(O)(E— @) E,(x +a)

(5.3) N
-1 (DEW 2 () EOE=-" Enstc+a)

Equations (5.1), (5.2) and (5.3) are analogous to linearization of the product of two
polynomials that have been studied by many authors (see [3, Lecture 5]).
We know that the Hermite function H,(x), defined by

H,(x)=¢""*D, (),

where D,(x) is the parabolic cylinder function defined in [6, vol. 2, p. 116}, is also an
extension of the Hermite polynomial {H,(x)}.-o. By using this fact and (4.7), we
obtain

(5.4) Hy(a+x)H,(x)= Y, (Z)v(k)(E—a)"_kH,,_k(x+a).

It is well known that H,(x) is an entire function in both the variable x and the
parameter v [10, p. 285]. We will show by mathematical induction on n that “=” in
(5.4) can be replaced by “="’ to obtain

(5.5) Hy(x +a)H,(x)= 3 (:)v(")E"‘(E—a)"“"H,,(x +a),

k=0

for v and x arbitrary complex numbers and n =0, 1, 2, - - - . By direct substitution, it is
easy to see that (5.5) is true for n =0, 1. Now make the induction hypothesis that (5.5)
is true for n=0,1,2,---, m, and by using the three term recursion relation for
H,(x +a) and H,,,,(x) we obtain

H,(x +a)H,+1(x)= H,,,(x +a)H,, (x)+ vH,_(x + a)H,,(x)
—aH,(x + a)H,,(x)— mH,(x + a)H,,_1(x).
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By using the induction hypothesis, we obtain

H,(x+a)H,.(x)=(E—a)"""H,(x+a)+(vE™")"""H,(x + a)
+k§1 { (’:)(v +1)OE (B~ gy

m!

D VB E =) H(x+ a)

m

+o 3 (k”’l)(u YR DERE— )" MU (x+a)
k=1 -

—a él (Zl)(vE"l)k(E—a)"'_kH,,(x +a)
=(E-a)"""Hy(x +a)+@E """ H,(x + a)

mo(m et -
+k§]{(k>v(k)E KHL(E — gy Tk

—a(’:)(vE—l)"(E—a)"‘""}H,,(x +a)

+ § ( " )v(k)E‘k(E~a)"‘“’kH,,(x+a)
k=1 \k—1
=(E-a)"""H,(x +a)+(wE ")"""H,(x + a)

* él <(7:> * (k'fl))”(k)E—k(E" @)™ H, (x + a)

mil rm+1
‘Z( k

k=0

)(oE*‘)"(E—a)’"““"H,,(x+a).

It follows directly from (5.5) that for each zero x;, i=1,2,---,n, of H,(x),
H,(x; + a) is a solution of the finite difference equation

5 (n)v(")E"‘(E— a)"*y(0)=0.
K=o \k

6. Inverse formulas. In this section we shall apply the T,-transform technique as
previously developed to obtain inverse type formulas for (4.7), (5.1) and (5.5). That is,
we will show that

6.1) (E—a)'#(x+a,s)= 3 (—1)k<:)s(k)%(x+a,s—k)H,,_k(x)
k=0

6.2) (E—a)'Hy(x +a)= éa (—1)"( Z)(’:) KVH,_ o (x + a)H,_ (x)

and

63)  E-arHGra)= Y U)o o+ O )

where {H,(x)}n-o is the Hermite polynomial set, H,(x) is the Hermite function and
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#(x, s) is any extension of the Hermite polynomial set. To do this we note that if

y:= 2 = Z Hk(x)k',

then

Y= H,(x—y)y

= 3 D) Hucrory.

Now take the T, transform of both sides of this equation to obtain

) a‘H(a+x,s).

" H(a+x, s) = éo (—l)k(Z)H,,_k(x)(SE

By using (4.6) on this equation we obtain (6.1). Equations (6.2) and (6.3) follow from
(6.1) by using the same technique as was previously used to obtain (5.1) and (5.5) from
4.7).

If we let a = 0 in (6.2) we obtain a result that was proved by G. N. Watson [17]. L.
Carlitz, in a private communication, has obtained (6.2) and (6.3). He proved the
former by a generating function technique, similar to what Watson used, and the latter
by an induction argument similar to what we used to obtain (5.5).

Acknowledgment. I wish to express my thanks to Richard Askey, L. Carlitz, and
Mourad Ismail for their helpful comments.
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SOME PROPERTIES OF SOLUTIONS OF
O E)x) +a(®)f(x) =0*

W. E. MAHFOUDT AND S. M. RANKINTY

Abstract. The equation
69) (r@®y()x"Y +a@®f (x)=b(t)

is considered, where a, f, and b are continuous, r and ¢ are continuously differentiable, r(+)>0, and ¢(x)
and xf(x) are positive for x # 0. It is shown by a transformation of variables that (1) can be reduced to

() x"+a(t)f(x)=b(t)

and hence results concerning (2) can be extended without difficulty to (1). Illustrative results on uniqueness,
continuation, and oscillation of solutions of (r(¢)¢(x)x') + a(¢t)f(x)=0 are obtained and the case ¢(0)=0 is
discussed.

Introduction. Consider the equation

1 (r@Ow)x'Y +a@®)f (x)=b(t)

where r: [0, 0)— (0, 0); a, b:[0,00)->(—00,0), and ¢, f:(—00, )~ (—00, ). We
assume a, f, and b are continuous, r and ¢ are continuously differentiable, and
xf(x)>0 for x #0.

By a solution of (1) at £, =0 is meant a function x: [#, {;)~> (—00, 00), £, < t;, which
satisfies (1) for all ¢ € [#o, £;). We assume the existence of solutions of (1) at ¢, for every
to=0. A solution x(¢) of (1) at ¢, is said to be continuable if x(¢) exists for all t=¢t,. A
continuable solution x(¢) of (1) is said to be oscillatory if x(¢) has zeros for arbitrarily
large ¢ and nonoscillatory if there exists t* = 0 such that x(¢) # 0 for all £ = r*. Equation
(1) is said to be oscillatory if every continuable solution of (1) is oscillatory.

Equation (1) has been discussed in [4], [5], and [7] and some results have been
extended from the equation

2 x"+a()f(x)=b(r)

to equation (1). In this paper, we show, that under appropriate conditions on r and ¢,
equation (1) can be reduced to (2) and hence results such as that of [4], [5], and [7] can
easily be extended from (2) to (1).

Main results. Let R = (—00, ) and define h: R > R by

3) h(x)=L () du.

If ¢ is assumed to satisfy ¢ (x)> 0 for x # 0, then, clearly, & is increasing, continuously
differentiable, and xh(x)>0 for x # 0. Furthermore, the function g: #(R)~ R defined
by

) g=foh”'

is continuous and satisfies xg(x)>0 for x # 0.

* Received by the editors November 24, 1976, and in final revised form May 31, 1977.
+ Department of Mathematics, Murray State University, Murray, Kentucky 42071.
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THEOREM 1. Suppose y(x)>0 for x #0. If x = ¢(t) is a solution of (1) on some
interval I, then z = h o ¢(t) is a solution of the equation

%) (r()z'Y +a(t)g(z)=>b(t)

where h and g are as defined in (3) and (4).

Conversely, if z=A(t) is a nontrivial solution of (5) on some interval I, then
x=h""oA(?) is a nontrivial solution of (1) on some interval J < 1. If, in addition
U(0)#0orz(t)#0 foralltel, thenJ =1.

Proof. 1t is easy to verify, by use of (3) and (4), that z and x defined above are
respectively solutions of (5) and (1) and that z' = (x)x’ and J < I. In fact, this equality
together with (3) shows that if ¢(0)=0 and z vanishes at some ¢, € I, then x’ may not
exist at #,; in this case, J is a proper subset of I. The last statement of the theorem
follows also at once.

CoROLLARY 1. Every oscillatory solution of (1) generates an oscillatory solution of
5).

COROLLARY 2. There is a one-to-one correspondence between the nonoscillatory
solutions of (1) and (5).

COROLLARY 3. Suppose b(t)=0 and (0)=0. If the solution z(t) of (5), with
z(t))=2z'(to)= 0, for all to =0, is unique, then (1) has no nontrivial oscillatory solutions.
If, in addition, (5) is oscillatory, then (1) has no nontrivial continuable solutions.

Proof. Suppose x(t) is a nontrivial solution of (1); then, by Theorem 1 and (3),
z(t) = h(x(t)) is a nontrivial solution of (5) such that

(©) Z'(6)= Y (x(O)x'(0).

By (3), x(¢) vanishes if and only if z(¢) vanishes. Since ¢(0) = 0, it follows from (6) that
if z(#;)=0 for some #; =0 then z'(¢;)=0 and hence by the uniqueness assumption
z(¢t)=0 and so is x(¢), a contradiction.

Example 1. Consider the equation

) (x*x'Y +3x>=0
and let x(¢) be a solution of (7); then z(#) = [x(¢)]?/3 is a solution of the linear equation
z"+z=0.

Thus z(t) = A sin (t + B) for some constants A and B and hence x(t) = C sin'/> (t + B).
As x'(t) does not exist for t=km—B, k=1,2,---, then (7) has no nontrivial
continuable solution.

Example 2. Consider the equation

(8) (x2nx/):+[k/t2]x2n+1=0

where n is a positive integer and k is a constant. Here, h(x)=x>"""/(2n+1) and the
associated equation is

) 2"+ [k(2n+1)/*]z =0.

As (9) is oscillatory for k >1/(8n +4) and nonoscillatory for k =1/(8n +4), then, by
Corollary 3, equation (8) can have continuable solutions only when k =1/(8n +4) and
hence by Corollary 2, no nontrivial solution of (8) is oscillatory.

We now consider the unforced equation

(10) (r@y(x)x)+a@®)f(x)=0

subject to the additional condition (x)>0 for x # 0. The transformation h in (3)
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reduces (10) to
(11) (r(®)z'Y +a(r)g(z)=0

where g is defined in (4). If we now let
t

(12) s=v(t)=f (1/r(u)] du
0

equation (11) is reduced to
(13) Ww+R(s)A(s)g(w)=0
where R(s)=r(t(s)), A(s)=a(t(s)), w(s)=z(t(s)), and =d/ds.

THEOREM 2. Suppose ¢(x)>0 for x #0, a(t)<0 on [t, 2], t1 =0, and x(t) is a
solution of (10) on [t1, t2] such that x(t,)=x'(t:)=0. Then x(t)=x'(t)=0 for t € [t1, 5]
is and only if

1

@) L Y)[F )] V? dx =

and

-1

(i) L YEO[F(x)] 2 dx =~

where F(x)= L’; Y(u)f(u) du.

Proof. We may assume without loss of generality that r(¢)=1 since the trans-
formation v in (12) is one-to-one. Let z(¢)=h(x(t)); then, by Theorem 1, z(¢) is a
solution of (11) such that z(#;)= z'(t,)=0. Let G(v) = |; g(u) du; then

h=1(v)

G)= L f(R™ (w)) du = L fw)(u) du=F(h™'(v))

and hence, for every ¢ >0, we have [, [G(v)]V?dv =il [F(h ™ (v))]"/? dv. Let
w=h"'(v); then

+1 h—-1(x1)
[ 1e@ran=] " EmI e aw.
e h~(xe)
By (3), €0 if and only if A~ '(x£)->0. Hence (i) and (ii) hold if and only if
3;1 [G(v)]""? dv = £00. Thus, by [3, Thm. 4], z(t)=2z'(t)=0 on [t;, ;] and hence, by
(3), x(t)=x'(t)=0 on [ty, t;] if and only if (i) and (ii) hold. The proof is now complete.
The next result is another illustration of Theorem 1 by which we extend a
noncontinuation result of Burton and Grimmer [2] to (10) under the additional
assumption

(14) j Y(x) dx = +00,
0
THEOREM 3. Suppose (x)>0 for x # 0, (14) holds and a(t)<0 on [t, t,], t; Z0.
Then (10) has a solution x(t) at t, such that lim,,r |x(t)| = for some T € (11, t,] if and

only if

6)) J: Y([1+Fx)] ™ dx <o
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or
(ii) J_w YE[1+Fx)]?dx >—-©
0

where F(x)= [ ¢(u)f(u) du.
Proof. Let r =1 and define G as in the proof of Theorem 2. Then it follows that
v h—1(v)

j [1+Gw)) *du= J [1+FWw)] g (w) dw.

0 0
By (3) and (14) v - +0 if and only if A ™" (v) > £00. Thus, by [2, Thm. 2], equation (11)
has a solution z(¢) at ¢, such that lim,..7- |z (¢)| = o0, for some T € (¢4, t,], if and only if
(i) or (ii) holds. It is not hard to see from the proof of [2, Thm. 2] that z(¢) can be
chosen so that z(¢,) # 0. In fact that has been shown in [6]. In this case, by Theorem 1,
z(t) generates a solution x (¢) of (10) at ¢, and, by (3), lim,..r— |x(¢)| = c© if and only if
lim,., 7~ |z(t)| = 0. The proof is now complete.

Remark. Part (i) of Theorem 3 has been proved in [4] without condition (14) by
using Burton and Grimmer’s argument. Since the main interest in studying (10) is
indeed equations of the form (x“x')Y +a(¢)f(x)=0, a a nonnegative integer, we feel
that condition (14) is not a significant restriction. We also point out that the author in
[4] assumed that xi(x)>0 for x # 0 and claimed that part (ii) of the theorem holds by
an argument similar to that of part (i). Apparently, he overlooked the fact that the
assumption x¢(x)>0 for x # 0 implies that F(x)< 0 when x <0 and hence the integral
condition in (ii) may not make sense. Even though [1+|F(x )I]_” % is defined, the
integral [y ¢/(x)[1+|F(x)]]"? dx is positive and hence (ii) is satisfied automatically.
Thus, the difficulty may not be overcome unless we assume ¢(x)>0 for x # 0. This
observation applies also to [4, Thm. 3].

The following theorems extend some results in [8] and [9] to equation (10) and
consequently improve the result in [7]. We also point out that the requirement that f
be differentiable implies that the function g defined by (4) is also differentiable
whenever ¢ (x) #0.

THEOREM 4. Suppose ¢(x)>0 for x # 0 and the following conditions are satisfied

i) J»°° [1/r(u)]du=© and f'(x)=0,
(ii) Jiw Y(x)dx| <oo,
0
and
(iii) Iwa(t) Jt[l/r(u)] du dt = co.
0

Then every continuable solution of (1) is oscillatory.

Proof. Let x(¢) be a solution of (10) on [ty, ©), £, =0, and let X (s)= x(¢(s)), where
t and s are related by (12). Then, by (i) and Theorem 1, z(s) = h (X (s)) is a solution of
(13) on [so, ), where so=v(fo) and h is defined by (3). By (ii), z(s) is bounded on
[s0, ) and by [8, Thm. 2.2] bounded solutions of (13) oscillate if [ sR(s)A(s) ds = c.
Since, by the transformations s = v(¢), this integral condition is precisely the integral
condition in (iii), then, by [8, Thm. 2.2] z(s) oscillates and so does x(¢). The proof is
now complete.
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Remark. 1t is possible by Corollary 3 that the only continuable solution of (10) is
the trivial solution.

THEOREM 5. Suppose ¢(x)>0 for x #0 and the following conditions are
satisfied

) J»°° [1/r@)]du=0 and f(x)=0,
i) [ e <e,
and
(iii) jwa(t)Jt[l/r(u)] du dt =00,

Then every continuable solution of (10) is oscillatory.
Proof. Let x(t) be a solution of (10) on [#y, ®©), to=0. Then, as in the proof of
Theorem 4, z(s) is a solution of (13) on [so, ). We assume [y ¢(x) dx = £00;

otherwise, the result follows from Theorem 4. Let v = [ (w) dw; then for 7>0
h(r) J»h(v)

[[weyrenae=[ “wiron-@la=| /g

1 h(1) h(1)

As 7> o0 if and only if 4()- o0, then (ii) is satisfied if and only if |1, [1/g(v)] dv <.

Hence by [8, Thm. 2.1], z(s) oscillates and hence x(¢). The proof is now complete.
Remark. Condition (iii) in Theorem 5 can be replaced by the slightly more

general condition

(iv) Jwa(t)(It[l/r(u)] du)adt=oo, 0=a=1,

if we use [9, Corollary 1] and Theorem 1. See also [9, pp. 305].

Although results of (2) seem to extend to (1), the effect of the singularity ¢(0)=0
on the behavior of solutions of (1) is quite clear from Examples 1 and 2. The next
Theorem describes the oscillatory solutions of (10) when ¢(0)=0.

THEOREM 6. Suppose x(t) is a solution of (10) on [t1, t2] such that x (t1)= x (t2) = 0.
If ¢ (0)=0 and a(t) does not change sign on [t1, t2], then x(¢t)= 0 on [t1, t2].

Proof. Suppose there exists t* € (¢1, t;) such that x(¢t*)#0; then there exists
T1, To €[t1, t2] such that x(T1)=x(T,)= 0 and x(¢) # 0 on (T}, T>). Integrate (10) from
T: to T, to obtain

T.

[, roseowor de | Cawreeyda=o.

As x(T))=x(T,)=0 and ¢(0)=0, then the first integral is zero and hence
j;:f a(@®)f(x(¢))dt=0. As the integrand is of one sign and a continuous function of
t, then a(t)f(x(¢))=0 for all te[Ty, T>] and hence x(¢)=0 on [Ti, T>], a contra-
diction.

COROLLARY. Suppose ¢(0)=0 and a(t) does not change sign. Then the only
oscillatory solutions of (10) are the solutions which are eventually identically zero.

Acknowledgment. The authors would like to thank the referees for their valuable
suggestions.
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GROWTH AND OSCILLATION PROPERTIES OF SECOND ORDER
LINEAR DIFFERENCE EQUATIONS*

WILLIAM T. PATULAY

Abstract. This paper establishes the existence of recessive and dominant solutions for nonoscillatory
and certain types of oscillatory second order homogeneous linear difference equations. Growth properties
concerning these solutions are established. This information is then used to obtain two limit point results.
Several sufficient conditions for oscillation are also presented.

1. Introduction and preliminary remarks. We will be considering linear homo-
geneous second order difference equations of the form

(1) Cnxn+l+cn-1xn-—1 =bnxm Cn>0-

Usually, but not always, we will also assume b, 0. This is not nearly as restrictive as
it may first appear to be. By means of the substitution x, =(—1)"y,, the equation
CnYn+1+ Cn-1Yn—1= dnyn, dn =0, is equivalent to (1) with b, = —d,, =0.

Motivated by recent results in Hinton and Lewis [6], we will investigate growth
properties of certain solutions of (1). The particular form of the equation (1) appears
in [6] and also Atkinson [1, p. 15]. Note that by means of the substitution p, =
b, —c, —cn-1, equation (1) is equivalent to the self-adjoint form

(2) _A(Cn—len—1)+pnxn = 0,

where the forward difference operator A is defined by Ax, = X,+1— Xn.
The analogue of (2) in the continuous case is the differential equation

3) =r@)x' @) +q@®)x()=0, r(t)>0, tza.

Many of the properties usually associated with (3) also hold for the difference equa-
tion (1). For example, specifying two consecutive values xi, xx+; of a solution x = {x,},
n =0, uniquely determines all other values x,. Equation (1) has two linearly indepen-
dent solutions, say u = {u,} and v = {v,}, such that ¢, (4, 0n+1 — Un+10,)= 1, for all n. A
solution x of (1) will be called bounded if |x,| = M, for all n. A nontrivial solution will
be called oscillatory if for any N, there exists a k = N such that x,x,+; =0. Oscillation
can also be defined in terms of nodes. See [2, pp. 131 and 224]. The recurrence
relation (1) will be called oscillatory if all solutions are oscillatory. However, if one
solution of (1) oscillates, all solutions oscillate [2, p. 221]. For other interesting
properties we refer the reader to the books [1] and [2].

We would first like to state a result of Hartman and Wintner [4] in a slightly
different setting. For convenience, we include the proof.

LeMMA 1 (Hartman and Wintner [4]). If (1) is such that any nontrivial solution x
can have at most one value x, =0, then any two values x,, X, B # m, uniquely deter-
mine the solution x.

Proof. Let u and v be the solutions defined by uo=0, u; =1 and vo=1, v, =0.
Then u and v are linearly independent. Consider the system of equations

Xm = 01lUm +C¢21.7m,

Xn =Q1U, T A2V,

* Received by the editors April 12, 1977, and in final revised form November 16, 1977.
+ Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901.
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If this system does not have a unique solution in terms of a; and a,, then there exist
values of a; and a,, not both zero, such that 0 = a u,, + asv,, = a1 u, +a,v,. However,
this implies that the solution (a;u + a,v) assumes the value 0 twice, a contradiction.

The next result is basically a lemma of Olver and Sookne [8], which we state in a
slightly expanded form.

LeEMMA 2 [8]. Suppose |b,|=c,—1+ca. If v is a solution such that |vn+1| = |on],
for some integer N, then |v,+1|Z|v,|, for all n = N. If there exists a sequence {c,} of
nonnegative numbers such that

4) |b|=(1+¢en)cn+coy and Y g, =00

then |v,| >0, as n > 0.
Proof. Use induction and assume it is true for some n = N + 1, that is, |v,| = |v,_1].
Then

|Un+1| = |b,v, —Cn-1Un-1l/Cn

Z[(1ba| = cn-1)/cnllvn| Z|vn|, forallnzN.

®

If in addition we have (4), then (5) becomes
|On1] Z (1 + £,)|vn].

However, assuming n = N, the above inequality implies that v,.; Zon [[; 1 +¢;), N=
j = n, which means |v,| > 00, as n > c0. This completes the proof.

Remark 1. We always assume c, >0. If we also have b, =c, +c,-1, then the
solution v defined by vo=1, v; = 1 must have v,+; Zv, = 1. That is, the absolute value
signs in the preceding proof can be dropped. Clearly v is nonoscillatory, so that the
condition b, — ¢, — ¢,—1 =0 is sufficient for nonoscillation. This is not surprising in view
of equation (2) and the analogous result for the continuous case (3). This result can
also be found in [6] and [2, p. 224]. Also, Lemma 2 implies the hypothesis of Lemma 1
is satisfied if |b,| = ¢, + Cp-1.

Remark 2. Lemma 2 is sharp for the case of constant coefficients. Assume b, = b
and ¢, =1, for all n. Assuming ¢, =1 is allowed because of linearity. Using the
techniques as in [2, p. 125] for solving difference equations with constant coefficients,
we see that all solutions of (1) are bounded if and only if |b]| < 2.

Our next result is elementary but useful.

LEMMA 3. If there exists a subsequence b,, =0, where n;, > as k » 0, then (1) is
oscillatory.

Proof. Suppose not. Then we may assume the existence of a solution x such that
x, >0, for all n sufficiently large. However, the left side of (1) will always be positive
while the right side will be =0 for all values of ny, a contradiction.

2. Properties of nonoscillatory solutions. In Olver and Sookne [8], the following
definition is made.

DerINITION. If there exist two linearly independent solutions « and v of (1) such
that u,/v, >0, as n >0, then u is called recessive or sub-dominant and v is called
dominant.

If (1) is nonoscillatory, then the terms recessive and dominant are the analogues
of the terms principal and nonprincipal for the corresponding differential equation (3).
See Hartman [3, p. 355]. Note that in [3] the leading coefficient is positive while here
it is negative. We remark that principal or recessive solutions are unique up to a
constant factor. Following the arguments in [3, p. 355] for the continuous case, we
have the following theorem.
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THEOREM 1. If (1) is nonoscillatory, there exists a recessive solution u and a
dominant solution v such that
1

e o] 1 o0
————=00 and — <00,
(Cnunun+l) Z (Cnvnvn+l)
Proof. Let u and v be two linearly independent solutions of (1). Then ¢, (Vnltp+1—
Un+1Un)=d, for some constant d and for all n. Choose k large enough so that
u, #0, v, #0, for all n = k. Then

A(un/vn) = [(Unun+l - unvn+l)/vnvn+1] ‘ [cn/cn]
= d/(cnvnvn+l)~

Since d/(c.vnVn+1) is of one sign for n =k, we conclude that u,/v, is monotone. Let
L =1lim (u,/v,), as n » 00, where L could be infinite. If L = +00, then v is recessive and u
is dominant. If L =0, then u is recessive and v is dominant. If L is a real nonzero
constant, define the solution x = u — Lv. Note that x and v are linearly independent.
Then (x,/v,)— 0, as n > 0. Thus, renaming if necessary, we can always find a recessive
solution u and a dominant solution v.

From (6), we have

(©6)

u Ui n—1
Un _ Lk

Un Uk j=k CiUjlj+1

Since wu,/v,—~0, as n->o, we conclude that Y 1/(cvjvj+1)<c0. Starting with
A(v,/u,), a similar argument proves Y. 1/(cjujuj+1) = . This completes the proof.

Based on what happens in the continuous case (3), it is not surprising that
Theorem 1 has several corollaries.

COROLLARY 1. Suppose (1) is nonoscillatory. If v is a solution of (1) such that
Y7 1/(chnn+1) <, then v is dominant and u defined by u, = v, Y jn 1/(cjvjvj+1) is
recessive. Similarly, if u is a solution such that ¥~ 1/(Caltintin+1) = %, then u is recessive,
and v defined by v, = u, Y/=x 1/(cjuu;+1) is a dominant solution where k is large enough
sothatu;#0,j=k.

Proof. Suppose we have a solution v such that ¥ 1/(c,0n0n+1) <. Then define u
as stated in the hypothesis. Note that u is a solution. Then u,/v, =Y, 1/(cjvjvj+1)~ 0,
as n - 00, so that u is recessive and v is dominant. A similar argument proves the other
case.

COROLLARY 2. If ¥* 1/c, =00 and if all solutions of (1) are bounded, then (1)
must oscillate.

Proof. Suppose (1) is nonoscillatory. Then Theorem 1 implies the existence of a
dominant solution v such that ¥, 1/(c,0x0+1) < 0. By hypothesis, v,0+1 =M, for all
n. Thus we have
1 121

(s o] 1 (s o]
) =-—Y —, a contradiction.
CnUnln+1 oM M“T¢)

v

0 >

If 1/¢, is summable, then the conclusion of Corollary 2 may no longer be true.
See the example preceding Theorem 3.

If p, =0 in (2), that is, if b, —c, —c,—1=0 in (1), then we can be more precise
about the behavior of the recessive and dominant solutions.

THEOREM 2. If b, —c, —c,-1=0, then there exist a recessive solution u and a
dominant solution v such that u, >0, up1=u, and v,>0, v,+1 = v, Suppose there
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exists a nonnegative sequence {&,} such that

™ b,—(1+e,)cn—¢n-1=0 and Y e,=c0.
Then v, > . If there exists a nonnegative sequence {vy,} such that
®) bo—cn=(1+v¥n)cn-1Z0 and Yy, =00,
then u, - 0.

Proof. Let v be the solution of (1) defined by vo =1, v; = 2. Remark 1 then implies
Vn+1= Uy, for all n. Next, by an actually stronger result of Hartman and Wintner [4],
we have the existence of a solution u such that u, >0 and u,+1 = u,. (Note that there is
a misprint on the first page of [4]. It should be Ay, <0, not >0.) Therefore, we can say
un/ v, is positive and monotone decreasing to some limit L. If L = 0, then u is recessive
and v is dominant. Suppose L >0. Then u, —Lv, =0, for all n. Also, (Up+1—LUn+1)—
(Un—Lv,)= (Un+1—Un)—L(Up+1—v,)=0. If for some integer k, ux —Lv, =0, then
u, — Lv, =0, for all n = k, a contradiction to u and v being linearly independent. Thus
(u,—Lv,)>0 and A(u,—Lv,)=0, for all n. Clearly (u,—Lv,)/v,~>0, as n-co.
Renaming if necessary, we have the existence of a dominant solution v and a recessive
solution u.

If condition (7) is satisfied, Lemma 2 implies v, - 0, as n - c0.

Suppose condition (8) is satisfied. As previously mentioned, the arguments
in [4] establish the existence of a solution u such that u,.;=u, Thus we may
write Up—1 = (bplhn = Culin+1)/ Cn-1=[(bn — Cn)/Cn-1]tn Z (1 + v, )u,, and hence u,/uo=
1/T1(1 +v;), 1 =j = n. Assumption (8) then implies u, - 0, as n - . Clearly « must be
recessive, because u,/v, tends to zero where v is the dominant solution defined
earlier. This completes the proof.

Some examples illustrating Theorem 2 follow. Let b, =2 and ¢, =1, for all n.
Then u, =1 and v, = n are the recessive and dominant solutions. Clearly u,# 0.

A second example, from [6], has b, = n(2n2— )/ (n+1),¢c,= n? for n=1. Then
bn —Cp—Ch—1= —'1/(7! + 1)<0

It is easy to verify that u, =1/n is a solution, and Corollary 1 implies it is
recessive. Also, from Corollary 1, v defined by

n—1 1 1 n—-1 1
©) On=tty T ==y (1+—,)
j=1CjUjhj+1 N j=1 ]

is dominant. However, v, =2, for all n, so that v, 00, as n -,

The previous example is actually indicative of a more general result.

THEOREM 3. Assume b, —c¢,—c,—1=0, for all n. If (1) is nonoscillatory and if
Y% 1/c, <00, then all solutions of (1) are bounded.

Proof. Let x be any solution of (1). We may assume x,, >0, for all n = k, for some
integer k. Note that (b, —c,—1)/c. = 1. Rewriting (1) yields

Xn+1= [(bn = €n-1)/Cnlxn +[Cn-1/Cn][xn = Xn-1]
= xn +(Cn-1/Cn)(Xn = Xn-1),
or
(10) Xn+1=Xn =(Cn-1/Cn)(Xn —X,-1), foranyn=k.
Repeated application of (10) yields

Xnt1—Xn S (Ca-1/Cn)(Cn-2/Cn=1) " * * (Ci/ Chcr1)(Xr+1— Xk ),
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or
(11) Xn+1= X, +M]/cy,
where M is a constant independent of n. Repeated application of (11) yields
Xnr1=M/c,+M/c,1+ - +M/ci +xi
n—k 1

§xk+M z .

j=0 Ci+j

Our hypotheses yield that x,+; is bounded independently of » or that the solution x is
bounded. This proves the theorem.

Note that the first of the two examples preceding Theorem 3 shows that the
conclusion of Theorem 3 may no longer be true if ¥~ 1/c, = co.

Based on Theorem 1, we can conclude that the nonoscillation of (1) implies the
existence of two linearly independent solutions u and v of (1) such that

2 1

12 <
(12) Cn(Unllni1 + Uplnt1)

00,

It should be pointed out that the converse of this is not true. That is, one can easily
construct examples where the sum in (12) is finite but (1) is oscillatory. For instance, if
¢, =1and b, = -2, then (—1)" and n(—1)" are solutions which satisfy (12). This differs
from the continuous case (3), where the convergence of the integral analogue of the
sum in (12) is equivalent to nonoscillation. See [3, p. 354].

For completeness, we conclude this section by reformulating a comparison
theorem found in [7] for equations of the form (1).

Consider (1) and the following equation:

(13) FaWnat T 1Wn-1 = dpWh, r,>0.
THEOREM 4. Suppose
(rn-1/r) = (cn-1/cn)
and
(dn/12) = (ra=1/1n) Z (bn/ cn) = (cn-1/cn) Z 1.

Suppose also that w,=Zx,Z0, wo=x0=0 and w1~ wo=x1—x0=0. Then wpo1—w, =
Xn+1—Xn QRd Wpi1 Z Xpi1, forn = 1.
Proof. Divide (1) by ¢, and (13) by r,. The result then follows from [7, Thm. 1].

3. Limit point results. Consider the following equation:
(14) CnXn+1+ Cn—1Xn-1=bnXn +Ax,, A real or complex.

Equation (14) is called limit circle, L.C., if all solutions are square summable. Other-
wise it is called limit point, L.P. See [1, p. 127] for an explanation and development of
the related theory.

It is proven in [1] that if (14)is L.C. for one value of A, then it is L.C. for any value
of A, including A =0. -

THEOREM 5. If ¥* 1/¥¢, = and if (1) is nonoscillatory, then (14) is L.P.

Proof. Suppose not, so that (14) and hence (1) are L.C. Since (1) is nonoscillatory,
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let u and v be two linearly independent solutions as found in Theorem 1. Then

gL _¢ (Unttn 11+ Oup 1)
(Cn)l/2 (Cn (unun+1 + 1—7nvn+1))1/2
15) . 12¢ & 1 1/2
= Unlp+1+ 0,0 ] [ ] .
[Z( nlhn 1 T Onbn 1) ch(unun+1+vnvn+1)

The first term on the right in (15) is bounded because u and v are square summable.
The second term is bounded by Theorem 1. Thus 1/,/¢, is summable, a contradiction.

THEOREM 6. If |b,|=c, + cn—1, then (14) is L.P.

Proof. Lemma 2 implies the solution of (1) defined by vo =0, v; =1 is not square
summable. Hence (1) and thus (14) are not L.C.

It is interesting to compare Theorem 6 with Theorem 11 of [6].

4. Some comments on oscillation. If b, =0, Lemma 3 implies that (1) is oscil-
latory. In addition, if b, = —c, —c,—1 <0, the substitution y, = (—1)"x,, transforms (1)
to

(16) Cn)’n+1+cn——1)’n—l=(_bn))’m

where —b, =Zc, +¢,-1>0. We can now apply many of the results of § 2 to (16) and
obtain information about solutions of (1). In particular, Theorems 1 and 2 yield
existence and growth properties of recessive and dominant solutions, where now the
only difference is that eventually solutions must oscillate and actually alternate in sign.
A comparison principle based on Theorem 4 could also be formulated between
certain types of oscillatory equations. This all follows from the hypothesis b, =
—¢n —Cn—1<0 and the substitution y, =(—1)"x,. We leave such formulations to the
interested reader.

We conclude with several sufficient conditions for oscillation, where there is no
restriction on the sign of b,,.

THEOREM 7. If b, = min (c,, ¢,—1), for all n sufficiently large, then (1) is oscillatory.

Proof. Let x be any solution of (1). Suppose (1) is nonoscillatory. Then for n
large enough, we may assume x, > 0. Also, we may assume b, >0, by Lemma 3. Since
Cn-1Xn-1>0, equation (1) yields that c,x,+1<b.x,, or c¢./b,<x./x.,+1. However,
¢./b, =1, so that we have

17 Xn>Xn+1, for all n sufficiently large.

In a similar fashion, (1) implies ¢,—1x,—1<b.Xn, Or Cn—1/b, <Xn/Xn-1. Since
Cn-1/b. =1, we have

(18) Xn>Xn—1, for all n sufficiently large.

However, (17) and (18) are contradictory, and so (1) must oscillate.

COROLLARY 3. If b, =c¢, and if ¢, is eventually nonincreasing, then (1) is oscil-
latory.

COROLLARY 4. If b, =c,-1 and if c, is eventually nondecreasing, then (1) is
oscillatory.

Note that Corollary 4 also follows from Theorem 3 of [6].

THEOREM 8. If b, =c,—; and if Y7 1/c, <00, then (1) is oscillatory.

Proof. Assume not. Then (1) is nonoscillatory. Repeating the appropriate
argument in Theorem 7, we again arrive at (18), for any solution. By Theorem 1, if (1)
is nonoscillatory, there exists a recessive solution u such that ¥ 1/(c,unlty1)= 0.
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However, (18) implies that u,.1 = u,, for all n sufficiently large, so that u, .1 = u, for

n =k, for some integer k. Thus

1 1 ©
k

1 1
2 3=—72 —<00,
CnllnUn+1 k Cnllk U Cn

IIA

)
k

a contradiction. This completes the proof.
Many of the ideas in this paper extend to the nonhomogeneous case. These will
appear in a sequel.
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REPRODUCING-KERNEL HILBERT SPACES OF DISTRIBUTIONS AND
GENERALIZED STOCHASTIC PROCESSES*

REUVEN MEIDAN*

Abstract. In this work we consider reproducing-kernel Hilbert spaces (RKHSs) of distributions and
pursue their connection with generalized stochastic processes (GSPs). It is shown that every Hilbert space of
distributions is an RKHS and that there exists a one-to-one correspondence between the class of positive
definite kernel operators (PDKOs) and RKHSs, where the PDKO induces the reproducing kernel of the
RKHS. The RKHS is then shown to represent the GSP in the sense of an isometrical isomorphism between
two Hilbert spaces. As applications of the theory we consider generalized integral equations, the problem of
linear least-squares estimation and series expansions of the GSP.

1. Introduction. Let ¢t - x, be a second-order ordinary stochastic process (OSP),
i.e., a mapping from the subset T of the reals into L*(Q), the space of second-order
random variables on the probability space (). With this process we can associate the
correlation function defined by

(1) R(s, t)= E[x, %],

where E denotes the statistical average with respect to (). R(s, t) enjoys the property
of positive definiteness which qualifies it as a reproducing kernel of a reproducing-
kernel Hilbert space (RKHS). This association of a unique RKHS of functions on T
with a given OSP has been treated quite extensively in the literature. Some of the
notable workers are Loéve (cf. Lévy [5, Appendix I]), Parzen [6] and Kailath {4].

Consider now the converse problem, i.e., let H be a given Hilbert space of
functions on T. We are looking for a process whose RKHS is H. Naturally a necessary,
but also sufficient, condition for the existence of such a process is that H should be an
RKHS. However, it is well known that not every Hilbert space of functions enjoys the
reproducing property, a commonly-quoted counter-example being L?(T), the space of
square-integrable functions on T. We therefore propose the following approach.

1) We shall deal with Hilbert spaces of distributions rather than ordinary
functions. Should H be a given Hilbert space of functions on T it can usually be
interpreted in terms of distributions. The advantage of this approach is that every
Hilbert space of distributions is actually an RKHS.

2) We consider generalized rather than ordinary stochastic processes (GSPs
instead of OSPs).

A GSP is a linear and continuous operator from a space of test functions into a
space of random variables, and by considering GSPs two advantages are gained. First,
the family of processes amenable to the analysis is increased. Second, since the GSP is
a linear operator, linear operator theory is applicable. It will be shown that the Hilbert
space of distributions H associated with a GSP is isometrically isomorphic to the closure
in L*(Q) of the range space of the GSP. Hence H serves as an interfacing space between
the space of test functions (the domain of the GSP) and the space of random variables
(the range of the GSP).

By adopting the above approach the following correspondence between stochas-
tic processes and Hilbert spaces is obtained. Given a GSP, a unique Hilbert space of
distributions can be constructed such that the former’s correlation operator serves as

* Received by the editors October 4, 1976, and in final revised form August 30, 1977.
+ National Research Institute for Mathematical Sciences of the CSIR, Pretoria, South Africa, and
Department of Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa.
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the latter’s reproducing operator. Conversely, a given Hilbert space of distributions
uniquely defines its reproducing operator, which in turn can serve as the correlation
operator of a GSP which is thus determined modulo a unitary operator.

We pursue two applications of the theory:

1) Coordinate-free series expansion of the GSP (§ 4). These are given in terms of
complete orthonormal systems (CONSs) in H. They are coordinate-free in the sense
that there is a freedom of choice in selecting the CONSs.

2) Generalized integral equations are investigated in § 5.

It should be noted that Hilbert spaces of (vector-valued) distributions have also
been discussed by Schwartz [7] who applied them to the theory of elementary particles
in quantum mechanics.

2. Preliminaries. The following is a review of the concepts relevant to this work.
Let T denote an open set in R™ and D(T) the space of infinitely differentiable test
functions whose supports are compact and contained in T. D(T) is equipped with
Schwartz’s testing function topology. Let D'(T) denote the space of distributions in T,
i.e., D'(T) is the dual of D(T). It is equipped with the weak topology generated by
D(T). We say that H is a subspace of distributions if it is a subspace of D'(T) and if, in
addition, its intrinsic topology is stronger than the relative topology induced by the
(weak) topology of D'(T). Let R be a linear and continuous operator from D(T) into
D'(T). We refer to R as a kernel operator in view of Schwartz’s kernel theorem,
according to which these operators enjoy representations in terms of kernels which
are distributions on T X T.

A sesquilinear form on D(T)xD(T)

(2) S(‘p’ ¢)= <R¢’ J)T’ (‘3 l/’ € D(T),

can be associated with R. (-, - )r denotes the scalar product of D(T) and its dual
D'(T). By sesquilinearity we mean that S is linear with respect to the first variable and
anti-linear with respect to the other. We say that R is positive definite if

3) S(p, )=0

for every ¢ € D(T). We propose the term ‘positive’, rather than ‘nonnegative’ in order
to simplify the terminology and because this use of the term has been proposed in
notable treatises (e.g. Gel'fand and Vilenkin [2, p. 26]). In this work we deal with
positive definite kernel operators (PDKOs), i.e., linear and continuous operators from
D(T) into D'(T) which, in addition, are positive definite.

Let R’ denote the transpose operator of R. It too is linear and continuous from
D(T) into D'(T). It can easily be verified that the positive definiteness of R implies
that it is self-transposed in the sense that

R=R"

Let (Q, o, P) denote a fixed probability space, where () is a set, &/ a o-algebra of
subsets of () and P a probability measure on &. By L*(Q)) we denote the space of
second-order random variables on (), i.e., L2(Q) consists of scalar-valued functions on
Q) which are square-integrable. L*(2) is a Hilbert space when equipped with the scalar
product

@ (f: 8= | fedP(0)=El/g].
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A generalized stochastic process (GSP) is a linear and continuous operator from a
space of testing functions on T into a space of random variables. We shall adopt It&’s
approach [3], which is somewhat more restrictive than the definition proposed by
Gel’fand [1], [2]. According to Itd’s definition, a (second-order) GSP is a linear and
continuous operator from D (T) into L*(2). In this work it is necessary for the range of
the operator to be a Hilbert space, in order that it should be possible to construct the
correlation operator associated with the GSP.

Let t > x, be a (second-order) ordinary stochastic process (OSP), i.e. t—>x, is a
mapping from T into L*(Q). If the OSP is locally Bochner-integrable, it induces a GSP
by

(5) up = Lx,qo(t) dt, ¢ e D(T).

This verifies that the GSP is indeed a generalization of the OSP concept. Let u be a
GSP in the sense of the above definition and let u' denote its transpose. u' is thus a
linear and continuous operator from the dual of L*(Q) into D'(T). In view of Riesz’s
representation theorem, the dual of L*(Q) can be identified with L*(Q) itself. Hence u’
can be viewed as operating from L*(Q), and the composite operator u‘u can be
constructed. We use the following notation

6) R=u'u

and refer to R as the correlation operator associated with the GSP u. If u is a GSP
induced by an OSP, the operator R is an integral operator,

) Ry = I R (s, )o(s) ds, s,teT.
T
The kernel R(s, t) is now an ordinary function,

(8) R(S, t) = (xb xs)n

and within the framework of the OSP is called the correlation function of the process.
Hence the correlation operator is the generalization of the concept of the correlation
function.

Clearly R is a linear and continuous operator from D(T) into D'(T). Moreover,
it is positive definite. This follows from the fact that for every ¢ € D(T),

(R‘P’ a)T = <(u tu )(P, (;)T = (u¢7 qu)n = O-
Hence R is a PDKO. In regards to the above chain equality one should note that

W, ¢dr=(fup)o, feL’Q), @eD(T)

which follows from the anti-isomorphism between L*(Q) and its dual.

Now to the converse argument. Given a PDKO R from D(T) into D'(T), a (not
necessarily unique) GSP u can be found such that R is its correlation operator. In
other words R can always be factored as in (6). This follows from a theorem by
Gel’'fand and Vilenkin [2]. However it will follow also from Theorem 3 of this paper.

Next we review the subject of reproducing-kernel Hilbert spaces. Let X be an
abstract set and let H be a Hilbert space of functions on X. H is called a reproducing-
kernel Hilbert space (RKHS) if it enjoys the following reproducing property. There
exists a complex-valued function K (x, y) on X XX, called the reproducing kernel,
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such that
(i) for any fixed ye X, K(-, y)isin H;
(ii) K (x, y) induces the reproducing property by

for each f(-)e H,and y € X. (-, - )y denotes the scalar product in H. As is well known,
there exists a one-to-one correspondence between the family of RKHSs on X and the
family of positive definite complex-valued functions on X X X, the correspondence
being the (unique) connection between an RKHS and its reproducing kernel.

We shall need the following fact about RKHSs. Every x € X induces the
reproducing functional F,: f-> f(x), fe H. F, is a linear functional on H. H is an
RKHS if and only if all the reproducing functionals {F, —x € X} are continuous on H.

We shall also need the family of Sobolev spaces of type 2. Let K be a compact set
of R" and suppose we define the following family of scalar products on D(K),

(0= 3 | DDV

lil=m
where i is an n-vector (i1, * - *, i,) of nonnegative integers where
n
|l| =Y i
k=1

and m a nonnegative integer. If we complete D(K) with respect to the norm
generated by the mth scaler product we obtain the Sobolev space W,,,(K) of order m.

3. RKHSs of distributions. When dealing with RKHSs of distributions the
underlying space X is identified with D(T), in contrast to the case of RKHSs of
ordinary functions where X is identified with 7. We start this section by constructing
an RKHS of distributions around a given PDKO R. R is shown to be the reproducing
operator in the sense that the sesquilinear form generated by it (eq. (2)) serves as the
reproducing kernel of the space. Next we show that every Hilbert subspace of
distributions is in fact an RKHS and determine its reproducing operator.

THEOREM 1. Let R be a PDKO from D(T) into D'(T). A unique Hilbert subspace
of distributions H can be constructed such that R is its reproducing operator.

Proof. We first establish the construction of H. Consider the range space Ra (R)
of R. Clearly it is a subspace of D'(T). Let f and g be in Ra (R). Then there exist
elements ¢ and ¢ (not necessarily unique) such that f = R and g = Ry. We associate
with the pair (f, g) a scalar product

) (f, @) = (£, R 'g)r =(Ro, #)r 2 S(e, ¥).

Naturally R™" denotes the inverse of R. However, since R is not necessarily one-to-
one, R ™" does not exist as a (unique-valued) operator but should rather be interpreted
as a binary relation. Nevertheless we claim that the form (9) is unique, since Ra (R), as
a subspace of D'(T), is orthogonal to N (R), the null space in D(T') of the operator R.

Let fe Ra (R); then there exists a ¢ € D(T) such that f= R¢e. Hence for every
Yy eD(T),

(10) (£, ¥)r =(Re, )1

In view of the self-transposeness of R, we have that

(11) (qua w)T = (Rl//, ‘P)T'
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But the right-hand side of (11) is equal to zero for ¢ € N(R). Combination of the last
two equations verifies that Ra (R) is orthogonal to N (R). It follows that R ™" is unique
on Ra (R) modulo null elements of R, which establishes the fact that the form (9) is
indeed unique. We can consider the quotient space D(T) over N (R). As an operator
from Ra (R) into this quotient space, R is unique.

We still have to verify that the form (-, )y qualifies as a scalar product. Indeed,
its sesquilinearity has been mentioned above. Its Hermitian symmetry follows from
the self-transposeness of R (eq. (11)) and is positive definiteness is a result of the
positive definiteness of R. It also follows from the above argument that (f, f)u is equal
to zero if and only if f=0. Indeed, (f,f)u =(Ro, ¢)r where ¢ is unique in the
quotient space D(T)/N(R) such that f = Re. But, as was established above, Ra (R) is
ortrogonal to N (R). Hence (Re, ¢ )7 is equal to zero iff ¢ =0 from which follows
f=0.

Consequently the form (9) satisfies the requirements of a scalar product rendering
Ra (R) a pre-Hilbert space. We complete it in the norm induced by the scalar product
and obtain the Hilbert space H. We claim that H is a space of distributions i.e., that it
is a subspace of D'(T), and that, in addition, its topology is stronger than the relative
topology induced by D'(T).

Let ¢ € D(T) and f € Ra (R). There exists a g€ D'(T) such that g = R and

(12) <f’ J)Tz(ﬂ g)H

Consider a strongly-bounded set B in Ra (R). This set is also weakly bounded. Hence
the right-hand side of the last equation (12) is bounded over f e B. Consequently the
left-hand side of (12) is bounded over B for every ¢ € D(T). It follows that B is
weakly bounded in D'(T). Let I denote the natural injection of Ra (R) into D'(T).
We have just established that I is bounded. But boundedness in this case implies
continuity. It follows that I can be uniquely and continuously extended from Ra (R)
onto its completion H, as a continuous operator into D'(T'). Consequently H qualifies
as a Hilbert space of distributions.

We next verify that H is the RKHS associated with the operator R. Indeed,
consider the sequilinear form S(¢, ) generated by R (eq. (3)). It is a complex-valued
function on D(T)x D(T). S satisfies the properties of the reproducing kernel of H,
ie.,

(13) S(-,¢)=Re
is an element of H for every ¢ € D(T) and
(14) (8(-), S, ©)u = gle)

for every g€ H.

We now approach the problem from the opposite direction.

THEOREM 2. Let H be a Hilbert subspace of distributions on T. Then H enjoys the
reproducing property and its reproducing operator is II', where I is the natural injection of
H into D'(T) and I' its transpose.

Proof. As mentioned in § 2, a necessary and sufficient condition for a Hilbert
space to enjoy the reproducing property is that every reproducing functional should
be continuous. In this case the underlying space is D(T); hence the reproducing
functional associated with ¢ e D(T) is F, : f-> f(¢), where f traverses H. Now for
every ¢ € D(T), F, is a continuous functional on D'(T). Since H is a subspace of
D'(T) with a stronger topology, F, is also continuous on H. Hence H is an RKHS.
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Next, since I is, by hypothesis, continuous from H into D'(T), its transpose I’ is
continuous from D(T) into H. The positive definiteness of I’ is obvious; hence it is a
PDKO. Now consider I‘p. It is in H and for every g € H,

(& I'v)u =g @)r =g(®)

which express the reproducing property. This completes the proof.
We conclude this section by noting that H is separable. This follows from the fact
that D(T) is separable. The separability will be helpful for the series expansions of § 5.

4, The association of RKHSs of distributions and GSPs. Let u be a GSP and L
denote the closure in L*(Q) of its range space. L is often called the linear space of the
process in the sense that it represents the random variables attainable by linear
operations, including limits, on the measurements of the process. We associate with
the GSP u the RKHS of distributions H generated by the correlation operator
R=u'u.

THEOREM 3. Let u be a GSP, R its correlation operator and H the RKHS of
distributions generated by R. Then H is isometrically isomorphic to L, the closure in
L*(Q) of the range of u. Conversely, let H be an RKHS of distributions, then a GSP u
can be found, such that

(15) R=u'u=1II"

In other words the diagram of Fig. 1 is commutative.
The theorem establishes the following polar decompositions of u and u’

(16). u=Jur',
(17) u'=10"7"

where U is a unitary operator, i.e. UU'= U'U =identity operator in H, J is the
injection of L into L*(Q) and J* the projection obtained by transposing J.

D
u
— —_— e
|
I @ U‘ @ 1‘
-— — —
— u'

F1G. 1. The spaces and operators involved in the discussion of Theorem 3.

Proof of the theorem. We show first that U is a unitary operator from L onto H.
This will be established by verifying that U’ maps isometrically a dense subspace in L
onto a dense subspace in H. Indeed, consider Ra (1), the range of u. It is dense in L.
Let f and g be two elements of Ra (u) then there exist ¢, ¢ in D(T) such that f = ue,
g = uy. Now by the following chain equality

(U'f’ Utg)H = <R‘P, J)T = <Utu(Pa ‘E)T = (u‘P’ ud’)ﬂ = (f’ g)Q,

we conclude that U' is an isometric operator and that it maps Ta () in L onto Ra (R)
in H. Since Ra (R) is dense in H, the direct part of the proof is complete.
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Conversely, given H, I' is found by transposing the injection I of H into D'(T),
following the discussion of Theorem 2. Take a complete orthonormal system in H and
a sequence of zero mean, unit variance independent random variables {g, }. Define the
operator U on {f,} as

gn = Uf,.

Then U determines the requested unitary operator and the requested GSP is the
composition u = UI".

We now consider the null space of u in D(T). In view of the commutativity of the
diagram in Fig. 1 it is easily verified that N (u)=N(I")=N (R). We established earlier
that Ra (R) in D'(T) is contained in the orthogonal of N (R). Clearly this holds also
for H. In fact we can state the following.

THEOREM 4. Let H™® denote the closure of H in the weak topology of D'(T). Then
H™ is the orthogonal of N (R), i.e.,

(18) Ra(R)c Hc HY =N (R)".
Proof. This is a consequence of Proposition 35.4 of Tréves [8].

5. Application to generalized integral equations. Let us consider the following
generalized integral equation: suppose u is a given GSP from D(T)into L*(Q)and f a
given distribution in D'(T). We wish to find an x € L*(Q)) such that for every ¢ € D(T)

(19) (x, up)a=f(e).

Clearly if a solution exists, it is not necessarily unique. In order to render it unique we
consider the solution of minimum norm which is the solution in L,. The proof of the
following theorem is trivial.

THEOREM 5. The generalized integral equation admits a unique solution x € L, if
and only if fe H.

The generalized integral equation (19) is encountered in the theory of linear
mean-squares estimation. We are given a GSP u from D(T) into L*(Q)). We take a
subset A of the testing function in D(T) which spans D(T). Let B be the image of A
in L*(Q). B consists of the data obtained by observation of the process. L, is spanned
by B and constitutes the random variables in L*(Q) which are accessible by linear
operations on the data.

Next assume that a random variable x is given in L*(Q). We wish to provide an
estimate £ for x such that

(i) £ is a linear estimate, i.e., it is in L,, and

(ii) the mean square error |x — £||o is minimal.

We call £ the linear least-squares estimator of x. The problem is, of course, solved by
the projection theorem, i.e. the estimator £ is the projection of x into L,.

For our problem it is sufficient to determine x by its scalar product over the range
of u. Hence we assume that f(¢) = (x, ue)q is given. It follows that the minimum norm
solution of equation (19) as discussed in Theorem 4 is our estimator £.

The following observation is instructive. Suppose £ is an element of L,. The set of
all x € L*(Q) whose estimator is £, is mapped by u' into a single element in H.

6. Series expansions of the GSP. In the previous section we were concerned with
the bottom row of Fig. 1. In this section we deal with the upper row expressed in the
decomposition (16) of u. We utilize it in order to obtain coordinate-free series
expansions of u. These are expressed in terms of complete orthonormal systems
(CONSs) in H, which are countable in view of the separability of H.
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THEOREM 6. Let {f,} be any choice of a CONS in H. U admits the representation
(20) >;1 fn8n

where {g, = Uf,} is a CONS in L, the tensor product notation f,g, stands for the operator

1) (£:8:)(f)=(f, fa)u8n»  feH,

and the limit of the partial sums of (20) exists in the weak operator topology, i.e. for every
feH,

(2) Unf=( £ fun)s

converges to Uf in the norm topology of L*(Q2).
Proof. Let f be in H. By Parseval’s theorem it can be decomposed by

(23) £= 5 f)uf

the convergence of the series (23) holding in the norm topology of H. We now operate
with U on both sides of (23):

4 U =U £ (ffoduhs] = £ (5 1) UFn

The interchange of the order between the summation and operation with U is
justifiable in view of the continuity of U. Since U is unitary, the system {Uf,} is
orthonormal and spans L; hence it is complete in L.

We now comment on the operator I’ of the decomposition (16). Since I is
one-to-one, the image of D(T) under I’ is dense in H. Hence I’ is a one-to-one
operator from the quotient space D(T) over N(R) into H. Another property of I" is its
nuclearity, which follows from the nuclearity of D(T).

Next we consider the composite operator UI". By the series expansion we have

(25) (UI')(e)= gl I'e, fa)ulUfn = gl I'}, fn)es8n
for any choice of a CONS {f,.} in H. By the definition of the transpose,
(26) (L', fu)ue = Tfo, @)1

Hence we have the following theorem.
THEOREM 7. Let u be a GSP from D(T) into L*(Q). Then it can be expanded as

en uo= L (o @)

where {f,} is any choice of a CONS in H(R) considered as distributions in D'(T) and
{g,} is an orthonormal system (ONS) in L*(Q) given by g, = Uf,.

In view of the above, the following expansion of R is clear.

THEOREM 8. Let R be a positive definite kernel operator from D(T) into D'(T).
Then R can be expanded as

(28) R= i
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where {f,} is as in the previous theorem and the notation f,f, stands for the operator

(29) (fof)@)={fn @)2fos @ €D(T).

As mentioned earlier, the merit of the expansions lies in the freedom of choice in
regard to the basis {f,} of the expansion. On the other hand, the convergence of the
expansion holds only in the mean-square sense of L*(2). Pointwise convergence can
be established based on a different approach. However, this is accomplished at the
cost of restricting the basis system eligible for the expansion. Based on the discussion
in Gel’fand and Vilenkin, we consider the family W,, of the Sobolev space of order m
and type 2. For every compact set K we can find an order m such that I' is
continuously extendible as nuclear operator from W,,(K) into H. Hence I' can be
given a eigen-expansion (Gel’fand and Vilenkin [2, p. 75]). Which converges point-
wise for almost every w € (). We state this result in the following theorem.

THEOREM 9. Let K be a compact subset of T and W,,,(K) the Sobolev space of order
m and type 2 over K. There exist an m, a CONS {h,} in W,,(K), a CONS {g.} in L, and
a sequence of nonnegative numbers {A,} with Zf,:l An <00, such that for every
¢ e D(K),

(30) up = 21 An(Bny @)m8n ().

The convergence in L*(Q) holds both pointwise almdst surely and in the mean-square
sense. D(K) denotes the subspace of D(T) consisting of functions whose supports are
contained in K, and (-, *)m denotes the scalar product in W,,,(K).
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BOUNDED SOLUTIONS OF FINITE DIMENSIONAL APPROXIMATIONS
TO THE BOUSSINESQ EQUATIONS*

JAMES H. CURRYY

Abstract. A class of finite systems of nonlinear ordinary differential equations are derived which yield
finite dimensional approximation to the solutions of the Boussinesq equations. Such finite solutions, to these
evolution equations, can be associated with trajectories in a phase space defined by the amplitudes of the
components occurring in the differential equations. Once we make a passage to a phase space description of
a system, a natural question which arises concerns the long time behavior of trajectories. In this paper we
give sufficient conditions for a large class of approximate solutions to the Boussinesq equations to remain
bounded for all time.

Introduction. In a fundamental paper [3] E. N. Lorenz establishes that a certain
quadratic dynamical system has only bounded solutions. As a consequence of this
result and the observation that the divergence of the vector field is nonpositive, he was
able to prove the existence of a limiting surface for the system which he studied. Then
using numerical techniques, Lorenz gave strong evidence for nontrivial dynamics for a
physically interesting system arising from atmospheric convection. Recently Gucken-
heimer in [4] and Williams [12] have been able to prove that there are uncountably
many topologically distinct attractors of the type discovered by Lorenz.

In this paper we establish that Lorenz’s results on the existence of a limit surface
is not an artifact of the small system of equation which he studies. Specifically we
prove that a general class of quadratic dynamical systems arising from the equations of
atmospheric convection do have only bounded solutions. It is an easy consequence of
our results that the system studied by Lorenz has only bounded solutions. It is also the
case that the divergence of all the vector fields which have bounded solution is
nonpositive and therefore all trajectories must tend to an attracting set. Whether it is
possible to extend the results of Guckenheimer and Williams to these higher dimen-
sional limit surfaces is unknown.

Recent numerical experiments by the author, which shall be reported on else-
where, indicate that the limiting surface first discovered by Lorenz most likely has
higher dimensional analogues; however, one major difference is how the system
transitions to turbulence.

In §1 we introduce the equations from which Lorenz derived his three
component system. Also in this section we provide a brief discussion of the evolution
equations, geometry, and boundary conditions which we shall assume throughout the
remainder of this paper. In § 2 we prove our main result, which establishes sufficient
conditions for a large class of truncations (called complete) to the equations of motion
to have only bounded solutions. Then in Appendix A we establish the definitions of
the relevant physical parameters and indicate how the governing equations may be
transformed into a suitable dimensionless form.

1. Preliminaries. The equations which govern convective motion in a fluid layer
heated from below are the Navier-Stokes and heat conduction equations. We
consider these equations in the Boussinesq approximation. In Appendix A it is shown
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how to rewrite the two dimensional Boussinesq equations into the following dimen-
sionless form:

___a('\[/’ A'\[/) 2 _8_0
) Ay), = _6(x,z) +0oA ¢p+a'ax,
' __,6), av
(o)t“ 6(x,z)+Rax+A0

where ¢ (x, z, t) and 8(x, z, t) denote the stream function and departure of tempera-
ture from a linear profile while o and R denote the Prandtl and Rayleigh numbers
respectively (for the definition of the Prandtl and Rayleigh numbers, we refer the
reader to Appendix A). In the remainder of this paper we shall consider the con-
vection equations in the form (1.1).

We shall assume that all fluid motion is confined to the region &=
{(x,2):0=x=2m/a,0=z ==}, and impose periodic boundary conditions (period
2m/a) in the horizontal direction and free boundary conditions on the surfaces z =0,
z = . Specifically these latter conditions are

0(x,0)=0(x, m)=0, Y, 0)=¢x 7)=0, A¢(x,0)=A¢(x, 7)=0.

Although the free boundary conditions are perhaps not the most interesting from the
physical point of view, we have chosen them in preference to rigid boundary condi-
tions because they greatly simplify computations.

Also in the interest of simplicity, we have restricted our attention to a particular
class of solutions—those for which ¢ and 06/dx vanish identically for x =0 and
x =2m/a, i.e., for which the horizontal components of the velocity and temperature
gradient vanish. It can be shown that if these conditions hold initially, they hold at
later times as well.

A general representation for ¢ and 8 which is consistent with the requirements of
the previous paragraphs is

W z2,00= Y % G sin (amx)sin (n2),
m=1n=1

(1.2)

0(x, z,t)= § § 0, cOs (amx) sin (nz)

m=0n=1

where ¢, and 6,,, are functions of time alone.

If we now substitute (1.2) into (1.1) we get a system of infinitely many coupled
nonlinear ordinary differential equations for the components of ¢(x, z,t) and
0(x, z, t).

Let N = N U{0} be the set of nonnegative integers. Suppose that 7 is a nonempty
subset of N x N. By a truncation of the convection equations, we shall mean a system
of ordinary differential equations obtained by substituting ¢ and 6 from (1) into (1.1)
and setting all ¢,,,,,, O terms equal to zero unless (m, n)e J. Specifically we shall
consider those solutions ¢(x, z, t), 8(x, z, t) to (1.1) such that

U(x,z,8)= Y thmn sin (amx)sin (nz),
(m,n)ed
m#0

0(x,z,t)= Y Oy cos (amx)sin (nz)
(m,n)ed
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where 7 is a finite subset of N X N.
We may write our system of ordinary differential equations symbolically as

1.3) X =F(X)

where X is a vector whose entries are the time derivatives of the components of ¢ and
0, F(X)= (gj) where ¢ = (un) for m#0 and (m, n)e 7, and where 6 is defined

analogously. ¥
The set of all those points X = (0> will be the phase space for our system, and we

shall denote by T*(X) the solution curve to (1.3) which passes through X at time zero.

2. Main result. Prior to establishing our main result we state three lemmas whose
proofs are elementary and a proposition which will be an essential step in the proof of
our main result.

LEMMA 1. Let f, g be twice continuously differentiable functions on {(x, z):0=x =
2m/a, 0=z = 7} which are periodic in x with period 27/a and which vanish when z =0
and z = 7. Then

[ e[ a2

0 a(x )
COROLLARY. If f, g are defined as in Lemma 1, then
2m7/a ™
(£, 8)
dx I dz f————==
L 0 fa(x) Z)
LEMMA 2. If

f(x,z2)= Y  amn cos (amx)sin (nz),

(m,n)ed

g(x,z)= Y  bpnsin (amx)sin (nz),

(m,n)edT
then
2m/a T 2
1 I dx J dz A
) o f 2a (m nz)eg'
2m/a T 77_2
2) J‘ dxj dzgAg=—— Y  punbim where ppm = a’m>+n*
0 2a (mmyes
m#0
2mw/a ™ 2n/a T 2
og of m”
3 J dx I dzf—= —J dx J dz Apnbmnm.
) o o fax o gax 2 (m, %ev

By a(y, 8)7/3(x, z) we mean the function obtained by expanding the Jacobian of ¢
and 6 in a Fourier series and dropping those terms with (m, n)¢ J.
LEMMA 3. Let 7, ¢, and 6 be defined as above; then

2m/a T 8(({/, 0) 2m/z ™ a(d/’ A‘l/)T_
L de’ dz 0( ) =0, J; de; dzd,—a(x,z) =
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PROPOSITION. Let Q be a continuously differentiable function defined on the state
space of our system and suppose that there exists a constant Q. such that

d
—Q(T' ’ <
dtQ( X) t=0 0

whenever Q(x)= Q,. Then for every x in our phase space, sup,=o Q(T'x)< .
Proof. If x, is any point in our phase space, then either Q(x¢)= Q; or Q(x0)< Q.
Suppose that Q(xo)= Q1; then by hypothesis

<0,
t=0

d ‘
zi—tQ(T X0)

therefore in a neighborhood about t =0 Q(T 'x,) is a decreasing function for all ¢ in
this neighborhood. Further, Q(T'x,) must continue to decrease until Q(T x¢)< Q;.

If on the other hand, Q(x0)< Q;, then Q(T'xo)= Q; for all ¢. Since if for some
to, Q(Tx0) = Q1, then by hypothesis

d
—Q(T?%yo)| <0 where yo= Tx,.
dt s=0

If we now argue as above, we conclude that if Q(x0)< Q; then Q(T'xo)= Q; for all ¢,
so the proof of the Proposition is now complete.

Now let I be as previously defined and N =sup {n: (m, n)e J for some m # 0}.
We will say that I defines a complete truncation if (0,2n)e J forn=1,2,3,---,N.
We may now state our main result.

THEOREM. Every solution of the equations of motion for a complete truncation is
bounded for t =0.

Proof. In order to establish the theorem it is sufficient to show that an equivalent
system of equations has all solutions bounded for ¢ = 0.

Let us examine the complete truncation to the convection equations associated
with 7. For (m, n)e J we define S,.,, T, by the following rules: for m different from
zero,

Son =Wmns  Tonn = Omn
for m equal to zero and n odd,
Ton = 6on,
while for the remaining case

To2n + Cozn = 0021

Given the above definitions of S,,.., Tr.. We define
T(x,z,t)= Y  Tpncos(amx)sin (nz)
(m,n)eT

S(x,z,t)= Y S sin (amx)sin (nz)
(m,n)eT
m#0

From the above definitions it is apparent that

0(x,z,t)=T(x,z,t)—c(z), Y, z,)=S(x, zt)
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where
N
c(z)= ¥ Coonsin(2nz),
n=1

N is the number in the definition of a complete truncation and Cop,, =—2R/n. If we
now rewrite the convection equations in terms of $ and T we have

—M+UA2S+U£
ox’

AS). = a(x, 2)

L8, ) 3e(2),8)"

D= " o, 2)

+R§+A(T—c(z))
0x
Let
2m/a m R
O=1j dxj dz{Tz——SAS}.
2 0 0 a

From Lemmas 1 and 3 it follows that

dQ J'z"/“ J" [ oc 3S oS ] [aT ) ]}
—_—— ._._......_+ _.+ — — ._+ .
=) dx X dz{T > on Rox A(T-c(2))|-RS A S

Let us make a closer examination of the first term in the expression for dQ/dt, i.e.,
~T(3S/dx)dc/oz. If we recall the definitions of T, S and c, while at the same time
making use of elementary trigonometric identities to change products of sines into
sums or differences of cosine terms, we find that

3S ac N
-T——=-a z Z z * (COzn : nyTaBSVG) * (COS ((B _5)2)
90X 9z (a, B)eT (v,6)eTn=1
—cos ((B+8)z))cos (2n) - cos (aax) cos (ayx).
Hence
2m/a a8 ac N
J dx T——=2#R Y Y Y (mT,gSms)
0 dx 90z (m,B)eT (m,8)eTn=1

- (cos (B—8)z)—cos ((B+8)z)) cos (2n).

Prior to performing the integrations in the z-variable we make several obser-
vations: for fixed B, 6,

j"dz Y cos(B—8)z—cos(B+8)zcos(n)=0
0 n=1

unless, B, 8 have the same parity. Further if (m, 8) and (m, §) are elements of J for
m # 0, and B, 8 are distinct but have the same parity, then 3n,, n,e{1,2,- -, N}such
that 2n,=8+68 and 2n,=|8—8|. If we now exploit the above observations, it is
apparent that

2m/a T 2
aS o R
-I dxj arT7 B8 _TR 5 S
) 0 0x 0z 2 (mn)edT
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With the aid of Lemma 2 and the above remarks we have that

dQ (> i 2
Et_=L de dz {T AT —RS A’S— T Ac(2)}
772 , R s 71_2 5 71_2 N )
= "E; (myg.;eg(Rpmnsmn +pmnTmn )_E nOde pOnTOn _7 ngl P02nT02n
m#0 -

+— ¥ po2nT02nCo2n.
a N=1
If we now call the last term above B, and the remaining terms —B;, then

——==B1+B>,
dt 1 2
where B is a strictly positive definite quadratic form in the S,,.., T,n» and B, is linear in
Tomn. Therefore there exist finite values Py, P> such that P;B,= Q and |B,|= PV O so
dQ 1
99 _ g +B,=-10+PNO
o 1+Ba=-5 Q+PVQ
and the right-hand side of the last inequality will be less than zero provided Q > PiP3.
The boundedness of solutions now follows from the previous proposition.

Appendix A. In this Appendix we transform the Boussinesq equations into a
dimensionless form; the relevant equations are:

—_— ~x2
(A(l,)f_ (.f, f) + A ¢+ aa ~9
(A-D 3, 6) T ow
5 Y, 9), T oY
0)r=— 5 T Ag

where ¢ and § are functions of %, 7 and ¢ which denote the stream function and
departure of the temperature from linearity respectively. The constants: g, a, », , 7,
and H denote respectively the acceleration due to gravity, the coefficient of thermal
expansion, kinematic viscosity, thermal conductivity, the temperature difference
between the plates and depth of the fluid layer. We shall use A to denote the Laplacian
in the variables x and z.

We now introduce the dimensionless variables x, z, and ¢, where

z {
A2 x=Xx/c, z=—, t=—;
(A.2) /c1 o cz
¢; and ¢, are constants having the dimensions of length and time, and shall be

determined later.
If we now substitute (A.2) into (A.1) we have

. . 06
(Aw)t.;__c,_z.a(lp’—Alp)-FszAzw"'gaC']C‘Z—’

(A3) IR "’
=20, T, O,

c1 (x,z) Heci x ¢



THE BOUSSINESQ EQUATIONS 77
It will be convenient for us to rescale ¢ and § and call the rescaled functions ¢
and 6 where
d=d/k; and 6=0/k,.

Here k; and k, are constants which shall be determined shortly.
If we now rewrite (A.3) using the definition of ¢ and 6 given above, we have

C 6(!// A(,I) CZ 2 Clcz ZC_zio_
) (Ay). = ki —— a(x, ) A ¢+ % ox
O =—2p, 0 Tk o

ci  d(x,z2) Hc1 k26x ci

where we have used A to denote the Laplacian in the dimensionless variables.

There are many possible relations which can be imposed on the constants in
(A.4); if we assume that ¢, = c3k; and k; =k and suppose that k, = v/(gcic,) where
we let ¢, = H/m, then the dimensionless convection equations beome

(Ag). = af;f A";) ary+2 2
(A.5)
0) =289 e H oy o

The ratio of viscosity to conductivity (»/«) is called the Prandtl number, which shall be
denoted by o. The coefficient for the di/dx term which appears in the equality for (8),
is called the Rayleigh number and shall be denoted by R.
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A NOTE ON A PAPER BY L. CARLITZ*
J. CIGLERY

Abstract. We give a simple derivation of the generating functions ¥, [s,(nx +y)/n!}z" for Sheffer sets

{sn (x)}.

In arecent paper [1] L. Carlitz has obtained some interesting generating functions.
The purpose of this note is to show that some of his formulas can be best understood
within Rota’s theory of Sheffer sets [2]. In order to avoid repetitions of well-known
facts we follow the notation and terminology of Rota’s paper [2].

Let

- =ApsLpr, ...
Q=g(D)=7; D+ D*+

be a delta operator and let G(D) be the inverse formal power series which satisfies
G(g(D))=g(G(D))=D. Then the set of polynomials of binomial type correspond-
ing to Q, which we denote by {g.(x)} has the generating function

27/a
E qn(x)Dn — ¢*C(D) J dx T
n=0 n! ) 0
It is obvious that g,(y)= (e’ ®x "), -o.

Let now

S(D)=So+i—1"D+%D2+"‘, 50#0,
be an invertible operator and consider the polynomials s, (x) defined by the generating
function

1 xGD)_ o Sa(X) .
— = —D".
s(D) ngo n!

This set of polynomials {s, (x)} is called the Sheffer set relative to Q and the invertible
operator s(D).

THEOREM. Let {s,(x)} be the Sheffer set relative to Q =g(D) and the invertible
operator s(D). Then

2 Sp(nx+y) (De 0@y = 1 eYG(DI) .
n=0 n! s(D) 1-xDG'(D)

Proof. For each complex number a the operator R = D e *°® js a delta opera-

tor. Let {p,(x)} be the corresponding set of polynomials of binomial type. By [2, Thm.
4], we have

pn(x)= R’ e(n+1)aG(D)xn — (1 —-aDG'(D)) enaG(D)x",

Let now

® ¢, 1 o™
LR =oy1 —aDG'(D)

* Received by the editors August 5, 1977.
+ Mathematisches Institut, Universitit Wien, Vienna, Austria.
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be the expansion of the right-hand side with respect to the delta operator R. Then we
have

1 ebG(D)
= [s(D) l—aDG’(D)p"(x)]x=o

by the first expansion theorem [2, Thm. 2]. This gives

1 ebG(D)
= [s(D) 1-aDG'(D)

(1-aDG'(D)) "% ]
x=0

1 (na+b) n]
=] — D
[s D) e G(D)x .
which proves the theorem.

By suitable choices of G(D) and s(D) most of the concrete examples of Carlitz’s
paper appear as special cases of our theorem.

=s,(na+b),
0
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IDEAL INVERSION FORMULAE FOR THE FOURIER TRANSFORM*
F. J. WILSONY

Abstract. In this paper a method is given for generating new ideal inversion formulae for the Fourier
transform starting from known Laplace inversion formulae. Two new ideal inversion formulae for the
Fourier transform are developed.

1. Introduction. In [1] Cooper considers integral transforms of the form

1.1) fA(u)=ka(u, v, A)F(v) dv

for a function F in L” (— 0, ), where 1/p+1/p'=1and 1 =p =2, and shows that for
certain kernels, k(u, v, A), the boundedness of the set of functions {f,} in L”(—00, o)
is necessary and sufficient for F to be the Fourier transform of a function of
LP(—o0, 00). Cooper calls the integral transform (1.1) an ideal inversion formula for
the Fourier transform if it satisfies the two conditions:

(i) the boundedness of the set of functions f, (1) in L?(—00, o) is necessary and
sufficient for F to be the Fourier transform of an f in L?(— 0, 00),

(i) if F is the Fourier transform of an f in L”(—o00, c0) then f, - f strongly in
LP(—00,00) for 1=p=2 and f,(¢t)>f(t) as A >00 at every point in the
Lebesgue set of f.

We will call a kernel, k(u, v, A), which gives rise to an ideal inversion formula an

ideal inversion kernel for the Fourier transform.

One particular ideal inversion formula considered by Cooper in [1] is

1 o /\A+1
A= V2 I_w (A —iuo)**!

He also shows that if we consider F(v) as an analytic function and A as a positive
integer, then (1.2) reduces to

(1.3) J_z_ﬂ(j_li(i)AHFm('A) > fu)

Al i iu iu

1.2)

F(v) dv.

over the positive reals as A »00. Cooper notes that (1.3) is clearly related to the
Post-Widder inversion formula for the Laplace transform [4, p. 288]

(1.4) CDL A poo(2)

Al \u

over the positive reals as A » 00, in which we are trying to find the inverse Laplace
transform of the function /.

In this paper we show that starting with known Laplace inversion formulae we
can generate, in certain cases, new ideal inversion formulae for the Fourier transform.
To illustrate the method if, for example, we started with the Laplace inversion formula
(1.4), working nonrigorously, we could by substitution obtain a possible inversion
formula for the Fourier transform, (1.3), and then using Cauchy’s integral formula
obtain (1.2), which is an integral transform of the required type. We would then have

* Received by the editors March 29, 1977.
+ Department of Mathematics, University of Wales Institute of Science and Technology, Cardiff CF1
3NU, Wales, U.K.
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to check that the kernel so obtained was an ideal inversion kernel for the Fourier
transform.

In this paper we consider two inversion formulae for the Laplace transform. The
first inversion formula, (4.1), gives rise directly to an ideal inversion kernel. The
second inversion formula, (5.1), does not directly give rise to an ideal inversion kernel
but by adjusting the kernel it is possible to form an ideal inversion kernel.

2. Noeotation. Throughout the paper p will be restricted to 1 =p =2 and p’ will be
givenby 1/p+1/p'=1.
The Fourier transform of f will be denoted by f where

1 s —ixy
foy==] e ar

-0

and the Laplace transform of f will be denoted by f where

fon=[ fwyear
0
For the Fourier transforms of the kernel k(u, v, ) we will write

1 (® -
K (e, v,/\)=FJ‘ k(u,v,\)e ™ du
T “—co

and

1 (® —i
Kz(u, t,A)=FJ‘ k(u, D,A)e wtdv.
T “~c0

If K(¢, v, A) satisfies

lim I f() dtj Ki(t,v,\)g()dv = I f(Hg(t) de

A—>00 J—oco —00 —00

for al'l f in Ch, where Ch is the set of characteristic functions of finite intervals, and’ g

in L? (—00, ) then we write that K;(¢, v, A) is an approximation kernel on {Ch, L"}.
If

o]

[ Kol 1,000 dr> g(w)

as A > oo strongly in L” for all g in L, we write that K»(u, t, A) is a strong approxima-
tion kernel on {-, L"}.

3. Conditions for an ideal inversion kernel. In [1] Cooper considers several
different conditions for k(u, v,A) to be an ideal inversion kernel for the Fourier
transform depending on the form of the kernel and whether K (¢, v, A) exists only as a
generalized function. We will be using two of these conditions.

Firstly, k(u, v, A) satisfies condition A if

Al. k(u,v,A) belongs to L?(—00, o) as a function of v for almost all # and all

A > Ao and k(u, v, A) belongs to L' (— 00, 00) as a function of u for almost all v
and all A > A, where 1<r=2.

A2. ||k(u,v,A), and |K1(u, v, )|, as functions of v are O(e™?) as |u| > for

some m <3 and all A > A,.

A3. Ki(t,v, 1) is an approximation kernel on {Ch, L”} where Ch is the set of

characteristic functions of finite intervals.
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Ad4. K>(u, t, 1) is a strong approximation kernel on {-, L*}.

Secondly, k(u, v, A) satisfies condition B if k(u, v, A)=¢""l(v, A) and

B1. k(u, v, A) belongs to L?(—00, o) as a function of v for almost all ¥ and all
A > Ao

B2. V27 l(v,A)~> 1 as A > boundedly on every finite interval.

B3. K>(u, t,A)is a strong approximation kernel on {-, L"}.

4. Extended Post-Widder ideal inversion kernel. Starting from the extended
Post-Widder inversion formula for the Laplace transform [4, p. 295]

(DM A+ (At 6,
.1) f) = lim S=2 0 ()

where 6, =0(A) as A » 0, we obtain, nonrigorously, an inversion formula for the
Fourier transform by substituting

1 .
f(W)—Ef(lW)

giving

4.2) f(u)= lim V2r (10 +0‘)Mf‘”()‘ +0*).

A A+1 .
>0 "Alu iu

Assuming that f is analytic and satisfies certain boundedness conditions we use
Cauchy’s integral formula for f*)(z) to turn the possible inversion formula for the
Fourier transform, (4.2), into the required form

1r° A+

f(u)=lim

f(v) dv.
,\-»oo\/—zTT o0 (/\ +0)‘_iuU))‘+l f( )

We call the kernel

1 A+
V27 (A + 6, —iup)* !
where A, =0(A) as A > 0, the extended Post—Widder kernel and, as one would expect,
it is closely related to the kernel used by Cooper [1, p. 292].
We now show that the extended Post-Widder kernel is an ideal inversion kernel

for the Fourier transform by proving that it satisfies condition A.
First we need the Fourier transforms of k(u, v, A), one of which is given by

(A +0)‘)A+1 Jw e~iut
2'77 —oc0 (A +0)\ -*iuv)

Letting z = t(A + 6, —iuv)/v we obtain

A+ 0)\))‘+_1 PN (_t_>)‘ J‘(t/v)()""ox*'"w)
27Tilvl (

k(u,v,\)=

Kl(t; v, A)=

X+ du.

Ki(t,v,A)= ez " dz

v t/0)(\ +0 —ic0)

(A+0A)A+1 e_'(“o*)/"ltl)‘ £>0
I+ S

t
0, —-<0,
v

and by symmetry K;(¢, v, A)=K,(v, t, A).
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Clearly for large enough A condition A1 is satisfied. Next

o] + A+1 p —p/2 + 4
ke (e, -,A)}Ip”=J ] A+6) - do=2CD) AT T as14d
! N2 (A + 6y — iuv)** u 2 p
which is O(e™?) as |u| - o for some m <3 for large enough A, and
* p(A + 0)‘)t1_'\p
”Kl(t’ ) A)“Pp = Ji«oo ‘Kl(t9 v, A)lp dv= {F(A + 1)}Pp P(»\+1)l-‘.(pA +p - 1)9

which is O(e™”) as |t| > o for some m <3 for large enough A, and therefore condition
A2 is satisfied. We now show that K;(¢, v, A) and K>(u, t, A) are both strong approxi-
mation kernels on {-, L"} as they satisfy the conditions of Lemma 2 in [1, p. 292].
Firstly,

s o)

J' |K1(t, v, 1)) dt=I |Ka(u, t,A)| dt =1

and

s <] o o]

J |K1(t, v, 1)| dv =J' |Ko(u, t,A)| du = 1+-i-)1,

which are bounded in u, v, t and A, for large enough A. Secondly, for 0=a<u<b

b A+1
A+6)
Ko(u, t,A\)dt =————(I1+1
J; 2(u ) TO+1) (I+1)
where
A/(A+6,) b/u
L= j e XA gy and L= J' e TXATO0N dx.

a/u A/(A+6))

For large A we simplify I, and I, by using Laplace’s asymptotic method for integrals
[4, Thm. 2a, p. 277], giving

e—/\A/\Al/Z
T +e)?

and similarly for I,. Therefore for 0=a<u<b

11 \/7T/2
b
j Ko(u,t,A)dt>1

as A » 00, Similar results can be proved for a <u <b =0 and hence for a <u <b. If
u < a then we have

1 t( )/u/\
Ky(u <= A+6 A+6,)/u,
,[ ( at,)()dt_J‘ ( ,\) e

R T
~()t+0)‘)'\+l _l(ﬂ_l_fo_)\>_'\e—-a()\+9*)/u (g))‘
(A +1) a A ul’

using Laplace’s asymptotic method for integrals [2, p. 65], and hence the integral is
dominated by a multiple of ™ for large A and tends to zero as A - 00. A similar result
holds for [} Ka(u,t,A)dt for b<u. Therefore | Ka(u,t,A)dt is dominated by a
function of L?(—00, o0) and tends to x(a»)(#) almost everywhere as A > 0. Hence by
[1, Lemma 2, p. 292], K»(u, t, A) is a strong approximation kernel on {-, L”}. Since
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Ki(t,v,A\)=K,(v,t,A) the same results hold for K;(t,v,A). Therefore k(u,v,A)
satisfies conditions A3 and A4 and hence we have proved that the extended Post-
Widder kernel

1 QA+er
V27 (A + 6, —iuv)* ™!

where 6, =0(A) as A > 0 is an ideal inversion kernel for the Fourier transform.

k(u,v,A)=

5. Extended Phragmen ideal inversion kernel. Starting from the Phragmen
inversion formula for the Laplace transform [3, p. 133]

_ n+1
(5.1) J f(¢) dt = lim z (kY ) e™ f(nr)

A0 n=1

for u >0, we obtain, nonrigorously, an inversion formula for the Fourier transform by
substituting

1 4.
f(W)—Ef(lW)

and, as before, we turn the possible inversion formula for the Fourier transform into
the required form by using Cauchy’s integral formula, assuming that f is analytic and
satisfies certain boundedness conditions, giving

u 1 U o (° )
[oa=im 2o £ =]

Differentiating with respect to u and interchanging the integral and summation signs
we get

dv.

© _ n+1 niAu
F ey,

f(u)—llm__J fo ){” 1 (n=1)(iv—nA)

A—oo V 27T

and we obtain the kernel

1 § (=)™
V27 w21 (n=1D)Gv —nA)

We have labeled this kernel k'(u, v, A) because even though it is not an ideal
inversion kernel itself, it can be used to generate one. We can show that k'(u, v, A) is

not an ideal inversion kernel for the Fourier transform by examining its Fourier
transform with respect to v, K3 (u, ¢, A):

k'(u,v,A)=

1 r" o At T 20,
—— e "’k’(u,v,)\)du={
V27w 0, <0,

which cannot be a strong approximation kernel.
To obtain an ideal inversion kernel for the Fourier transform we define

Ko(u, t,\)=A1e" e "™ forallt

K5(u,t,A)=

and we find the corresponding kernel, k(u, v, ), by taking the inverse Fourier trans-
form of Ks(u, t, A):

* - —eAu—t) j e 1
k(u,v,A)= J A et gme ’e""dt=_r(1_f).

1
V2 V2m A
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We now show that this kernel, which we will call the extended Phragmen kernel, is
an ideal inversion kernel for the Fourier transform by proving that it satisfies condi-
tion B.

First, for any finite interval (A, B)

B B
J |k (u, v, \)° dv = Qm) "> j
A A

e"“"r(1 —1—”) ]p dv=(Q2m)"%B - A).

For large v/A

’p(l _Q) I ~2m ‘3 Y2 ol
A A

Therefore for large positive B, [3|T'(1—iv/A)°dv is bounded, and similarly for
]fooIF(l —iv/A)fP dv for large negative A. Therefore k(u, v, A) satisfies condition B1.
Next,

}r(1—ﬂ)| =1 and Jim (1) =1

A A —>00 A

where taking the limit inside the integral sign is justified by dominated convergence.
Therefore k(u, v, A) satisfies condition B2. Last, we show that K,(u, £, A) is a strong
approximation kernel on {-, L"}. Firstly,

e o] o

I |Ka(u, t,A)| dt = J |Ka(u, t,\)| du=1.
Secondly, for any finite interval (a, b)

b

j Ko(u, t,A)dt =e " =™ 5 yam() asA >0
and e "“ ™ —¢7**“™® s dominated by a function of LP(—00, ). Hence by [1,
Lemma 2, p. 292] K»(u, ¢, A) is a strong approximation kernel on {-, L”}. Therefore
k(u, v, A) satisfies condition B3 and we have proved that the extended Phragmen

kernel
e™ iv
kw0, 0)==1(1-%)
N2 A

is an ideal inversion kernel for the Fourier transform.
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OSCILLATION AND ASYMPTOTIC BEHAVIOR OF
FORCED NONLINEAR EQUATIONS*

A. G. KARTSATOSt AND J. TORO%

Abstract. The oscillation and the asymptotic behavior of the solutions of the equation
™+ H(, x(a())= Q)

are studied under assumptions of smallness or periodicity for Q(¢). Recent results of Mahfoud concerning
the case Q(t)=0 are extended via a transformation introduced recently by the first author.

Introduction. In this paper we study equations of the form
19) xP+H@Ex(@@)=Q(r),  neven,

where H(t,u), Q(t) are defined and continuous on [0, +00)X (=00, +00), [0, +0c0)
respectively, and uH (t, u)> 0 for any (¢, u) with u # 0. The function q is also defined
and continuous on [0, +00) and satisfies lim,., +« q(#) = +00. Our main purpose here is
to show that the results of Mahfoud in [7] concerning the homogeneous case (Q(t)=
0) can be extended to the case (I) by use of a method introduced by the first author in
[3], [4]. According to this method, Equation (I) is reduced to a “homogeneous-like”
equation which can be treated much more easily than (I). The forcings Q will be
assumed to be ‘“‘small” or “‘periodic-like” and oscillatory. The reader is referred to the
survey article of the first author in [6], where an account is given of several criteria for
oscillation of forced and perturbed equations, as well as an almost complete bibli-
ography on the subject.

In § 1 we establish some background information, § 2 is devoted to the main
results of this paper, and in § 3 we discuss some possible extensions of the present
results.

1. Preliminaries. In what follows, R = (-0, ©), R, =[0, ©), R_= (-0, 0] and,
for every @ >0, R, =[a, ©), R, =(—o, a]. By C[A, B] we shall denote the space
of all continuous functions from the set A into the set B. The following group of
hypotheses will be referred to as Condition (S):

()He C[R+XR,R], uH(t, u)>0 for every (¢, u)e R+ X R with u #0;

(ii) g€ C[R+, R] and lim,. q(t) = +00;

(iii) Qe C[R+, R];

By a solution of (I) (under (S)) we mean any function x(¢), t€[t,, +), t, =0
which is n times continuously differentiable on [t,, +c0) and satisfies (I) on the same
interval. The number ¢, depends on the particular solution under consideration. A
function fe C[RZ, R], for some a >0, is “oscillatory” if it has an unbounded set of
zeros in R,. We denote by R, the set R, UR_, for any a >0, and we consider the
spaces:

C(R)={feC[R, R]; uf(u)>0 for any u # 0};
C'(R.)={fe C(R); f is continuously differentiable on R,};
C,(R.)={fe C(R); f is of bounded variation on every [a, b] = R.}.

Lemmas 1, 2 below can be found in Mahfoud’s paper [7].
* Received by the editors June 12, 1976, and in final revised form September 22, 1977.
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LEMMA 1. Leta>0 and fe C(R). Then fe C,(R,,) if and only if f(x)= g(x)h(x)
for all x e R,, where g: R, - (0, +0) is increasing on (=0, —a] and decreasing on
[a, ©), and h: R, - R is increasing in R,,.

DEeFINITION 1. The function 4 in Lemma 1 will be called an increasing component
of f while g will be called a positive component of f.

We also consider the following space:

Cr(R,)={fe C,(R,); f has a positive component bounded away from zero}.

The importance of the above spaces in the present considerations is made clear by
the following.
LEMMA 2. Leta >0. Then if f € Ci(R.), there exists B >0 such that f(x1) = Bf(x2)
whenever x1Zx, = a and f(x1) = Bf(x2) whenever x1 = x,=—a.
For the forcing Q in (I) we will always assume one of the following conditions:
(iv) there exists P C[R., R] such that P™(¢)= Q(¢), t € R, P is oscillatory and
lim,,o P(t)=0.
(v) there eXist P;e C[R:+,R], j=1,2, such that P; is oscillatory,
lim inf, e P1(£) =0, lim sup,.« P2(¢)= 0, and P{”(1)= Q(¢), te R,.

2. Main results. The following theorem extends to the case (I) Theorem 1 in
Mahfoud’s paper [7] and provides, even in Mahfoud’s case, a much simpler proof than
the one in [7].

THEOREM 1. Suppose that Condition (S) holds. Furthermore, suppose that for each
a >0 there exists a function P, € C[R.+, R.] and a function P,, € C[R_, R_] such
that

H(t,u)=P,.(t) foreveryueRy,
H(t,u)=P,,(t) foreveryueR,

and, for some integer i with 0si=n-—1,
J 1'Py o (1) dt = +00, J t'P.o(t) dt = —00.
0 0

Then if the forcing Q satisfies (v) with Pf"_i'l)(t) bounded for j=1,2, every
solution of () with bounded (n —i— 1)st derivative is oscillatory.

Proof. Let x(t), t€[A, +0), A >0 be a solution of (I) with bounded (n —i —1)st
derivative, and assume that x(¢) is nonoscillatory. Then x(¢) is eventually positive or
negative. We assume that x(¢) is positive for all large ¢, say for t = A, and we reach a
contradiction. The reader should have in mind that a very similar proof covers the case
of a negative x(z). Now let u(t)=x(t)— P1(¢), t = A, where P,(¢) is the function in (v).
Then u(?) has its (n —i — 1)st derivative bounded and satisfies

1) u+H@E u(@@®)+Pi(g(t))=0, t=A.

We shall show that u(¢) has to be negative for all large ¢, which, in view of the
oscillatory character of P;(¢), will imply a contradiction to the positiveness of x(¢). In
fact, since x(¢t) = u(¢)+ P1(¢)>0 for t = A, and q(¢t)—> +00 as ¢ > 400, there exists t; = A
such that g(t)=A for every t =t,. Consequently, u(q(¢))+ P1(q(¢))> 0 for every t = ;.
This in turn implies along with (1) that u“(¢)< 0 for every ¢ = t;. Consequently, all the
derivatives u®(r) are monotonic (hence of constant sign) for all large ¢ and 0=k =
n —1. Now suppose u(t)> 0 for all large . Then since n is even, we may take ¢, above
to be such that u'(¢)>0 for £ = ;. Now given positive ¢ <u(t;) there exists £, = ¢, such
that Pi(t)=—¢ for all t=t,. Let t3=t, be such that q(t)=¢, for every t=¢;. Then
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u(q(t))-}-Pl(q(t))é u(t)—e=u(t;)—e>0 for all t=t;. Now consider the function
F@)=t'u"""(¢t). Then

) F(t)==tH(t u(@(®)+ Pige) +ir " u™ ()
for every t = t;. Let us remark now that forn —i=k =n,
1) u®()<0,  te[t, ).

In fact, if this is not true, then two consecutive derivatives of order between n —i and n
would be eventually positive or eventually negative for all large ¢ but this would
contradict the boundedness of 4™ "(¢). Now we integrate (2) from t; to t=t; to
obtain

t
t'u(""l)(t)—ij s " (s) ds

3

G) — 3 Da)- | S'H(s, u(a(s)+ Pr(a(s)) ds

t3

= téu("_l)(h)—j

t

t
s'Py.,.(s) ds, w=u(t)—e.

Since the last member of (3) tends to —oo as ¢t - +00, and since u"D()>0,1=13
we must have

(s o)
J s D(s) ds = +00.

t3

Now the proof continues exactly as in Kartsatos [2, Thm. 1] and leads to

+00
(C)) (-1t I s (s) ds = +00, 1=m=i
t3
Actually, (4) is stronger than the corresponding estimate of Kartsatos in [2].
Letting m =i in (4) we find

lim (—i) a0 - w0 (13)] = 40,
t—>00

a contradiction to the boundedness of the function u~'"(t). This completes the
proof.

COROLLARY 1. Let (S) hold and assume that H(t, u)= Po(t)f(u) with Poe
C[R., R,\{0}], fe C(R) and lim infj | | f(u) >0,

(s o)
J t'Po(t) dt = +00  forsomeiwith0=i=n—1.
0

Then if Q is as in Theorem 1, the conclusion of Theorem 1 holds.

The proof follows easily from the proof of Theorem 1. This corollary, for Q =0,
was given by Mahfoud in [7]. Of course we may assume instead of Py(¢)> 0 on [0, +00)
that Py(t)=0 and not identically equal to zero in any infinite subinterval of R.,.

THEOREM 2. Let Condition (S) hold and assume that for every a >0 there exist
functions Py o€ C[Ry X Ry, R:], Pao€ C[Ry X R, R_] such that

4a) H(t,u))=ZP,,(t us) forteR:, u1Z=ur,Za,
a
H@t u))=Py4(t,uy) forteR., u1=u,=-a,
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and, for every u >0 and some i with 0=i=n-—1,

j £Pr ot g~ (1)) dt = +00

J t'Paa(t, —puq" TN (1)) dt =—

Let P;e C[R+, R], i=1,2, satisfy lim inf, e PSP (1) =0,
lim sup,—w Py~ i 1)(t) =0, Pf»") = Q and be bounded and oscillatory. Then every solution
x(t) of (1) with x"~"2(¢) bounded is either oscillatory, or such that lim,,. [x" 7 "V(t)—
PV 1)]=0forj=1o0r2.

Proof. Let x(¢) be a solution of (I) assumed to be positive on [A, +0), A >0, and
such that the function x *""(¢) is bounded on [A, +0). Then, as in the proof of
Theorem 1, if u(¢), t = A, denotes the function x (¢#)— P;(¢), there exists ¢; = A such that
all the derivatives u*(¢) are of constant sign for all t=t, 0=k =n, and u(q(?))+
Pi(q(1))>0 for all t=¢,. Now since u" ""P(¢) is monotonic, lim,.e u" " D@¢)=L
exists with 0=|L| < +o0.

The proof of this theorem follows immediately from Theorem 1 if i=n—1
because we can easily obtain the functions P; o(¢), P,.(¢) therein from the present
functions P1,(t, u), P2 (t, u). In fact, if L =0, the theorem is proved. If L >0, then
H(, u(q(t))+Pi(q(t)))= Py (t, u) for some suitable constants a >0, u >0, by our
assumptions, where

J tn—lpl.a(t, p)=+00.

Since Py .(t, u) does not depend on u, the proof of Theorem 1 applies. Similarly one
argues in the case L <0 by using the function P, (¢, u). Thus, we shall assume that
i<n—1. Now let L<0. Then we easily obtain by successive integration that
lim,, o u(t)=—00, a contradiction to the positiveness of x(¢). Thus, L=0. Let L>0
and 0 <e < L. Then there exists t, =, such that u™ ")+ P{" "D (r)= L —¢ for all
t=t,. By successive integration we can find a constant m >0 such that u(¢)+P,(¢)=
mt" ™'~ for all 1= (say) 3= 1,. Let t4= 5 be such that q(f)=t; for every ¢ = t,. Then
u(@®))+Pi@®)=mq" """ @), t = 1. Consequently, if F(¢) is the function of the proof

n—i—

of Theorem 1, we obtain similarly, for a = mt5 R

F(t)—F(t4)= —J s'H (s, u(q(s))+Pi(q(s))) ds +i j s (s) ds
®) ) “

t

t
= —J $'Piro(s,mqg" """ '(s))ds +i J s () ds.
ta

Now the proof follows as in Theorem 1 and leads to a contradiction. Thus,
lim, e ™" "(¢)= 0 and a similar argument covers the case x(£)<O for all large ¢.

COROLLARY 2. Let Condition (S) hold and let H(t, u)=Po(t)f(u) with Pye
C[R., R:\{0}], fe Ci(R,) for some a>0. Let Q be as in Theorem 2. Then the
conclusion of Theorem 2 holds if

J’ t'Po(t)f(xuq" "' (1)) dt =+  forsomei, 0=i=n-1
(4]
and every u > 0.

! Whenever the lower limit of an integral is omitted, it is meant that the condition is valid for the
smallest 7 =0 such that the integrand is well defined for all r=1.
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To prove the above corollary we simply take into consideration the bounds
obtained for f(u(q(¢))+ P1(q(2))) for Lemma 2. In fact, in (5) we would now have

- [ s'Pos)wla)+ Prta(s)) ds

ta

t
=-B I s'Po(s)f(mq" " (s))ds > —c0 as t->+00.
ta
Naturally, mq" " "'(t)=a for all large t. Thus, f, can be properly chosen
sufficiently large so that the above inequality makes sense.
Mahfoud gave in [7] the above corollary for Q(¢t)=0. Actually a stronger
conclusion holds above but we shall not concern ourselves with it here.
THEOREM 3. Suppose that H, Q satisfy Condition (S). Suppose further that

00

© [ PuCua o d= o, [P ug T )= o,

oo

D | (Pra —ua @ d =0, [ Paalt—ua" (1) di =0

for every i€{0,1,---,n—2} and every u>0, where the functions P, satisfy the
inequalities (4a) of Theorem 2. Then if (iv) holds and P®(t)->0 as t > for every
k=0,1,2,---,n—1, every solution of (1) is oscillatory.

Proof. Let x(t) be a solution of (I) with x(¢)>0, t=A >0. Then the last integral
conditions in (6) and (7) imply that lim,,. x" (¢)=0. In fact, this follows from
Theorem 2. To show this, let u(t)=x(¢t)—P(t), t = A. Then u(¢) satisfies the inequality

(8) u()=—H(t, u(q@(®))+P(q(t))<0

for all ¢ (say) = t; = A. It follows that ™ ~V(£)> 0 for all large ¢, otherwise lim,.o u(t) =
—oo, which implies x(¢)—P(t)<0 for all large ¢, a contradiction to x(¢)>0.
Consequently, u®™ () is decreasing and positive for all large ¢, thus bounded. This
fact, along with lim,.. P "(t)= 0, implies that x " () is bounded. Thus, Theorem
2 applies now for i =0 to obtain lim,.. x " V(t)=0. Now let i be any integer so that
0=i=n-2 and lim,.e x"7"D(f)=0. We show that lim,,. x" " "2(t)=0. Suppose
this is not true. Let u(¢) be as above so that u(q(¢))+ P(q(¢))> 0 for all t = (some) t; = A
and (8) holds for all ¢ = #;. Since u™(r)<0, we may assume that all the intermediate
derivatives u*(r) are of constant sign for every t=t;. Here 0=k =n—1. In parti-
cular, u® 7 P() is monotonic for re[f,+©) and limLou® T TO@F)=
limaew (X" 7P@) - PP 0] =0. Now let limye u™ " 2(f)=L. If L<O0 then
lim,, o x(¢)<O0, for i=n—2, a contradiction, or lim,,« u(t)=1im,,. x(t)=—00, for
i <n-—2, a contradiction again. Let L >0. Since lim,.« u" ()= 0, it follows from
Lemma 2 in Mahfoud [7] that ¥,_, (=1 *u®""")/k!>0 for all t=1,.
Consequently, from equation (4) of [7] we obtain

©) 2| sHG uae)+PaE) ds=C

- I
for all t=1¢, where C; are constants. Now let L be finite, and let i =n—2. Then
u™ " P(t)=u(r) is bounded and this implies the boundedness of x(¢). Since

oo

J. t"—zpl,a(t9 I»L) dt= +00, j t"_2P2,a(t9 _/~") dt = —00,
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it follows immediately as in the Corollary of Kartsatos [3] that x(¢) is oscillatory, a
contradiction. Now let L =400 apnd i = n —2. Then H(¢t, u(q(¢))+P(q(#))) = P1,m(t, M)
for every t=t,=¢; where M >0 and ¢, are chosen so that u(q(¢t))+P(q(t))=M for
t = t,. Consequently, from (9) we obtain

O
J tn—zpl,M(t, M) dt<+00,

2
a contradiction to our -assumptions. Now if i <n—2, there exists f,=¢; such that
u(q(t))+P(q(t)) = kq" " ~>(t) for every t = t,, where k is a positive constant. Then (9)
implies again

@
(10) j 1Py ot kq" " 72(2)) dt <+,

t2
where a is an appropriate constant. From (10) we have again a contradiction, and this
proves our claim. Thus, by induction on i, we actually obtain lim,.. u(t)=0, an
impossibility, for if u(¢)> 0 then u'(#)> 0 and if u(t)<O0, x(¢)< P(¢t) which contradicts
the positiveness of x(¢).

CoROLLARY 3. Under Condition (S), suppose further that fe Ci(R,) for some

a>0, Poe C[R., R.\{0}], and P is as in Theorem 3. Then if H(t, u)=Po(t)f(u) for
(t, u)e R, XR, and

ro t'Po(t)f (xeq" ™ "2(1)) dt = 0

for every ¢ >0 and every i€{0, 1, - - -, n —2}, every solution of (1) is oscillatory.
This corollary was shown for Q =0 by Mahfoud in [7]. It should be noted, in view
of Lemma 2, that the above integral conditions actually imply

L Po(0)f (g™ (1)) dt = £00

for every u >0.

In the following theorem we assume that for every t, =0, ¢ € C[[0, ], R], and
every n—1-tuple (c1, ¢z, * -+, ca1) Of real numbers, Equation (I) has at least one
solution x(¢) valid for all t=t, and such that x(t)=d(r), t=to, and xO(t0)=c;
j=1,2,-+-,n—1.

THEOREM 4. Let Condition (S) be satisfied with q(t)=t, let Q, P be as in Theorem
3 and suppose that for every a >0 there exist functions P,1€ C[R.XR:, R.], Pa2€
C[R.+XR,, R_] such that

H(t,x1)=P,1(t,x2) forteR,, a=x;=x,,

H(t, x1)= Pos(t,x2) forteR,, x:=x;=-a.

Then if every solution x(t) of (1) is oscillatory we have
f Poa(t, uq" ™ (1) + P(q(2))) dt = +0,

[ Puatt, g™ )+ P di = ~o0

for every u > 0.
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Proof. Let uq" '(t)+P(q(t))= a for t =B Za and

J’oo Poi(t, ug" () +P(q(t)) dt < + 0
B

for some u >0 and some B >0. Now let {, =1+ 8 and ¢ with 0 <& < /4 be such that
167 =(B+¢e)/(w—¢) and |P®(t)<e/(n—1) for every t=t, and every k=
0,1,2,---,n—1. Furthermore, choose ¢, = t, such that q(¢)=t, for every t=1t,, and

[ Pus(t, g™ () + P(q(1))) dt < (u —2€)/2.

1

The above are consequences of the fact that lim,.o P*(¢) =0, lim,.e q(f) =+
and the integral conditions in the assumptions. Now let x(¢) be a solution of (I) such
that

x()=(—-e)""', t=tn.

Then x" O@O)=ait* "/(k—-1), k=1,2,---,n, t=t;, where a3=
(n—1)!( —¢). Since x" 7 P(t;)=a;, >0, there exists t,> 1, such that x" 2(¢)>0 for
t €[, t). This implies that x " ~2(r) is increasing on [t1, £2) and since x "7 2(t,) = a1, >
0, we must have x " "2(t)> 0 on [y, t,). Similarly, one shows by induction that x"7O@)
is increasing and positive on [¢1, t;) for every k =2, 3, - - -+ , n. Now consider x(q(t)), t €
[t1, 2). If q(¢) € [t1, t2), then x(q(¢))> 0 by the previous argument. If q(¢)& [¢1, t,), then
to=q(t)<t,. Thus, x(q(t))= (u —€)q" "' (t)> 0 for t € [ty, t;). It follows that x(q(¢))>0
for every te[ti,t;). Now consider the function u(¢¥)=x(t)—P(t), t=t,. Then
u" () =a,—P" (1) Zu—26>0 and u"TOW)=auti T/ (k—1)1-P" )=
w—2e>0forevery k =2,3,- -, n. Consequently, the argument above about x(q(¢))
can be repeated now for u(q(¢)) to obtain the existence of some #; with ¢; <3 =¢, with
u(q(t))>0 in [t;, t3). Assume that #3 must be <¢,. Then u(q(¢)) has a zero #4 in the
interval [t3, t;). Then x(q(t4))= P(q(ts)). If q(ts)€[t1, t4] (Wwe should have in mind
here that q(¢t)=t), then 0=x(q(ts))— P(q(ts))=x(t1)— P(q(ts))=a1t7 " /(n —1)! —
P(q(ts))=u —e —P(q(t4))> 0, a contradiction. If q(¢t1) & [¢1, t4], then to=q(t4)<t; and
0=x(q(t))—P(q(ta))= (u —€)q" ' (ta) = P(q(t4)) Z 1 —€ — P(q(t))>0, a contradic-
tion again. Consequently, u(q(t))>0, te[n,t). Now since u™(t)=
—H(t, u(@()+Pq()<0, we have u™ )=u"""(t;)= a;—P" V(t)=a;+e.
Now by integration (observing that u" )= (a1 +€)tf 7/ ((k — 1)) we obtain, for
1=k=n u" @)= (a1+e)* '/((k-1)!), which for k=n vyields u(t)=
(ar+e)" J(n—1)=ut" ‘forall te[n, 1,). Since u(q(t))= (u —€)g" ()~ P(q(t)) =
wq" O~ (eq" ')+ Pq()=unq" " (t) for q(t)€[t, t2), it follows that u(q(t))=
uq"'(t) for te[t,t;). Now we also have u(q(t))+P(q(t)=x(q@)zx(t)=
(w—e)s ' =B +e =B whenever q(t)€ [y, 1) and u(q(®))+Pq(t))=(u—e)q" " (t)+
Plg®)=(u—e)ts ' +P(q(t))=B —¢+e =B for q(t) & [t1, t2). It follows that u(q(t))+
P(q(t))= B for every t€[t, t;). Consequently, by integrating the equation in u once
from ¢, to t = ¢, we obtain

u D) = u V() = _J‘ H (s, u(q(s))+P(q(s))) ds

t

= —j Por(s, g (5)+ P(q(s))) ds,

1
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which implies

WO~ P00~ [ P na”6)+ Pla) ds

1

éy—Ze—Jw

t

Poi(s, vq" "' (s)+ P(q(s))) ds

(u—2¢)
T

for t € [t1, 12). Consequently, as long as x™~(¢) remains positive for t = ¢, x" " V(t)=
u" P+ POV = [(w—26)/2]—& = (uw —4€)/2>0. This actually implies that
x® V()= (u—4¢)/2 for all t=t,. Thus x(¢) is positive for all large ¢, and this
completes the proof.

CoOROLLARY 4. Let Condition (S) be satisfied with H(t, u)=Po(t)f(u), where
Pye C[R., R:\{0}], fe C,(R,) for some >0, and P, q in Theorem 4. Then if every
solution of (I) is oscillatory we must have

| PothLeua™ @+ PN di = 0

for every increasing component h of f and every u > 0.

To show the above assertion it suffices to take in Theorem 4 P, (¢, u)=
Po(t)g(a)h(u) and P,(t, u)= Po(t)g(—a)h(u) where g is the corresponding positive
component of f. The above corollary is a special case of Mahfoud’s Theorem 4 in [7] if
Q@)=0.

COROLLARY 5. Let Condition (S) hold and H(t,u)=Po(t)f(u) with Poe€
C[R+, R:\{0}] and f € C1(R.) for some a >0. Let P(t), q(t) be as in Theorem 4. Then if
every solution of (1) is oscillatory we must have

| Poorena 0+ Pa@) di = 220

for any u >0.

In fact, this follows easily from Corollary 4 as in the proof of Corollary 4 of
Mahfoud [7]. In the following result H (¢, u) is supposed to be linear in u. This allows
us to adapt the proof of Mahfoud [7, Thm. 5] to the present forced case.

THEOREM 5. Let Condition (S) be satisfied with H(t, u)= Po(t)u, where Pyec
C[R+, R.\{0}]. Let P(t) be as in Theorem 4. Then if every solution of (1) oscillates for
any choice of q(t) satisfying (ii) and q(t)=t, t € R, we must have

I Py(t) dt = +c0.

0

Proof. Assume that every solution of (I) oscillates. Then
|| Polua™ 01+ Plaeldr = +20

by Theorem 4 for every u >0 and for every ¢q(¢) as in the assumptions of the theorem.
If

I Py(t) dt < +o00,
0
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then it follows from Theorem 11 of Burton and Grimmer [1] that there exists a
function Py € C[R4, [1, 0©)] which is increasing, onto, and such that

Jm Py(t)P1(¢) dt <+00.

The proof now follows as in Theorem 5 of [7] and is based upon constructing a
suitable g (¢) from the function P;(¢) for which

[s o)

I Po(t)q" "' (¢t) dt éJ Po(t)P:(t) dt < +00,
t 51
for some t; = 1, a contradiction, because lim,.. P(q(¢)) =0 implies also

[e o}

| Paola™ 0+ up@@dr=2 | P 0 di< o

2
for large enough £, = ¢;.
This theorem can be easily extended to the case H (¢, u)= Po(¢)f(u) under the rest

of the assumptions of Corollary 4, if we further assume that for some increasing
component h(u) of f we have

Jim (/@)= 1.

uy—uz~>0

This assumption is needed, if we adopt the above method, in order to ensure that

Jm0 Po(Dh(q" ' (t)) dt <+

1

implies

J ) Po(H)h(uq" (1) + P(t)) dt < +00

1

where q(t) is as in the proof of Theorem 5.

3. Discussion. All the results of this paper can be easily extended to odd values
of n as it is usual in nonlinear oscillation theory. It would also be interesting to see
versions of the results here covering perturbed cases of the form

(11) x™+H(t, x(q(1) = Q(t, x(q1(£)))-

For the first results in this direction and for q(¢)= q:(¢t) =1, the reader is referred
to [5] where perturbations Q(t, u) are considered with |Q(¢, u)| = Qo(t)|u|” with Qo
sufficiently small and r = 1. Naturally, extensions to equations with “middle terms” of
the form S(¢)x ("_k)(ql(t)) are desirable. For an account of some results in this direction
and for k =1, 2, the reader is referred to [6].

Acknowledgment. The authors wish to express their thanks to the referee for his
helpful suggestions.
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ON SOME MAXIMUM PRINCIPLES INVOLVING
HARMONIC FUNCTIONS AND THEIR DERIVATIVES*

L. E. PAYNEt AND G. A. PHILIPPIN}

Abstract. In this paper we establish sufficient conditions on f(h) to guarantee that given two harmonic
functions H and h, the quotient |grad le/f(h) satisfies a maximum principle. The principle is then used to
derive isoperimetric bounds for derivatives of the Green’s function and for the force field in electrostatics.

1. Introduction. Maximum principles for harmonic functions and for solutions
of certain classes of second order elliptic equations have been known for more than
a century. The two fundamental maximum principles for such functions are usually
referred to in the literature as Hopf’s first and second principles [2], [3]. In this paper
we make use of these two Hopf principles to derive new maximum principles for
certain combinations of harmonic functions and their derivatives. For an account of
previous results on maximum principles see the book of Protter and Weinberger [6].

Throughout we shall be concerned with functions defined on a bounded region
D < R" (or its complement). The boundary 9D will be assumed to be a C*** surface
so that the governing equation will be satisfied on the boundary. This boundary
smoothness can frequently be relaxed, but we do not attempt in this paper to
determine the minimum smoothness requirements on dD. The symbol A will be used
to denote the Laplace operator and a comma will be used to indicate differentiation,
ie.,

def 62
1.1) Uy =—o

0x; ax,- )

We also make use of the summation convention, in which a repeated index indicates
summation over that index from 1 to N, i.e.,

det N N qu 2
1.2 Liflhif = ( ) .
( ) u Iu’] ,‘z:dl jgl ax,- ax,-

2. A maximum principle. Let H and 4 be two harmonic functions in D. We
would like to be able to characterize those functions ¢ (x) of the form

o(x)=g(lgrad H?, h),

for which the maximum principle holds. We shall, however, be somewhat less ambi-
tious and seek specific combinations g of the form |grad H|*/f(h) with f to be chosen
in such a way that g satisfies a maximum principle. More precisely we establish the
following:

THEOREM. Let H and h be two harmonic functions in D = RN with H € C'(D) and
h e CUD), and let f(h) be a positive C* function over the range of admissible values of h.

* Received by the editors February 28, 1977, and in final revised form June 22, 1977.

t Department of Mathematics, Cornell University, Ithaca, New York, 14853. The research of this
author was supported by the National Science Foundation under Grant NSF MPS 72-04511.

1 Department of Mathematics, Cornell University, Ithaca, New York 14853. The research of this
author was supported by the Swiss Nationalfunds.
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Assume further that on this range f satisfies

(2.1) [fN7PNDy =0,  N=z3,
(2.2) [logf]'=0, N=2.

Then the function
_HH;

(2.3) ¥ T

assumes its maximum value on dD.

We note that (2.2) is satisfied in particular for exponential functions and positive
powers of A.

The proof of the theorem is based on the derivation of an elliptic differential
inequality for ¢. For N = 3, this derivation makes use of the following:

LEMMA. Let ve C*(D) and w e C'(D). Then at points in D where |grad v| and
|grad w| are positive the following inequality holds:

1 Va0V 2 U000
v,ijv,i]‘ g ( 51 SI1Y, ) + 51 5 SUY,]

N-1\ v, Vv,

1 (v,,‘kv,,‘w,k)2 1 (v,ikv,iw.k)2(0,sW,s)2
2 vwww, 2 (0w ww,)

2.4)

Vil Wil 0,00, mWom 2 AU 00k

(v,zv,,)zw,sw,s N-1 v,

The proof of this lemma follows from the fact that y;x;; =0, where x;; is defined as

R Va1 U,ksv,kv,s{ _ v,iv,i}
v Y LV, N-1 PR *N] Y VL,
(2.5)

1 U kiU kW i
s——————{ww,;—wv}

2 00 W mW,m
Here §;; is the Kronecker symbol. If v = w, then (2.4) reduces to

1 (U,ikv,iv,k)2 V,ikV,kV ;iU
N-1 (vw,) v,

V0, =
2.4)
2 Avv v,k
N-1 VL '

Proof of the theorem. By differentiating (2.3) we obtain
(2.6) Wu=2f "HuH,;~f*f H:H .,
and

(2.7) Ay =2f "H gH y—4f *f'H H yh o — (f2fYHH h ih .



98 L. E. PAYNE AND G. A. PHILIPPIN

Insertion of (2.4) (with v = H and w = k) into (2.7) gives

2 {HikH,iH,k)2+2I'I,ikH,kH,iiH,i
N-1\ H,H, H.H,

(HLaH i) | (HaH o) (H )"
H H h h ; (H.H Y (hh,)

H‘[kH,l‘h‘kH‘irH,jH,rH,mh,m}
(H . H )b gh g

—4f f2HH achs ~ (ff Y HH ih b i

Adng"{

(2.8)

-2

We now insert the following identities:

—1 pr
(29) H,,'kH,,'H‘k = 2f H,,'H,iH,kh,k +§¢,kH,k,
—1 pr
(2.10) Ho =L H i Lo
f f
H.HH;H ;= Z‘\[/,kd/,k +§H,iH,ih,klP,k
@.11) .
+T(HiH,i)2h,kh,k,
into the right hand side of (2.8). This leads to
3-N 12 p—3 2, (32 " £—3
(2.12) Ay + Wi i gmf (Huh ) + G =) "HH hhy,

where the term W,y ; includes all terms involving first derivatives of . We note of
course that W, may become unbounded at points at which |grad H|= 0. However, W,
remains bounded in the limit at those points where |grad k| =0 (assuming |grad H| 0
there). Since N =3 and

(2.13) H H hihs = (H b i),
it follows that the right hand side will remain positive provided

N
2N-1)

But this is equivalent to (2.1). Hence if N =3 and if (2.1) is satisfied, it follows that

(2.14) "

f?=0.

(2.15) AY+ Wiy Z0 inD,

and we conclude from Hopf’s first principle [2] that ¢ takes its maximum value either
at a critical point of H, or on 4D. But the maximum can occur at an interior critical
point of H iff |grad H|=0 (H = const). In this latter case, the theorem is trivially true.
This establishes the first part of the theorem.
In the case N =2 we replace the inequality (2.4) by the following identity:
2Av

A2 2
(2.16) v, =(Av)" + V0,50 40k — CRCRCEE
URCN] CRCR
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The same kind of computation as before gives now the following equality for ¢:

S _ 1
HH ; f

which establishes the second part of the theorem.

(2.17) Ay (log f)'H :H ih kh k,

3. Applications.

a) Bounds for derivatives of the Green’s function. The first application involves
the Green’s function G(Q, P) for the Laplace equation in D. For fixed Q in D,
G(Q, P) vanishes for Pe oD, and in D has the representation

2—-N
(N - 2)wN

Here r is the distance between P and Q, and wy = 27"/?/T'(N/2) is the surface of the
unit sphere in N-dimensions. The regular part of the Green’s function, g(Q, P), is for
fixed Q a solution of the following boundary value problem:

(3.1 G(Q,P)= -g(Q,P), N=3.

Ag=0 in D,
3.2) N
=— aD.
E=N"2on "
In R? we have instead
, 11
(3.1 G(Q,P)=——Ilog-—g(Q, P),
27 r
where g(Q, P) satisfies for fixed Q
Ag=0 in D,
) 1 1
(3.2) g=—log— ondD.
27 r

For fixed Q in D we now apply the theorem with the following choices for H, h,
and f(h):

v p2NTDINTD N =3,
(3.3) HEP)=G@P;  h=r™?  ja={"" , 1=
According to the theorem established in § 2 the quantity
(3.4) ¢=r"""G,G,

takes its maximum value either on 6D, or at the point Q. We now show that unless D
is an N-ball and Q is the center point, the maximum of ¢ cannot occur at Q.
Using (3.1) or (3.1") we observe that ¢ may be rewritten as

(3.5) P=wy 208 Pxig + PN Vg g
so that our theorem implies

2
(3.6) @ =max { max r2<N_1)<§> , w;f},
aD on

where 3G/dn denotes the outward normal derivative of G on dD. We now show that

aG\?
-2 2(N-1)
67 ox? =ms [ (50 |
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with equality iff g =constant, i.e. iff D is an N-ball and Q is its center. To establish
(3.7) it suffices to show that in a neighborhood of Q there are points at which ¢ > ON.
Let K. be a ball of radius ¢ with center at Q such that K, < D. Clearly, the last term in
(3.5) is everywhere nonnegative. We need only show that for g constant the second
term on the right of (3.5) changes sign in K,. For any value of p in [0, £] we have

(3.8) ix N xg ds=pN! §K a—rgl ds=p"N~! J Agdx=0.
9.

P Pa Kp

Thus unless g=constant, the quantity r~ 2x;g; must change sign in K,. This
establishes (3.7), from which it follows that

(3.6") ¢ =max rz(N_l)(

aD

o
on/

The equality sign can hold in (3.7) only if g =constant in K, (and hence by analyticity,
in D), in which case D must be an N-ball and Q its center.

We now seek an upper bound for max,p r*ND(3G/an)*. As indicated in [6], it is
known that if we choose a domain D such that D <D and let 9D and aD share a
common point P, then
(3.9)

=

aG
l—qt at P.

‘ aGp
on

on

If D is convex, then for any point P of 4D we may choose D as the half space which
contains D and shares the common boundary point P. This yields for any boundary
point P the estimate

dGp
on

2n,
=% N=2,
WNT

(3.10) ‘

where n, is the projection of the unit outward normal vector at P onto the straight line
joining P and Q. Since ¢ takes its maximum value on 3D, we conclude by means of
(3.10) that

2
(3.11) lgrad G|l=—r'"", N=z=2,
wN

an inequality which holds for convex D at any point P # Q in D. The equality in (3.9)
is never realized for any bounded domain D; so we cannot expect (3.11) to be sharp.
Nevertheless it appears to be sharper than similar bounds obtained by Bramble and
Payne in [1]. This result can easily be extended to nonconvex domains by choosing for
D the exterior of a sphere.

From (3.11) we can compute a bound for G(Q, R) at a point R in D. Consider
the ray from Q through R which intersects 6D at P;. Let d denote the distance from
Q to P,, and r the distance from Q to R. Then by integrating (3.11) along the ray we
obtain for D convex

2

E. [P -d™ ™), N=z3,

(3.12) G(Q,R)=
—log—, N=2,
T r
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b) Bounds for electrostatic capacity and charge density. A classical problem of
electrostatics asks for the solution of the following exterior Dirichlet problem:

Au=0 in D*=R*>-D, u=1 on oD,

3.13 1

( ) u=0(—> as r-0o,
r

Here u is the electrostatic potential of the conductor and r measures the distance

from some convenient origin inside D. The charge density on 4D is given by |grad u].

We introduce the function

(3.14) Yx)=

Ul
4

, xeD*,

u
which according to the theorem established in § 2 takes its maximum value either on
dD, or at infinity. An easy computation shows that

(3.15) lim ¢ (x)=C"",

where C is the capacity of the conductor. This follows from the well-known expansion
of u for large r. Thus

(3.16) ¢ (x)=max [max (x), c.

We show now that

(3.17) c*gnggx (%),

with equality iff D is a sphere. To effect the proof of (3.17), consider the level surface
u =u where i € (0, 1). From the expansion of u in the neighborhood of infinity, we
know that for sufficiently small &, the surface u = i will be starshaped with respect to
the origin. Consider such a starshaped surface dD(i7) and denote by D*(i7) the region
exterior to aD (ir). From the identity

1

u
0=I xXiu;Au dx =§ Xiu; —ds +—J uu;dx
D*(i) oD (i) on 2 Jp*@)
(3.18)
1
- XU ju ; ds,
2 Jsp@)

used previously by Payne and Weinberger in [4], we obtain

du\2 a .
(3.19) —f}; x,»ni(—u) ds = ﬁ§ M ds = 4nCi.
oD (i7) on oD () 0N
(Note that in the boundary integrals, the normal vector points outward from D*(if),
and thus x;n; is negative.) It follows then from (3.19) that
47C ~
3.20 =-— nids =3V ,
(3.20) po " ¥ ds max ¢

where V is the volume of D(#), the region interior to dD(if). Now the classical
Poincaré inequality (see PSlya and Szegd [5]) states that

(3.21) V=
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where C is the capacity of the condenser with boundary 8D (7). We must now relate C
to C. Since aD (i) is a level surface of u it is easily seen that

(3.22) c="7Ca.
From (3.20), (3.21), (3.22) we obtain

-2
(3.23) C 553%(#-

It is again easily seen that the equality sign can hold for all such starshaped level
surfaces iff D is a sphere. But (3.23) shows that there are points in D* where ¢ = C 2,
from which (3.17) follows (making use of 3.16). We have thus established that

(3.24) ¢ (x)=max ¢ (x),

with equality iff D is a sphere.
At a point P, on 4D where ¢ assumes its maximum value it follows from Hopf’s
second principle that either D is a sphere or

d i 3
(3.25) W2 Th4(ZY >0,
on on on on

From the differential equation (3.13) evaluated on 0D

du au
3.26 —=2K—
(3.26) on’ on’
and (3.24), we obtain
(3.27) o<fi"—a(-fl-p°—)<K(Po).’r

Since ¢(x) and du/on take their maximum values at the same point on 4D it
follows that either D is a sphere or

ou
(3.28) max £<K(Po)<n;ng=Ko.

Inequalities (3.17) and (3.28) now give the following bound for the capacity of D:
(3.29) C=zKy',

where the equality sign holds iff D is a sphere.
Other isoperimetric inequalities result from integration of the inequality

(3.30) v(x)=K}

in various ways. For instance if we take the square root of both sides and integrate
over dD, we obtain

(3.31) 47C = KoS,

where S is the surface area of 4D. On the other hand, if D is starshaped, multiplication
of (3.30) by —x;n; and integration over D yields the inequality

(3.32) 47C =3VK3,

with equality holding in (3.31) and (3.32) iff D is a sphere. Similarly, an integration of

+ The symbol K(P) denotes the average curvature of D at P.
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lgrad u| = Kou? along a straight line joining any point A € D* to the nearest point on
aD leads to

(3.33) u(A)=(1+Kod)™?,

where d is the distance from A to dD.
Another inequality which follows directly from (3.30) is

(3.34) A7C =K} j u* dx.

D*

We may also use (3.28) to obtain some idea of the location of the point P, of
maximum charge density on oD. In fact from (3.28) we find that at P, the following
inequalities must be satisfied (assuming D is not a sphere):

ou_ 1 u 47C
. > —=— —ds =—,
(3.35) K (Po) rrgax 3 P 3 ds G

and in case D is starshaped with respect to the origin

—§Dx,~n,~(au/an)2 ds v (
(336) K(Po)> i =

—§ xn; ds
aD

Inequality (3.35) holds for nonstarshaped regions.
Similar inequalities can be derived for the expression

47C\ 1/
3v> '

(3.37) r=rtuu,

where u is the solution of (3.13), but the results in this case are of less interest.
Likewise we could apply our theorem to

_ G,,'G,,'
- [G + y]2(N—1)/(N~2)’

(3.38) # N=z3,

where G is the Green’s function introduced earlier, and vy is an appropriate constant.
This would give a lower bound for max,p (dG/on). However, such a bound seems to
be of limited interest.

4. Extensions and conclusions. It is clear from the proof of the theorem
established in § 2 that for N =2, if (log f)"=0in D and if grad H does not vanish in D,
then the function ¢ defined in (2.3) will take its minimum value on dD. In particular, if
f is an exponential function of A and if grad H # 0 in D, then ¢ will assume both its
maximum and minimum value on 4D. This would yield additional information on the
Green’s function and on lpgarithmic potential problems in two dimensions. One
would expect that for N = 3, a suitable hypothesis on f(h) might insure that in cases in
which H;H; does not vanish in D, ¢ will satisfy a minimum principle, but results in
this direction appear to be less useful.

We have considered in this paper a particular combination of harmonic functions
and their gradients. Many other combinations can easily be shown to satisfy a maxi-
mum principle. For instance, if H;, i =0, 1. - -, m are harmonic functions and Hy>0
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in D, then it follows rather easily from the generalized maximum principle in [6] that
the quantity Ho> Yo H;H; takes its maximum value on dD. A similar result holds of
course for solutions of more general second order elliptic equations.

Acknowledgment. The authors wish to thank the referee for his helpful com-
ments and suggestions.
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ON SOLUTIONS OF A TRANSCENDENTAL EQUATION
BASIC TO THE THEORY OF VIBRATING PLATES*

C. E. SIEWERTt AND J. S. PHELPS, IIIt

Abstract. The theory of complex variables is used to develop exact closed-form solutions of the
transcendental equation a tan ¢+tanh £=0.

1. Introduction. As discussed by Leissa [1] and Marguerre [2], the study of the
vibration of elastic plates invariably leads to eigenfunction expansions. In many such
cases the required eigenvalues are established as the solutions of transcendental
equations. One such problem is that of the dually clamped oscillating plate. Here we
seek a solution to

(1) (V' = kHW(x, y)=0,

with W(a, y)= W(0, y)=0, W(x,0)=f(x), and W(x, 8)=g(x). The solution for
W(x, y) can be established by separation of variables, with the x component expres-
sed as

e wermames (D) on (2 eon [2-D)

with

(2b) tanh (y/2)+tan (y/2) =0,

or

(3a) X (x)=sinh <Z) sin [’y(i—l)] —sin (Z) sinh [y<£_l)],
2 a 2 2 a 2

with

(3b) tanh (y/2)—tan (y/2)=0.

We wish here to investigate the transcendental equation

“4) atan £ +tanh £ =0,

which clearly contains the foregoing as special cases.

2. General analysis: |£| S 77/2. In order to find the real and imaginary solutions of
5) atan ¢ +tanh ¢ =0, a € (—00, 00),
we first wish to introduce and study the sectionally analytic function

6) F(z)=Log(z+1)—Log(z—1)— i% [log (z +i|a])—log (z —i|al)].
Here we use the standard notation Log (¢) to represent the principal branch of the log

function, i.e.,
(7 Log ({)=In|{|+iarg({), arg({)e(—m, m).

* Received by the editors January 28, 1977, and in revised form July 18, 1977.
1 Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina
27607.
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For the functions log (z +i|a|) appearing in (6) we use branches of the log function
such that

®) log @)= Inl¢l+iag @), ag@e(553)-

27
With these choices of the log functions it is clear that F(z) is analytic in the complex z

plane cut from —1 to 1 along the real axis and from —i|a| to i|a| along the imaginary
axis. It is a simple matter to show that

©) F)=2(+a)ytso-a)+0(55),  aslel-c.

We now wish to use the argument principle [3] to establish the number of zeros of
F(z)inside the contours C; and C,, shown in Fig. 1, as R - co0 and £ - 0. Since in general
F(z) vanishes as 1/z as |z| > o0, we find that the argument of F(z) decreases by 27 as
the contour C; is traversed (in the positive sense). For the special case a = —1, F(z)
vanishes as 1/z° as |z| - 0, and thus for this case the argument of F(z) decreases by 67
as C is traversed.

F1G. 1. The contours Cy and C,.

To compute the change in the argument of F(z) as the contour C, is traversed, we
first require the limiting values F*(x) of F(z) as z approaches the cut [—1, 1] from
above (+) and below (—) and the limiting values F*(iy) as z approaches the cut
[—ilal, i]a[] from the left (+) and the right (—). It is a relatively straightforward matter
to show that

(10) F*(x)=R(x)Fim, xe[-1,1],
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where

(11) R(x)=2tanh~ (x)+u[5gﬂ(x)7f 2Tan"](| |)]

We use here the convention that Tan™'(x) denotes the principal branch of the arctan
function. In a similar manner, we can compute the limiting values of F(z) as z
approaches the cut along the imaginary axis. We find

(12) )= #r i), yel-lal lal

where

(13) Io(y)= —2—51*,

tanh™" <| l) +2Tan™" (y)—sgn (y)m.

If we use A, to denote the change in the argument of F(z) as the contour C, is
traversed, in limit as € - 0, we can use (10) and (12) to deduce that A, =2, for a >0,
and that A, = 67 for a <0. (The special case a =0 clearly is not interesting.) We thus
conclude that for a >0, F(z) has only a zero at infinity; on the other hand, for a <0
we note that, in general, F(z) has two zeros in the finite plane plus one zero at infinity.
For the special case of a = —1, F(z) clearly has only a triple zero at infinity.

In order to relate the zeros of F(z) to the desired solutions of (5), let us first
deduce the special forms of F(z) for z=xe(—00, —1)U(1,©) and for z=
iy, y € (=00, —|a|)U (la], ). Evaluating F(z) on that part of the real axis that excludes
the cut, we find

(14) F(x)=2tanh"(%)Jr'Z—'[sgn(x)w 2Tan‘1(| I)] x e(~00, ~1)U (1, o0).

On that part of the imaginary axis that excludes the cut we find

(15)
-2 -
Fliy) = {2 tann - (4 ')+2Tan 0-sen O], v, ~lahU (al, ).
If we now consider a € (— 0, — 1), we can deduce from (14) that F(z) has (in addmon to

a zero at infinity) two real zeros =+ x¢, xo € (1, 00). It follows therefore that + §0, where
(16) §o= i Tan™" (':—I>, a e(—o0, —1),
0

are two of the desired solutions of (5) for this case. Considering now a € (—1, 0), we
conclude that F(z) has (in addition to a zero at infinity) two imaginary zeros
+1iyq, yo€ (la|, ). Thus we observe from (15) that =+ &,, where

17) £ =tanh" (' ') ae(~1,0),

are two of the desired solutions for the considered values of the parameter a. To
summarize our conclusions thus far we note that for a >0, F(z) has only a zero at
infinity which corresponds to the trivial solution (¢, = 0) of (5). For a € (—o0, — 1), F (z)
has two additional real zeros +x, which correspond to the imaginary solutlons :t.fo,
where & is given by (16). For a € (—1, 0), F(z) has, in addition to a zero at infinity, two
imaginary zeros *iy, which correspond to the real solutions £&,, where & is given
by (17).



108 C. E. SIEWERT AND J. S. PHELPS III

We note from (5) that
A 1
(s) b(@=ito(5), ae(-,-1)

and thus we need here only &y(a), as(—1,0), in order to establish the real and
imaginary solutions of (5) such that |&|= /2.
If we now consider only a <0 and let =z, denote the finite zeros of F(z), then we
note that the function
F(z)

19 Tz)2 %5
(19) (z) 22— 22
is analytic in the complex plane cut along L =[—1, 1]U[—i|a], i|a]]. In addition, T(z)
is nonvanishing in the finite plane, and the limiting values of T'(z) satisfy the Rie-
mann-Hilbert problem [4]

F(7)
F(7)
It thus follows [4] that T(z) can differ from any canonical solution of the Riemann-—
Hilbert problem by no more than a constant multiple. Thus we can write

e1) T8, kxce),

<40

(20) T ()= [ ] T (r), rtelL.

where X (z) is a canonical solution to the considered Riemann-Hilbert problem and K
is a constant to be established. The desired canonical solution X(z) can be constructed
from the work of Muskhelishvili [4]; some care is required, however, to be sure that
the “endpoint behavior” is correct. We find

1 2 (! de 2™ dy
(22) X&)—;“P[;L xOo(x)xT_—z—ﬁ;L yd)o(y)m]z
where
| -7
(23a) 0o(x)=tan [m]
and
4 —7
(23b) duty)=tan” [ 275

Here 6o(x) and ¢o(y) are continuous, with 64(0)= o(0)=—3w/4 and 6y(1)=
do(lal)=0.

We can now substitute (22) into (21) and let |z| - oo to find to find K =2(1+a),
and thus we can solve (21) to obtain the general result

__ F@)

2(1+a)X(z)
Equation (24) represents a general solution for the zeros of F(z) and is valid for any
value of z. We can let |z| > o0 in (24) to find the specific result

(1-a’)
3(1+a)y

(24) z5=2" a<o.

2 lal 2 1
(25) z5 =_J' do(y)y d)’*—I Oo(x)x dx — a<0.
T Jo aw Jo
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It is clear that (25) can be used in

(26a) &= tanh™! (Lio'l) ae(-1,0)
or
(26b) £ =i Tan™ (%) a e(—c0, —1),

to give exact analytical results for the desired solutions (&, || = (7/2)) of (5). In the
next section we develop similar expressions for the solutions such that |&| = (7/2).

3. General analysis: |£| = (7/2). Here we wish to generalize the analysis of the previous
section in order to find additional real and imaginary solutions of (5). If we
let

27) Fi(z)=F(z)+2kmi, k=1,2,3---,

then we conclude that F,(z) is analytic in the plane cut along L and has limiting values
(28) Fi (x)=R(x)+iQk ¥ 1), xe[—1, 1],

and

29 Fip=*Ynring).  yel-lal lalL

a
Here R(x)is given by (11) and
(30) L(y)=Io(y)+2kr.

If we use the argument principle again, we find that F, (z) has exactly one zero in
the finite plane. Note that if we were to allow k to be negative we could write
F_,(z)=—F,(—2z); thus the zeros corresponding to negative values of k are just the
negative of the zeros corresponding to positive values of k. If now we evaluate F,(z)
on the imaginary axis, but not on the cut, we find that

(31 Fi(iy)=F(iy)+2kami, ye(-o0,—|al)U(al, ),

always has one simple zero, say y,. It follows from (31) that + &, where

(Ll el _
(2) bo=(k=3 ) m+STan (. k=123,

are the additional real solutions of (5) that we seek. As in the previous section, we can
generate the imaginary solutions +¢, of (5) by

o 1
(33) E@=it() ac(-w,0),
We now observe that
(34) B _ g x, ),
z—1ly

where K, is a constant to be established and X, (z) is a canonical solution of the
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Riemann-Hilbert problem defined by

Fi (7)
Fi(7)

(35) X7 (r)= [ ]X; ), relL.

We find that X, (z) can be written as

1 1 (!
(36) Xk(z)=z—ia exp [_2—;;1,‘; [z In M, (x)+2ix6,(x)] xz(ix 3
la| dy
s —la| ¢k(y) y +i2:l,

where

_R*(x)+Qk-1)Vx"
37 M) = 2 F ek + )2

T —27R(x)

(38) Ok (x)=tan [Rz(x)+7rz(4k2—l)]’
and

=1 (lal/a)W
(39) éi(y)=tan [——Ik . ]

The angle defined by (38) is continuous for x € (0, 1), with 8, (0)=tan™" (—|a|/a)/(2k?).
As y varies from —|a| to |a|, the angle ¢ (y) varies from —7 >0, for a <0, and from
0- m, for a > 0; we note that ¢, (y) has a discontinuity at y =0.

If we now substitute (36) into (34) and let |z| > o0, we find that K, = 2ki. Thus
we can solve (34) to obtain the explicit result

Fi(z)
2k7TXk(Z),
Equation (40) is valid for any z, and thus can be substituted into (32) to give the

remaining real solutions of (5). To obtain a specific form of (40), we can let |z| > o to
find

(40) Yo =—iz+ a e(—0, ).

1+ ! !
41) yk=a+—q+ij In M, (x) dx—mj ¢ (lalx) dx.
kar 2m o m J-1

4. Conclusions. We have successfully found all of the real and imaginary solu-
tions of (5). The real solution corresponding to k =0 is given by (25) and (26a) for
a €(—1, 0), and the imaginary solutions are given by (25) and (26b) for a € (—o0, —1).
For a >0 there are no real or imaginary solutions corresponding to k =0. For
ac(—oo,00)and k =1,2,3 - -+, the real solutions of (5) are given by (32) and (41); the
imaginary solutions are given by (33). Of course, if £ is a solution, so is —¢&.

To be sure that our final results are free of errors, we have evaluated (25), (26),
(32) and (41) numerically for various values of a and k; without difficulty solutions
correct to six significant figures were obtained.

Acknowledgment. The authors are grateful to Dr. M. N. Ozisik for suggesting this
problem.
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A VARIATIONAL FORMULA FOR THE GROWTH RATE OF A
POSITIVE OPERATOR SEMIGROUP*

THOMAS G. KURTZt
Abstract. Let B be a Banach space, M a convex subset of B* such that [|v|=1 for all ve M,

K ={feB: vfz0,forall ve M}
Ko={feB: vf>0forall ve M}.

and
Let T(t) be a strongly continuous semigroup on B with infinitesimal generator A. If T(¢): K » K then

Au
V,= inf  sup —=inf{A: Jue D(A)NKo5Au—AucK}=A,.
ueD(A)NKo veM VU

If, in addition, ||f|| = sup,cas ¢f for all fe K, then
1
\1,2 =A =A== inf lim — 10g ”T(t)f".
feKot-o t
Other similarly defined quantities are also considered.

Introduction. In [1] Donsker and Varadhan gave a variational formula for the
principal eigenvalue of an operator A =L+ V where L generates a positive semi-
group on C(X), the space of continuous functions on a compact metric space,
satisfying T'(¢)1 =1, and V is multiplication by a function V € C(X). After a minor
transformation their variational formula can be seen to be an analog of the variational
(minimax) formulas for the spectral radius of a positive operator and the analogous
quantity for more general order preserving mappings. See for example [2], [3], [5], [6].

In this paper we consider this variational formula applied to more general
operators A, requiring only that A generate a strongly continuous semigroup of linear
operators T(¢) on a Banach space B which satisfies the following positivity condition:

Let M be a convex subset of B* such that ||v|| =1 for all v € M and define

K ={feB:vf=0forallve M}
Ko={feB:vf>0forall ve M}.

and

Positivity condition.
1) T(): K->K.

While it is not necessarily true that T'(¢): Ko— Ko, it does follow that

[Se)

() hA-A)y'= J e MT(t) dt: Ko~ Ko.

0

In [1] Donsker and Varadhan defined lim,. (1/¢)log || T (¢)|| to be the ““principal
eigenvalue” of A. This limit always exists due to the subadditivity

3) log [T (¢t +s)||=1log | T (#)||+1og | T (s)l,

but, as Donsker and Varadhan point out, it need not be an eigenvalue of A in the
usual sense. It does provide a measure of the rate of growth of T'(¢); however, in our

* Received by the editors June 27, 1977.
‘+ Mathematics Department, University of Wisconsin—Madison, Madison, Wisconsin 53706.
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more general setting it may not be the most appropriate measure. With this in mind
we define the following:

4) Ao=sup {A: sup j e MyT(t)fdt =0 forall fe Ko};
veM J0
5) AM=inf{A: Jue D(A)NKo3Au—Auc K},
—1
®) A2= inf lim = log ||T(t)fl;

feKp t>© t
.1
@) A3 =lim —log IT@).
t—>00

Our primary concern is the relationship of these quantities to the variational
formulas

A
8) V,=sup inf vau

3
veM ueD(A)NK, VYU

and

Au
Vv,= inf sup V—‘
ueD(ANK, veM VU
These relationships are given by the following theorem and its corollaries.
THEOREM 1. Let T(t) be a strongly continuous semigroup satisfying the positivity
condition [(1) above]. Then

(9) \P1§A0§\I’2=A1§A2§A3.

COROLLARY II. If ||f|=sup,ca |tf| for every fe Ko then A=Wy =A1=A,. If
I £l =sup.enr (wfl/lvll) for every f € Ko then W2 =A1= ..

COROLLARY 111 If M is weak*® compact then WV, =Ao="V,,

COROLLARY IV. If the conditions of Corollaries 11 and 111 hold then ¥;= o=
\I’2=A1=A2=)t3.

Remark. Corollary IV includes the situation considered by Donsker and
Varadhan.

The condition of Corollary III can be weakened somewhat to give:
COROLLARY V. If there is a weak™ compact subset N = M such that

for allue D(A)N K then V= Ao="V,.

Proof. The inequality A, =A; is immediate. If A > A, then there is an f € K, such
that u =];° e MT(t)fdte D(A)YNKoandAu —Au=fe K.Hence A ZA;and A, =2;. To
see that ¥, = A, observe that if ue D(A)N Ky and (A —A)u € K then
(10) VAM=A_V()1 _A)uéA

vu vu

for all » € M. Consequently ¥, =A for any such A and hence ¥, =1, (the infimum of
all such A). On the other hand if A >V, there is a u € K, such that

vAu
sup —<A.
7
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Consequently
Au
v(A\u— Au)= Avu —K—u—uu =0.
Vi

Therefore Au —~Au € K and A > A;. It follows that ¥, = A ;.
To complete the proof we need the following lemma.
LEMMA 1. Ifue K N D(A) then

vu gJ' e MyT()A —A)u dt.
0

Proof. Since

T

[ e™ro0-awd=a [ eNTeudi-a [ e T@uar
o 0

0
=u—e VT (r)u,

the inequality follows from the positivity conditions.
Let ue D(A)N Ko and A <Ag. Then

Either there exists » such that v(A —A)u=0 or (A —A)u e Ko. If (A —A)u € K, then
Lemma 1 implies

sup J e M vT ()X —A)u dt = sup vu = ||ul.
veM J0 veM

But this contradicts the fact that A <A,. Consequently ¥, = Ao.
Finally suppose A > Ao. Then there is an f e K such that

(11) J e MyT()f dt <o
0
for every ve M.

Observe that u, = f;e MT(t)f e D(A)NKoand (A —A)u, =f—e T (7)f. By (11)
lim, . e *"vT(7)f = 0 for every v € M. Consequently

inf 234 _ g (2 _rA = A, ‘A)“*>

r VUr VUr
—AT
T
= inf (/\ +L(L)f—if—> =Y
T | 47 VU,

Consequently ¥; = A for every A > A, and hence ¥ = A,.
Proof of Corollary 1II. If u > Ao there is an f € K, such that

(12) sup J e “vT(t)f dt <o.
veM J0

Let A > u and define

U, = J‘T e MT(H)f at.
0
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Then for 71 <7,

1'2 . [s o}
s, — tiry)| = sup » I eMT()fdt=e * i sup J e “vT(t)f dt.
v T v 0

1

Consequently lim,.« 4. = u exists and it follows that (A — A)u = f. Finally,

T

e MT(Mu=u —J e MT(t)f dt.

0

Since f e K, we have

supve VT(r)u =lle " T(r)u| =sup vu = ||ull.

v

Consequently A, = and hence A, = Ao. The second part of the corollary follows from
the fact that ¥,, A; and A, do not change if we replace M by

Mz{ﬁsH: VEM}.

Proof of Corollary II1. Since vAu/(vu) is a quasi-concave-convex function in the
terminology of Sion [7], Sion’s theorem implies ¥; = V¥,.

Proof of Corollary IV. By the weak® compactness of M, if f € K, then inf,cps vf >
0. Consequently, if f € K, then for every g € B there is a C such that Cf—3g € K, and
Cf +3g € K. It follows that

le ™ T ()l <lle™T()CF -3 ) +lle ™ T(eXCf +3)l

=sup ve NT(t)Cf—3g)+sup ve MT(t)Cf+3g)
veM veM

(13)
=4supve MT(t)CSf

veM

=4Cle™T (0)fl.

If A>A, there is an feK, such that sup, e T (t)f| <. Consequently
sup, |le T (¢)g|| < for all g € B. The uniform boundedness theorem implies

sup [le T (1) <0

and hence A = A;. It follows that A, = As.
Proof of Corollary V. Sion’s theorem implies

. vAu . VAU
V,= inf sup——= inf sup—
ueD(ANKo veM VU ueD(A)NKo veN VU
. vAu
=sup inf —=V,.

veN ueD(A)NK, VU

Examples. We now give examples showing that strict inequality is possible for
each of the inequalities in Theorem I.

Example A (A\3>A,). Let B = C(R), the space of continuous functions vanishing
at infinity with the sup norm.
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Let M be the set of measures v with »(R)=1 and »(U)> 0 for every open set U.
Then

Ko={fe CR): f=0, f#0}.

Let T(t)f(x)=e"**f(x). Then A3=1and A, =—1.

Example B (A;>A;). Let B = C'(R) and M be the space of positive measures with
v(—=00,0)=1 and »[0, 0)=0. Then Ko={fe B: f(x)>0 for x <0}.

Let T(t)=f(x —t). Then Af(x)=—f'(x). If A <0 and f(x)e D(A) with f(x)=e**
for x <0, Af(x)—Af(x)=0 for x <0 and hence A; =A. Therefore A; = —c0. However,
A2= 0

Example C (A\;=V,>),). Let B=L"(0,0), p'<p, 1/q+1/p=1 and 1/q'+
1/p'=1. Let M={g:2=0 ae. |g|,=1, |lgly=1}. Then K={feL”:f=0 a..}.
Define T (£)f(x)=f(e“'x) for some w > 0. Then

i, =([

0

|f(e™x )P dx)l/p ECRlTR

If —u/p>A>—u/p and fe L"NL” N K, then
supj e"“j g(xX)T(O)f(x) dx dt <o,
geM JOo 0

This follows from the inequality

L gC)T(Of(x) dx =gl "l

Therefore A = Ao and Ao <—u/p. On the other hand, if ue D(A)N Ky and Au —Au e
K we have by Lemma 1 that

uze MT(u a.e.
Consequently

lall, =lle ™ T (t)ull, = €™ ™ “/**|Ju,.

Therefore we must have A = —u/p and hence Ay =—u/p.

Example D (Ao>W¥,). Let B = C(R), M be the collection positive measure with
v(R)=1 and v([—a, a]°)=0 for some a, and let T(¢)f(x)=f(x —¢). Then Ao=0 and
¥, =—00. To see that ¥, = —1, note that if u(x)=e"* on the support of », then

vAu

—A.
vu

Relationship to other work. In [1], with A = L + V, Donsker and Varadhan define
(14) ¥, = sup [J V(x)u(dx)+ inf I (Ilu->(x),u(dx)]
weMLJx ue D(A)NK,o u
where M is the space of positive measures with w(X)= 1. This is the same as
1
¥,—sup inf j [V () () + Lt (x)] —— o (dx).
X

weM ueD(ANK, u(x)

(15)

= sup inf
nweM ueD(A)NKg

J’ Au(x)u(dx)'

x u(x)
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Similarly their definition of WV, is

19 vt ]y e
Taking

17) V(dx)=$p,(dx) / L% du

we have

(18) j*:{‘zg)ﬂ(dx)=LAu(x)u(dx) / Lu(x)v(dx).

For fixed u, (17) defines a one-to-one mapping of M onto M and the sup over u on
the left of (18) is the same as the sup over v on the right. It follows that the definition
of W, in (16) is the same as the previous definition.

Unfortunately there doesn’t appear to be a simple way of showing that the two
definitions of ¥, are the same.

Finally, without a positivity assumption, Lumer and Phillips [4] have shown

1
lim = log ||T(¢)| = sup {vAu: u e D(A), ve B*, |lu||=|v|=ru=1}.

t—>00 t
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FREQUENCY DOMAIN STABILITY FOR A CLASS OF
EQUATIONS ARISING IN REACTOR DYNAMICS*

D. WEXLERTY

Abstract. We establish Liapunov type stability properties for an evolution equation in a Hilbert space
by using the Popov frequency domain method. Some systems arising in reactor dynamics may be viewed as
specializations of the equation discussed in this paper.

1. Introduction. In recent years, an increasing interest has been taken in the
system of integro-differential equations

T O=17 @) 3 T O]+ PO O+ o0 (Da(e)
(1.1) v
%o-(t)= J b(ET(t, &) d¢, forall te]0, +0o] and almost all £ in ]y, v,

Y1

subject to boundary conditions

8, T(t, ‘Yl)+52 (t v1)=0,
(1.2)
83T(t, y2)+64 (t v2)=0 for all t€]0, +o[,

and to initial conditions

(1.3) c@=00, T(t)>To inL*v1,v2) ast-0,
where the real constants §; satisfy
(1.4) |81]+182/>0,  |85]+]84]>0,

the nonlinear function ¢: R— R is continuous with ro(r)>0 forallre R, r #0 and a, b
are elements of the space L’(yi,v2) of real-valued square-integrable (classes of)
functions on ]vyi, v2[; when ]vi, v2[ =R, the boundary conditions are replaced by
appropriate L* conditions. Also, conditions on 8; and on the real functions pi, p, were
required in order to insure the associated to (1.1), (1.2) Sturm-Liouville operator A,

(1.5) Ax©)= 2@ 2@ +p0x(®),

to be self-adjoint and negative in L*(y1, y2).

Systems of this type arise as dynamic models of one-dimensional continuous
medium nuclear reactors and one is interested in the asymptotic behavior of the
solutions as ¢t - +00, mainly in Liapunov type stability; the reader is referred to [7], [9]
for the physical significance of the various parameters of the system.

This problem has been studied most notably by Levin and Nohel [9], [10], [11],
[12], Nohel [16], Miller [13], [14]. By eliminating the unknown function T they
obtained a scalar nonlinear Volterra integro-differential equation which was discussed
by means of energy functions and/or transform methods.

* Received by the editors January 13, 1977, and in revised form July 13, 1977.
t Department of Mathematics, Facultés Universitaires N.D. de la Paix, Namur, Belgium.
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Bronikowski, Hall and Nohel [2] used a Galerkin procedure to approximate the
problem by a set of ordinary differential equations which is then discussed by
Liapunov function method. The stability conditions in [2], [11] are expressed in terms
of the Fourier coefficients of a and b with respect to the system of eigenfunctions of A.

The theory of Co-semigroups is applied by Suhadolc [20] and Infante and Walker
[7]. In [20], a linear variant of the above problem is considered with Jy1, ¥2[ =R and
A=d?/d¢*; the theory of analytical semigroups is used to obtain existence and
regularity of the solutions and transform methods are applied to discuss stability. In
[7], the abstract evolution problem
(1.6) %=Au +¢(o)a, %=(b, u)
is considered in L*(yi, y2)XR, where A is a negative self-adjoint operator in
L*(y1, ¥2), (-, *) is the inner product in L*(y1, v2) and a, b€ L*(y1, v2). When A is
the Sturm-Liouville operator (1.5), system (1.6) is an L*-version of problem (1.1),
(1.2). For system (1.6), Infante and Walker [7] have established stability conditions by
means of the theory of nonlinear Cy-semigroups combined with some estimates
obtained on the basis of a Liapunov function which is much similar to that used
previously in the theory of absolute stability of differential equations in finite-dimen-
sional spaces. Their approach applies also when the effect of delayed neutrons is
included and the heat conduction is nonlinear [21].

Here we choose to consider the abstract evolution problem (1.6) under more
general assumptions on A. It will be assumed that A is a linear operator in a real
Hilbert space H and that A generates a differentiable exponentially stable Co-
semigroup on H (A is not necessarily self-adjoint, nor negative); the case in which 0 is
a simple isolated eigenvalue of the complexification A of A and the case in which ¢ is
linear will be discussed elsewhere. We establish stability conditions by applying Popov
type frequency domain methods to the associated Volterra integral equation; our
approach is an extension to the Hilbert setting of the approach used previously by
Corduneanu for differential equations in finite-dimensional spaces [cf. 3, chap. 3].
Note that Levin and Nohel made mention previously [11] of the possibility to study in
this way the Volterra integral equation associated with (1.1), (1.2), but only for some
rather special cases.

In § 2, we give the precise description of our setting and in § 3, we establish the
stability criteria; for shortness, we limit our discussion to asymptotic stability. We also
establish some exponential estimates for the solutions and discuss the sensitivity of our
stability conditions with respect to small perturbations in the parameters of the
system.

As usual, when applying frequency domain methods to differential equations, the
stability conditions we obtain are expressed in terms of positivity of a function
involving a, b and the resolvent of A° and they do not depend on the nonlinear
function ¢ belonging to a specified class. In general, to check the frequency domain
condition (condition (ii) of Theorem 1) requires the knowledge of the resolvent of A°,
which is far from being an easy matter. When A is defined by (1.5), it amounts to
solving a Sturm-Liouville problem for an ordinary second order differential operator;
in some special cases (say if p; and p, are constants), this problem may be effectively
solved. On the other hand, for significant systems, some easy-to-check stability
conditions which do not make explicit use of the resolvent are available [7]. In § 4, we
show that the asymptotic stability result established previously in [7] is closely related
to a specialization of Corollary 1.
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For some significant integro-differential systems, the solutions of the associated
abstract version are in fact classical ones and one may derive also stability results
under the norm of the uniform convergence. This is illustrated in § 4 for the case of
problem (1.1), (1.2). Furthermore, for problem (1.1), (1.2), we related the frequency
domain stability conditions to the asymptotic stability conditions established pre-
viously in [2].

2. Setting of the abstract problem. In the sequel H is a real Hilbert space with
inner product ( - . - ) and the norm | - |, I is the identity operator on H and A is a linear
operator with domain D(A)< H and range R(A)< H. We consider the differential
system

du do
. - = + s -V = b7 B
(2.1) oA ¢(o)a i (b, u)
where a and b are given elements in H and ¢: R—->R is a given (nonlinear) locally
Lipschitz function. The above system will be viewed in the Hilbert space ¥ = H XR
with inner product

((x1, r1), (x2, 2)oe ={x1, X2)+ 1112 (xpr)ed, j=1,2.

In §82 and 3, it is assumed that A generates a Cp-semigroup S on H, which
satisfies the following conditions:

2.2) S is differentiable (i.e. S(t)H < D(A) for all ¢t >0)
and there exist M =1, a« > 0 such that
(23) lS(t)lg(H)éMe_“' for all =0,

where Z(H) denotes the Banach space of bounded linear operators from H to H ; for
the theory of semigroups of linear operators, we refer the reader to [8, chap. IX] and
[22, chap. IX]. Condition (2.2) implies that for each x € H the function S(- )x: R" > H
is of class C™ on ]0, +o[, hence by using the Banach-Steinhaus theorem and the
Taylor formula, we may see that the operator-valued function S: R" - %#(H) is also of
class C™ on 10, +oo[. Then, by using (2.3) and

das as v
— = _ _— = >
” ®)=8St—-0) ar () forallt, 0eR™, t=6>0,

it follows that there exists a continuous, decreasing function f:]0, + o[> R" with
f(t)> 0 as t > + 00, such that

ds
2.4) Z(t)‘ war= |ASOlzan =f(0), for all >0,

It is useful to consider also the complexification H* of H ; the elements of H® will
be written as x +iy,xe€ H,y € H and the inner product of H® will be denoted by
(', )ue. For any linear operator U in H, we denote by U* the linear operator in H°
defined by

U(x+iy)=Ux+iUy withdomain D(U®)=D(U)+iD(U).

In particular, I° is the identity operator on H. By the Hille-Yosida theorem, saying
that A generates a Co-semigroup which satisfies (2.3) is equivalent to the following: A
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is densely defined, closed, the resolvent set P(A°) of A° contains the half plane
ReA>—a andforeachn=1,2,3,:: -,

(2.5) A=A "emo=M[ReA+a)" forallAeC, ReA>—a.

We see in particular that A~ is a bounded linear operator.

An important case in which our assumptions on A hold is the case in which for
some a >0, the operator A°+al° generates a bounded holomorphic semigroup. This
condition is in turn satisfied when for some a >0 the operator —(A°+al°) is m-
sectorial with vertex 0 [8, pp. 490-491] (note that significant differential operators are
m-sectorial [8, p. 280]). The latter condition holds in particular when A is self-adjoint
and there exists @ >0 such that A + af is negative.

The function (u, o) from the interval [0, 8] to & is said to be a solution of (2.1) on
[0, ] with initial data (uo, oo)€ &, if it satisfies the following conditions: (i) u is
continuous on [0, 6], of class C' on 10, 8], u(0)= uo and

d
u(t)e D(A), d—‘t‘(r)=Au(t)+<p(a(t))a, for all 1[0, 0];
(ii) o is of class C' on [0, 6], o(0) = o0 and
d
f (t)= (b, u(t)) for all 1[0, 6].
The function (&, o) from R™ to ¢ is said to be a solution of (2.1) on R* with initial data
(uo, o0)€ %, if it is for all 6§ >0 a s